79fe3dbb982aa532c51348a7f6d95dfc1d42e252
[dragonfly.git] / sys / opencrypto / crypto.c
1 /*      $FreeBSD: src/sys/opencrypto/crypto.c,v 1.28 2007/10/20 23:23:22 julian Exp $   */
2 /*-
3  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25
26 /*
27  * Cryptographic Subsystem.
28  *
29  * This code is derived from the Openbsd Cryptographic Framework (OCF)
30  * that has the copyright shown below.  Very little of the original
31  * code remains.
32  */
33
34 /*-
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54
55 #define CRYPTO_TIMING                           /* enable timing support */
56
57 #include "opt_ddb.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/eventhandler.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/lock.h>
65 #include <sys/module.h>
66 #include <sys/malloc.h>
67 #include <sys/proc.h>
68 #include <sys/sysctl.h>
69
70 #include <sys/thread2.h>
71 #include <sys/mplock2.h>
72
73 #include <vm/vm_zone.h>
74
75 #include <ddb/ddb.h>
76
77 #include <opencrypto/cryptodev.h>
78 #include <opencrypto/xform.h>                   /* XXX for M_XDATA */
79
80 #include <sys/kobj.h>
81 #include <sys/bus.h>
82 #include "cryptodev_if.h"
83
84 /*
85  * Crypto drivers register themselves by allocating a slot in the
86  * crypto_drivers table with crypto_get_driverid() and then registering
87  * each algorithm they support with crypto_register() and crypto_kregister().
88  */
89 static  struct lock crypto_drivers_lock;        /* lock on driver table */
90 #define CRYPTO_DRIVER_LOCK()    lockmgr(&crypto_drivers_lock, LK_EXCLUSIVE)
91 #define CRYPTO_DRIVER_UNLOCK()  lockmgr(&crypto_drivers_lock, LK_RELEASE)
92 #define CRYPTO_DRIVER_ASSERT()  KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0)
93
94 /*
95  * Crypto device/driver capabilities structure.
96  *
97  * Synchronization:
98  * (d) - protected by CRYPTO_DRIVER_LOCK()
99  * (q) - protected by CRYPTO_Q_LOCK()
100  * Not tagged fields are read-only.
101  */
102 struct cryptocap {
103         device_t        cc_dev;                 /* (d) device/driver */
104         u_int32_t       cc_sessions;            /* (d) # of sessions */
105         u_int32_t       cc_koperations;         /* (d) # os asym operations */
106         /*
107          * Largest possible operator length (in bits) for each type of
108          * encryption algorithm. XXX not used
109          */
110         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
111         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
112         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
113
114         int             cc_flags;               /* (d) flags */
115 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
116         int             cc_qblocked;            /* (q) symmetric q blocked */
117         int             cc_kqblocked;           /* (q) asymmetric q blocked */
118 };
119 static  struct cryptocap *crypto_drivers = NULL;
120 static  int crypto_drivers_num = 0;
121
122 typedef struct crypto_tdinfo {
123         TAILQ_HEAD(,cryptop)    crp_q;          /* request queues */
124         TAILQ_HEAD(,cryptkop)   crp_kq;
125         thread_t                crp_td;
126         struct lock             crp_lock;
127         int                     crp_sleep;
128 } *crypto_tdinfo_t;
129
130 /*
131  * There are two queues for crypto requests; one for symmetric (e.g.
132  * cipher) operations and one for asymmetric (e.g. MOD) operations.
133  * See below for how synchronization is handled.
134  * A single lock is used to lock access to both queues.  We could
135  * have one per-queue but having one simplifies handling of block/unblock
136  * operations.
137  */
138 static  struct crypto_tdinfo tdinfo_array[MAXCPU];
139
140 #define CRYPTO_Q_LOCK(tdinfo)   lockmgr(&tdinfo->crp_lock, LK_EXCLUSIVE)
141 #define CRYPTO_Q_UNLOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_RELEASE)
142
143 /*
144  * There are two queues for processing completed crypto requests; one
145  * for the symmetric and one for the asymmetric ops.  We only need one
146  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
147  * lock is used to lock access to both queues.  Note that this lock
148  * must be separate from the lock on request queues to insure driver
149  * callbacks don't generate lock order reversals.
150  */
151 static  TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queues */
152 static  TAILQ_HEAD(,cryptkop) crp_ret_kq;
153 static  struct lock crypto_ret_q_lock;
154 #define CRYPTO_RETQ_LOCK()      lockmgr(&crypto_ret_q_lock, LK_EXCLUSIVE)
155 #define CRYPTO_RETQ_UNLOCK()    lockmgr(&crypto_ret_q_lock, LK_RELEASE)
156 #define CRYPTO_RETQ_EMPTY()     (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
157
158 /*
159  * Crypto op and desciptor data structures are allocated
160  * from separate private zones.
161  */
162 static  vm_zone_t cryptop_zone;
163 static  vm_zone_t cryptodesc_zone;
164
165 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
166 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
167            &crypto_userasymcrypto, 0,
168            "Enable/disable user-mode access to asymmetric crypto support");
169 int     crypto_devallowsoft = 0;        /* only use hardware crypto for asym */
170 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
171            &crypto_devallowsoft, 0,
172            "Enable/disable use of software asym crypto support");
173 int     crypto_altdispatch = 0;         /* dispatch to alternative cpu */
174 SYSCTL_INT(_kern, OID_AUTO, cryptoaltdispatch, CTLFLAG_RW,
175            &crypto_altdispatch, 0,
176            "Do not queue crypto op on current cpu");
177
178 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
179
180 static  void crypto_proc(void *dummy);
181 static  void crypto_ret_proc(void *dummy);
182 static  struct thread *cryptoretthread;
183 static  void crypto_destroy(void);
184 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
185 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
186
187 static struct cryptostats cryptostats;
188 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
189             cryptostats, "Crypto system statistics");
190
191 #ifdef CRYPTO_TIMING
192 static  int crypto_timing = 0;
193 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
194            &crypto_timing, 0, "Enable/disable crypto timing support");
195 #endif
196
197 static int
198 crypto_init(void)
199 {
200         crypto_tdinfo_t tdinfo;
201         int error;
202         int n;
203
204         lockinit(&crypto_drivers_lock, "crypto driver table", 0, LK_CANRECURSE);
205
206         TAILQ_INIT(&crp_ret_q);
207         TAILQ_INIT(&crp_ret_kq);
208         lockinit(&crypto_ret_q_lock, "crypto return queues", 0, LK_CANRECURSE);
209
210         cryptop_zone = zinit("cryptop", sizeof (struct cryptop), 0, 0, 1);
211         cryptodesc_zone = zinit("cryptodesc", sizeof (struct cryptodesc),
212                                 0, 0, 1);
213         if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
214                 kprintf("crypto_init: cannot setup crypto zones\n");
215                 error = ENOMEM;
216                 goto bad;
217         }
218
219         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
220         crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
221                                  M_CRYPTO_DATA, M_WAITOK | M_ZERO);
222         if (crypto_drivers == NULL) {
223                 kprintf("crypto_init: cannot malloc driver table\n");
224                 error = ENOMEM;
225                 goto bad;
226         }
227
228         for (n = 0; n < ncpus; ++n) {
229                 tdinfo = &tdinfo_array[n];
230                 TAILQ_INIT(&tdinfo->crp_q);
231                 TAILQ_INIT(&tdinfo->crp_kq);
232                 lockinit(&tdinfo->crp_lock, "crypto op queues",
233                          0, LK_CANRECURSE);
234                 kthread_create_cpu(crypto_proc, tdinfo, &tdinfo->crp_td,
235                                    n, "crypto %d", n);
236         }
237         kthread_create(crypto_ret_proc, NULL,
238                        &cryptoretthread, "crypto returns");
239         return 0;
240 bad:
241         crypto_destroy();
242         return error;
243 }
244
245 /*
246  * Signal a crypto thread to terminate.  We use the driver
247  * table lock to synchronize the sleep/wakeups so that we
248  * are sure the threads have terminated before we release
249  * the data structures they use.  See crypto_finis below
250  * for the other half of this song-and-dance.
251  */
252 static void
253 crypto_terminate(struct thread **tp, void *q)
254 {
255         struct thread *t;
256
257         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
258         t = *tp;
259         *tp = NULL;
260         if (t) {
261                 kprintf("crypto_terminate: start\n");
262                 wakeup_one(q);
263                 crit_enter();
264                 tsleep_interlock(t, 0);
265                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
266                 crit_exit();
267                 tsleep(t, PINTERLOCKED, "crypto_destroy", 0);
268                 CRYPTO_DRIVER_LOCK();
269                 kprintf("crypto_terminate: end\n");
270         }
271 }
272
273 static void
274 crypto_destroy(void)
275 {
276         crypto_tdinfo_t tdinfo;
277         int n;
278
279         /*
280          * Terminate any crypto threads.
281          */
282         CRYPTO_DRIVER_LOCK();
283         for (n = 0; n < ncpus; ++n) {
284                 tdinfo = &tdinfo_array[n];
285                 crypto_terminate(&tdinfo->crp_td, &tdinfo->crp_q);
286                 lockuninit(&tdinfo->crp_lock);
287         }
288         crypto_terminate(&cryptoretthread, &crp_ret_q);
289         CRYPTO_DRIVER_UNLOCK();
290
291         /* XXX flush queues??? */
292
293         /*
294          * Reclaim dynamically allocated resources.
295          */
296         if (crypto_drivers != NULL)
297                 kfree(crypto_drivers, M_CRYPTO_DATA);
298
299         if (cryptodesc_zone != NULL)
300                 zdestroy(cryptodesc_zone);
301         if (cryptop_zone != NULL)
302                 zdestroy(cryptop_zone);
303         lockuninit(&crypto_ret_q_lock);
304         lockuninit(&crypto_drivers_lock);
305 }
306
307 static struct cryptocap *
308 crypto_checkdriver(u_int32_t hid)
309 {
310         if (crypto_drivers == NULL)
311                 return NULL;
312         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
313 }
314
315 /*
316  * Compare a driver's list of supported algorithms against another
317  * list; return non-zero if all algorithms are supported.
318  */
319 static int
320 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
321 {
322         const struct cryptoini *cr;
323
324         /* See if all the algorithms are supported. */
325         for (cr = cri; cr; cr = cr->cri_next)
326                 if (cap->cc_alg[cr->cri_alg] == 0)
327                         return 0;
328         return 1;
329 }
330
331 /*
332  * Select a driver for a new session that supports the specified
333  * algorithms and, optionally, is constrained according to the flags.
334  * The algorithm we use here is pretty stupid; just use the
335  * first driver that supports all the algorithms we need. If there
336  * are multiple drivers we choose the driver with the fewest active
337  * sessions.  We prefer hardware-backed drivers to software ones.
338  *
339  * XXX We need more smarts here (in real life too, but that's
340  * XXX another story altogether).
341  */
342 static struct cryptocap *
343 crypto_select_driver(const struct cryptoini *cri, int flags)
344 {
345         struct cryptocap *cap, *best;
346         int match, hid;
347
348         CRYPTO_DRIVER_ASSERT();
349
350         /*
351          * Look first for hardware crypto devices if permitted.
352          */
353         if (flags & CRYPTOCAP_F_HARDWARE)
354                 match = CRYPTOCAP_F_HARDWARE;
355         else
356                 match = CRYPTOCAP_F_SOFTWARE;
357         best = NULL;
358 again:
359         for (hid = 0; hid < crypto_drivers_num; hid++) {
360                 cap = &crypto_drivers[hid];
361                 /*
362                  * If it's not initialized, is in the process of
363                  * going away, or is not appropriate (hardware
364                  * or software based on match), then skip.
365                  */
366                 if (cap->cc_dev == NULL ||
367                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
368                     (cap->cc_flags & match) == 0)
369                         continue;
370
371                 /* verify all the algorithms are supported. */
372                 if (driver_suitable(cap, cri)) {
373                         if (best == NULL ||
374                             cap->cc_sessions < best->cc_sessions)
375                                 best = cap;
376                 }
377         }
378         if (best != NULL)
379                 return best;
380         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
381                 /* sort of an Algol 68-style for loop */
382                 match = CRYPTOCAP_F_SOFTWARE;
383                 goto again;
384         }
385         return best;
386 }
387
388 /*
389  * Create a new session.  The crid argument specifies a crypto
390  * driver to use or constraints on a driver to select (hardware
391  * only, software only, either).  Whatever driver is selected
392  * must be capable of the requested crypto algorithms.
393  */
394 int
395 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
396 {
397         struct cryptocap *cap;
398         u_int32_t hid, lid;
399         int err;
400
401         CRYPTO_DRIVER_LOCK();
402         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
403                 /*
404                  * Use specified driver; verify it is capable.
405                  */
406                 cap = crypto_checkdriver(crid);
407                 if (cap != NULL && !driver_suitable(cap, cri))
408                         cap = NULL;
409         } else {
410                 /*
411                  * No requested driver; select based on crid flags.
412                  */
413                 cap = crypto_select_driver(cri, crid);
414                 /*
415                  * if NULL then can't do everything in one session.
416                  * XXX Fix this. We need to inject a "virtual" session
417                  * XXX layer right about here.
418                  */
419         }
420         if (cap != NULL) {
421                 /* Call the driver initialization routine. */
422                 hid = cap - crypto_drivers;
423                 lid = hid;              /* Pass the driver ID. */
424                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
425                 if (err == 0) {
426                         (*sid) = (cap->cc_flags & 0xff000000)
427                                | (hid & 0x00ffffff);
428                         (*sid) <<= 32;
429                         (*sid) |= (lid & 0xffffffff);
430                         cap->cc_sessions++;
431                 }
432         } else
433                 err = EINVAL;
434         CRYPTO_DRIVER_UNLOCK();
435         return err;
436 }
437
438 static void
439 crypto_remove(struct cryptocap *cap)
440 {
441
442         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
443         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
444                 bzero(cap, sizeof(*cap));
445 }
446
447 /*
448  * Delete an existing session (or a reserved session on an unregistered
449  * driver).
450  */
451 int
452 crypto_freesession(u_int64_t sid)
453 {
454         struct cryptocap *cap;
455         u_int32_t hid;
456         int err;
457
458         CRYPTO_DRIVER_LOCK();
459
460         if (crypto_drivers == NULL) {
461                 err = EINVAL;
462                 goto done;
463         }
464
465         /* Determine two IDs. */
466         hid = CRYPTO_SESID2HID(sid);
467
468         if (hid >= crypto_drivers_num) {
469                 err = ENOENT;
470                 goto done;
471         }
472         cap = &crypto_drivers[hid];
473
474         if (cap->cc_sessions)
475                 cap->cc_sessions--;
476
477         /* Call the driver cleanup routine, if available. */
478         err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
479
480         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
481                 crypto_remove(cap);
482
483 done:
484         CRYPTO_DRIVER_UNLOCK();
485         return err;
486 }
487
488 /*
489  * Return an unused driver id.  Used by drivers prior to registering
490  * support for the algorithms they handle.
491  */
492 int32_t
493 crypto_get_driverid(device_t dev, int flags)
494 {
495         struct cryptocap *newdrv;
496         int i;
497
498         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
499                 kprintf("%s: no flags specified when registering driver\n",
500                     device_get_nameunit(dev));
501                 return -1;
502         }
503
504         CRYPTO_DRIVER_LOCK();
505
506         for (i = 0; i < crypto_drivers_num; i++) {
507                 if (crypto_drivers[i].cc_dev == NULL &&
508                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
509                         break;
510                 }
511         }
512
513         /* Out of entries, allocate some more. */
514         if (i == crypto_drivers_num) {
515                 /* Be careful about wrap-around. */
516                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
517                         CRYPTO_DRIVER_UNLOCK();
518                         kprintf("crypto: driver count wraparound!\n");
519                         return -1;
520                 }
521
522                 newdrv = kmalloc(2 * crypto_drivers_num *
523                                  sizeof(struct cryptocap),
524                                  M_CRYPTO_DATA, M_WAITOK|M_ZERO);
525                 if (newdrv == NULL) {
526                         CRYPTO_DRIVER_UNLOCK();
527                         kprintf("crypto: no space to expand driver table!\n");
528                         return -1;
529                 }
530
531                 bcopy(crypto_drivers, newdrv,
532                     crypto_drivers_num * sizeof(struct cryptocap));
533
534                 crypto_drivers_num *= 2;
535
536                 kfree(crypto_drivers, M_CRYPTO_DATA);
537                 crypto_drivers = newdrv;
538         }
539
540         /* NB: state is zero'd on free */
541         crypto_drivers[i].cc_sessions = 1;      /* Mark */
542         crypto_drivers[i].cc_dev = dev;
543         crypto_drivers[i].cc_flags = flags;
544         if (bootverbose)
545                 kprintf("crypto: assign %s driver id %u, flags %u\n",
546                     device_get_nameunit(dev), i, flags);
547
548         CRYPTO_DRIVER_UNLOCK();
549
550         return i;
551 }
552
553 /*
554  * Lookup a driver by name.  We match against the full device
555  * name and unit, and against just the name.  The latter gives
556  * us a simple widlcarding by device name.  On success return the
557  * driver/hardware identifier; otherwise return -1.
558  */
559 int
560 crypto_find_driver(const char *match)
561 {
562         int i, len = strlen(match);
563
564         CRYPTO_DRIVER_LOCK();
565         for (i = 0; i < crypto_drivers_num; i++) {
566                 device_t dev = crypto_drivers[i].cc_dev;
567                 if (dev == NULL ||
568                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
569                         continue;
570                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
571                     strncmp(match, device_get_name(dev), len) == 0)
572                         break;
573         }
574         CRYPTO_DRIVER_UNLOCK();
575         return i < crypto_drivers_num ? i : -1;
576 }
577
578 /*
579  * Return the device_t for the specified driver or NULL
580  * if the driver identifier is invalid.
581  */
582 device_t
583 crypto_find_device_byhid(int hid)
584 {
585         struct cryptocap *cap = crypto_checkdriver(hid);
586         return cap != NULL ? cap->cc_dev : NULL;
587 }
588
589 /*
590  * Return the device/driver capabilities.
591  */
592 int
593 crypto_getcaps(int hid)
594 {
595         struct cryptocap *cap = crypto_checkdriver(hid);
596         return cap != NULL ? cap->cc_flags : 0;
597 }
598
599 /*
600  * Register support for a key-related algorithm.  This routine
601  * is called once for each algorithm supported a driver.
602  */
603 int
604 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
605 {
606         struct cryptocap *cap;
607         int err;
608
609         CRYPTO_DRIVER_LOCK();
610
611         cap = crypto_checkdriver(driverid);
612         if (cap != NULL &&
613             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
614                 /*
615                  * XXX Do some performance testing to determine placing.
616                  * XXX We probably need an auxiliary data structure that
617                  * XXX describes relative performances.
618                  */
619
620                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
621                 if (bootverbose)
622                         kprintf("crypto: %s registers key alg %u flags %u\n"
623                                 , device_get_nameunit(cap->cc_dev)
624                                 , kalg
625                                 , flags
626                         );
627
628                 err = 0;
629         } else
630                 err = EINVAL;
631
632         CRYPTO_DRIVER_UNLOCK();
633         return err;
634 }
635
636 /*
637  * Register support for a non-key-related algorithm.  This routine
638  * is called once for each such algorithm supported by a driver.
639  */
640 int
641 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
642                 u_int32_t flags)
643 {
644         struct cryptocap *cap;
645         int err;
646
647         CRYPTO_DRIVER_LOCK();
648
649         cap = crypto_checkdriver(driverid);
650         /* NB: algorithms are in the range [1..max] */
651         if (cap != NULL &&
652             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
653                 /*
654                  * XXX Do some performance testing to determine placing.
655                  * XXX We probably need an auxiliary data structure that
656                  * XXX describes relative performances.
657                  */
658
659                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
660                 cap->cc_max_op_len[alg] = maxoplen;
661                 if (bootverbose)
662                         kprintf("crypto: %s registers alg %u flags %u maxoplen %u\n"
663                                 , device_get_nameunit(cap->cc_dev)
664                                 , alg
665                                 , flags
666                                 , maxoplen
667                         );
668                 cap->cc_sessions = 0;           /* Unmark */
669                 err = 0;
670         } else
671                 err = EINVAL;
672
673         CRYPTO_DRIVER_UNLOCK();
674         return err;
675 }
676
677 static void
678 driver_finis(struct cryptocap *cap)
679 {
680         u_int32_t ses, kops;
681
682         CRYPTO_DRIVER_ASSERT();
683
684         ses = cap->cc_sessions;
685         kops = cap->cc_koperations;
686         bzero(cap, sizeof(*cap));
687         if (ses != 0 || kops != 0) {
688                 /*
689                  * If there are pending sessions,
690                  * just mark as invalid.
691                  */
692                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
693                 cap->cc_sessions = ses;
694                 cap->cc_koperations = kops;
695         }
696 }
697
698 /*
699  * Unregister a crypto driver. If there are pending sessions using it,
700  * leave enough information around so that subsequent calls using those
701  * sessions will correctly detect the driver has been unregistered and
702  * reroute requests.
703  */
704 int
705 crypto_unregister(u_int32_t driverid, int alg)
706 {
707         struct cryptocap *cap;
708         int i, err;
709
710         CRYPTO_DRIVER_LOCK();
711         cap = crypto_checkdriver(driverid);
712         if (cap != NULL &&
713             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
714             cap->cc_alg[alg] != 0) {
715                 cap->cc_alg[alg] = 0;
716                 cap->cc_max_op_len[alg] = 0;
717
718                 /* Was this the last algorithm ? */
719                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) {
720                         if (cap->cc_alg[i] != 0)
721                                 break;
722                 }
723
724                 if (i == CRYPTO_ALGORITHM_MAX + 1)
725                         driver_finis(cap);
726                 err = 0;
727         } else {
728                 err = EINVAL;
729         }
730         CRYPTO_DRIVER_UNLOCK();
731
732         return err;
733 }
734
735 /*
736  * Unregister all algorithms associated with a crypto driver.
737  * If there are pending sessions using it, leave enough information
738  * around so that subsequent calls using those sessions will
739  * correctly detect the driver has been unregistered and reroute
740  * requests.
741  */
742 int
743 crypto_unregister_all(u_int32_t driverid)
744 {
745         struct cryptocap *cap;
746         int err;
747
748         CRYPTO_DRIVER_LOCK();
749         cap = crypto_checkdriver(driverid);
750         if (cap != NULL) {
751                 driver_finis(cap);
752                 err = 0;
753         } else {
754                 err = EINVAL;
755         }
756         CRYPTO_DRIVER_UNLOCK();
757
758         return err;
759 }
760
761 /*
762  * Clear blockage on a driver.  The what parameter indicates whether
763  * the driver is now ready for cryptop's and/or cryptokop's.
764  */
765 int
766 crypto_unblock(u_int32_t driverid, int what)
767 {
768         crypto_tdinfo_t tdinfo;
769         struct cryptocap *cap;
770         int err;
771         int n;
772
773         CRYPTO_DRIVER_LOCK();
774         cap = crypto_checkdriver(driverid);
775         if (cap != NULL) {
776                 if (what & CRYPTO_SYMQ)
777                         cap->cc_qblocked = 0;
778                 if (what & CRYPTO_ASYMQ)
779                         cap->cc_kqblocked = 0;
780                 for (n = 0; n < ncpus; ++n) {
781                         tdinfo = &tdinfo_array[n];
782                         CRYPTO_Q_LOCK(tdinfo);
783                         if (tdinfo[n].crp_sleep)
784                                 wakeup_one(&tdinfo->crp_q);
785                         CRYPTO_Q_UNLOCK(tdinfo);
786                 }
787                 err = 0;
788         } else {
789                 err = EINVAL;
790         }
791         CRYPTO_DRIVER_UNLOCK();
792
793         return err;
794 }
795
796 static volatile int dispatch_rover;
797
798 /*
799  * Add a crypto request to a queue, to be processed by the kernel thread.
800  */
801 int
802 crypto_dispatch(struct cryptop *crp)
803 {
804         crypto_tdinfo_t tdinfo;
805         struct cryptocap *cap;
806         u_int32_t hid;
807         int result;
808         int n;
809
810         cryptostats.cs_ops++;
811
812 #ifdef CRYPTO_TIMING
813         if (crypto_timing)
814                 nanouptime(&crp->crp_tstamp);
815 #endif
816
817         hid = CRYPTO_SESID2HID(crp->crp_sid);
818
819         /*
820          * Dispatch the crypto op directly to the driver if the caller
821          * marked the request to be processed immediately or this is
822          * a synchronous callback chain occuring from within a crypto
823          * processing thread.
824          *
825          * Fall through to queueing the driver is blocked.
826          */
827         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0 ||
828             (curthread->td_flags & TDF_CRYPTO)) {
829                 cap = crypto_checkdriver(hid);
830                 /* Driver cannot disappeared when there is an active session. */
831                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
832                 if (!cap->cc_qblocked) {
833                         result = crypto_invoke(cap, crp, 0);
834                         if (result != ERESTART)
835                                 return (result);
836                         /*
837                          * The driver ran out of resources, put the request on
838                          * the queue.
839                          */
840                 }
841         }
842
843         /*
844          * Dispatch to a cpu for action if possible.  Dispatch to a different
845          * cpu than the current cpu.
846          */
847         if (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SMP) {
848                 n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
849                 if (crypto_altdispatch && mycpu->gd_cpuid == n)
850                         ++n;
851                 n = n % ncpus;
852         } else {
853                 n = 0;
854         }
855         tdinfo = &tdinfo_array[n];
856
857         CRYPTO_Q_LOCK(tdinfo);
858         TAILQ_INSERT_TAIL(&tdinfo->crp_q, crp, crp_next);
859         if (tdinfo->crp_sleep)
860                 wakeup_one(&tdinfo->crp_q);
861         CRYPTO_Q_UNLOCK(tdinfo);
862         return 0;
863 }
864
865 /*
866  * Add an asymetric crypto request to a queue,
867  * to be processed by the kernel thread.
868  */
869 int
870 crypto_kdispatch(struct cryptkop *krp)
871 {
872         crypto_tdinfo_t tdinfo;
873         int error;
874         int n;
875
876         cryptostats.cs_kops++;
877
878 #if 0
879         /* not sure how to test F_SMP here */
880         n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
881         n = n % ncpus;
882 #endif
883         n = 0;
884         tdinfo = &tdinfo_array[n];
885
886         error = crypto_kinvoke(krp, krp->krp_crid);
887
888         if (error == ERESTART) {
889                 CRYPTO_Q_LOCK(tdinfo);
890                 TAILQ_INSERT_TAIL(&tdinfo->crp_kq, krp, krp_next);
891                 if (tdinfo->crp_sleep)
892                         wakeup_one(&tdinfo->crp_q);
893                 CRYPTO_Q_UNLOCK(tdinfo);
894                 error = 0;
895         }
896         return error;
897 }
898
899 /*
900  * Verify a driver is suitable for the specified operation.
901  */
902 static __inline int
903 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
904 {
905         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
906 }
907
908 /*
909  * Select a driver for an asym operation.  The driver must
910  * support the necessary algorithm.  The caller can constrain
911  * which device is selected with the flags parameter.  The
912  * algorithm we use here is pretty stupid; just use the first
913  * driver that supports the algorithms we need. If there are
914  * multiple suitable drivers we choose the driver with the
915  * fewest active operations.  We prefer hardware-backed
916  * drivers to software ones when either may be used.
917  */
918 static struct cryptocap *
919 crypto_select_kdriver(const struct cryptkop *krp, int flags)
920 {
921         struct cryptocap *cap, *best, *blocked;
922         int match, hid;
923
924         CRYPTO_DRIVER_ASSERT();
925
926         /*
927          * Look first for hardware crypto devices if permitted.
928          */
929         if (flags & CRYPTOCAP_F_HARDWARE)
930                 match = CRYPTOCAP_F_HARDWARE;
931         else
932                 match = CRYPTOCAP_F_SOFTWARE;
933         best = NULL;
934         blocked = NULL;
935 again:
936         for (hid = 0; hid < crypto_drivers_num; hid++) {
937                 cap = &crypto_drivers[hid];
938                 /*
939                  * If it's not initialized, is in the process of
940                  * going away, or is not appropriate (hardware
941                  * or software based on match), then skip.
942                  */
943                 if (cap->cc_dev == NULL ||
944                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
945                     (cap->cc_flags & match) == 0)
946                         continue;
947
948                 /* verify all the algorithms are supported. */
949                 if (kdriver_suitable(cap, krp)) {
950                         if (best == NULL ||
951                             cap->cc_koperations < best->cc_koperations)
952                                 best = cap;
953                 }
954         }
955         if (best != NULL)
956                 return best;
957         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
958                 /* sort of an Algol 68-style for loop */
959                 match = CRYPTOCAP_F_SOFTWARE;
960                 goto again;
961         }
962         return best;
963 }
964
965 /*
966  * Dispatch an assymetric crypto request.
967  */
968 static int
969 crypto_kinvoke(struct cryptkop *krp, int crid)
970 {
971         struct cryptocap *cap = NULL;
972         int error;
973
974         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
975         KASSERT(krp->krp_callback != NULL,
976             ("%s: krp->crp_callback == NULL", __func__));
977
978         CRYPTO_DRIVER_LOCK();
979         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
980                 cap = crypto_checkdriver(crid);
981                 if (cap != NULL) {
982                         /*
983                          * Driver present, it must support the necessary
984                          * algorithm and, if s/w drivers are excluded,
985                          * it must be registered as hardware-backed.
986                          */
987                         if (!kdriver_suitable(cap, krp) ||
988                             (!crypto_devallowsoft &&
989                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
990                                 cap = NULL;
991                 }
992         } else {
993                 /*
994                  * No requested driver; select based on crid flags.
995                  */
996                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
997                         crid &= ~CRYPTOCAP_F_SOFTWARE;
998                 cap = crypto_select_kdriver(krp, crid);
999         }
1000         if (cap != NULL && !cap->cc_kqblocked) {
1001                 krp->krp_hid = cap - crypto_drivers;
1002                 cap->cc_koperations++;
1003                 CRYPTO_DRIVER_UNLOCK();
1004                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1005                 CRYPTO_DRIVER_LOCK();
1006                 if (error == ERESTART) {
1007                         cap->cc_koperations--;
1008                         CRYPTO_DRIVER_UNLOCK();
1009                         return (error);
1010                 }
1011         } else {
1012                 /*
1013                  * NB: cap is !NULL if device is blocked; in
1014                  *     that case return ERESTART so the operation
1015                  *     is resubmitted if possible.
1016                  */
1017                 error = (cap == NULL) ? ENODEV : ERESTART;
1018         }
1019         CRYPTO_DRIVER_UNLOCK();
1020
1021         if (error) {
1022                 krp->krp_status = error;
1023                 crypto_kdone(krp);
1024         }
1025         return 0;
1026 }
1027
1028 #ifdef CRYPTO_TIMING
1029 static void
1030 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1031 {
1032         struct timespec now, t;
1033
1034         nanouptime(&now);
1035         t.tv_sec = now.tv_sec - tv->tv_sec;
1036         t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1037         if (t.tv_nsec < 0) {
1038                 t.tv_sec--;
1039                 t.tv_nsec += 1000000000;
1040         }
1041         timespecadd(&ts->acc, &t);
1042         if (timespeccmp(&t, &ts->min, <))
1043                 ts->min = t;
1044         if (timespeccmp(&t, &ts->max, >))
1045                 ts->max = t;
1046         ts->count++;
1047
1048         *tv = now;
1049 }
1050 #endif
1051
1052 /*
1053  * Dispatch a crypto request to the appropriate crypto devices.
1054  */
1055 static int
1056 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1057 {
1058
1059         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1060         KASSERT(crp->crp_callback != NULL,
1061             ("%s: crp->crp_callback == NULL", __func__));
1062         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1063
1064 #ifdef CRYPTO_TIMING
1065         if (crypto_timing)
1066                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1067 #endif
1068         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1069                 struct cryptodesc *crd;
1070                 u_int64_t nid;
1071
1072                 /*
1073                  * Driver has unregistered; migrate the session and return
1074                  * an error to the caller so they'll resubmit the op.
1075                  *
1076                  * XXX: What if there are more already queued requests for this
1077                  *      session?
1078                  */
1079                 crypto_freesession(crp->crp_sid);
1080
1081                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1082                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1083
1084                 /* XXX propagate flags from initial session? */
1085                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1086                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1087                         crp->crp_sid = nid;
1088
1089                 crp->crp_etype = EAGAIN;
1090                 crypto_done(crp);
1091                 return 0;
1092         } else {
1093                 /*
1094                  * Invoke the driver to process the request.
1095                  */
1096                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1097         }
1098 }
1099
1100 /*
1101  * Release a set of crypto descriptors.
1102  */
1103 void
1104 crypto_freereq(struct cryptop *crp)
1105 {
1106         struct cryptodesc *crd;
1107 #ifdef DIAGNOSTIC
1108         crypto_tdinfo_t tdinfo;
1109         struct cryptop *crp2;
1110         int n;
1111 #endif
1112
1113         if (crp == NULL)
1114                 return;
1115
1116 #ifdef DIAGNOSTIC
1117         for (n = 0; n < ncpus; ++n) {
1118                 tdinfo = &tdinfo_array[n];
1119
1120                 CRYPTO_Q_LOCK(tdinfo);
1121                 TAILQ_FOREACH(crp2, &tdinfo->crp_q, crp_next) {
1122                         KASSERT(crp2 != crp,
1123                             ("Freeing cryptop from the crypto queue (%p).",
1124                             crp));
1125                 }
1126                 CRYPTO_Q_UNLOCK(tdinfo);
1127         }
1128         CRYPTO_RETQ_LOCK();
1129         TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1130                 KASSERT(crp2 != crp,
1131                     ("Freeing cryptop from the return queue (%p).",
1132                     crp));
1133         }
1134         CRYPTO_RETQ_UNLOCK();
1135 #endif
1136
1137         while ((crd = crp->crp_desc) != NULL) {
1138                 crp->crp_desc = crd->crd_next;
1139                 zfree(cryptodesc_zone, crd);
1140         }
1141         zfree(cryptop_zone, crp);
1142 }
1143
1144 /*
1145  * Acquire a set of crypto descriptors.
1146  */
1147 struct cryptop *
1148 crypto_getreq(int num)
1149 {
1150         struct cryptodesc *crd;
1151         struct cryptop *crp;
1152
1153         crp = zalloc(cryptop_zone);
1154         if (crp != NULL) {
1155                 bzero(crp, sizeof (*crp));
1156                 while (num--) {
1157                         crd = zalloc(cryptodesc_zone);
1158                         if (crd == NULL) {
1159                                 crypto_freereq(crp);
1160                                 return NULL;
1161                         }
1162                         bzero(crd, sizeof (*crd));
1163
1164                         crd->crd_next = crp->crp_desc;
1165                         crp->crp_desc = crd;
1166                 }
1167         }
1168         return crp;
1169 }
1170
1171 /*
1172  * Invoke the callback on behalf of the driver.
1173  */
1174 void
1175 crypto_done(struct cryptop *crp)
1176 {
1177         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1178                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1179         crp->crp_flags |= CRYPTO_F_DONE;
1180         if (crp->crp_etype != 0)
1181                 cryptostats.cs_errs++;
1182 #ifdef CRYPTO_TIMING
1183         if (crypto_timing)
1184                 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1185 #endif
1186         /*
1187          * CBIMM means unconditionally do the callback immediately;
1188          * CBIFSYNC means do the callback immediately only if the
1189          * operation was done synchronously.  Both are used to avoid
1190          * doing extraneous context switches; the latter is mostly
1191          * used with the software crypto driver.
1192          */
1193         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1194             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1195              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1196                 /*
1197                  * Do the callback directly.  This is ok when the
1198                  * callback routine does very little (e.g. the
1199                  * /dev/crypto callback method just does a wakeup).
1200                  */
1201 #ifdef CRYPTO_TIMING
1202                 if (crypto_timing) {
1203                         /*
1204                          * NB: We must copy the timestamp before
1205                          * doing the callback as the cryptop is
1206                          * likely to be reclaimed.
1207                          */
1208                         struct timespec t = crp->crp_tstamp;
1209                         crypto_tstat(&cryptostats.cs_cb, &t);
1210                         crp->crp_callback(crp);
1211                         crypto_tstat(&cryptostats.cs_finis, &t);
1212                 } else
1213 #endif
1214                         crp->crp_callback(crp);
1215         } else {
1216                 /*
1217                  * Normal case; queue the callback for the thread.
1218                  */
1219                 CRYPTO_RETQ_LOCK();
1220                 if (CRYPTO_RETQ_EMPTY())
1221                         wakeup_one(&crp_ret_q); /* shared wait channel */
1222                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1223                 CRYPTO_RETQ_UNLOCK();
1224         }
1225 }
1226
1227 /*
1228  * Invoke the callback on behalf of the driver.
1229  */
1230 void
1231 crypto_kdone(struct cryptkop *krp)
1232 {
1233         struct cryptocap *cap;
1234
1235         if (krp->krp_status != 0)
1236                 cryptostats.cs_kerrs++;
1237         CRYPTO_DRIVER_LOCK();
1238         /* XXX: What if driver is loaded in the meantime? */
1239         if (krp->krp_hid < crypto_drivers_num) {
1240                 cap = &crypto_drivers[krp->krp_hid];
1241                 cap->cc_koperations--;
1242                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1243                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1244                         crypto_remove(cap);
1245         }
1246         CRYPTO_DRIVER_UNLOCK();
1247         CRYPTO_RETQ_LOCK();
1248         if (CRYPTO_RETQ_EMPTY())
1249                 wakeup_one(&crp_ret_q);         /* shared wait channel */
1250         TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1251         CRYPTO_RETQ_UNLOCK();
1252 }
1253
1254 int
1255 crypto_getfeat(int *featp)
1256 {
1257         int hid, kalg, feat = 0;
1258
1259         CRYPTO_DRIVER_LOCK();
1260         for (hid = 0; hid < crypto_drivers_num; hid++) {
1261                 const struct cryptocap *cap = &crypto_drivers[hid];
1262
1263                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1264                     !crypto_devallowsoft) {
1265                         continue;
1266                 }
1267                 for (kalg = 0; kalg <= CRK_ALGORITHM_MAX; kalg++)
1268                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1269                                 feat |=  1 << kalg;
1270         }
1271         CRYPTO_DRIVER_UNLOCK();
1272         *featp = feat;
1273         return (0);
1274 }
1275
1276 /*
1277  * Terminate a thread at module unload.  The process that
1278  * initiated this is waiting for us to signal that we're gone;
1279  * wake it up and exit.  We use the driver table lock to insure
1280  * we don't do the wakeup before they're waiting.  There is no
1281  * race here because the waiter sleeps on the proc lock for the
1282  * thread so it gets notified at the right time because of an
1283  * extra wakeup that's done in exit1().
1284  */
1285 static void
1286 crypto_finis(void *chan)
1287 {
1288         CRYPTO_DRIVER_LOCK();
1289         wakeup_one(chan);
1290         CRYPTO_DRIVER_UNLOCK();
1291         kthread_exit();
1292 }
1293
1294 /*
1295  * Crypto thread, dispatches crypto requests.
1296  *
1297  * MPSAFE
1298  */
1299 static void
1300 crypto_proc(void *arg)
1301 {
1302         crypto_tdinfo_t tdinfo = arg;
1303         struct cryptop *crp, *submit;
1304         struct cryptkop *krp;
1305         struct cryptocap *cap;
1306         u_int32_t hid;
1307         int result, hint;
1308
1309         CRYPTO_Q_LOCK(tdinfo);
1310
1311         curthread->td_flags |= TDF_CRYPTO;
1312
1313         for (;;) {
1314                 /*
1315                  * Find the first element in the queue that can be
1316                  * processed and look-ahead to see if multiple ops
1317                  * are ready for the same driver.
1318                  */
1319                 submit = NULL;
1320                 hint = 0;
1321                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1322                         hid = CRYPTO_SESID2HID(crp->crp_sid);
1323                         cap = crypto_checkdriver(hid);
1324                         /*
1325                          * Driver cannot disappeared when there is an active
1326                          * session.
1327                          */
1328                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1329                             __func__, __LINE__));
1330                         if (cap == NULL || cap->cc_dev == NULL) {
1331                                 /* Op needs to be migrated, process it. */
1332                                 if (submit == NULL)
1333                                         submit = crp;
1334                                 break;
1335                         }
1336                         if (!cap->cc_qblocked) {
1337                                 if (submit != NULL) {
1338                                         /*
1339                                          * We stop on finding another op,
1340                                          * regardless whether its for the same
1341                                          * driver or not.  We could keep
1342                                          * searching the queue but it might be
1343                                          * better to just use a per-driver
1344                                          * queue instead.
1345                                          */
1346                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1347                                                 hint = CRYPTO_HINT_MORE;
1348                                         break;
1349                                 } else {
1350                                         submit = crp;
1351                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1352                                                 break;
1353                                         /* keep scanning for more are q'd */
1354                                 }
1355                         }
1356                 }
1357                 if (submit != NULL) {
1358                         TAILQ_REMOVE(&tdinfo->crp_q, submit, crp_next);
1359                         hid = CRYPTO_SESID2HID(submit->crp_sid);
1360                         cap = crypto_checkdriver(hid);
1361                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1362                             __func__, __LINE__));
1363
1364                         CRYPTO_Q_UNLOCK(tdinfo);
1365                         result = crypto_invoke(cap, submit, hint);
1366                         CRYPTO_Q_LOCK(tdinfo);
1367
1368                         if (result == ERESTART) {
1369                                 /*
1370                                  * The driver ran out of resources, mark the
1371                                  * driver ``blocked'' for cryptop's and put
1372                                  * the request back in the queue.  It would
1373                                  * best to put the request back where we got
1374                                  * it but that's hard so for now we put it
1375                                  * at the front.  This should be ok; putting
1376                                  * it at the end does not work.
1377                                  */
1378                                 /* XXX validate sid again? */
1379                                 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1380                                 TAILQ_INSERT_HEAD(&tdinfo->crp_q,
1381                                                   submit, crp_next);
1382                                 cryptostats.cs_blocks++;
1383                         }
1384                 }
1385
1386                 /* As above, but for key ops */
1387                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1388                         cap = crypto_checkdriver(krp->krp_hid);
1389                         if (cap == NULL || cap->cc_dev == NULL) {
1390                                 /*
1391                                  * Operation needs to be migrated, invalidate
1392                                  * the assigned device so it will reselect a
1393                                  * new one below.  Propagate the original
1394                                  * crid selection flags if supplied.
1395                                  */
1396                                 krp->krp_hid = krp->krp_crid &
1397                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1398                                 if (krp->krp_hid == 0)
1399                                         krp->krp_hid =
1400                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1401                                 break;
1402                         }
1403                         if (!cap->cc_kqblocked)
1404                                 break;
1405                 }
1406                 if (krp != NULL) {
1407                         TAILQ_REMOVE(&tdinfo->crp_kq, krp, krp_next);
1408
1409                         CRYPTO_Q_UNLOCK(tdinfo);
1410                         result = crypto_kinvoke(krp, krp->krp_hid);
1411                         CRYPTO_Q_LOCK(tdinfo);
1412
1413                         if (result == ERESTART) {
1414                                 /*
1415                                  * The driver ran out of resources, mark the
1416                                  * driver ``blocked'' for cryptkop's and put
1417                                  * the request back in the queue.  It would
1418                                  * best to put the request back where we got
1419                                  * it but that's hard so for now we put it
1420                                  * at the front.  This should be ok; putting
1421                                  * it at the end does not work.
1422                                  */
1423                                 /* XXX validate sid again? */
1424                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1425                                 TAILQ_INSERT_HEAD(&tdinfo->crp_kq,
1426                                                   krp, krp_next);
1427                                 cryptostats.cs_kblocks++;
1428                         }
1429                 }
1430
1431                 if (submit == NULL && krp == NULL) {
1432                         /*
1433                          * Nothing more to be processed.  Sleep until we're
1434                          * woken because there are more ops to process.
1435                          * This happens either by submission or by a driver
1436                          * becoming unblocked and notifying us through
1437                          * crypto_unblock.  Note that when we wakeup we
1438                          * start processing each queue again from the
1439                          * front. It's not clear that it's important to
1440                          * preserve this ordering since ops may finish
1441                          * out of order if dispatched to different devices
1442                          * and some become blocked while others do not.
1443                          */
1444                         tdinfo->crp_sleep = 1;
1445                         lksleep (&tdinfo->crp_q, &tdinfo->crp_lock,
1446                                  0, "crypto_wait", 0);
1447                         tdinfo->crp_sleep = 0;
1448                         if (tdinfo->crp_td == NULL)
1449                                 break;
1450                         cryptostats.cs_intrs++;
1451                 }
1452         }
1453         CRYPTO_Q_UNLOCK(tdinfo);
1454
1455         crypto_finis(&tdinfo->crp_q);
1456 }
1457
1458 /*
1459  * Crypto returns thread, does callbacks for processed crypto requests.
1460  * Callbacks are done here, rather than in the crypto drivers, because
1461  * callbacks typically are expensive and would slow interrupt handling.
1462  *
1463  * MPSAFE
1464  */
1465 static void
1466 crypto_ret_proc(void *dummy __unused)
1467 {
1468         struct cryptop *crpt;
1469         struct cryptkop *krpt;
1470
1471         get_mplock();
1472         CRYPTO_RETQ_LOCK();
1473         for (;;) {
1474                 /* Harvest return q's for completed ops */
1475                 crpt = TAILQ_FIRST(&crp_ret_q);
1476                 if (crpt != NULL)
1477                         TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1478
1479                 krpt = TAILQ_FIRST(&crp_ret_kq);
1480                 if (krpt != NULL)
1481                         TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1482
1483                 if (crpt != NULL || krpt != NULL) {
1484                         CRYPTO_RETQ_UNLOCK();
1485                         /*
1486                          * Run callbacks unlocked.
1487                          */
1488                         if (crpt != NULL) {
1489 #ifdef CRYPTO_TIMING
1490                                 if (crypto_timing) {
1491                                         /*
1492                                          * NB: We must copy the timestamp before
1493                                          * doing the callback as the cryptop is
1494                                          * likely to be reclaimed.
1495                                          */
1496                                         struct timespec t = crpt->crp_tstamp;
1497                                         crypto_tstat(&cryptostats.cs_cb, &t);
1498                                         crpt->crp_callback(crpt);
1499                                         crypto_tstat(&cryptostats.cs_finis, &t);
1500                                 } else
1501 #endif
1502                                         crpt->crp_callback(crpt);
1503                         }
1504                         if (krpt != NULL)
1505                                 krpt->krp_callback(krpt);
1506                         CRYPTO_RETQ_LOCK();
1507                 } else {
1508                         /*
1509                          * Nothing more to be processed.  Sleep until we're
1510                          * woken because there are more returns to process.
1511                          */
1512                         lksleep (&crp_ret_q, &crypto_ret_q_lock,
1513                                  0, "crypto_ret_wait", 0);
1514                         if (cryptoretthread == NULL)
1515                                 break;
1516                         cryptostats.cs_rets++;
1517                 }
1518         }
1519         CRYPTO_RETQ_UNLOCK();
1520
1521         crypto_finis(&crp_ret_q);
1522 }
1523
1524 #ifdef DDB
1525 static void
1526 db_show_drivers(void)
1527 {
1528         int hid;
1529
1530         db_printf("%12s %4s %4s %8s %2s %2s\n"
1531                 , "Device"
1532                 , "Ses"
1533                 , "Kops"
1534                 , "Flags"
1535                 , "QB"
1536                 , "KB"
1537         );
1538         for (hid = 0; hid < crypto_drivers_num; hid++) {
1539                 const struct cryptocap *cap = &crypto_drivers[hid];
1540                 if (cap->cc_dev == NULL)
1541                         continue;
1542                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1543                     , device_get_nameunit(cap->cc_dev)
1544                     , cap->cc_sessions
1545                     , cap->cc_koperations
1546                     , cap->cc_flags
1547                     , cap->cc_qblocked
1548                     , cap->cc_kqblocked
1549                 );
1550         }
1551 }
1552
1553 DB_SHOW_COMMAND(crypto, db_show_crypto)
1554 {
1555         crypto_tdinfo_t tdinfo;
1556         struct cryptop *crp;
1557         int n;
1558
1559         db_show_drivers();
1560         db_printf("\n");
1561
1562         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1563             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1564             "Desc", "Callback");
1565
1566         for (n = 0; n < ncpus; ++n) {
1567                 tdinfo = &tdinfo_array[n];
1568
1569                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1570                         db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1571                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1572                             , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1573                             , crp->crp_ilen, crp->crp_olen
1574                             , crp->crp_etype
1575                             , crp->crp_flags
1576                             , crp->crp_desc
1577                             , crp->crp_callback
1578                         );
1579                 }
1580         }
1581         if (!TAILQ_EMPTY(&crp_ret_q)) {
1582                 db_printf("\n%4s %4s %4s %8s\n",
1583                     "HID", "Etype", "Flags", "Callback");
1584                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1585                         db_printf("%4u %4u %04x %8p\n"
1586                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1587                             , crp->crp_etype
1588                             , crp->crp_flags
1589                             , crp->crp_callback
1590                         );
1591                 }
1592         }
1593 }
1594
1595 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1596 {
1597         crypto_tdinfo_t tdinfo;
1598         struct cryptkop *krp;
1599         int n;
1600
1601         db_show_drivers();
1602         db_printf("\n");
1603
1604         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1605             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1606
1607         for (n = 0; n < ncpus; ++n) {
1608                 tdinfo = &tdinfo_array[n];
1609
1610                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1611                         db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1612                             , krp->krp_op
1613                             , krp->krp_status
1614                             , krp->krp_iparams, krp->krp_oparams
1615                             , krp->krp_crid, krp->krp_hid
1616                             , krp->krp_callback
1617                         );
1618                 }
1619         }
1620         if (!TAILQ_EMPTY(&crp_ret_q)) {
1621                 db_printf("%4s %5s %8s %4s %8s\n",
1622                     "Op", "Status", "CRID", "HID", "Callback");
1623                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1624                         db_printf("%4u %5u %08x %4u %8p\n"
1625                             , krp->krp_op
1626                             , krp->krp_status
1627                             , krp->krp_crid, krp->krp_hid
1628                             , krp->krp_callback
1629                         );
1630                 }
1631         }
1632 }
1633 #endif
1634
1635 int crypto_modevent(module_t mod, int type, void *unused);
1636
1637 /*
1638  * Initialization code, both for static and dynamic loading.
1639  * Note this is not invoked with the usual MODULE_DECLARE
1640  * mechanism but instead is listed as a dependency by the
1641  * cryptosoft driver.  This guarantees proper ordering of
1642  * calls on module load/unload.
1643  */
1644 int
1645 crypto_modevent(module_t mod, int type, void *unused)
1646 {
1647         int error = EINVAL;
1648
1649         switch (type) {
1650         case MOD_LOAD:
1651                 error = crypto_init();
1652                 if (error == 0 && bootverbose)
1653                         kprintf("crypto: <crypto core>\n");
1654                 break;
1655         case MOD_UNLOAD:
1656                 /*XXX disallow if active sessions */
1657                 error = 0;
1658                 crypto_destroy();
1659                 return 0;
1660         }
1661         return error;
1662 }
1663 MODULE_VERSION(crypto, 1);
1664 MODULE_DEPEND(crypto, zlib, 1, 1, 1);