kernel - Honor MAP_WIREFUTURE flag in stack growth, mmap, and brk.
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69
70 /*
71  *      Virtual memory mapping module.
72  */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/serialize.h>
79 #include <sys/lock.h>
80 #include <sys/vmmeter.h>
81 #include <sys/mman.h>
82 #include <sys/vnode.h>
83 #include <sys/resourcevar.h>
84 #include <sys/shm.h>
85 #include <sys/tree.h>
86 #include <sys/malloc.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_zone.h>
99
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
102
103 /*
104  * Virtual memory maps provide for the mapping, protection, and sharing
105  * of virtual memory objects.  In addition, this module provides for an
106  * efficient virtual copy of memory from one map to another.
107  *
108  * Synchronization is required prior to most operations.
109  *
110  * Maps consist of an ordered doubly-linked list of simple entries.
111  * A hint and a RB tree is used to speed-up lookups.
112  *
113  * Callers looking to modify maps specify start/end addresses which cause
114  * the related map entry to be clipped if necessary, and then later
115  * recombined if the pieces remained compatible.
116  *
117  * Virtual copy operations are performed by copying VM object references
118  * from one map to another, and then marking both regions as copy-on-write.
119  */
120 static void vmspace_terminate(struct vmspace *vm);
121 static void vmspace_lock(struct vmspace *vm);
122 static void vmspace_unlock(struct vmspace *vm);
123 static void vmspace_dtor(void *obj, void *private);
124
125 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
126
127 struct sysref_class vmspace_sysref_class = {
128         .name =         "vmspace",
129         .mtype =        M_VMSPACE,
130         .proto =        SYSREF_PROTO_VMSPACE,
131         .offset =       offsetof(struct vmspace, vm_sysref),
132         .objsize =      sizeof(struct vmspace),
133         .mag_capacity = 32,
134         .flags = SRC_MANAGEDINIT,
135         .dtor = vmspace_dtor,
136         .ops = {
137                 .terminate = (sysref_terminate_func_t)vmspace_terminate,
138                 .lock = (sysref_lock_func_t)vmspace_lock,
139                 .unlock = (sysref_lock_func_t)vmspace_unlock
140         }
141 };
142
143 #define VMEPERCPU       2
144
145 static struct vm_zone mapentzone_store, mapzone_store;
146 static vm_zone_t mapentzone, mapzone;
147 static struct vm_object mapentobj, mapobj;
148
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
151 static struct vm_map map_init[MAX_KMAP];
152
153 static void vm_map_entry_shadow(vm_map_entry_t entry);
154 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
155 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
156 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
158 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
159 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
160 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
161                 vm_map_entry_t);
162 static void vm_map_split (vm_map_entry_t);
163 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
164
165 /*
166  * Initialize the vm_map module.  Must be called before any other vm_map
167  * routines.
168  *
169  * Map and entry structures are allocated from the general purpose
170  * memory pool with some exceptions:
171  *
172  *      - The kernel map is allocated statically.
173  *      - Initial kernel map entries are allocated out of a static pool.
174  *
175  *      These restrictions are necessary since malloc() uses the
176  *      maps and requires map entries.
177  *
178  * Called from the low level boot code only.
179  */
180 void
181 vm_map_startup(void)
182 {
183         mapzone = &mapzone_store;
184         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
185                 map_init, MAX_KMAP);
186         mapentzone = &mapentzone_store;
187         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
188                 map_entry_init, MAX_MAPENT);
189 }
190
191 /*
192  * Called prior to any vmspace allocations.
193  *
194  * Called from the low level boot code only.
195  */
196 void
197 vm_init2(void) 
198 {
199         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
200                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
201         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
202         pmap_init2();
203         vm_object_init2();
204 }
205
206
207 /*
208  * Red black tree functions
209  *
210  * The caller must hold the related map lock.
211  */
212 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
213 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
214
215 /* a->start is address, and the only field has to be initialized */
216 static int
217 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
218 {
219         if (a->start < b->start)
220                 return(-1);
221         else if (a->start > b->start)
222                 return(1);
223         return(0);
224 }
225
226 /*
227  * Allocate a vmspace structure, including a vm_map and pmap.
228  * Initialize numerous fields.  While the initial allocation is zerod,
229  * subsequence reuse from the objcache leaves elements of the structure
230  * intact (particularly the pmap), so portions must be zerod.
231  *
232  * The structure is not considered activated until we call sysref_activate().
233  *
234  * No requirements.
235  */
236 struct vmspace *
237 vmspace_alloc(vm_offset_t min, vm_offset_t max)
238 {
239         struct vmspace *vm;
240
241         lwkt_gettoken(&vmspace_token);
242         vm = sysref_alloc(&vmspace_sysref_class);
243         bzero(&vm->vm_startcopy,
244               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
245         vm_map_init(&vm->vm_map, min, max, NULL);
246         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
247         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
248         vm->vm_shm = NULL;
249         vm->vm_exitingcnt = 0;
250         cpu_vmspace_alloc(vm);
251         sysref_activate(&vm->vm_sysref);
252         lwkt_reltoken(&vmspace_token);
253
254         return (vm);
255 }
256
257 /*
258  * dtor function - Some elements of the pmap are retained in the
259  * free-cached vmspaces to improve performance.  We have to clean them up
260  * here before returning the vmspace to the memory pool.
261  *
262  * No requirements.
263  */
264 static void
265 vmspace_dtor(void *obj, void *private)
266 {
267         struct vmspace *vm = obj;
268
269         pmap_puninit(vmspace_pmap(vm));
270 }
271
272 /*
273  * Called in two cases: 
274  *
275  * (1) When the last sysref is dropped, but exitingcnt might still be
276  *     non-zero.
277  *
278  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
279  *     exitingcnt becomes zero
280  *
281  * sysref will not scrap the object until we call sysref_put() once more
282  * after the last ref has been dropped.
283  *
284  * Interlocked by the sysref API.
285  */
286 static void
287 vmspace_terminate(struct vmspace *vm)
288 {
289         int count;
290
291         /*
292          * If exitingcnt is non-zero we can't get rid of the entire vmspace
293          * yet, but we can scrap user memory.
294          */
295         lwkt_gettoken(&vmspace_token);
296         if (vm->vm_exitingcnt) {
297                 shmexit(vm);
298                 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
299                                   VM_MAX_USER_ADDRESS);
300                 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
301                               VM_MAX_USER_ADDRESS);
302                 lwkt_reltoken(&vmspace_token);
303                 return;
304         }
305         cpu_vmspace_free(vm);
306
307         /*
308          * Make sure any SysV shm is freed, it might not have in
309          * exit1()
310          */
311         shmexit(vm);
312
313         KKASSERT(vm->vm_upcalls == NULL);
314
315         /*
316          * Lock the map, to wait out all other references to it.
317          * Delete all of the mappings and pages they hold, then call
318          * the pmap module to reclaim anything left.
319          */
320         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
321         vm_map_lock(&vm->vm_map);
322         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
323                 vm->vm_map.max_offset, &count);
324         vm_map_unlock(&vm->vm_map);
325         vm_map_entry_release(count);
326
327         pmap_release(vmspace_pmap(vm));
328         sysref_put(&vm->vm_sysref);
329         lwkt_reltoken(&vmspace_token);
330 }
331
332 /*
333  * vmspaces are not currently locked.
334  */
335 static void
336 vmspace_lock(struct vmspace *vm __unused)
337 {
338 }
339
340 static void
341 vmspace_unlock(struct vmspace *vm __unused)
342 {
343 }
344
345 /*
346  * This is called during exit indicating that the vmspace is no
347  * longer in used by an exiting process, but the process has not yet
348  * been cleaned up.
349  *
350  * No requirements.
351  */
352 void
353 vmspace_exitbump(struct vmspace *vm)
354 {
355         lwkt_gettoken(&vmspace_token);
356         ++vm->vm_exitingcnt;
357         lwkt_reltoken(&vmspace_token);
358 }
359
360 /*
361  * This is called in the wait*() handling code.  The vmspace can be terminated
362  * after the last wait is finished using it.
363  *
364  * No requirements.
365  */
366 void
367 vmspace_exitfree(struct proc *p)
368 {
369         struct vmspace *vm;
370
371         lwkt_gettoken(&vmspace_token);
372         vm = p->p_vmspace;
373         p->p_vmspace = NULL;
374
375         if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
376                 vmspace_terminate(vm);
377         lwkt_reltoken(&vmspace_token);
378 }
379
380 /*
381  * Swap useage is determined by taking the proportional swap used by
382  * VM objects backing the VM map.  To make up for fractional losses,
383  * if the VM object has any swap use at all the associated map entries
384  * count for at least 1 swap page.
385  *
386  * No requirements.
387  */
388 int
389 vmspace_swap_count(struct vmspace *vmspace)
390 {
391         vm_map_t map = &vmspace->vm_map;
392         vm_map_entry_t cur;
393         vm_object_t object;
394         int count = 0;
395         int n;
396
397         lwkt_gettoken(&vmspace_token);
398         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
399                 switch(cur->maptype) {
400                 case VM_MAPTYPE_NORMAL:
401                 case VM_MAPTYPE_VPAGETABLE:
402                         if ((object = cur->object.vm_object) == NULL)
403                                 break;
404                         if (object->swblock_count) {
405                                 n = (cur->end - cur->start) / PAGE_SIZE;
406                                 count += object->swblock_count *
407                                     SWAP_META_PAGES * n / object->size + 1;
408                         }
409                         break;
410                 default:
411                         break;
412                 }
413         }
414         lwkt_reltoken(&vmspace_token);
415         return(count);
416 }
417
418 /*
419  * Calculate the approximate number of anonymous pages in use by
420  * this vmspace.  To make up for fractional losses, we count each
421  * VM object as having at least 1 anonymous page.
422  *
423  * No requirements.
424  */
425 int
426 vmspace_anonymous_count(struct vmspace *vmspace)
427 {
428         vm_map_t map = &vmspace->vm_map;
429         vm_map_entry_t cur;
430         vm_object_t object;
431         int count = 0;
432
433         lwkt_gettoken(&vmspace_token);
434         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
435                 switch(cur->maptype) {
436                 case VM_MAPTYPE_NORMAL:
437                 case VM_MAPTYPE_VPAGETABLE:
438                         if ((object = cur->object.vm_object) == NULL)
439                                 break;
440                         if (object->type != OBJT_DEFAULT &&
441                             object->type != OBJT_SWAP) {
442                                 break;
443                         }
444                         count += object->resident_page_count;
445                         break;
446                 default:
447                         break;
448                 }
449         }
450         lwkt_reltoken(&vmspace_token);
451         return(count);
452 }
453
454 /*
455  * Creates and returns a new empty VM map with the given physical map
456  * structure, and having the given lower and upper address bounds.
457  *
458  * No requirements.
459  */
460 vm_map_t
461 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
462 {
463         if (result == NULL)
464                 result = zalloc(mapzone);
465         vm_map_init(result, min, max, pmap);
466         return (result);
467 }
468
469 /*
470  * Initialize an existing vm_map structure such as that in the vmspace
471  * structure.  The pmap is initialized elsewhere.
472  *
473  * No requirements.
474  */
475 void
476 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
477 {
478         map->header.next = map->header.prev = &map->header;
479         RB_INIT(&map->rb_root);
480         map->nentries = 0;
481         map->size = 0;
482         map->system_map = 0;
483         map->infork = 0;
484         map->min_offset = min;
485         map->max_offset = max;
486         map->pmap = pmap;
487         map->first_free = &map->header;
488         map->hint = &map->header;
489         map->timestamp = 0;
490         map->flags = 0;
491         lockinit(&map->lock, "thrd_sleep", 0, 0);
492 }
493
494 /*
495  * Shadow the vm_map_entry's object.  This typically needs to be done when
496  * a write fault is taken on an entry which had previously been cloned by
497  * fork().  The shared object (which might be NULL) must become private so
498  * we add a shadow layer above it.
499  *
500  * Object allocation for anonymous mappings is defered as long as possible.
501  * When creating a shadow, however, the underlying object must be instantiated
502  * so it can be shared.
503  *
504  * If the map segment is governed by a virtual page table then it is
505  * possible to address offsets beyond the mapped area.  Just allocate
506  * a maximally sized object for this case.
507  *
508  * The vm_map must be exclusively locked.
509  * No other requirements.
510  */
511 static
512 void
513 vm_map_entry_shadow(vm_map_entry_t entry)
514 {
515         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
516                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
517                                  0x7FFFFFFF);   /* XXX */
518         } else {
519                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
520                                  atop(entry->end - entry->start));
521         }
522         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
523 }
524
525 /*
526  * Allocate an object for a vm_map_entry.
527  *
528  * Object allocation for anonymous mappings is defered as long as possible.
529  * This function is called when we can defer no longer, generally when a map
530  * entry might be split or forked or takes a page fault.
531  *
532  * If the map segment is governed by a virtual page table then it is
533  * possible to address offsets beyond the mapped area.  Just allocate
534  * a maximally sized object for this case.
535  *
536  * The vm_map must be exclusively locked.
537  * No other requirements.
538  */
539 void 
540 vm_map_entry_allocate_object(vm_map_entry_t entry)
541 {
542         vm_object_t obj;
543
544         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
545                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
546         } else {
547                 obj = vm_object_allocate(OBJT_DEFAULT,
548                                          atop(entry->end - entry->start));
549         }
550         entry->object.vm_object = obj;
551         entry->offset = 0;
552 }
553
554 /*
555  * Set an initial negative count so the first attempt to reserve
556  * space preloads a bunch of vm_map_entry's for this cpu.  Also
557  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
558  * map a new page for vm_map_entry structures.  SMP systems are
559  * particularly sensitive.
560  *
561  * This routine is called in early boot so we cannot just call
562  * vm_map_entry_reserve().
563  *
564  * Called from the low level boot code only (for each cpu)
565  */
566 void
567 vm_map_entry_reserve_cpu_init(globaldata_t gd)
568 {
569         vm_map_entry_t entry;
570         int i;
571
572         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
573         entry = &cpu_map_entry_init[gd->gd_cpuid][0];
574         for (i = 0; i < VMEPERCPU; ++i, ++entry) {
575                 entry->next = gd->gd_vme_base;
576                 gd->gd_vme_base = entry;
577         }
578 }
579
580 /*
581  * Reserves vm_map_entry structures so code later on can manipulate
582  * map_entry structures within a locked map without blocking trying
583  * to allocate a new vm_map_entry.
584  *
585  * No requirements.
586  */
587 int
588 vm_map_entry_reserve(int count)
589 {
590         struct globaldata *gd = mycpu;
591         vm_map_entry_t entry;
592
593         /*
594          * Make sure we have enough structures in gd_vme_base to handle
595          * the reservation request.
596          */
597         crit_enter();
598         while (gd->gd_vme_avail < count) {
599                 entry = zalloc(mapentzone);
600                 entry->next = gd->gd_vme_base;
601                 gd->gd_vme_base = entry;
602                 ++gd->gd_vme_avail;
603         }
604         gd->gd_vme_avail -= count;
605         crit_exit();
606
607         return(count);
608 }
609
610 /*
611  * Releases previously reserved vm_map_entry structures that were not
612  * used.  If we have too much junk in our per-cpu cache clean some of
613  * it out.
614  *
615  * No requirements.
616  */
617 void
618 vm_map_entry_release(int count)
619 {
620         struct globaldata *gd = mycpu;
621         vm_map_entry_t entry;
622
623         crit_enter();
624         gd->gd_vme_avail += count;
625         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
626                 entry = gd->gd_vme_base;
627                 KKASSERT(entry != NULL);
628                 gd->gd_vme_base = entry->next;
629                 --gd->gd_vme_avail;
630                 crit_exit();
631                 zfree(mapentzone, entry);
632                 crit_enter();
633         }
634         crit_exit();
635 }
636
637 /*
638  * Reserve map entry structures for use in kernel_map itself.  These
639  * entries have *ALREADY* been reserved on a per-cpu basis when the map
640  * was inited.  This function is used by zalloc() to avoid a recursion
641  * when zalloc() itself needs to allocate additional kernel memory.
642  *
643  * This function works like the normal reserve but does not load the
644  * vm_map_entry cache (because that would result in an infinite
645  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
646  *
647  * Any caller of this function must be sure to renormalize after
648  * potentially eating entries to ensure that the reserve supply
649  * remains intact.
650  *
651  * No requirements.
652  */
653 int
654 vm_map_entry_kreserve(int count)
655 {
656         struct globaldata *gd = mycpu;
657
658         crit_enter();
659         gd->gd_vme_avail -= count;
660         crit_exit();
661         KASSERT(gd->gd_vme_base != NULL,
662                 ("no reserved entries left, gd_vme_avail = %d\n",
663                 gd->gd_vme_avail));
664         return(count);
665 }
666
667 /*
668  * Release previously reserved map entries for kernel_map.  We do not
669  * attempt to clean up like the normal release function as this would
670  * cause an unnecessary (but probably not fatal) deep procedure call.
671  *
672  * No requirements.
673  */
674 void
675 vm_map_entry_krelease(int count)
676 {
677         struct globaldata *gd = mycpu;
678
679         crit_enter();
680         gd->gd_vme_avail += count;
681         crit_exit();
682 }
683
684 /*
685  * Allocates a VM map entry for insertion.  No entry fields are filled in.
686  *
687  * The entries should have previously been reserved.  The reservation count
688  * is tracked in (*countp).
689  *
690  * No requirements.
691  */
692 static vm_map_entry_t
693 vm_map_entry_create(vm_map_t map, int *countp)
694 {
695         struct globaldata *gd = mycpu;
696         vm_map_entry_t entry;
697
698         KKASSERT(*countp > 0);
699         --*countp;
700         crit_enter();
701         entry = gd->gd_vme_base;
702         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
703         gd->gd_vme_base = entry->next;
704         crit_exit();
705
706         return(entry);
707 }
708
709 /*
710  * Dispose of a vm_map_entry that is no longer being referenced.
711  *
712  * No requirements.
713  */
714 static void
715 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
716 {
717         struct globaldata *gd = mycpu;
718
719         KKASSERT(map->hint != entry);
720         KKASSERT(map->first_free != entry);
721
722         ++*countp;
723         crit_enter();
724         entry->next = gd->gd_vme_base;
725         gd->gd_vme_base = entry;
726         crit_exit();
727 }
728
729
730 /*
731  * Insert/remove entries from maps.
732  *
733  * The related map must be exclusively locked.
734  * No other requirements.
735  *
736  * NOTE! We currently acquire the vmspace_token only to avoid races
737  *       against the pageout daemon's calls to vmspace_*_count(), which
738  *       are unable to safely lock the vm_map without potentially
739  *       deadlocking.
740  */
741 static __inline void
742 vm_map_entry_link(vm_map_t map,
743                   vm_map_entry_t after_where,
744                   vm_map_entry_t entry)
745 {
746         ASSERT_VM_MAP_LOCKED(map);
747
748         lwkt_gettoken(&vmspace_token);
749         map->nentries++;
750         entry->prev = after_where;
751         entry->next = after_where->next;
752         entry->next->prev = entry;
753         after_where->next = entry;
754         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
755                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
756         lwkt_reltoken(&vmspace_token);
757 }
758
759 static __inline void
760 vm_map_entry_unlink(vm_map_t map,
761                     vm_map_entry_t entry)
762 {
763         vm_map_entry_t prev;
764         vm_map_entry_t next;
765
766         ASSERT_VM_MAP_LOCKED(map);
767
768         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
769                 panic("vm_map_entry_unlink: attempt to mess with "
770                       "locked entry! %p", entry);
771         }
772         lwkt_gettoken(&vmspace_token);
773         prev = entry->prev;
774         next = entry->next;
775         next->prev = prev;
776         prev->next = next;
777         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
778         map->nentries--;
779         lwkt_reltoken(&vmspace_token);
780 }
781
782 /*
783  * Finds the map entry containing (or immediately preceding) the specified
784  * address in the given map.  The entry is returned in (*entry).
785  *
786  * The boolean result indicates whether the address is actually contained
787  * in the map.
788  *
789  * The related map must be locked.
790  * No other requirements.
791  */
792 boolean_t
793 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
794 {
795         vm_map_entry_t tmp;
796         vm_map_entry_t last;
797
798         ASSERT_VM_MAP_LOCKED(map);
799 #if 0
800         /*
801          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
802          * the hint code with the red-black lookup meets with system crashes
803          * and lockups.  We do not yet know why.
804          *
805          * It is possible that the problem is related to the setting
806          * of the hint during map_entry deletion, in the code specified
807          * at the GGG comment later on in this file.
808          */
809         /*
810          * Quickly check the cached hint, there's a good chance of a match.
811          */
812         if (map->hint != &map->header) {
813                 tmp = map->hint;
814                 if (address >= tmp->start && address < tmp->end) {
815                         *entry = tmp;
816                         return(TRUE);
817                 }
818         }
819 #endif
820
821         /*
822          * Locate the record from the top of the tree.  'last' tracks the
823          * closest prior record and is returned if no match is found, which
824          * in binary tree terms means tracking the most recent right-branch
825          * taken.  If there is no prior record, &map->header is returned.
826          */
827         last = &map->header;
828         tmp = RB_ROOT(&map->rb_root);
829
830         while (tmp) {
831                 if (address >= tmp->start) {
832                         if (address < tmp->end) {
833                                 *entry = tmp;
834                                 map->hint = tmp;
835                                 return(TRUE);
836                         }
837                         last = tmp;
838                         tmp = RB_RIGHT(tmp, rb_entry);
839                 } else {
840                         tmp = RB_LEFT(tmp, rb_entry);
841                 }
842         }
843         *entry = last;
844         return (FALSE);
845 }
846
847 /*
848  * Inserts the given whole VM object into the target map at the specified
849  * address range.  The object's size should match that of the address range.
850  *
851  * The map must be exclusively locked.
852  * The caller must have reserved sufficient vm_map_entry structures.
853  *
854  * If object is non-NULL, ref count must be bumped by caller
855  * prior to making call to account for the new entry.
856  */
857 int
858 vm_map_insert(vm_map_t map, int *countp,
859               vm_object_t object, vm_ooffset_t offset,
860               vm_offset_t start, vm_offset_t end,
861               vm_maptype_t maptype,
862               vm_prot_t prot, vm_prot_t max,
863               int cow)
864 {
865         vm_map_entry_t new_entry;
866         vm_map_entry_t prev_entry;
867         vm_map_entry_t temp_entry;
868         vm_eflags_t protoeflags;
869
870         ASSERT_VM_MAP_LOCKED(map);
871
872         /*
873          * Check that the start and end points are not bogus.
874          */
875         if ((start < map->min_offset) || (end > map->max_offset) ||
876             (start >= end))
877                 return (KERN_INVALID_ADDRESS);
878
879         /*
880          * Find the entry prior to the proposed starting address; if it's part
881          * of an existing entry, this range is bogus.
882          */
883         if (vm_map_lookup_entry(map, start, &temp_entry))
884                 return (KERN_NO_SPACE);
885
886         prev_entry = temp_entry;
887
888         /*
889          * Assert that the next entry doesn't overlap the end point.
890          */
891
892         if ((prev_entry->next != &map->header) &&
893             (prev_entry->next->start < end))
894                 return (KERN_NO_SPACE);
895
896         protoeflags = 0;
897
898         if (cow & MAP_COPY_ON_WRITE)
899                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
900
901         if (cow & MAP_NOFAULT) {
902                 protoeflags |= MAP_ENTRY_NOFAULT;
903
904                 KASSERT(object == NULL,
905                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
906         }
907         if (cow & MAP_DISABLE_SYNCER)
908                 protoeflags |= MAP_ENTRY_NOSYNC;
909         if (cow & MAP_DISABLE_COREDUMP)
910                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
911         if (cow & MAP_IS_STACK)
912                 protoeflags |= MAP_ENTRY_STACK;
913         if (cow & MAP_IS_KSTACK)
914                 protoeflags |= MAP_ENTRY_KSTACK;
915
916         lwkt_gettoken(&vm_token);
917         lwkt_gettoken(&vmobj_token);
918
919         if (object) {
920                 /*
921                  * When object is non-NULL, it could be shared with another
922                  * process.  We have to set or clear OBJ_ONEMAPPING 
923                  * appropriately.
924                  */
925                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
926                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
927                 }
928         }
929         else if ((prev_entry != &map->header) &&
930                  (prev_entry->eflags == protoeflags) &&
931                  (prev_entry->end == start) &&
932                  (prev_entry->wired_count == 0) &&
933                  prev_entry->maptype == maptype &&
934                  ((prev_entry->object.vm_object == NULL) ||
935                   vm_object_coalesce(prev_entry->object.vm_object,
936                                      OFF_TO_IDX(prev_entry->offset),
937                                      (vm_size_t)(prev_entry->end - prev_entry->start),
938                                      (vm_size_t)(end - prev_entry->end)))) {
939                 /*
940                  * We were able to extend the object.  Determine if we
941                  * can extend the previous map entry to include the 
942                  * new range as well.
943                  */
944                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
945                     (prev_entry->protection == prot) &&
946                     (prev_entry->max_protection == max)) {
947                         lwkt_reltoken(&vmobj_token);
948                         lwkt_reltoken(&vm_token);
949                         map->size += (end - prev_entry->end);
950                         prev_entry->end = end;
951                         vm_map_simplify_entry(map, prev_entry, countp);
952                         return (KERN_SUCCESS);
953                 }
954
955                 /*
956                  * If we can extend the object but cannot extend the
957                  * map entry, we have to create a new map entry.  We
958                  * must bump the ref count on the extended object to
959                  * account for it.  object may be NULL.
960                  */
961                 object = prev_entry->object.vm_object;
962                 offset = prev_entry->offset +
963                         (prev_entry->end - prev_entry->start);
964                 vm_object_reference_locked(object);
965         }
966
967         lwkt_reltoken(&vmobj_token);
968         lwkt_reltoken(&vm_token);
969
970         /*
971          * NOTE: if conditionals fail, object can be NULL here.  This occurs
972          * in things like the buffer map where we manage kva but do not manage
973          * backing objects.
974          */
975
976         /*
977          * Create a new entry
978          */
979
980         new_entry = vm_map_entry_create(map, countp);
981         new_entry->start = start;
982         new_entry->end = end;
983
984         new_entry->maptype = maptype;
985         new_entry->eflags = protoeflags;
986         new_entry->object.vm_object = object;
987         new_entry->offset = offset;
988         new_entry->aux.master_pde = 0;
989
990         new_entry->inheritance = VM_INHERIT_DEFAULT;
991         new_entry->protection = prot;
992         new_entry->max_protection = max;
993         new_entry->wired_count = 0;
994
995         /*
996          * Insert the new entry into the list
997          */
998
999         vm_map_entry_link(map, prev_entry, new_entry);
1000         map->size += new_entry->end - new_entry->start;
1001
1002         /*
1003          * Update the free space hint.  Entries cannot overlap.
1004          * An exact comparison is needed to avoid matching
1005          * against the map->header.
1006          */
1007         if ((map->first_free == prev_entry) &&
1008             (prev_entry->end == new_entry->start)) {
1009                 map->first_free = new_entry;
1010         }
1011
1012 #if 0
1013         /*
1014          * Temporarily removed to avoid MAP_STACK panic, due to
1015          * MAP_STACK being a huge hack.  Will be added back in
1016          * when MAP_STACK (and the user stack mapping) is fixed.
1017          */
1018         /*
1019          * It may be possible to simplify the entry
1020          */
1021         vm_map_simplify_entry(map, new_entry, countp);
1022 #endif
1023
1024         /*
1025          * Try to pre-populate the page table.  Mappings governed by virtual
1026          * page tables cannot be prepopulated without a lot of work, so
1027          * don't try.
1028          */
1029         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1030             maptype != VM_MAPTYPE_VPAGETABLE) {
1031                 pmap_object_init_pt(map->pmap, start, prot,
1032                                     object, OFF_TO_IDX(offset), end - start,
1033                                     cow & MAP_PREFAULT_PARTIAL);
1034         }
1035
1036         return (KERN_SUCCESS);
1037 }
1038
1039 /*
1040  * Find sufficient space for `length' bytes in the given map, starting at
1041  * `start'.  Returns 0 on success, 1 on no space.
1042  *
1043  * This function will returned an arbitrarily aligned pointer.  If no
1044  * particular alignment is required you should pass align as 1.  Note that
1045  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1046  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1047  * argument.
1048  *
1049  * 'align' should be a power of 2 but is not required to be.
1050  *
1051  * The map must be exclusively locked.
1052  * No other requirements.
1053  */
1054 int
1055 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1056                  vm_size_t align, int flags, vm_offset_t *addr)
1057 {
1058         vm_map_entry_t entry, next;
1059         vm_offset_t end;
1060         vm_offset_t align_mask;
1061
1062         if (start < map->min_offset)
1063                 start = map->min_offset;
1064         if (start > map->max_offset)
1065                 return (1);
1066
1067         /*
1068          * If the alignment is not a power of 2 we will have to use
1069          * a mod/division, set align_mask to a special value.
1070          */
1071         if ((align | (align - 1)) + 1 != (align << 1))
1072                 align_mask = (vm_offset_t)-1;
1073         else
1074                 align_mask = align - 1;
1075
1076         /*
1077          * Look for the first possible address; if there's already something
1078          * at this address, we have to start after it.
1079          */
1080         if (start == map->min_offset) {
1081                 if ((entry = map->first_free) != &map->header)
1082                         start = entry->end;
1083         } else {
1084                 vm_map_entry_t tmp;
1085
1086                 if (vm_map_lookup_entry(map, start, &tmp))
1087                         start = tmp->end;
1088                 entry = tmp;
1089         }
1090
1091         /*
1092          * Look through the rest of the map, trying to fit a new region in the
1093          * gap between existing regions, or after the very last region.
1094          */
1095         for (;; start = (entry = next)->end) {
1096                 /*
1097                  * Adjust the proposed start by the requested alignment,
1098                  * be sure that we didn't wrap the address.
1099                  */
1100                 if (align_mask == (vm_offset_t)-1)
1101                         end = ((start + align - 1) / align) * align;
1102                 else
1103                         end = (start + align_mask) & ~align_mask;
1104                 if (end < start)
1105                         return (1);
1106                 start = end;
1107                 /*
1108                  * Find the end of the proposed new region.  Be sure we didn't
1109                  * go beyond the end of the map, or wrap around the address.
1110                  * Then check to see if this is the last entry or if the 
1111                  * proposed end fits in the gap between this and the next
1112                  * entry.
1113                  */
1114                 end = start + length;
1115                 if (end > map->max_offset || end < start)
1116                         return (1);
1117                 next = entry->next;
1118
1119                 /*
1120                  * If the next entry's start address is beyond the desired
1121                  * end address we may have found a good entry.
1122                  *
1123                  * If the next entry is a stack mapping we do not map into
1124                  * the stack's reserved space.
1125                  *
1126                  * XXX continue to allow mapping into the stack's reserved
1127                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1128                  * mapping, for backwards compatibility.  But the caller
1129                  * really should use MAP_STACK | MAP_TRYFIXED if they
1130                  * want to do that.
1131                  */
1132                 if (next == &map->header)
1133                         break;
1134                 if (next->start >= end) {
1135                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1136                                 break;
1137                         if (flags & MAP_STACK)
1138                                 break;
1139                         if (next->start - next->aux.avail_ssize >= end)
1140                                 break;
1141                 }
1142         }
1143         map->hint = entry;
1144
1145         /*
1146          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1147          * if it fails.  The kernel_map is locked and nothing can steal
1148          * our address space if pmap_growkernel() blocks.
1149          *
1150          * NOTE: This may be unconditionally called for kldload areas on
1151          *       x86_64 because these do not bump kernel_vm_end (which would
1152          *       fill 128G worth of page tables!).  Therefore we must not
1153          *       retry.
1154          */
1155         if (map == &kernel_map) {
1156                 vm_offset_t kstop;
1157
1158                 kstop = round_page(start + length);
1159                 if (kstop > kernel_vm_end)
1160                         pmap_growkernel(start, kstop);
1161         }
1162         *addr = start;
1163         return (0);
1164 }
1165
1166 /*
1167  * vm_map_find finds an unallocated region in the target address map with
1168  * the given length.  The search is defined to be first-fit from the
1169  * specified address; the region found is returned in the same parameter.
1170  *
1171  * If object is non-NULL, ref count must be bumped by caller
1172  * prior to making call to account for the new entry.
1173  *
1174  * No requirements.  This function will lock the map temporarily.
1175  */
1176 int
1177 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1178             vm_offset_t *addr,  vm_size_t length, vm_size_t align,
1179             boolean_t fitit,
1180             vm_maptype_t maptype,
1181             vm_prot_t prot, vm_prot_t max,
1182             int cow)
1183 {
1184         vm_offset_t start;
1185         int result;
1186         int count;
1187
1188         start = *addr;
1189
1190         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1191         vm_map_lock(map);
1192         if (fitit) {
1193                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1194                         vm_map_unlock(map);
1195                         vm_map_entry_release(count);
1196                         return (KERN_NO_SPACE);
1197                 }
1198                 start = *addr;
1199         }
1200         result = vm_map_insert(map, &count, object, offset,
1201                                start, start + length,
1202                                maptype,
1203                                prot, max,
1204                                cow);
1205         vm_map_unlock(map);
1206         vm_map_entry_release(count);
1207
1208         return (result);
1209 }
1210
1211 /*
1212  * Simplify the given map entry by merging with either neighbor.  This
1213  * routine also has the ability to merge with both neighbors.
1214  *
1215  * This routine guarentees that the passed entry remains valid (though
1216  * possibly extended).  When merging, this routine may delete one or
1217  * both neighbors.  No action is taken on entries which have their
1218  * in-transition flag set.
1219  *
1220  * The map must be exclusively locked.
1221  */
1222 void
1223 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1224 {
1225         vm_map_entry_t next, prev;
1226         vm_size_t prevsize, esize;
1227
1228         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1229                 ++mycpu->gd_cnt.v_intrans_coll;
1230                 return;
1231         }
1232
1233         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1234                 return;
1235
1236         prev = entry->prev;
1237         if (prev != &map->header) {
1238                 prevsize = prev->end - prev->start;
1239                 if ( (prev->end == entry->start) &&
1240                      (prev->maptype == entry->maptype) &&
1241                      (prev->object.vm_object == entry->object.vm_object) &&
1242                      (!prev->object.vm_object ||
1243                         (prev->offset + prevsize == entry->offset)) &&
1244                      (prev->eflags == entry->eflags) &&
1245                      (prev->protection == entry->protection) &&
1246                      (prev->max_protection == entry->max_protection) &&
1247                      (prev->inheritance == entry->inheritance) &&
1248                      (prev->wired_count == entry->wired_count)) {
1249                         if (map->first_free == prev)
1250                                 map->first_free = entry;
1251                         if (map->hint == prev)
1252                                 map->hint = entry;
1253                         vm_map_entry_unlink(map, prev);
1254                         entry->start = prev->start;
1255                         entry->offset = prev->offset;
1256                         if (prev->object.vm_object)
1257                                 vm_object_deallocate(prev->object.vm_object);
1258                         vm_map_entry_dispose(map, prev, countp);
1259                 }
1260         }
1261
1262         next = entry->next;
1263         if (next != &map->header) {
1264                 esize = entry->end - entry->start;
1265                 if ((entry->end == next->start) &&
1266                     (next->maptype == entry->maptype) &&
1267                     (next->object.vm_object == entry->object.vm_object) &&
1268                      (!entry->object.vm_object ||
1269                         (entry->offset + esize == next->offset)) &&
1270                     (next->eflags == entry->eflags) &&
1271                     (next->protection == entry->protection) &&
1272                     (next->max_protection == entry->max_protection) &&
1273                     (next->inheritance == entry->inheritance) &&
1274                     (next->wired_count == entry->wired_count)) {
1275                         if (map->first_free == next)
1276                                 map->first_free = entry;
1277                         if (map->hint == next)
1278                                 map->hint = entry;
1279                         vm_map_entry_unlink(map, next);
1280                         entry->end = next->end;
1281                         if (next->object.vm_object)
1282                                 vm_object_deallocate(next->object.vm_object);
1283                         vm_map_entry_dispose(map, next, countp);
1284                 }
1285         }
1286 }
1287
1288 /*
1289  * Asserts that the given entry begins at or after the specified address.
1290  * If necessary, it splits the entry into two.
1291  */
1292 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1293 {                                                                       \
1294         if (startaddr > entry->start)                                   \
1295                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1296 }
1297
1298 /*
1299  * This routine is called only when it is known that the entry must be split.
1300  *
1301  * The map must be exclusively locked.
1302  */
1303 static void
1304 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1305                    int *countp)
1306 {
1307         vm_map_entry_t new_entry;
1308
1309         /*
1310          * Split off the front portion -- note that we must insert the new
1311          * entry BEFORE this one, so that this entry has the specified
1312          * starting address.
1313          */
1314
1315         vm_map_simplify_entry(map, entry, countp);
1316
1317         /*
1318          * If there is no object backing this entry, we might as well create
1319          * one now.  If we defer it, an object can get created after the map
1320          * is clipped, and individual objects will be created for the split-up
1321          * map.  This is a bit of a hack, but is also about the best place to
1322          * put this improvement.
1323          */
1324         if (entry->object.vm_object == NULL && !map->system_map) {
1325                 vm_map_entry_allocate_object(entry);
1326         }
1327
1328         new_entry = vm_map_entry_create(map, countp);
1329         *new_entry = *entry;
1330
1331         new_entry->end = start;
1332         entry->offset += (start - entry->start);
1333         entry->start = start;
1334
1335         vm_map_entry_link(map, entry->prev, new_entry);
1336
1337         switch(entry->maptype) {
1338         case VM_MAPTYPE_NORMAL:
1339         case VM_MAPTYPE_VPAGETABLE:
1340                 vm_object_reference(new_entry->object.vm_object);
1341                 break;
1342         default:
1343                 break;
1344         }
1345 }
1346
1347 /*
1348  * Asserts that the given entry ends at or before the specified address.
1349  * If necessary, it splits the entry into two.
1350  *
1351  * The map must be exclusively locked.
1352  */
1353 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1354 {                                                               \
1355         if (endaddr < entry->end)                               \
1356                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1357 }
1358
1359 /*
1360  * This routine is called only when it is known that the entry must be split.
1361  *
1362  * The map must be exclusively locked.
1363  */
1364 static void
1365 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1366                  int *countp)
1367 {
1368         vm_map_entry_t new_entry;
1369
1370         /*
1371          * If there is no object backing this entry, we might as well create
1372          * one now.  If we defer it, an object can get created after the map
1373          * is clipped, and individual objects will be created for the split-up
1374          * map.  This is a bit of a hack, but is also about the best place to
1375          * put this improvement.
1376          */
1377
1378         if (entry->object.vm_object == NULL && !map->system_map) {
1379                 vm_map_entry_allocate_object(entry);
1380         }
1381
1382         /*
1383          * Create a new entry and insert it AFTER the specified entry
1384          */
1385
1386         new_entry = vm_map_entry_create(map, countp);
1387         *new_entry = *entry;
1388
1389         new_entry->start = entry->end = end;
1390         new_entry->offset += (end - entry->start);
1391
1392         vm_map_entry_link(map, entry, new_entry);
1393
1394         switch(entry->maptype) {
1395         case VM_MAPTYPE_NORMAL:
1396         case VM_MAPTYPE_VPAGETABLE:
1397                 vm_object_reference(new_entry->object.vm_object);
1398                 break;
1399         default:
1400                 break;
1401         }
1402 }
1403
1404 /*
1405  * Asserts that the starting and ending region addresses fall within the
1406  * valid range for the map.
1407  */
1408 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1409 {                                               \
1410         if (start < vm_map_min(map))            \
1411                 start = vm_map_min(map);        \
1412         if (end > vm_map_max(map))              \
1413                 end = vm_map_max(map);          \
1414         if (start > end)                        \
1415                 start = end;                    \
1416 }
1417
1418 /*
1419  * Used to block when an in-transition collison occurs.  The map
1420  * is unlocked for the sleep and relocked before the return.
1421  */
1422 void
1423 vm_map_transition_wait(vm_map_t map)
1424 {
1425         tsleep_interlock(map, 0);
1426         vm_map_unlock(map);
1427         tsleep(map, PINTERLOCKED, "vment", 0);
1428         vm_map_lock(map);
1429 }
1430
1431 /*
1432  * When we do blocking operations with the map lock held it is
1433  * possible that a clip might have occured on our in-transit entry,
1434  * requiring an adjustment to the entry in our loop.  These macros
1435  * help the pageable and clip_range code deal with the case.  The
1436  * conditional costs virtually nothing if no clipping has occured.
1437  */
1438
1439 #define CLIP_CHECK_BACK(entry, save_start)              \
1440     do {                                                \
1441             while (entry->start != save_start) {        \
1442                     entry = entry->prev;                \
1443                     KASSERT(entry != &map->header, ("bad entry clip")); \
1444             }                                           \
1445     } while(0)
1446
1447 #define CLIP_CHECK_FWD(entry, save_end)                 \
1448     do {                                                \
1449             while (entry->end != save_end) {            \
1450                     entry = entry->next;                \
1451                     KASSERT(entry != &map->header, ("bad entry clip")); \
1452             }                                           \
1453     } while(0)
1454
1455
1456 /*
1457  * Clip the specified range and return the base entry.  The
1458  * range may cover several entries starting at the returned base
1459  * and the first and last entry in the covering sequence will be
1460  * properly clipped to the requested start and end address.
1461  *
1462  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1463  * flag.
1464  *
1465  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1466  * covered by the requested range.
1467  *
1468  * The map must be exclusively locked on entry and will remain locked
1469  * on return. If no range exists or the range contains holes and you
1470  * specified that no holes were allowed, NULL will be returned.  This
1471  * routine may temporarily unlock the map in order avoid a deadlock when
1472  * sleeping.
1473  */
1474 static
1475 vm_map_entry_t
1476 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1477                   int *countp, int flags)
1478 {
1479         vm_map_entry_t start_entry;
1480         vm_map_entry_t entry;
1481
1482         /*
1483          * Locate the entry and effect initial clipping.  The in-transition
1484          * case does not occur very often so do not try to optimize it.
1485          */
1486 again:
1487         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1488                 return (NULL);
1489         entry = start_entry;
1490         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1491                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1492                 ++mycpu->gd_cnt.v_intrans_coll;
1493                 ++mycpu->gd_cnt.v_intrans_wait;
1494                 vm_map_transition_wait(map);
1495                 /*
1496                  * entry and/or start_entry may have been clipped while
1497                  * we slept, or may have gone away entirely.  We have
1498                  * to restart from the lookup.
1499                  */
1500                 goto again;
1501         }
1502
1503         /*
1504          * Since we hold an exclusive map lock we do not have to restart
1505          * after clipping, even though clipping may block in zalloc.
1506          */
1507         vm_map_clip_start(map, entry, start, countp);
1508         vm_map_clip_end(map, entry, end, countp);
1509         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1510
1511         /*
1512          * Scan entries covered by the range.  When working on the next
1513          * entry a restart need only re-loop on the current entry which
1514          * we have already locked, since 'next' may have changed.  Also,
1515          * even though entry is safe, it may have been clipped so we
1516          * have to iterate forwards through the clip after sleeping.
1517          */
1518         while (entry->next != &map->header && entry->next->start < end) {
1519                 vm_map_entry_t next = entry->next;
1520
1521                 if (flags & MAP_CLIP_NO_HOLES) {
1522                         if (next->start > entry->end) {
1523                                 vm_map_unclip_range(map, start_entry,
1524                                         start, entry->end, countp, flags);
1525                                 return(NULL);
1526                         }
1527                 }
1528
1529                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1530                         vm_offset_t save_end = entry->end;
1531                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1532                         ++mycpu->gd_cnt.v_intrans_coll;
1533                         ++mycpu->gd_cnt.v_intrans_wait;
1534                         vm_map_transition_wait(map);
1535
1536                         /*
1537                          * clips might have occured while we blocked.
1538                          */
1539                         CLIP_CHECK_FWD(entry, save_end);
1540                         CLIP_CHECK_BACK(start_entry, start);
1541                         continue;
1542                 }
1543                 /*
1544                  * No restart necessary even though clip_end may block, we
1545                  * are holding the map lock.
1546                  */
1547                 vm_map_clip_end(map, next, end, countp);
1548                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1549                 entry = next;
1550         }
1551         if (flags & MAP_CLIP_NO_HOLES) {
1552                 if (entry->end != end) {
1553                         vm_map_unclip_range(map, start_entry,
1554                                 start, entry->end, countp, flags);
1555                         return(NULL);
1556                 }
1557         }
1558         return(start_entry);
1559 }
1560
1561 /*
1562  * Undo the effect of vm_map_clip_range().  You should pass the same
1563  * flags and the same range that you passed to vm_map_clip_range().
1564  * This code will clear the in-transition flag on the entries and
1565  * wake up anyone waiting.  This code will also simplify the sequence
1566  * and attempt to merge it with entries before and after the sequence.
1567  *
1568  * The map must be locked on entry and will remain locked on return.
1569  *
1570  * Note that you should also pass the start_entry returned by
1571  * vm_map_clip_range().  However, if you block between the two calls
1572  * with the map unlocked please be aware that the start_entry may
1573  * have been clipped and you may need to scan it backwards to find
1574  * the entry corresponding with the original start address.  You are
1575  * responsible for this, vm_map_unclip_range() expects the correct
1576  * start_entry to be passed to it and will KASSERT otherwise.
1577  */
1578 static
1579 void
1580 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1581                     vm_offset_t start, vm_offset_t end,
1582                     int *countp, int flags)
1583 {
1584         vm_map_entry_t entry;
1585
1586         entry = start_entry;
1587
1588         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1589         while (entry != &map->header && entry->start < end) {
1590                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1591                         ("in-transition flag not set during unclip on: %p",
1592                         entry));
1593                 KASSERT(entry->end <= end,
1594                         ("unclip_range: tail wasn't clipped"));
1595                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1596                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1597                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1598                         wakeup(map);
1599                 }
1600                 entry = entry->next;
1601         }
1602
1603         /*
1604          * Simplification does not block so there is no restart case.
1605          */
1606         entry = start_entry;
1607         while (entry != &map->header && entry->start < end) {
1608                 vm_map_simplify_entry(map, entry, countp);
1609                 entry = entry->next;
1610         }
1611 }
1612
1613 /*
1614  * Mark the given range as handled by a subordinate map.
1615  *
1616  * This range must have been created with vm_map_find(), and no other
1617  * operations may have been performed on this range prior to calling
1618  * vm_map_submap().
1619  *
1620  * Submappings cannot be removed.
1621  *
1622  * No requirements.
1623  */
1624 int
1625 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1626 {
1627         vm_map_entry_t entry;
1628         int result = KERN_INVALID_ARGUMENT;
1629         int count;
1630
1631         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1632         vm_map_lock(map);
1633
1634         VM_MAP_RANGE_CHECK(map, start, end);
1635
1636         if (vm_map_lookup_entry(map, start, &entry)) {
1637                 vm_map_clip_start(map, entry, start, &count);
1638         } else {
1639                 entry = entry->next;
1640         }
1641
1642         vm_map_clip_end(map, entry, end, &count);
1643
1644         if ((entry->start == start) && (entry->end == end) &&
1645             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1646             (entry->object.vm_object == NULL)) {
1647                 entry->object.sub_map = submap;
1648                 entry->maptype = VM_MAPTYPE_SUBMAP;
1649                 result = KERN_SUCCESS;
1650         }
1651         vm_map_unlock(map);
1652         vm_map_entry_release(count);
1653
1654         return (result);
1655 }
1656
1657 /*
1658  * Sets the protection of the specified address region in the target map. 
1659  * If "set_max" is specified, the maximum protection is to be set;
1660  * otherwise, only the current protection is affected.
1661  *
1662  * The protection is not applicable to submaps, but is applicable to normal
1663  * maps and maps governed by virtual page tables.  For example, when operating
1664  * on a virtual page table our protection basically controls how COW occurs
1665  * on the backing object, whereas the virtual page table abstraction itself
1666  * is an abstraction for userland.
1667  *
1668  * No requirements.
1669  */
1670 int
1671 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1672                vm_prot_t new_prot, boolean_t set_max)
1673 {
1674         vm_map_entry_t current;
1675         vm_map_entry_t entry;
1676         int count;
1677
1678         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1679         vm_map_lock(map);
1680
1681         VM_MAP_RANGE_CHECK(map, start, end);
1682
1683         if (vm_map_lookup_entry(map, start, &entry)) {
1684                 vm_map_clip_start(map, entry, start, &count);
1685         } else {
1686                 entry = entry->next;
1687         }
1688
1689         /*
1690          * Make a first pass to check for protection violations.
1691          */
1692         current = entry;
1693         while ((current != &map->header) && (current->start < end)) {
1694                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1695                         vm_map_unlock(map);
1696                         vm_map_entry_release(count);
1697                         return (KERN_INVALID_ARGUMENT);
1698                 }
1699                 if ((new_prot & current->max_protection) != new_prot) {
1700                         vm_map_unlock(map);
1701                         vm_map_entry_release(count);
1702                         return (KERN_PROTECTION_FAILURE);
1703                 }
1704                 current = current->next;
1705         }
1706
1707         /*
1708          * Go back and fix up protections. [Note that clipping is not
1709          * necessary the second time.]
1710          */
1711         current = entry;
1712
1713         while ((current != &map->header) && (current->start < end)) {
1714                 vm_prot_t old_prot;
1715
1716                 vm_map_clip_end(map, current, end, &count);
1717
1718                 old_prot = current->protection;
1719                 if (set_max) {
1720                         current->protection =
1721                             (current->max_protection = new_prot) &
1722                             old_prot;
1723                 } else {
1724                         current->protection = new_prot;
1725                 }
1726
1727                 /*
1728                  * Update physical map if necessary. Worry about copy-on-write
1729                  * here -- CHECK THIS XXX
1730                  */
1731
1732                 if (current->protection != old_prot) {
1733 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1734                                                         VM_PROT_ALL)
1735
1736                         pmap_protect(map->pmap, current->start,
1737                             current->end,
1738                             current->protection & MASK(current));
1739 #undef  MASK
1740                 }
1741
1742                 vm_map_simplify_entry(map, current, &count);
1743
1744                 current = current->next;
1745         }
1746
1747         vm_map_unlock(map);
1748         vm_map_entry_release(count);
1749         return (KERN_SUCCESS);
1750 }
1751
1752 /*
1753  * This routine traverses a processes map handling the madvise
1754  * system call.  Advisories are classified as either those effecting
1755  * the vm_map_entry structure, or those effecting the underlying
1756  * objects.
1757  *
1758  * The <value> argument is used for extended madvise calls.
1759  *
1760  * No requirements.
1761  */
1762 int
1763 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1764                int behav, off_t value)
1765 {
1766         vm_map_entry_t current, entry;
1767         int modify_map = 0;
1768         int error = 0;
1769         int count;
1770
1771         /*
1772          * Some madvise calls directly modify the vm_map_entry, in which case
1773          * we need to use an exclusive lock on the map and we need to perform 
1774          * various clipping operations.  Otherwise we only need a read-lock
1775          * on the map.
1776          */
1777
1778         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1779
1780         switch(behav) {
1781         case MADV_NORMAL:
1782         case MADV_SEQUENTIAL:
1783         case MADV_RANDOM:
1784         case MADV_NOSYNC:
1785         case MADV_AUTOSYNC:
1786         case MADV_NOCORE:
1787         case MADV_CORE:
1788         case MADV_SETMAP:
1789         case MADV_INVAL:
1790                 modify_map = 1;
1791                 vm_map_lock(map);
1792                 break;
1793         case MADV_WILLNEED:
1794         case MADV_DONTNEED:
1795         case MADV_FREE:
1796                 vm_map_lock_read(map);
1797                 break;
1798         default:
1799                 vm_map_entry_release(count);
1800                 return (EINVAL);
1801         }
1802
1803         /*
1804          * Locate starting entry and clip if necessary.
1805          */
1806
1807         VM_MAP_RANGE_CHECK(map, start, end);
1808
1809         if (vm_map_lookup_entry(map, start, &entry)) {
1810                 if (modify_map)
1811                         vm_map_clip_start(map, entry, start, &count);
1812         } else {
1813                 entry = entry->next;
1814         }
1815
1816         if (modify_map) {
1817                 /*
1818                  * madvise behaviors that are implemented in the vm_map_entry.
1819                  *
1820                  * We clip the vm_map_entry so that behavioral changes are
1821                  * limited to the specified address range.
1822                  */
1823                 for (current = entry;
1824                      (current != &map->header) && (current->start < end);
1825                      current = current->next
1826                 ) {
1827                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1828                                 continue;
1829
1830                         vm_map_clip_end(map, current, end, &count);
1831
1832                         switch (behav) {
1833                         case MADV_NORMAL:
1834                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1835                                 break;
1836                         case MADV_SEQUENTIAL:
1837                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1838                                 break;
1839                         case MADV_RANDOM:
1840                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1841                                 break;
1842                         case MADV_NOSYNC:
1843                                 current->eflags |= MAP_ENTRY_NOSYNC;
1844                                 break;
1845                         case MADV_AUTOSYNC:
1846                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1847                                 break;
1848                         case MADV_NOCORE:
1849                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1850                                 break;
1851                         case MADV_CORE:
1852                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1853                                 break;
1854                         case MADV_INVAL:
1855                                 /*
1856                                  * Invalidate the related pmap entries, used
1857                                  * to flush portions of the real kernel's
1858                                  * pmap when the caller has removed or
1859                                  * modified existing mappings in a virtual
1860                                  * page table.
1861                                  */
1862                                 pmap_remove(map->pmap,
1863                                             current->start, current->end);
1864                                 break;
1865                         case MADV_SETMAP:
1866                                 /*
1867                                  * Set the page directory page for a map
1868                                  * governed by a virtual page table.  Mark
1869                                  * the entry as being governed by a virtual
1870                                  * page table if it is not.
1871                                  *
1872                                  * XXX the page directory page is stored
1873                                  * in the avail_ssize field if the map_entry.
1874                                  *
1875                                  * XXX the map simplification code does not
1876                                  * compare this field so weird things may
1877                                  * happen if you do not apply this function
1878                                  * to the entire mapping governed by the
1879                                  * virtual page table.
1880                                  */
1881                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1882                                         error = EINVAL;
1883                                         break;
1884                                 }
1885                                 current->aux.master_pde = value;
1886                                 pmap_remove(map->pmap,
1887                                             current->start, current->end);
1888                                 break;
1889                         default:
1890                                 error = EINVAL;
1891                                 break;
1892                         }
1893                         vm_map_simplify_entry(map, current, &count);
1894                 }
1895                 vm_map_unlock(map);
1896         } else {
1897                 vm_pindex_t pindex;
1898                 int count;
1899
1900                 /*
1901                  * madvise behaviors that are implemented in the underlying
1902                  * vm_object.
1903                  *
1904                  * Since we don't clip the vm_map_entry, we have to clip
1905                  * the vm_object pindex and count.
1906                  *
1907                  * NOTE!  We currently do not support these functions on
1908                  * virtual page tables.
1909                  */
1910                 for (current = entry;
1911                      (current != &map->header) && (current->start < end);
1912                      current = current->next
1913                 ) {
1914                         vm_offset_t useStart;
1915
1916                         if (current->maptype != VM_MAPTYPE_NORMAL)
1917                                 continue;
1918
1919                         pindex = OFF_TO_IDX(current->offset);
1920                         count = atop(current->end - current->start);
1921                         useStart = current->start;
1922
1923                         if (current->start < start) {
1924                                 pindex += atop(start - current->start);
1925                                 count -= atop(start - current->start);
1926                                 useStart = start;
1927                         }
1928                         if (current->end > end)
1929                                 count -= atop(current->end - end);
1930
1931                         if (count <= 0)
1932                                 continue;
1933
1934                         vm_object_madvise(current->object.vm_object,
1935                                           pindex, count, behav);
1936
1937                         /*
1938                          * Try to populate the page table.  Mappings governed
1939                          * by virtual page tables cannot be pre-populated
1940                          * without a lot of work so don't try.
1941                          */
1942                         if (behav == MADV_WILLNEED &&
1943                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
1944                                 pmap_object_init_pt(
1945                                     map->pmap, 
1946                                     useStart,
1947                                     current->protection,
1948                                     current->object.vm_object,
1949                                     pindex, 
1950                                     (count << PAGE_SHIFT),
1951                                     MAP_PREFAULT_MADVISE
1952                                 );
1953                         }
1954                 }
1955                 vm_map_unlock_read(map);
1956         }
1957         vm_map_entry_release(count);
1958         return(error);
1959 }       
1960
1961
1962 /*
1963  * Sets the inheritance of the specified address range in the target map.
1964  * Inheritance affects how the map will be shared with child maps at the
1965  * time of vm_map_fork.
1966  */
1967 int
1968 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1969                vm_inherit_t new_inheritance)
1970 {
1971         vm_map_entry_t entry;
1972         vm_map_entry_t temp_entry;
1973         int count;
1974
1975         switch (new_inheritance) {
1976         case VM_INHERIT_NONE:
1977         case VM_INHERIT_COPY:
1978         case VM_INHERIT_SHARE:
1979                 break;
1980         default:
1981                 return (KERN_INVALID_ARGUMENT);
1982         }
1983
1984         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1985         vm_map_lock(map);
1986
1987         VM_MAP_RANGE_CHECK(map, start, end);
1988
1989         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1990                 entry = temp_entry;
1991                 vm_map_clip_start(map, entry, start, &count);
1992         } else
1993                 entry = temp_entry->next;
1994
1995         while ((entry != &map->header) && (entry->start < end)) {
1996                 vm_map_clip_end(map, entry, end, &count);
1997
1998                 entry->inheritance = new_inheritance;
1999
2000                 vm_map_simplify_entry(map, entry, &count);
2001
2002                 entry = entry->next;
2003         }
2004         vm_map_unlock(map);
2005         vm_map_entry_release(count);
2006         return (KERN_SUCCESS);
2007 }
2008
2009 /*
2010  * Implement the semantics of mlock
2011  */
2012 int
2013 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2014               boolean_t new_pageable)
2015 {
2016         vm_map_entry_t entry;
2017         vm_map_entry_t start_entry;
2018         vm_offset_t end;
2019         int rv = KERN_SUCCESS;
2020         int count;
2021
2022         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2023         vm_map_lock(map);
2024         VM_MAP_RANGE_CHECK(map, start, real_end);
2025         end = real_end;
2026
2027         start_entry = vm_map_clip_range(map, start, end, &count,
2028                                         MAP_CLIP_NO_HOLES);
2029         if (start_entry == NULL) {
2030                 vm_map_unlock(map);
2031                 vm_map_entry_release(count);
2032                 return (KERN_INVALID_ADDRESS);
2033         }
2034
2035         if (new_pageable == 0) {
2036                 entry = start_entry;
2037                 while ((entry != &map->header) && (entry->start < end)) {
2038                         vm_offset_t save_start;
2039                         vm_offset_t save_end;
2040
2041                         /*
2042                          * Already user wired or hard wired (trivial cases)
2043                          */
2044                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2045                                 entry = entry->next;
2046                                 continue;
2047                         }
2048                         if (entry->wired_count != 0) {
2049                                 entry->wired_count++;
2050                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2051                                 entry = entry->next;
2052                                 continue;
2053                         }
2054
2055                         /*
2056                          * A new wiring requires instantiation of appropriate
2057                          * management structures and the faulting in of the
2058                          * page.
2059                          */
2060                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2061                                 int copyflag = entry->eflags &
2062                                                MAP_ENTRY_NEEDS_COPY;
2063                                 if (copyflag && ((entry->protection &
2064                                                   VM_PROT_WRITE) != 0)) {
2065                                         vm_map_entry_shadow(entry);
2066                                 } else if (entry->object.vm_object == NULL &&
2067                                            !map->system_map) {
2068                                         vm_map_entry_allocate_object(entry);
2069                                 }
2070                         }
2071                         entry->wired_count++;
2072                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2073
2074                         /*
2075                          * Now fault in the area.  Note that vm_fault_wire()
2076                          * may release the map lock temporarily, it will be
2077                          * relocked on return.  The in-transition
2078                          * flag protects the entries. 
2079                          */
2080                         save_start = entry->start;
2081                         save_end = entry->end;
2082                         rv = vm_fault_wire(map, entry, TRUE);
2083                         if (rv) {
2084                                 CLIP_CHECK_BACK(entry, save_start);
2085                                 for (;;) {
2086                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2087                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2088                                         entry->wired_count = 0;
2089                                         if (entry->end == save_end)
2090                                                 break;
2091                                         entry = entry->next;
2092                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2093                                 }
2094                                 end = save_start;       /* unwire the rest */
2095                                 break;
2096                         }
2097                         /*
2098                          * note that even though the entry might have been
2099                          * clipped, the USER_WIRED flag we set prevents
2100                          * duplication so we do not have to do a 
2101                          * clip check.
2102                          */
2103                         entry = entry->next;
2104                 }
2105
2106                 /*
2107                  * If we failed fall through to the unwiring section to
2108                  * unwire what we had wired so far.  'end' has already
2109                  * been adjusted.
2110                  */
2111                 if (rv)
2112                         new_pageable = 1;
2113
2114                 /*
2115                  * start_entry might have been clipped if we unlocked the
2116                  * map and blocked.  No matter how clipped it has gotten
2117                  * there should be a fragment that is on our start boundary.
2118                  */
2119                 CLIP_CHECK_BACK(start_entry, start);
2120         }
2121
2122         /*
2123          * Deal with the unwiring case.
2124          */
2125         if (new_pageable) {
2126                 /*
2127                  * This is the unwiring case.  We must first ensure that the
2128                  * range to be unwired is really wired down.  We know there
2129                  * are no holes.
2130                  */
2131                 entry = start_entry;
2132                 while ((entry != &map->header) && (entry->start < end)) {
2133                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2134                                 rv = KERN_INVALID_ARGUMENT;
2135                                 goto done;
2136                         }
2137                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2138                         entry = entry->next;
2139                 }
2140
2141                 /*
2142                  * Now decrement the wiring count for each region. If a region
2143                  * becomes completely unwired, unwire its physical pages and
2144                  * mappings.
2145                  */
2146                 /*
2147                  * The map entries are processed in a loop, checking to
2148                  * make sure the entry is wired and asserting it has a wired
2149                  * count. However, another loop was inserted more-or-less in
2150                  * the middle of the unwiring path. This loop picks up the
2151                  * "entry" loop variable from the first loop without first
2152                  * setting it to start_entry. Naturally, the secound loop
2153                  * is never entered and the pages backing the entries are
2154                  * never unwired. This can lead to a leak of wired pages.
2155                  */
2156                 entry = start_entry;
2157                 while ((entry != &map->header) && (entry->start < end)) {
2158                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2159                                 ("expected USER_WIRED on entry %p", entry));
2160                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2161                         entry->wired_count--;
2162                         if (entry->wired_count == 0)
2163                                 vm_fault_unwire(map, entry);
2164                         entry = entry->next;
2165                 }
2166         }
2167 done:
2168         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2169                 MAP_CLIP_NO_HOLES);
2170         map->timestamp++;
2171         vm_map_unlock(map);
2172         vm_map_entry_release(count);
2173         return (rv);
2174 }
2175
2176 /*
2177  * Sets the pageability of the specified address range in the target map.
2178  * Regions specified as not pageable require locked-down physical
2179  * memory and physical page maps.
2180  *
2181  * The map must not be locked, but a reference must remain to the map
2182  * throughout the call.
2183  *
2184  * This function may be called via the zalloc path and must properly
2185  * reserve map entries for kernel_map.
2186  *
2187  * No requirements.
2188  */
2189 int
2190 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2191 {
2192         vm_map_entry_t entry;
2193         vm_map_entry_t start_entry;
2194         vm_offset_t end;
2195         int rv = KERN_SUCCESS;
2196         int count;
2197
2198         if (kmflags & KM_KRESERVE)
2199                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2200         else
2201                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2202         vm_map_lock(map);
2203         VM_MAP_RANGE_CHECK(map, start, real_end);
2204         end = real_end;
2205
2206         start_entry = vm_map_clip_range(map, start, end, &count,
2207                                         MAP_CLIP_NO_HOLES);
2208         if (start_entry == NULL) {
2209                 vm_map_unlock(map);
2210                 rv = KERN_INVALID_ADDRESS;
2211                 goto failure;
2212         }
2213         if ((kmflags & KM_PAGEABLE) == 0) {
2214                 /*
2215                  * Wiring.  
2216                  *
2217                  * 1.  Holding the write lock, we create any shadow or zero-fill
2218                  * objects that need to be created. Then we clip each map
2219                  * entry to the region to be wired and increment its wiring
2220                  * count.  We create objects before clipping the map entries
2221                  * to avoid object proliferation.
2222                  *
2223                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2224                  * fault in the pages for any newly wired area (wired_count is
2225                  * 1).
2226                  *
2227                  * Downgrading to a read lock for vm_fault_wire avoids a 
2228                  * possible deadlock with another process that may have faulted
2229                  * on one of the pages to be wired (it would mark the page busy,
2230                  * blocking us, then in turn block on the map lock that we
2231                  * hold).  Because of problems in the recursive lock package,
2232                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2233                  * any actions that require the write lock must be done
2234                  * beforehand.  Because we keep the read lock on the map, the
2235                  * copy-on-write status of the entries we modify here cannot
2236                  * change.
2237                  */
2238                 entry = start_entry;
2239                 while ((entry != &map->header) && (entry->start < end)) {
2240                         /*
2241                          * Trivial case if the entry is already wired
2242                          */
2243                         if (entry->wired_count) {
2244                                 entry->wired_count++;
2245                                 entry = entry->next;
2246                                 continue;
2247                         }
2248
2249                         /*
2250                          * The entry is being newly wired, we have to setup
2251                          * appropriate management structures.  A shadow 
2252                          * object is required for a copy-on-write region,
2253                          * or a normal object for a zero-fill region.  We
2254                          * do not have to do this for entries that point to sub
2255                          * maps because we won't hold the lock on the sub map.
2256                          */
2257                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2258                                 int copyflag = entry->eflags &
2259                                                MAP_ENTRY_NEEDS_COPY;
2260                                 if (copyflag && ((entry->protection &
2261                                                   VM_PROT_WRITE) != 0)) {
2262                                         vm_map_entry_shadow(entry);
2263                                 } else if (entry->object.vm_object == NULL &&
2264                                            !map->system_map) {
2265                                         vm_map_entry_allocate_object(entry);
2266                                 }
2267                         }
2268
2269                         entry->wired_count++;
2270                         entry = entry->next;
2271                 }
2272
2273                 /*
2274                  * Pass 2.
2275                  */
2276
2277                 /*
2278                  * HACK HACK HACK HACK
2279                  *
2280                  * vm_fault_wire() temporarily unlocks the map to avoid
2281                  * deadlocks.  The in-transition flag from vm_map_clip_range
2282                  * call should protect us from changes while the map is
2283                  * unlocked.  T
2284                  *
2285                  * NOTE: Previously this comment stated that clipping might
2286                  *       still occur while the entry is unlocked, but from
2287                  *       what I can tell it actually cannot.
2288                  *
2289                  *       It is unclear whether the CLIP_CHECK_*() calls
2290                  *       are still needed but we keep them in anyway.
2291                  *
2292                  * HACK HACK HACK HACK
2293                  */
2294
2295                 entry = start_entry;
2296                 while (entry != &map->header && entry->start < end) {
2297                         /*
2298                          * If vm_fault_wire fails for any page we need to undo
2299                          * what has been done.  We decrement the wiring count
2300                          * for those pages which have not yet been wired (now)
2301                          * and unwire those that have (later).
2302                          */
2303                         vm_offset_t save_start = entry->start;
2304                         vm_offset_t save_end = entry->end;
2305
2306                         if (entry->wired_count == 1)
2307                                 rv = vm_fault_wire(map, entry, FALSE);
2308                         if (rv) {
2309                                 CLIP_CHECK_BACK(entry, save_start);
2310                                 for (;;) {
2311                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2312                                         entry->wired_count = 0;
2313                                         if (entry->end == save_end)
2314                                                 break;
2315                                         entry = entry->next;
2316                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2317                                 }
2318                                 end = save_start;
2319                                 break;
2320                         }
2321                         CLIP_CHECK_FWD(entry, save_end);
2322                         entry = entry->next;
2323                 }
2324
2325                 /*
2326                  * If a failure occured undo everything by falling through
2327                  * to the unwiring code.  'end' has already been adjusted
2328                  * appropriately.
2329                  */
2330                 if (rv)
2331                         kmflags |= KM_PAGEABLE;
2332
2333                 /*
2334                  * start_entry is still IN_TRANSITION but may have been 
2335                  * clipped since vm_fault_wire() unlocks and relocks the
2336                  * map.  No matter how clipped it has gotten there should
2337                  * be a fragment that is on our start boundary.
2338                  */
2339                 CLIP_CHECK_BACK(start_entry, start);
2340         }
2341
2342         if (kmflags & KM_PAGEABLE) {
2343                 /*
2344                  * This is the unwiring case.  We must first ensure that the
2345                  * range to be unwired is really wired down.  We know there
2346                  * are no holes.
2347                  */
2348                 entry = start_entry;
2349                 while ((entry != &map->header) && (entry->start < end)) {
2350                         if (entry->wired_count == 0) {
2351                                 rv = KERN_INVALID_ARGUMENT;
2352                                 goto done;
2353                         }
2354                         entry = entry->next;
2355                 }
2356
2357                 /*
2358                  * Now decrement the wiring count for each region. If a region
2359                  * becomes completely unwired, unwire its physical pages and
2360                  * mappings.
2361                  */
2362                 entry = start_entry;
2363                 while ((entry != &map->header) && (entry->start < end)) {
2364                         entry->wired_count--;
2365                         if (entry->wired_count == 0)
2366                                 vm_fault_unwire(map, entry);
2367                         entry = entry->next;
2368                 }
2369         }
2370 done:
2371         vm_map_unclip_range(map, start_entry, start, real_end,
2372                             &count, MAP_CLIP_NO_HOLES);
2373         map->timestamp++;
2374         vm_map_unlock(map);
2375 failure:
2376         if (kmflags & KM_KRESERVE)
2377                 vm_map_entry_krelease(count);
2378         else
2379                 vm_map_entry_release(count);
2380         return (rv);
2381 }
2382
2383 /*
2384  * Mark a newly allocated address range as wired but do not fault in
2385  * the pages.  The caller is expected to load the pages into the object.
2386  *
2387  * The map must be locked on entry and will remain locked on return.
2388  * No other requirements.
2389  */
2390 void
2391 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2392                        int *countp)
2393 {
2394         vm_map_entry_t scan;
2395         vm_map_entry_t entry;
2396
2397         entry = vm_map_clip_range(map, addr, addr + size,
2398                                   countp, MAP_CLIP_NO_HOLES);
2399         for (scan = entry;
2400              scan != &map->header && scan->start < addr + size;
2401              scan = scan->next) {
2402             KKASSERT(entry->wired_count == 0);
2403             entry->wired_count = 1;                                              
2404         }
2405         vm_map_unclip_range(map, entry, addr, addr + size,
2406                             countp, MAP_CLIP_NO_HOLES);
2407 }
2408
2409 /*
2410  * Push any dirty cached pages in the address range to their pager.
2411  * If syncio is TRUE, dirty pages are written synchronously.
2412  * If invalidate is TRUE, any cached pages are freed as well.
2413  *
2414  * This routine is called by sys_msync()
2415  *
2416  * Returns an error if any part of the specified range is not mapped.
2417  *
2418  * No requirements.
2419  */
2420 int
2421 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2422              boolean_t syncio, boolean_t invalidate)
2423 {
2424         vm_map_entry_t current;
2425         vm_map_entry_t entry;
2426         vm_size_t size;
2427         vm_object_t object;
2428         vm_ooffset_t offset;
2429
2430         vm_map_lock_read(map);
2431         VM_MAP_RANGE_CHECK(map, start, end);
2432         if (!vm_map_lookup_entry(map, start, &entry)) {
2433                 vm_map_unlock_read(map);
2434                 return (KERN_INVALID_ADDRESS);
2435         }
2436         /*
2437          * Make a first pass to check for holes.
2438          */
2439         for (current = entry; current->start < end; current = current->next) {
2440                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2441                         vm_map_unlock_read(map);
2442                         return (KERN_INVALID_ARGUMENT);
2443                 }
2444                 if (end > current->end &&
2445                     (current->next == &map->header ||
2446                         current->end != current->next->start)) {
2447                         vm_map_unlock_read(map);
2448                         return (KERN_INVALID_ADDRESS);
2449                 }
2450         }
2451
2452         if (invalidate)
2453                 pmap_remove(vm_map_pmap(map), start, end);
2454
2455         /*
2456          * Make a second pass, cleaning/uncaching pages from the indicated
2457          * objects as we go.
2458          *
2459          * Hold vm_token to avoid blocking in vm_object_reference()
2460          */
2461         lwkt_gettoken(&vm_token);
2462         lwkt_gettoken(&vmobj_token);
2463
2464         for (current = entry; current->start < end; current = current->next) {
2465                 offset = current->offset + (start - current->start);
2466                 size = (end <= current->end ? end : current->end) - start;
2467                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2468                         vm_map_t smap;
2469                         vm_map_entry_t tentry;
2470                         vm_size_t tsize;
2471
2472                         smap = current->object.sub_map;
2473                         vm_map_lock_read(smap);
2474                         vm_map_lookup_entry(smap, offset, &tentry);
2475                         tsize = tentry->end - offset;
2476                         if (tsize < size)
2477                                 size = tsize;
2478                         object = tentry->object.vm_object;
2479                         offset = tentry->offset + (offset - tentry->start);
2480                         vm_map_unlock_read(smap);
2481                 } else {
2482                         object = current->object.vm_object;
2483                 }
2484                 /*
2485                  * Note that there is absolutely no sense in writing out
2486                  * anonymous objects, so we track down the vnode object
2487                  * to write out.
2488                  * We invalidate (remove) all pages from the address space
2489                  * anyway, for semantic correctness.
2490                  *
2491                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2492                  * may start out with a NULL object.
2493                  */
2494                 while (object && object->backing_object) {
2495                         offset += object->backing_object_offset;
2496                         object = object->backing_object;
2497                         if (object->size < OFF_TO_IDX( offset + size))
2498                                 size = IDX_TO_OFF(object->size) - offset;
2499                 }
2500                 if (object && (object->type == OBJT_VNODE) && 
2501                     (current->protection & VM_PROT_WRITE) &&
2502                     (object->flags & OBJ_NOMSYNC) == 0) {
2503                         /*
2504                          * Flush pages if writing is allowed, invalidate them
2505                          * if invalidation requested.  Pages undergoing I/O
2506                          * will be ignored by vm_object_page_remove().
2507                          *
2508                          * We cannot lock the vnode and then wait for paging
2509                          * to complete without deadlocking against vm_fault.
2510                          * Instead we simply call vm_object_page_remove() and
2511                          * allow it to block internally on a page-by-page 
2512                          * basis when it encounters pages undergoing async 
2513                          * I/O.
2514                          */
2515                         int flags;
2516
2517                         vm_object_reference_locked(object);
2518                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2519                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2520                         flags |= invalidate ? OBJPC_INVAL : 0;
2521
2522                         /*
2523                          * When operating on a virtual page table just
2524                          * flush the whole object.  XXX we probably ought
2525                          * to 
2526                          */
2527                         switch(current->maptype) {
2528                         case VM_MAPTYPE_NORMAL:
2529                                 vm_object_page_clean(object,
2530                                     OFF_TO_IDX(offset),
2531                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2532                                     flags);
2533                                 break;
2534                         case VM_MAPTYPE_VPAGETABLE:
2535                                 vm_object_page_clean(object, 0, 0, flags);
2536                                 break;
2537                         }
2538                         vn_unlock(((struct vnode *)object->handle));
2539                         vm_object_deallocate_locked(object);
2540                 }
2541                 if (object && invalidate &&
2542                    ((object->type == OBJT_VNODE) ||
2543                     (object->type == OBJT_DEVICE))) {
2544                         int clean_only = 
2545                                 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2546                         vm_object_reference_locked(object);
2547                         switch(current->maptype) {
2548                         case VM_MAPTYPE_NORMAL:
2549                                 vm_object_page_remove(object,
2550                                     OFF_TO_IDX(offset),
2551                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2552                                     clean_only);
2553                                 break;
2554                         case VM_MAPTYPE_VPAGETABLE:
2555                                 vm_object_page_remove(object, 0, 0, clean_only);
2556                                 break;
2557                         }
2558                         vm_object_deallocate_locked(object);
2559                 }
2560                 start += size;
2561         }
2562
2563         lwkt_reltoken(&vmobj_token);
2564         lwkt_reltoken(&vm_token);
2565         vm_map_unlock_read(map);
2566
2567         return (KERN_SUCCESS);
2568 }
2569
2570 /*
2571  * Make the region specified by this entry pageable.
2572  *
2573  * The vm_map must be exclusively locked.
2574  */
2575 static void 
2576 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2577 {
2578         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2579         entry->wired_count = 0;
2580         vm_fault_unwire(map, entry);
2581 }
2582
2583 /*
2584  * Deallocate the given entry from the target map.
2585  *
2586  * The vm_map must be exclusively locked.
2587  */
2588 static void
2589 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2590 {
2591         vm_map_entry_unlink(map, entry);
2592         map->size -= entry->end - entry->start;
2593
2594         switch(entry->maptype) {
2595         case VM_MAPTYPE_NORMAL:
2596         case VM_MAPTYPE_VPAGETABLE:
2597                 vm_object_deallocate(entry->object.vm_object);
2598                 break;
2599         default:
2600                 break;
2601         }
2602
2603         vm_map_entry_dispose(map, entry, countp);
2604 }
2605
2606 /*
2607  * Deallocates the given address range from the target map.
2608  *
2609  * The vm_map must be exclusively locked.
2610  */
2611 int
2612 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2613 {
2614         vm_object_t object;
2615         vm_map_entry_t entry;
2616         vm_map_entry_t first_entry;
2617
2618         ASSERT_VM_MAP_LOCKED(map);
2619 again:
2620         /*
2621          * Find the start of the region, and clip it.  Set entry to point
2622          * at the first record containing the requested address or, if no
2623          * such record exists, the next record with a greater address.  The
2624          * loop will run from this point until a record beyond the termination
2625          * address is encountered.
2626          *
2627          * map->hint must be adjusted to not point to anything we delete,
2628          * so set it to the entry prior to the one being deleted.
2629          *
2630          * GGG see other GGG comment.
2631          */
2632         if (vm_map_lookup_entry(map, start, &first_entry)) {
2633                 entry = first_entry;
2634                 vm_map_clip_start(map, entry, start, countp);
2635                 map->hint = entry->prev;        /* possible problem XXX */
2636         } else {
2637                 map->hint = first_entry;        /* possible problem XXX */
2638                 entry = first_entry->next;
2639         }
2640
2641         /*
2642          * If a hole opens up prior to the current first_free then
2643          * adjust first_free.  As with map->hint, map->first_free
2644          * cannot be left set to anything we might delete.
2645          */
2646         if (entry == &map->header) {
2647                 map->first_free = &map->header;
2648         } else if (map->first_free->start >= start) {
2649                 map->first_free = entry->prev;
2650         }
2651
2652         /*
2653          * Step through all entries in this region
2654          */
2655         while ((entry != &map->header) && (entry->start < end)) {
2656                 vm_map_entry_t next;
2657                 vm_offset_t s, e;
2658                 vm_pindex_t offidxstart, offidxend, count;
2659
2660                 /*
2661                  * If we hit an in-transition entry we have to sleep and
2662                  * retry.  It's easier (and not really slower) to just retry
2663                  * since this case occurs so rarely and the hint is already
2664                  * pointing at the right place.  We have to reset the
2665                  * start offset so as not to accidently delete an entry
2666                  * another process just created in vacated space.
2667                  */
2668                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2669                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2670                         start = entry->start;
2671                         ++mycpu->gd_cnt.v_intrans_coll;
2672                         ++mycpu->gd_cnt.v_intrans_wait;
2673                         vm_map_transition_wait(map);
2674                         goto again;
2675                 }
2676                 vm_map_clip_end(map, entry, end, countp);
2677
2678                 s = entry->start;
2679                 e = entry->end;
2680                 next = entry->next;
2681
2682                 offidxstart = OFF_TO_IDX(entry->offset);
2683                 count = OFF_TO_IDX(e - s);
2684                 object = entry->object.vm_object;
2685
2686                 /*
2687                  * Unwire before removing addresses from the pmap; otherwise,
2688                  * unwiring will put the entries back in the pmap.
2689                  */
2690                 if (entry->wired_count != 0)
2691                         vm_map_entry_unwire(map, entry);
2692
2693                 offidxend = offidxstart + count;
2694
2695                 /*
2696                  * Hold vm_token when manipulating vm_objects,
2697                  *
2698                  * Hold vmobj_token when potentially adding or removing
2699                  * objects (collapse requires both).
2700                  */
2701                 lwkt_gettoken(&vm_token);
2702                 lwkt_gettoken(&vmobj_token);
2703
2704                 if (object == &kernel_object) {
2705                         vm_object_page_remove(object, offidxstart,
2706                                               offidxend, FALSE);
2707                 } else {
2708                         pmap_remove(map->pmap, s, e);
2709
2710                         if (object != NULL &&
2711                             object->ref_count != 1 &&
2712                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2713                              OBJ_ONEMAPPING &&
2714                             (object->type == OBJT_DEFAULT ||
2715                              object->type == OBJT_SWAP)) {
2716                                 vm_object_collapse(object);
2717                                 vm_object_page_remove(object, offidxstart,
2718                                                       offidxend, FALSE);
2719                                 if (object->type == OBJT_SWAP) {
2720                                         swap_pager_freespace(object,
2721                                                              offidxstart,
2722                                                              count);
2723                                 }
2724                                 if (offidxend >= object->size &&
2725                                     offidxstart < object->size) {
2726                                         object->size = offidxstart;
2727                                 }
2728                         }
2729                 }
2730                 lwkt_reltoken(&vmobj_token);
2731                 lwkt_reltoken(&vm_token);
2732
2733                 /*
2734                  * Delete the entry (which may delete the object) only after
2735                  * removing all pmap entries pointing to its pages.
2736                  * (Otherwise, its page frames may be reallocated, and any
2737                  * modify bits will be set in the wrong object!)
2738                  */
2739                 vm_map_entry_delete(map, entry, countp);
2740                 entry = next;
2741         }
2742         return (KERN_SUCCESS);
2743 }
2744
2745 /*
2746  * Remove the given address range from the target map.
2747  * This is the exported form of vm_map_delete.
2748  *
2749  * No requirements.
2750  */
2751 int
2752 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2753 {
2754         int result;
2755         int count;
2756
2757         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2758         vm_map_lock(map);
2759         VM_MAP_RANGE_CHECK(map, start, end);
2760         result = vm_map_delete(map, start, end, &count);
2761         vm_map_unlock(map);
2762         vm_map_entry_release(count);
2763
2764         return (result);
2765 }
2766
2767 /*
2768  * Assert that the target map allows the specified privilege on the
2769  * entire address region given.  The entire region must be allocated.
2770  *
2771  * The caller must specify whether the vm_map is already locked or not.
2772  */
2773 boolean_t
2774 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2775                         vm_prot_t protection, boolean_t have_lock)
2776 {
2777         vm_map_entry_t entry;
2778         vm_map_entry_t tmp_entry;
2779         boolean_t result;
2780
2781         if (have_lock == FALSE)
2782                 vm_map_lock_read(map);
2783
2784         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2785                 if (have_lock == FALSE)
2786                         vm_map_unlock_read(map);
2787                 return (FALSE);
2788         }
2789         entry = tmp_entry;
2790
2791         result = TRUE;
2792         while (start < end) {
2793                 if (entry == &map->header) {
2794                         result = FALSE;
2795                         break;
2796                 }
2797                 /*
2798                  * No holes allowed!
2799                  */
2800
2801                 if (start < entry->start) {
2802                         result = FALSE;
2803                         break;
2804                 }
2805                 /*
2806                  * Check protection associated with entry.
2807                  */
2808
2809                 if ((entry->protection & protection) != protection) {
2810                         result = FALSE;
2811                         break;
2812                 }
2813                 /* go to next entry */
2814
2815                 start = entry->end;
2816                 entry = entry->next;
2817         }
2818         if (have_lock == FALSE)
2819                 vm_map_unlock_read(map);
2820         return (result);
2821 }
2822
2823 /*
2824  * Split the pages in a map entry into a new object.  This affords
2825  * easier removal of unused pages, and keeps object inheritance from
2826  * being a negative impact on memory usage.
2827  *
2828  * The vm_map must be exclusively locked.
2829  */
2830 static void
2831 vm_map_split(vm_map_entry_t entry)
2832 {
2833         vm_page_t m;
2834         vm_object_t orig_object, new_object, source;
2835         vm_offset_t s, e;
2836         vm_pindex_t offidxstart, offidxend, idx;
2837         vm_size_t size;
2838         vm_ooffset_t offset;
2839
2840         orig_object = entry->object.vm_object;
2841         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2842                 return;
2843         if (orig_object->ref_count <= 1)
2844                 return;
2845
2846         offset = entry->offset;
2847         s = entry->start;
2848         e = entry->end;
2849
2850         offidxstart = OFF_TO_IDX(offset);
2851         offidxend = offidxstart + OFF_TO_IDX(e - s);
2852         size = offidxend - offidxstart;
2853
2854         switch(orig_object->type) {
2855         case OBJT_DEFAULT:
2856                 new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2857                                                  VM_PROT_ALL, 0);
2858                 break;
2859         case OBJT_SWAP:
2860                 new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2861                                               VM_PROT_ALL, 0);
2862                 break;
2863         default:
2864                 /* not reached */
2865                 new_object = NULL;
2866                 KKASSERT(0);
2867         }
2868         if (new_object == NULL)
2869                 return;
2870
2871         /*
2872          * vm_token required when manipulating vm_objects.
2873          */
2874         lwkt_gettoken(&vm_token);
2875         lwkt_gettoken(&vmobj_token);
2876
2877         source = orig_object->backing_object;
2878         if (source != NULL) {
2879                 /* Referenced by new_object */
2880                 vm_object_reference_locked(source);
2881                 LIST_INSERT_HEAD(&source->shadow_head,
2882                                  new_object, shadow_list);
2883                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2884                 new_object->backing_object_offset = 
2885                         orig_object->backing_object_offset +
2886                         IDX_TO_OFF(offidxstart);
2887                 new_object->backing_object = source;
2888                 source->shadow_count++;
2889                 source->generation++;
2890         }
2891
2892         for (idx = 0; idx < size; idx++) {
2893                 vm_page_t m;
2894
2895         retry:
2896                 m = vm_page_lookup(orig_object, offidxstart + idx);
2897                 if (m == NULL)
2898                         continue;
2899
2900                 /*
2901                  * We must wait for pending I/O to complete before we can
2902                  * rename the page.
2903                  *
2904                  * We do not have to VM_PROT_NONE the page as mappings should
2905                  * not be changed by this operation.
2906                  */
2907                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2908                         goto retry;
2909                 vm_page_busy(m);
2910                 vm_page_rename(m, new_object, idx);
2911                 /* page automatically made dirty by rename and cache handled */
2912                 vm_page_busy(m);
2913         }
2914
2915         if (orig_object->type == OBJT_SWAP) {
2916                 vm_object_pip_add(orig_object, 1);
2917                 /*
2918                  * copy orig_object pages into new_object
2919                  * and destroy unneeded pages in
2920                  * shadow object.
2921                  */
2922                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2923                 vm_object_pip_wakeup(orig_object);
2924         }
2925
2926         /*
2927          * Wakeup the pages we played with.  No spl protection is needed
2928          * for a simple wakeup.
2929          */
2930         for (idx = 0; idx < size; idx++) {
2931                 m = vm_page_lookup(new_object, idx);
2932                 if (m)
2933                         vm_page_wakeup(m);
2934         }
2935
2936         entry->object.vm_object = new_object;
2937         entry->offset = 0LL;
2938         vm_object_deallocate_locked(orig_object);
2939         lwkt_reltoken(&vmobj_token);
2940         lwkt_reltoken(&vm_token);
2941 }
2942
2943 /*
2944  * Copies the contents of the source entry to the destination
2945  * entry.  The entries *must* be aligned properly.
2946  *
2947  * The vm_map must be exclusively locked.
2948  * vm_token must be held
2949  */
2950 static void
2951 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2952         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2953 {
2954         vm_object_t src_object;
2955
2956         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2957                 return;
2958         if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2959                 return;
2960
2961         ASSERT_LWKT_TOKEN_HELD(&vm_token);
2962         lwkt_gettoken(&vmobj_token);            /* required for collapse */
2963
2964         if (src_entry->wired_count == 0) {
2965                 /*
2966                  * If the source entry is marked needs_copy, it is already
2967                  * write-protected.
2968                  */
2969                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2970                         pmap_protect(src_map->pmap,
2971                             src_entry->start,
2972                             src_entry->end,
2973                             src_entry->protection & ~VM_PROT_WRITE);
2974                 }
2975
2976                 /*
2977                  * Make a copy of the object.
2978                  */
2979                 if ((src_object = src_entry->object.vm_object) != NULL) {
2980                         if ((src_object->handle == NULL) &&
2981                                 (src_object->type == OBJT_DEFAULT ||
2982                                  src_object->type == OBJT_SWAP)) {
2983                                 vm_object_collapse(src_object);
2984                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2985                                         vm_map_split(src_entry);
2986                                         src_object = src_entry->object.vm_object;
2987                                 }
2988                         }
2989
2990                         vm_object_reference_locked(src_object);
2991                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2992                         dst_entry->object.vm_object = src_object;
2993                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2994                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2995                         dst_entry->offset = src_entry->offset;
2996                 } else {
2997                         dst_entry->object.vm_object = NULL;
2998                         dst_entry->offset = 0;
2999                 }
3000
3001                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3002                     dst_entry->end - dst_entry->start, src_entry->start);
3003         } else {
3004                 /*
3005                  * Of course, wired down pages can't be set copy-on-write.
3006                  * Cause wired pages to be copied into the new map by
3007                  * simulating faults (the new pages are pageable)
3008                  */
3009                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3010         }
3011         lwkt_reltoken(&vmobj_token);
3012 }
3013
3014 /*
3015  * vmspace_fork:
3016  * Create a new process vmspace structure and vm_map
3017  * based on those of an existing process.  The new map
3018  * is based on the old map, according to the inheritance
3019  * values on the regions in that map.
3020  *
3021  * The source map must not be locked.
3022  * No requirements.
3023  */
3024 struct vmspace *
3025 vmspace_fork(struct vmspace *vm1)
3026 {
3027         struct vmspace *vm2;
3028         vm_map_t old_map = &vm1->vm_map;
3029         vm_map_t new_map;
3030         vm_map_entry_t old_entry;
3031         vm_map_entry_t new_entry;
3032         vm_object_t object;
3033         int count;
3034
3035         lwkt_gettoken(&vm_token);
3036         lwkt_gettoken(&vmspace_token);
3037         lwkt_gettoken(&vmobj_token);
3038         vm_map_lock(old_map);
3039         old_map->infork = 1;
3040
3041         /*
3042          * XXX Note: upcalls are not copied.
3043          */
3044         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3045         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3046             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3047         new_map = &vm2->vm_map; /* XXX */
3048         new_map->timestamp = 1;
3049
3050         vm_map_lock(new_map);
3051
3052         count = 0;
3053         old_entry = old_map->header.next;
3054         while (old_entry != &old_map->header) {
3055                 ++count;
3056                 old_entry = old_entry->next;
3057         }
3058
3059         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3060
3061         old_entry = old_map->header.next;
3062         while (old_entry != &old_map->header) {
3063                 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3064                         panic("vm_map_fork: encountered a submap");
3065
3066                 switch (old_entry->inheritance) {
3067                 case VM_INHERIT_NONE:
3068                         break;
3069                 case VM_INHERIT_SHARE:
3070                         /*
3071                          * Clone the entry, creating the shared object if
3072                          * necessary.
3073                          */
3074                         object = old_entry->object.vm_object;
3075                         if (object == NULL) {
3076                                 vm_map_entry_allocate_object(old_entry);
3077                                 object = old_entry->object.vm_object;
3078                         }
3079
3080                         /*
3081                          * Add the reference before calling vm_map_entry_shadow
3082                          * to insure that a shadow object is created.
3083                          */
3084                         vm_object_reference_locked(object);
3085                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3086                                 vm_map_entry_shadow(old_entry);
3087                                 /* Transfer the second reference too. */
3088                                 vm_object_reference_locked(
3089                                     old_entry->object.vm_object);
3090                                 vm_object_deallocate_locked(object);
3091                                 object = old_entry->object.vm_object;
3092                         }
3093                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3094
3095                         /*
3096                          * Clone the entry, referencing the shared object.
3097                          */
3098                         new_entry = vm_map_entry_create(new_map, &count);
3099                         *new_entry = *old_entry;
3100                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3101                         new_entry->wired_count = 0;
3102
3103                         /*
3104                          * Insert the entry into the new map -- we know we're
3105                          * inserting at the end of the new map.
3106                          */
3107
3108                         vm_map_entry_link(new_map, new_map->header.prev,
3109                                           new_entry);
3110
3111                         /*
3112                          * Update the physical map
3113                          */
3114                         pmap_copy(new_map->pmap, old_map->pmap,
3115                             new_entry->start,
3116                             (old_entry->end - old_entry->start),
3117                             old_entry->start);
3118                         break;
3119                 case VM_INHERIT_COPY:
3120                         /*
3121                          * Clone the entry and link into the map.
3122                          */
3123                         new_entry = vm_map_entry_create(new_map, &count);
3124                         *new_entry = *old_entry;
3125                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3126                         new_entry->wired_count = 0;
3127                         new_entry->object.vm_object = NULL;
3128                         vm_map_entry_link(new_map, new_map->header.prev,
3129                                           new_entry);
3130                         vm_map_copy_entry(old_map, new_map, old_entry,
3131                                           new_entry);
3132                         break;
3133                 }
3134                 old_entry = old_entry->next;
3135         }
3136
3137         new_map->size = old_map->size;
3138         old_map->infork = 0;
3139         vm_map_unlock(old_map);
3140         vm_map_unlock(new_map);
3141         vm_map_entry_release(count);
3142
3143         lwkt_reltoken(&vmobj_token);
3144         lwkt_reltoken(&vmspace_token);
3145         lwkt_reltoken(&vm_token);
3146
3147         return (vm2);
3148 }
3149
3150 /*
3151  * Create an auto-grow stack entry
3152  *
3153  * No requirements.
3154  */
3155 int
3156 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3157               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3158 {
3159         vm_map_entry_t  prev_entry;
3160         vm_map_entry_t  new_stack_entry;
3161         vm_size_t       init_ssize;
3162         int             rv;
3163         int             count;
3164         vm_offset_t     tmpaddr;
3165
3166         cow |= MAP_IS_STACK;
3167
3168         if (max_ssize < sgrowsiz)
3169                 init_ssize = max_ssize;
3170         else
3171                 init_ssize = sgrowsiz;
3172
3173         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3174         vm_map_lock(map);
3175
3176         /*
3177          * Find space for the mapping
3178          */
3179         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3180                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3181                                      flags, &tmpaddr)) {
3182                         vm_map_unlock(map);
3183                         vm_map_entry_release(count);
3184                         return (KERN_NO_SPACE);
3185                 }
3186                 addrbos = tmpaddr;
3187         }
3188
3189         /* If addr is already mapped, no go */
3190         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3191                 vm_map_unlock(map);
3192                 vm_map_entry_release(count);
3193                 return (KERN_NO_SPACE);
3194         }
3195
3196 #if 0
3197         /* XXX already handled by kern_mmap() */
3198         /* If we would blow our VMEM resource limit, no go */
3199         if (map->size + init_ssize >
3200             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3201                 vm_map_unlock(map);
3202                 vm_map_entry_release(count);
3203                 return (KERN_NO_SPACE);
3204         }
3205 #endif
3206
3207         /*
3208          * If we can't accomodate max_ssize in the current mapping,
3209          * no go.  However, we need to be aware that subsequent user
3210          * mappings might map into the space we have reserved for
3211          * stack, and currently this space is not protected.  
3212          * 
3213          * Hopefully we will at least detect this condition 
3214          * when we try to grow the stack.
3215          */
3216         if ((prev_entry->next != &map->header) &&
3217             (prev_entry->next->start < addrbos + max_ssize)) {
3218                 vm_map_unlock(map);
3219                 vm_map_entry_release(count);
3220                 return (KERN_NO_SPACE);
3221         }
3222
3223         /*
3224          * We initially map a stack of only init_ssize.  We will
3225          * grow as needed later.  Since this is to be a grow 
3226          * down stack, we map at the top of the range.
3227          *
3228          * Note: we would normally expect prot and max to be
3229          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3230          * eliminate these as input parameters, and just
3231          * pass these values here in the insert call.
3232          */
3233         rv = vm_map_insert(map, &count,
3234                            NULL, 0, addrbos + max_ssize - init_ssize,
3235                            addrbos + max_ssize,
3236                            VM_MAPTYPE_NORMAL,
3237                            prot, max,
3238                            cow);
3239
3240         /* Now set the avail_ssize amount */
3241         if (rv == KERN_SUCCESS) {
3242                 if (prev_entry != &map->header)
3243                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3244                 new_stack_entry = prev_entry->next;
3245                 if (new_stack_entry->end   != addrbos + max_ssize ||
3246                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3247                         panic ("Bad entry start/end for new stack entry");
3248                 else 
3249                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3250         }
3251
3252         vm_map_unlock(map);
3253         vm_map_entry_release(count);
3254         return (rv);
3255 }
3256
3257 /*
3258  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3259  * desired address is already mapped, or if we successfully grow
3260  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3261  * stack range (this is strange, but preserves compatibility with
3262  * the grow function in vm_machdep.c).
3263  *
3264  * No requirements.
3265  */
3266 int
3267 vm_map_growstack (struct proc *p, vm_offset_t addr)
3268 {
3269         vm_map_entry_t prev_entry;
3270         vm_map_entry_t stack_entry;
3271         vm_map_entry_t new_stack_entry;
3272         struct vmspace *vm = p->p_vmspace;
3273         vm_map_t map = &vm->vm_map;
3274         vm_offset_t    end;
3275         int grow_amount;
3276         int rv = KERN_SUCCESS;
3277         int is_procstack;
3278         int use_read_lock = 1;
3279         int count;
3280
3281         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3282 Retry:
3283         if (use_read_lock)
3284                 vm_map_lock_read(map);
3285         else
3286                 vm_map_lock(map);
3287
3288         /* If addr is already in the entry range, no need to grow.*/
3289         if (vm_map_lookup_entry(map, addr, &prev_entry))
3290                 goto done;
3291
3292         if ((stack_entry = prev_entry->next) == &map->header)
3293                 goto done;
3294         if (prev_entry == &map->header) 
3295                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3296         else
3297                 end = prev_entry->end;
3298
3299         /*
3300          * This next test mimics the old grow function in vm_machdep.c.
3301          * It really doesn't quite make sense, but we do it anyway
3302          * for compatibility.
3303          *
3304          * If not growable stack, return success.  This signals the
3305          * caller to proceed as he would normally with normal vm.
3306          */
3307         if (stack_entry->aux.avail_ssize < 1 ||
3308             addr >= stack_entry->start ||
3309             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3310                 goto done;
3311         } 
3312         
3313         /* Find the minimum grow amount */
3314         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3315         if (grow_amount > stack_entry->aux.avail_ssize) {
3316                 rv = KERN_NO_SPACE;
3317                 goto done;
3318         }
3319
3320         /*
3321          * If there is no longer enough space between the entries
3322          * nogo, and adjust the available space.  Note: this 
3323          * should only happen if the user has mapped into the
3324          * stack area after the stack was created, and is
3325          * probably an error.
3326          *
3327          * This also effectively destroys any guard page the user
3328          * might have intended by limiting the stack size.
3329          */
3330         if (grow_amount > stack_entry->start - end) {
3331                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3332                         use_read_lock = 0;
3333                         goto Retry;
3334                 }
3335                 use_read_lock = 0;
3336                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3337                 rv = KERN_NO_SPACE;
3338                 goto done;
3339         }
3340
3341         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3342
3343         /* If this is the main process stack, see if we're over the 
3344          * stack limit.
3345          */
3346         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3347                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3348                 rv = KERN_NO_SPACE;
3349                 goto done;
3350         }
3351
3352         /* Round up the grow amount modulo SGROWSIZ */
3353         grow_amount = roundup (grow_amount, sgrowsiz);
3354         if (grow_amount > stack_entry->aux.avail_ssize) {
3355                 grow_amount = stack_entry->aux.avail_ssize;
3356         }
3357         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3358                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3359                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3360                               ctob(vm->vm_ssize);
3361         }
3362
3363         /* If we would blow our VMEM resource limit, no go */
3364         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3365                 rv = KERN_NO_SPACE;
3366                 goto done;
3367         }
3368
3369         if (use_read_lock && vm_map_lock_upgrade(map)) {
3370                 use_read_lock = 0;
3371                 goto Retry;
3372         }
3373         use_read_lock = 0;
3374
3375         /* Get the preliminary new entry start value */
3376         addr = stack_entry->start - grow_amount;
3377
3378         /* If this puts us into the previous entry, cut back our growth
3379          * to the available space.  Also, see the note above.
3380          */
3381         if (addr < end) {
3382                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3383                 addr = end;
3384         }
3385
3386         rv = vm_map_insert(map, &count,
3387                            NULL, 0, addr, stack_entry->start,
3388                            VM_MAPTYPE_NORMAL,
3389                            VM_PROT_ALL, VM_PROT_ALL,
3390                            0);
3391
3392         /* Adjust the available stack space by the amount we grew. */
3393         if (rv == KERN_SUCCESS) {
3394                 if (prev_entry != &map->header)
3395                         vm_map_clip_end(map, prev_entry, addr, &count);
3396                 new_stack_entry = prev_entry->next;
3397                 if (new_stack_entry->end   != stack_entry->start  ||
3398                     new_stack_entry->start != addr)
3399                         panic ("Bad stack grow start/end in new stack entry");
3400                 else {
3401                         new_stack_entry->aux.avail_ssize =
3402                                 stack_entry->aux.avail_ssize -
3403                                 (new_stack_entry->end - new_stack_entry->start);
3404                         if (is_procstack)
3405                                 vm->vm_ssize += btoc(new_stack_entry->end -
3406                                                      new_stack_entry->start);
3407                 }
3408
3409                 if (map->flags & MAP_WIREFUTURE)
3410                         vm_map_unwire(map, new_stack_entry->start,
3411                                       new_stack_entry->end, FALSE);
3412         }
3413
3414 done:
3415         if (use_read_lock)
3416                 vm_map_unlock_read(map);
3417         else
3418                 vm_map_unlock(map);
3419         vm_map_entry_release(count);
3420         return (rv);
3421 }
3422
3423 /*
3424  * Unshare the specified VM space for exec.  If other processes are
3425  * mapped to it, then create a new one.  The new vmspace is null.
3426  *
3427  * No requirements.
3428  */
3429 void
3430 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3431 {
3432         struct vmspace *oldvmspace = p->p_vmspace;
3433         struct vmspace *newvmspace;
3434         vm_map_t map = &p->p_vmspace->vm_map;
3435
3436         /*
3437          * If we are execing a resident vmspace we fork it, otherwise
3438          * we create a new vmspace.  Note that exitingcnt and upcalls
3439          * are not copied to the new vmspace.
3440          */
3441         lwkt_gettoken(&vmspace_token);
3442         if (vmcopy)  {
3443                 newvmspace = vmspace_fork(vmcopy);
3444         } else {
3445                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3446                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3447                       (caddr_t)&oldvmspace->vm_endcopy -
3448                        (caddr_t)&oldvmspace->vm_startcopy);
3449         }
3450
3451         /*
3452          * Finish initializing the vmspace before assigning it
3453          * to the process.  The vmspace will become the current vmspace
3454          * if p == curproc.
3455          */
3456         pmap_pinit2(vmspace_pmap(newvmspace));
3457         pmap_replacevm(p, newvmspace, 0);
3458         sysref_put(&oldvmspace->vm_sysref);
3459         lwkt_reltoken(&vmspace_token);
3460 }
3461
3462 /*
3463  * Unshare the specified VM space for forcing COW.  This
3464  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3465  *
3466  * The exitingcnt test is not strictly necessary but has been
3467  * included for code sanity (to make the code a bit more deterministic).
3468  */
3469 void
3470 vmspace_unshare(struct proc *p) 
3471 {
3472         struct vmspace *oldvmspace = p->p_vmspace;
3473         struct vmspace *newvmspace;
3474
3475         lwkt_gettoken(&vmspace_token);
3476         if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3477                 return;
3478         newvmspace = vmspace_fork(oldvmspace);
3479         pmap_pinit2(vmspace_pmap(newvmspace));
3480         pmap_replacevm(p, newvmspace, 0);
3481         sysref_put(&oldvmspace->vm_sysref);
3482         lwkt_reltoken(&vmspace_token);
3483 }
3484
3485 /*
3486  * Finds the VM object, offset, and protection for a given virtual address
3487  * in the specified map, assuming a page fault of the type specified.
3488  *
3489  * Leaves the map in question locked for read; return values are guaranteed
3490  * until a vm_map_lookup_done call is performed.  Note that the map argument
3491  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3492  *
3493  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3494  * that fast.
3495  *
3496  * If a lookup is requested with "write protection" specified, the map may
3497  * be changed to perform virtual copying operations, although the data
3498  * referenced will remain the same.
3499  *
3500  * No requirements.
3501  */
3502 int
3503 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3504               vm_offset_t vaddr,
3505               vm_prot_t fault_typea,
3506               vm_map_entry_t *out_entry,        /* OUT */
3507               vm_object_t *object,              /* OUT */
3508               vm_pindex_t *pindex,              /* OUT */
3509               vm_prot_t *out_prot,              /* OUT */
3510               boolean_t *wired)                 /* OUT */
3511 {
3512         vm_map_entry_t entry;
3513         vm_map_t map = *var_map;
3514         vm_prot_t prot;
3515         vm_prot_t fault_type = fault_typea;
3516         int use_read_lock = 1;
3517         int rv = KERN_SUCCESS;
3518
3519 RetryLookup:
3520         if (use_read_lock)
3521                 vm_map_lock_read(map);
3522         else
3523                 vm_map_lock(map);
3524
3525         /*
3526          * If the map has an interesting hint, try it before calling full
3527          * blown lookup routine.
3528          */
3529         entry = map->hint;
3530         *out_entry = entry;
3531
3532         if ((entry == &map->header) ||
3533             (vaddr < entry->start) || (vaddr >= entry->end)) {
3534                 vm_map_entry_t tmp_entry;
3535
3536                 /*
3537                  * Entry was either not a valid hint, or the vaddr was not
3538                  * contained in the entry, so do a full lookup.
3539                  */
3540                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3541                         rv = KERN_INVALID_ADDRESS;
3542                         goto done;
3543                 }
3544
3545                 entry = tmp_entry;
3546                 *out_entry = entry;
3547         }
3548         
3549         /*
3550          * Handle submaps.
3551          */
3552         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3553                 vm_map_t old_map = map;
3554
3555                 *var_map = map = entry->object.sub_map;
3556                 if (use_read_lock)
3557                         vm_map_unlock_read(old_map);
3558                 else
3559                         vm_map_unlock(old_map);
3560                 use_read_lock = 1;
3561                 goto RetryLookup;
3562         }
3563
3564         /*
3565          * Check whether this task is allowed to have this page.
3566          * Note the special case for MAP_ENTRY_COW
3567          * pages with an override.  This is to implement a forced
3568          * COW for debuggers.
3569          */
3570
3571         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3572                 prot = entry->max_protection;
3573         else
3574                 prot = entry->protection;
3575
3576         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3577         if ((fault_type & prot) != fault_type) {
3578                 rv = KERN_PROTECTION_FAILURE;
3579                 goto done;
3580         }
3581
3582         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3583             (entry->eflags & MAP_ENTRY_COW) &&
3584             (fault_type & VM_PROT_WRITE) &&
3585             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3586                 rv = KERN_PROTECTION_FAILURE;
3587                 goto done;
3588         }
3589
3590         /*
3591          * If this page is not pageable, we have to get it for all possible
3592          * accesses.
3593          */
3594         *wired = (entry->wired_count != 0);
3595         if (*wired)
3596                 prot = fault_type = entry->protection;
3597
3598         /*
3599          * Virtual page tables may need to update the accessed (A) bit
3600          * in a page table entry.  Upgrade the fault to a write fault for
3601          * that case if the map will support it.  If the map does not support
3602          * it the page table entry simply will not be updated.
3603          */
3604         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3605                 if (prot & VM_PROT_WRITE)
3606                         fault_type |= VM_PROT_WRITE;
3607         }
3608
3609         /*
3610          * If the entry was copy-on-write, we either ...
3611          */
3612         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3613                 /*
3614                  * If we want to write the page, we may as well handle that
3615                  * now since we've got the map locked.
3616                  *
3617                  * If we don't need to write the page, we just demote the
3618                  * permissions allowed.
3619                  */
3620
3621                 if (fault_type & VM_PROT_WRITE) {
3622                         /*
3623                          * Make a new object, and place it in the object
3624                          * chain.  Note that no new references have appeared
3625                          * -- one just moved from the map to the new
3626                          * object.
3627                          */
3628
3629                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3630                                 use_read_lock = 0;
3631                                 goto RetryLookup;
3632                         }
3633                         use_read_lock = 0;
3634
3635                         vm_map_entry_shadow(entry);
3636                 } else {
3637                         /*
3638                          * We're attempting to read a copy-on-write page --
3639                          * don't allow writes.
3640                          */
3641
3642                         prot &= ~VM_PROT_WRITE;
3643                 }
3644         }
3645
3646         /*
3647          * Create an object if necessary.
3648          */
3649         if (entry->object.vm_object == NULL &&
3650             !map->system_map) {
3651                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3652                         use_read_lock = 0;
3653                         goto RetryLookup;
3654                 }
3655                 use_read_lock = 0;
3656                 vm_map_entry_allocate_object(entry);
3657         }
3658
3659         /*
3660          * Return the object/offset from this entry.  If the entry was
3661          * copy-on-write or empty, it has been fixed up.
3662          */
3663
3664         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3665         *object = entry->object.vm_object;
3666
3667         /*
3668          * Return whether this is the only map sharing this data.  On
3669          * success we return with a read lock held on the map.  On failure
3670          * we return with the map unlocked.
3671          */
3672         *out_prot = prot;
3673 done:
3674         if (rv == KERN_SUCCESS) {
3675                 if (use_read_lock == 0)
3676                         vm_map_lock_downgrade(map);
3677         } else if (use_read_lock) {
3678                 vm_map_unlock_read(map);
3679         } else {
3680                 vm_map_unlock(map);
3681         }
3682         return (rv);
3683 }
3684
3685 /*
3686  * Releases locks acquired by a vm_map_lookup()
3687  * (according to the handle returned by that lookup).
3688  *
3689  * No other requirements.
3690  */
3691 void
3692 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3693 {
3694         /*
3695          * Unlock the main-level map
3696          */
3697         vm_map_unlock_read(map);
3698         if (count)
3699                 vm_map_entry_release(count);
3700 }
3701
3702 #include "opt_ddb.h"
3703 #ifdef DDB
3704 #include <sys/kernel.h>
3705
3706 #include <ddb/ddb.h>
3707
3708 /*
3709  * Debugging only
3710  */
3711 DB_SHOW_COMMAND(map, vm_map_print)
3712 {
3713         static int nlines;
3714         /* XXX convert args. */
3715         vm_map_t map = (vm_map_t)addr;
3716         boolean_t full = have_addr;
3717
3718         vm_map_entry_t entry;
3719
3720         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3721             (void *)map,
3722             (void *)map->pmap, map->nentries, map->timestamp);
3723         nlines++;
3724
3725         if (!full && db_indent)
3726                 return;
3727
3728         db_indent += 2;
3729         for (entry = map->header.next; entry != &map->header;
3730             entry = entry->next) {
3731                 db_iprintf("map entry %p: start=%p, end=%p\n",
3732                     (void *)entry, (void *)entry->start, (void *)entry->end);
3733                 nlines++;
3734                 {
3735                         static char *inheritance_name[4] =
3736                         {"share", "copy", "none", "donate_copy"};
3737
3738                         db_iprintf(" prot=%x/%x/%s",
3739                             entry->protection,
3740                             entry->max_protection,
3741                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3742                         if (entry->wired_count != 0)
3743                                 db_printf(", wired");
3744                 }
3745                 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3746                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3747                         db_printf(", share=%p, offset=0x%lx\n",
3748                             (void *)entry->object.sub_map,
3749                             (long)entry->offset);
3750                         nlines++;
3751                         if ((entry->prev == &map->header) ||
3752                             (entry->prev->object.sub_map !=
3753                                 entry->object.sub_map)) {
3754                                 db_indent += 2;
3755                                 vm_map_print((db_expr_t)(intptr_t)
3756                                              entry->object.sub_map,
3757                                              full, 0, NULL);
3758                                 db_indent -= 2;
3759                         }
3760                 } else {
3761                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3762                         db_printf(", object=%p, offset=0x%lx",
3763                             (void *)entry->object.vm_object,
3764                             (long)entry->offset);
3765                         if (entry->eflags & MAP_ENTRY_COW)
3766                                 db_printf(", copy (%s)",
3767                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3768                         db_printf("\n");
3769                         nlines++;
3770
3771                         if ((entry->prev == &map->header) ||
3772                             (entry->prev->object.vm_object !=
3773                                 entry->object.vm_object)) {
3774                                 db_indent += 2;
3775                                 vm_object_print((db_expr_t)(intptr_t)
3776                                                 entry->object.vm_object,
3777                                                 full, 0, NULL);
3778                                 nlines += 4;
3779                                 db_indent -= 2;
3780                         }
3781                 }
3782         }
3783         db_indent -= 2;
3784         if (db_indent == 0)
3785                 nlines = 0;
3786 }
3787
3788 /*
3789  * Debugging only
3790  */
3791 DB_SHOW_COMMAND(procvm, procvm)
3792 {
3793         struct proc *p;
3794
3795         if (have_addr) {
3796                 p = (struct proc *) addr;
3797         } else {
3798                 p = curproc;
3799         }
3800
3801         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3802             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3803             (void *)vmspace_pmap(p->p_vmspace));
3804
3805         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3806 }
3807
3808 #endif /* DDB */