Stage 1/many: mbuf/cluster accounting rewrite and mbuf allocator rewrite.
[dragonfly.git] / sys / dev / netif / sk / if_sk.c
1 /*      $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
2
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
35  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.18 2004/07/29 08:46:23 dillon Exp $
36  *
37  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
38  */
39
40 /*
41  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
42  *
43  * Permission to use, copy, modify, and distribute this software for any
44  * purpose with or without fee is hereby granted, provided that the above
45  * copyright notice and this permission notice appear in all copies.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
48  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
49  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
50  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
51  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
52  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
53  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
54  */
55
56 /*
57  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
58  * the SK-984x series adapters, both single port and dual port.
59  * References:
60  *      The XaQti XMAC II datasheet,
61  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
62  *      The SysKonnect GEnesis manual, http://www.syskonnect.com
63  *
64  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
65  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
66  * convenience to others until Vitesse corrects this problem:
67  *
68  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
69  *
70  * Written by Bill Paul <wpaul@ee.columbia.edu>
71  * Department of Electrical Engineering
72  * Columbia University, New York City
73  */
74
75 /*
76  * The SysKonnect gigabit ethernet adapters consist of two main
77  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
78  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
79  * components and a PHY while the GEnesis controller provides a PCI
80  * interface with DMA support. Each card may have between 512K and
81  * 2MB of SRAM on board depending on the configuration.
82  *
83  * The SysKonnect GEnesis controller can have either one or two XMAC
84  * chips connected to it, allowing single or dual port NIC configurations.
85  * SysKonnect has the distinction of being the only vendor on the market
86  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
87  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
88  * XMAC registers. This driver takes advantage of these features to allow
89  * both XMACs to operate as independent interfaces.
90  */
91  
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/sockio.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 #include <sys/queue.h>
100
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106
107 #include <net/bpf.h>
108
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/clock.h>      /* for DELAY */
112 #include <machine/bus_pio.h>
113 #include <machine/bus_memio.h>
114 #include <machine/bus.h>
115 #include <machine/resource.h>
116 #include <sys/bus.h>
117 #include <sys/rman.h>
118
119 #include "../mii_layer/mii.h"
120 #include "../mii_layer/miivar.h"
121 #include "../mii_layer/brgphyreg.h"
122
123 #include <bus/pci/pcireg.h>
124 #include <bus/pci/pcivar.h>
125
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129
130 #include "if_skreg.h"
131 #include "xmaciireg.h"
132 #include "yukonreg.h"
133
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136
137 static struct sk_type sk_devs[] = {
138         {
139                 VENDORID_SK,
140                 DEVICEID_SK_V1,
141                 "SysKonnect Gigabit Ethernet (V1.0)"
142         },
143         {
144                 VENDORID_SK,
145                 DEVICEID_SK_V2,
146                 "SysKonnect Gigabit Ethernet (V2.0)"
147         },
148         {
149                 VENDORID_MARVELL,
150                 DEVICEID_SK_V2,
151                 "Marvell Gigabit Ethernet"
152         },
153         {
154                 VENDORID_3COM,
155                 DEVICEID_3COM_3C940,
156                 "3Com 3C940 Gigabit Ethernet"
157         },
158         { 0, 0, NULL }
159 };
160
161 static int skc_probe            (device_t);
162 static int skc_attach           (device_t);
163 static int skc_detach           (device_t);
164 static void skc_shutdown        (device_t);
165 static int sk_probe             (device_t);
166 static int sk_attach            (device_t);
167 static int sk_detach            (device_t);
168 static void sk_tick             (void *);
169 static void sk_intr             (void *);
170 static void sk_intr_bcom        (struct sk_if_softc *);
171 static void sk_intr_xmac        (struct sk_if_softc *);
172 static void sk_intr_yukon       (struct sk_if_softc *);
173 static void sk_rxeof            (struct sk_if_softc *);
174 static void sk_txeof            (struct sk_if_softc *);
175 static int sk_encap             (struct sk_if_softc *, struct mbuf *,
176                                         u_int32_t *);
177 static void sk_start            (struct ifnet *);
178 static int sk_ioctl             (struct ifnet *, u_long, caddr_t,
179                                         struct ucred *);
180 static void sk_init             (void *);
181 static void sk_init_xmac        (struct sk_if_softc *);
182 static void sk_init_yukon       (struct sk_if_softc *);
183 static void sk_stop             (struct sk_if_softc *);
184 static void sk_watchdog         (struct ifnet *);
185 static int sk_ifmedia_upd       (struct ifnet *);
186 static void sk_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
187 static void sk_reset            (struct sk_softc *);
188 static int sk_newbuf            (struct sk_if_softc *,
189                                         struct sk_chain *, struct mbuf *);
190 static int sk_alloc_jumbo_mem   (struct sk_if_softc *);
191 static void *sk_jalloc          (struct sk_if_softc *);
192 static void sk_jfree            (caddr_t, u_int);
193 static void sk_jref             (caddr_t, u_int);
194 static int sk_init_rx_ring      (struct sk_if_softc *);
195 static void sk_init_tx_ring     (struct sk_if_softc *);
196 static u_int32_t sk_win_read_4  (struct sk_softc *, int);
197 static u_int16_t sk_win_read_2  (struct sk_softc *, int);
198 static u_int8_t sk_win_read_1   (struct sk_softc *, int);
199 static void sk_win_write_4      (struct sk_softc *, int, u_int32_t);
200 static void sk_win_write_2      (struct sk_softc *, int, u_int32_t);
201 static void sk_win_write_1      (struct sk_softc *, int, u_int32_t);
202 static u_int8_t sk_vpd_readbyte (struct sk_softc *, int);
203 static void sk_vpd_read_res     (struct sk_softc *,
204                                         struct vpd_res *, int);
205 static void sk_vpd_read         (struct sk_softc *);
206
207 static int sk_miibus_readreg    (device_t, int, int);
208 static int sk_miibus_writereg   (device_t, int, int, int);
209 static void sk_miibus_statchg   (device_t);
210
211 static int sk_xmac_miibus_readreg     (struct sk_if_softc *, int, int);
212 static int sk_xmac_miibus_writereg    (struct sk_if_softc *, int, int, int);
213 static void sk_xmac_miibus_statchg    (struct sk_if_softc *);
214
215 static int sk_marv_miibus_readreg     (struct sk_if_softc *, int, int);
216 static int sk_marv_miibus_writereg    (struct sk_if_softc *, int, int, int);
217 static void sk_marv_miibus_statchg    (struct sk_if_softc *);
218
219 static u_int32_t xmac_calchash  (caddr_t);
220 static u_int32_t gmac_calchash  (caddr_t);
221 static void sk_setfilt          (struct sk_if_softc *, caddr_t, int);
222 static void sk_setmulti         (struct sk_if_softc *);
223 static void sk_setpromisc       (struct sk_if_softc *);
224
225 #ifdef SK_USEIOSPACE
226 #define SK_RES          SYS_RES_IOPORT
227 #define SK_RID          SK_PCI_LOIO
228 #else
229 #define SK_RES          SYS_RES_MEMORY
230 #define SK_RID          SK_PCI_LOMEM
231 #endif
232
233 /*
234  * Note that we have newbus methods for both the GEnesis controller
235  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
236  * the miibus code is a child of the XMACs. We need to do it this way
237  * so that the miibus drivers can access the PHY registers on the
238  * right PHY. It's not quite what I had in mind, but it's the only
239  * design that achieves the desired effect.
240  */
241 static device_method_t skc_methods[] = {
242         /* Device interface */
243         DEVMETHOD(device_probe,         skc_probe),
244         DEVMETHOD(device_attach,        skc_attach),
245         DEVMETHOD(device_detach,        skc_detach),
246         DEVMETHOD(device_shutdown,      skc_shutdown),
247
248         /* bus interface */
249         DEVMETHOD(bus_print_child,      bus_generic_print_child),
250         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
251
252         { 0, 0 }
253 };
254
255 static driver_t skc_driver = {
256         "skc",
257         skc_methods,
258         sizeof(struct sk_softc)
259 };
260
261 static devclass_t skc_devclass;
262
263 static device_method_t sk_methods[] = {
264         /* Device interface */
265         DEVMETHOD(device_probe,         sk_probe),
266         DEVMETHOD(device_attach,        sk_attach),
267         DEVMETHOD(device_detach,        sk_detach),
268         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
269
270         /* bus interface */
271         DEVMETHOD(bus_print_child,      bus_generic_print_child),
272         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
273
274         /* MII interface */
275         DEVMETHOD(miibus_readreg,       sk_miibus_readreg),
276         DEVMETHOD(miibus_writereg,      sk_miibus_writereg),
277         DEVMETHOD(miibus_statchg,       sk_miibus_statchg),
278
279         { 0, 0 }
280 };
281
282 static driver_t sk_driver = {
283         "sk",
284         sk_methods,
285         sizeof(struct sk_if_softc)
286 };
287
288 static devclass_t sk_devclass;
289
290 DECLARE_DUMMY_MODULE(if_sk);
291 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
292 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
293 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
294
295 #define SK_SETBIT(sc, reg, x)           \
296         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
297
298 #define SK_CLRBIT(sc, reg, x)           \
299         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
300
301 #define SK_WIN_SETBIT_4(sc, reg, x)     \
302         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
303
304 #define SK_WIN_CLRBIT_4(sc, reg, x)     \
305         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
306
307 #define SK_WIN_SETBIT_2(sc, reg, x)     \
308         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
309
310 #define SK_WIN_CLRBIT_2(sc, reg, x)     \
311         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
312
313 static u_int32_t sk_win_read_4(sc, reg)
314         struct sk_softc         *sc;
315         int                     reg;
316 {
317 #ifdef SK_USEIOSPACE
318         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
319         return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
320 #else
321         return(CSR_READ_4(sc, reg));
322 #endif
323 }
324
325 static u_int16_t sk_win_read_2(sc, reg)
326         struct sk_softc         *sc;
327         int                     reg;
328 {
329 #ifdef SK_USEIOSPACE
330         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
331         return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
332 #else
333         return(CSR_READ_2(sc, reg));
334 #endif
335 }
336
337 static u_int8_t sk_win_read_1(sc, reg)
338         struct sk_softc         *sc;
339         int                     reg;
340 {
341 #ifdef SK_USEIOSPACE
342         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
343         return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
344 #else
345         return(CSR_READ_1(sc, reg));
346 #endif
347 }
348
349 static void sk_win_write_4(sc, reg, val)
350         struct sk_softc         *sc;
351         int                     reg;
352         u_int32_t               val;
353 {
354 #ifdef SK_USEIOSPACE
355         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
356         CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
357 #else
358         CSR_WRITE_4(sc, reg, val);
359 #endif
360         return;
361 }
362
363 static void sk_win_write_2(sc, reg, val)
364         struct sk_softc         *sc;
365         int                     reg;
366         u_int32_t               val;
367 {
368 #ifdef SK_USEIOSPACE
369         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
370         CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
371 #else
372         CSR_WRITE_2(sc, reg, val);
373 #endif
374         return;
375 }
376
377 static void sk_win_write_1(sc, reg, val)
378         struct sk_softc         *sc;
379         int                     reg;
380         u_int32_t               val;
381 {
382 #ifdef SK_USEIOSPACE
383         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
384         CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
385 #else
386         CSR_WRITE_1(sc, reg, val);
387 #endif
388         return;
389 }
390
391 /*
392  * The VPD EEPROM contains Vital Product Data, as suggested in
393  * the PCI 2.1 specification. The VPD data is separared into areas
394  * denoted by resource IDs. The SysKonnect VPD contains an ID string
395  * resource (the name of the adapter), a read-only area resource
396  * containing various key/data fields and a read/write area which
397  * can be used to store asset management information or log messages.
398  * We read the ID string and read-only into buffers attached to
399  * the controller softc structure for later use. At the moment,
400  * we only use the ID string during sk_attach().
401  */
402 static u_int8_t sk_vpd_readbyte(sc, addr)
403         struct sk_softc         *sc;
404         int                     addr;
405 {
406         int                     i;
407
408         sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
409         for (i = 0; i < SK_TIMEOUT; i++) {
410                 DELAY(1);
411                 if (sk_win_read_2(sc,
412                     SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
413                         break;
414         }
415
416         if (i == SK_TIMEOUT)
417                 return(0);
418
419         return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
420 }
421
422 static void sk_vpd_read_res(sc, res, addr)
423         struct sk_softc         *sc;
424         struct vpd_res          *res;
425         int                     addr;
426 {
427         int                     i;
428         u_int8_t                *ptr;
429
430         ptr = (u_int8_t *)res;
431         for (i = 0; i < sizeof(struct vpd_res); i++)
432                 ptr[i] = sk_vpd_readbyte(sc, i + addr);
433
434         return;
435 }
436
437 static void sk_vpd_read(sc)
438         struct sk_softc         *sc;
439 {
440         int                     pos = 0, i;
441         struct vpd_res          res;
442
443         if (sc->sk_vpd_prodname != NULL)
444                 free(sc->sk_vpd_prodname, M_DEVBUF);
445         if (sc->sk_vpd_readonly != NULL)
446                 free(sc->sk_vpd_readonly, M_DEVBUF);
447         sc->sk_vpd_prodname = NULL;
448         sc->sk_vpd_readonly = NULL;
449
450         sk_vpd_read_res(sc, &res, pos);
451
452         if (res.vr_id != VPD_RES_ID) {
453                 printf("skc%d: bad VPD resource id: expected %x got %x\n",
454                     sc->sk_unit, VPD_RES_ID, res.vr_id);
455                 return;
456         }
457
458         pos += sizeof(res);
459         sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
460         for (i = 0; i < res.vr_len; i++)
461                 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
462         sc->sk_vpd_prodname[i] = '\0';
463         pos += i;
464
465         sk_vpd_read_res(sc, &res, pos);
466
467         if (res.vr_id != VPD_RES_READ) {
468                 printf("skc%d: bad VPD resource id: expected %x got %x\n",
469                     sc->sk_unit, VPD_RES_READ, res.vr_id);
470                 return;
471         }
472
473         pos += sizeof(res);
474         sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
475         for (i = 0; i < res.vr_len + 1; i++)
476                 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
477
478         return;
479 }
480
481 static int sk_miibus_readreg(dev, phy, reg)
482         device_t                dev;
483         int                     phy, reg;
484 {
485         struct sk_if_softc      *sc_if;
486
487         sc_if = device_get_softc(dev);
488
489         switch(sc_if->sk_softc->sk_type) {
490         case SK_GENESIS:
491                 return(sk_xmac_miibus_readreg(sc_if, phy, reg));
492         case SK_YUKON:
493                 return(sk_marv_miibus_readreg(sc_if, phy, reg));
494         }
495
496         return(0);
497 }
498
499 static int sk_miibus_writereg(dev, phy, reg, val)
500         device_t                dev;
501         int                     phy, reg, val;
502 {
503         struct sk_if_softc      *sc_if;
504
505         sc_if = device_get_softc(dev);
506
507         switch(sc_if->sk_softc->sk_type) {
508         case SK_GENESIS:
509                 return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
510         case SK_YUKON:
511                 return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
512         }
513
514         return(0);
515 }
516
517 static void sk_miibus_statchg(dev)
518         device_t                dev;
519 {
520         struct sk_if_softc      *sc_if;
521
522         sc_if = device_get_softc(dev);
523
524         switch(sc_if->sk_softc->sk_type) {
525         case SK_GENESIS:
526                 sk_xmac_miibus_statchg(sc_if);
527                 break;
528         case SK_YUKON:
529                 sk_marv_miibus_statchg(sc_if);
530                 break;
531         }
532
533         return;
534 }
535
536 static int sk_xmac_miibus_readreg(sc_if, phy, reg)
537         struct sk_if_softc      *sc_if;
538         int                     phy, reg;
539 {
540         int                     i;
541
542         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
543                 return(0);
544
545         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
546         SK_XM_READ_2(sc_if, XM_PHY_DATA);
547         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
548                 for (i = 0; i < SK_TIMEOUT; i++) {
549                         DELAY(1);
550                         if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
551                             XM_MMUCMD_PHYDATARDY)
552                                 break;
553                 }
554
555                 if (i == SK_TIMEOUT) {
556                         printf("sk%d: phy failed to come ready\n",
557                             sc_if->sk_unit);
558                         return(0);
559                 }
560         }
561         DELAY(1);
562         return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
563 }
564
565 static int sk_xmac_miibus_writereg(sc_if, phy, reg, val)
566         struct sk_if_softc      *sc_if;
567         int                     phy, reg, val;
568 {
569         int                     i;
570
571         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
572         for (i = 0; i < SK_TIMEOUT; i++) {
573                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
574                         break;
575         }
576
577         if (i == SK_TIMEOUT) {
578                 printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
579                 return(ETIMEDOUT);
580         }
581
582         SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
583         for (i = 0; i < SK_TIMEOUT; i++) {
584                 DELAY(1);
585                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
586                         break;
587         }
588
589         if (i == SK_TIMEOUT)
590                 printf("sk%d: phy write timed out\n", sc_if->sk_unit);
591
592         return(0);
593 }
594
595 static void sk_xmac_miibus_statchg(sc_if)
596         struct sk_if_softc      *sc_if;
597 {
598         struct mii_data         *mii;
599
600         mii = device_get_softc(sc_if->sk_miibus);
601
602         /*
603          * If this is a GMII PHY, manually set the XMAC's
604          * duplex mode accordingly.
605          */
606         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
607                 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
608                         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
609                 } else {
610                         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
611                 }
612         }
613
614         return;
615 }
616
617 static int sk_marv_miibus_readreg(sc_if, phy, reg)
618         struct sk_if_softc      *sc_if;
619         int                     phy, reg;
620 {
621         u_int16_t               val;
622         int                     i;
623
624         if (phy != 0 ||
625             (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
626              sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
627                 return(0);
628         }
629
630         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
631                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
632         
633         for (i = 0; i < SK_TIMEOUT; i++) {
634                 DELAY(1);
635                 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
636                 if (val & YU_SMICR_READ_VALID)
637                         break;
638         }
639
640         if (i == SK_TIMEOUT) {
641                 printf("sk%d: phy failed to come ready\n",
642                     sc_if->sk_unit);
643                 return(0);
644         }
645         
646         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
647
648         return(val);
649 }
650
651 static int sk_marv_miibus_writereg(sc_if, phy, reg, val)
652         struct sk_if_softc      *sc_if;
653         int                     phy, reg, val;
654 {
655         int                     i;
656
657         SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
658         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
659                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
660
661         for (i = 0; i < SK_TIMEOUT; i++) {
662                 DELAY(1);
663                 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
664                         break;
665         }
666
667         return(0);
668 }
669
670 static void sk_marv_miibus_statchg(sc_if)
671         struct sk_if_softc      *sc_if;
672 {
673         return;
674 }
675
676 #define XMAC_POLY               0xEDB88320
677 #define GMAC_POLY               0x04C11DB7L
678 #define HASH_BITS               6
679
680 static u_int32_t xmac_calchash(addr)
681         caddr_t                 addr;
682 {
683         u_int32_t               idx, bit, data, crc;
684
685         /* Compute CRC for the address value. */
686         crc = 0xFFFFFFFF; /* initial value */
687
688         for (idx = 0; idx < 6; idx++) {
689                 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
690                         crc = (crc >> 1) ^ (((crc ^ data) & 1) ? XMAC_POLY : 0);
691         }
692
693         return (~crc & ((1 << HASH_BITS) - 1));
694 }
695
696 static u_int32_t gmac_calchash(addr)
697     caddr_t                     addr;
698 {
699     u_int32_t               idx, bit, crc, tmpData, data;
700
701     /* Compute CRC for the address value. */
702     crc = 0xFFFFFFFF; /* initial value */
703
704     for (idx = 0; idx < 6; idx++) {
705         data = *addr++;
706
707         /* Change bit order in byte. */
708         tmpData = data;
709         for (bit = 0; bit < 8; bit++) {
710             if (tmpData & 1) {
711                 data |=  1 << (7 - bit);
712             }
713             else {
714                 data &= ~(1 << (7 - bit));
715             }
716
717             tmpData >>= 1;
718         }
719
720         crc ^= (data << 24);
721         for (bit = 0; bit < 8; bit++) {
722             if (crc & 0x80000000) {
723                 crc = (crc << 1) ^ GMAC_POLY;
724             } else {
725                 crc <<= 1;
726             }
727         }
728     }
729
730     return (crc & ((1 << HASH_BITS) - 1));
731 }
732
733 static void sk_setfilt(sc_if, addr, slot)
734         struct sk_if_softc      *sc_if;
735         caddr_t                 addr;
736         int                     slot;
737 {
738         int                     base;
739
740         base = XM_RXFILT_ENTRY(slot);
741
742         SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
743         SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
744         SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
745
746         return;
747 }
748
749 static void sk_setmulti(sc_if)
750         struct sk_if_softc      *sc_if;
751 {
752         struct sk_softc         *sc = sc_if->sk_softc;
753         struct ifnet            *ifp = &sc_if->arpcom.ac_if;
754         u_int32_t               hashes[2] = { 0, 0 };
755         int                     h, i;
756         struct ifmultiaddr      *ifma;
757         u_int8_t                dummy[] = { 0, 0, 0, 0, 0 ,0 };
758
759
760         /* First, zot all the existing filters. */
761         switch(sc->sk_type) {
762         case SK_GENESIS:
763                 for (i = 1; i < XM_RXFILT_MAX; i++)
764                         sk_setfilt(sc_if, (caddr_t)&dummy, i);
765
766                 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
767                 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
768                 break;
769         case SK_YUKON:
770                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
771                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
772                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
773                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
774                 break;
775         }
776
777         /* Now program new ones. */
778         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
779                 hashes[0] = 0xFFFFFFFF;
780                 hashes[1] = 0xFFFFFFFF;
781         } else {
782                 i = 1;
783                 /* First find the tail of the list. */
784                 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
785                                         ifma = ifma->ifma_link.le_next) {
786                         if (ifma->ifma_link.le_next == NULL)
787                                 break;
788                 }
789                 /* Now traverse the list backwards. */
790                 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
791                         ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
792                         if (ifma->ifma_addr->sa_family != AF_LINK)
793                                 continue;
794                         /*
795                          * Program the first XM_RXFILT_MAX multicast groups
796                          * into the perfect filter. For all others,
797                          * use the hash table.
798                          */
799                         if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
800                                 sk_setfilt(sc_if,
801                         LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
802                                 i++;
803                                 continue;
804                         }
805
806                         switch(sc->sk_type) {
807                         case SK_GENESIS:
808                             h = xmac_calchash(
809                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
810                             if (h < 32)
811                                 hashes[0] |= (1 << h);
812                             else
813                                 hashes[1] |= (1 << (h - 32));
814                             break;
815
816                         case SK_YUKON:
817                             h = gmac_calchash(
818                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
819                             if (h < 32)
820                                 hashes[0] |= (1 << h);
821                             else
822                                 hashes[1] |= (1 << (h - 32));
823                             break;
824                         }
825                 }
826         }
827
828         switch(sc->sk_type) {
829         case SK_GENESIS:
830                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
831                                XM_MODE_RX_USE_PERFECT);
832                 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
833                 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
834                 break;
835         case SK_YUKON:
836                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
837                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
838                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
839                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
840                 break;
841         }
842
843         return;
844 }
845
846 static void sk_setpromisc(sc_if)
847         struct sk_if_softc      *sc_if;
848 {
849         struct sk_softc         *sc = sc_if->sk_softc;
850         struct ifnet            *ifp = &sc_if->arpcom.ac_if;
851
852         switch(sc->sk_type) {
853         case SK_GENESIS:
854                 if (ifp->if_flags & IFF_PROMISC) {
855                         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
856                 } else {
857                         SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
858                 }
859                 break;
860         case SK_YUKON:
861                 if (ifp->if_flags & IFF_PROMISC) {
862                         SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
863                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
864                 } else {
865                         SK_YU_SETBIT_2(sc_if, YUKON_RCR,
866                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
867                 }
868                 break;
869         }
870
871         return;
872 }
873
874 static int sk_init_rx_ring(sc_if)
875         struct sk_if_softc      *sc_if;
876 {
877         struct sk_chain_data    *cd = &sc_if->sk_cdata;
878         struct sk_ring_data     *rd = sc_if->sk_rdata;
879         int                     i;
880
881         bzero((char *)rd->sk_rx_ring,
882             sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
883
884         for (i = 0; i < SK_RX_RING_CNT; i++) {
885                 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
886                 if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
887                         return(ENOBUFS);
888                 if (i == (SK_RX_RING_CNT - 1)) {
889                         cd->sk_rx_chain[i].sk_next =
890                             &cd->sk_rx_chain[0];
891                         rd->sk_rx_ring[i].sk_next = 
892                             vtophys(&rd->sk_rx_ring[0]);
893                 } else {
894                         cd->sk_rx_chain[i].sk_next =
895                             &cd->sk_rx_chain[i + 1];
896                         rd->sk_rx_ring[i].sk_next = 
897                             vtophys(&rd->sk_rx_ring[i + 1]);
898                 }
899         }
900
901         sc_if->sk_cdata.sk_rx_prod = 0;
902         sc_if->sk_cdata.sk_rx_cons = 0;
903
904         return(0);
905 }
906
907 static void sk_init_tx_ring(sc_if)
908         struct sk_if_softc      *sc_if;
909 {
910         struct sk_chain_data    *cd = &sc_if->sk_cdata;
911         struct sk_ring_data     *rd = sc_if->sk_rdata;
912         int                     i;
913
914         bzero((char *)sc_if->sk_rdata->sk_tx_ring,
915             sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
916
917         for (i = 0; i < SK_TX_RING_CNT; i++) {
918                 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
919                 if (i == (SK_TX_RING_CNT - 1)) {
920                         cd->sk_tx_chain[i].sk_next =
921                             &cd->sk_tx_chain[0];
922                         rd->sk_tx_ring[i].sk_next = 
923                             vtophys(&rd->sk_tx_ring[0]);
924                 } else {
925                         cd->sk_tx_chain[i].sk_next =
926                             &cd->sk_tx_chain[i + 1];
927                         rd->sk_tx_ring[i].sk_next = 
928                             vtophys(&rd->sk_tx_ring[i + 1]);
929                 }
930         }
931
932         sc_if->sk_cdata.sk_tx_prod = 0;
933         sc_if->sk_cdata.sk_tx_cons = 0;
934         sc_if->sk_cdata.sk_tx_cnt = 0;
935
936         return;
937 }
938
939 static int sk_newbuf(sc_if, c, m)
940         struct sk_if_softc      *sc_if;
941         struct sk_chain         *c;
942         struct mbuf             *m;
943 {
944         struct mbuf             *m_new = NULL;
945         struct sk_rx_desc       *r;
946
947         if (m == NULL) {
948                 caddr_t                 *buf = NULL;
949
950                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
951                 if (m_new == NULL)
952                         return(ENOBUFS);
953
954                 /* Allocate the jumbo buffer */
955                 buf = sk_jalloc(sc_if);
956                 if (buf == NULL) {
957                         m_freem(m_new);
958 #ifdef SK_VERBOSE
959                         printf("sk%d: jumbo allocation failed "
960                             "-- packet dropped!\n", sc_if->sk_unit);
961 #endif
962                         return(ENOBUFS);
963                 }
964
965                 /* Attach the buffer to the mbuf */
966                 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
967                 m_new->m_flags |= M_EXT | M_EXT_OLD;
968                 m_new->m_ext.ext_size = m_new->m_pkthdr.len =
969                     m_new->m_len = SK_MCLBYTES;
970                 m_new->m_ext.ext_nfree.old = sk_jfree;
971                 m_new->m_ext.ext_nref.old = sk_jref;
972         } else {
973                 /*
974                  * We're re-using a previously allocated mbuf;
975                  * be sure to re-init pointers and lengths to
976                  * default values.
977                  */
978                 m_new = m;
979                 m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES;
980                 m_new->m_data = m_new->m_ext.ext_buf;
981         }
982
983         /*
984          * Adjust alignment so packet payload begins on a
985          * longword boundary. Mandatory for Alpha, useful on
986          * x86 too.
987          */
988         m_adj(m_new, ETHER_ALIGN);
989
990         r = c->sk_desc;
991         c->sk_mbuf = m_new;
992         r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
993         r->sk_ctl = m_new->m_len | SK_RXSTAT;
994
995         return(0);
996 }
997
998 /*
999  * Allocate jumbo buffer storage. The SysKonnect adapters support
1000  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1001  * use them in their drivers. In order for us to use them, we need
1002  * large 9K receive buffers, however standard mbuf clusters are only
1003  * 2048 bytes in size. Consequently, we need to allocate and manage
1004  * our own jumbo buffer pool. Fortunately, this does not require an
1005  * excessive amount of additional code.
1006  */
1007 static int sk_alloc_jumbo_mem(sc_if)
1008         struct sk_if_softc      *sc_if;
1009 {
1010         caddr_t                 ptr;
1011         int             i;
1012         struct sk_jpool_entry   *entry;
1013
1014         /* Grab a big chunk o' storage. */
1015         sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1016             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1017
1018         if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1019                 printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1020                 return(ENOBUFS);
1021         }
1022
1023         SLIST_INIT(&sc_if->sk_jfree_listhead);
1024         SLIST_INIT(&sc_if->sk_jinuse_listhead);
1025
1026         /*
1027          * Now divide it up into 9K pieces and save the addresses
1028          * in an array. Note that we play an evil trick here by using
1029          * the first few bytes in the buffer to hold the the address
1030          * of the softc structure for this interface. This is because
1031          * sk_jfree() needs it, but it is called by the mbuf management
1032          * code which will not pass it to us explicitly.
1033          */
1034         ptr = sc_if->sk_cdata.sk_jumbo_buf;
1035         for (i = 0; i < SK_JSLOTS; i++) {
1036                 u_int64_t               **aptr;
1037                 aptr = (u_int64_t **)ptr;
1038                 aptr[0] = (u_int64_t *)sc_if;
1039                 ptr += sizeof(u_int64_t);
1040                 sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr;
1041                 sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0;
1042                 ptr += SK_MCLBYTES;
1043                 entry = malloc(sizeof(struct sk_jpool_entry), 
1044                     M_DEVBUF, M_WAITOK);
1045                 if (entry == NULL) {
1046                         free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1047                         sc_if->sk_cdata.sk_jumbo_buf = NULL;
1048                         printf("sk%d: no memory for jumbo "
1049                             "buffer queue!\n", sc_if->sk_unit);
1050                         return(ENOBUFS);
1051                 }
1052                 entry->slot = i;
1053                 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1054                     entry, jpool_entries);
1055         }
1056
1057         return(0);
1058 }
1059
1060 /*
1061  * Allocate a jumbo buffer.
1062  */
1063 static void *sk_jalloc(sc_if)
1064         struct sk_if_softc      *sc_if;
1065 {
1066         struct sk_jpool_entry   *entry;
1067         
1068         entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1069         
1070         if (entry == NULL) {
1071 #ifdef SK_VERBOSE
1072                 printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1073 #endif
1074                 return(NULL);
1075         }
1076
1077         SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1078         SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1079         sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1;
1080         return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf);
1081 }
1082
1083 /*
1084  * Adjust usage count on a jumbo buffer. In general this doesn't
1085  * get used much because our jumbo buffers don't get passed around
1086  * a lot, but it's implemented for correctness.
1087  */
1088 static void sk_jref(buf, size)
1089         caddr_t                 buf;
1090         u_int                   size;
1091 {
1092         struct sk_if_softc      *sc_if;
1093         u_int64_t               **aptr;
1094         int             i;
1095
1096         /* Extract the softc struct pointer. */
1097         aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1098         sc_if = (struct sk_if_softc *)(aptr[0]);
1099
1100         if (sc_if == NULL)
1101                 panic("sk_jref: can't find softc pointer!");
1102
1103         if (size != SK_MCLBYTES)
1104                 panic("sk_jref: adjusting refcount of buf of wrong size!");
1105
1106         /* calculate the slot this buffer belongs to */
1107
1108         i = ((vm_offset_t)aptr 
1109              - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1110
1111         if ((i < 0) || (i >= SK_JSLOTS))
1112                 panic("sk_jref: asked to reference buffer "
1113                     "that we don't manage!");
1114         else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
1115                 panic("sk_jref: buffer already free!");
1116         else
1117                 sc_if->sk_cdata.sk_jslots[i].sk_inuse++;
1118
1119         return;
1120 }
1121
1122 /*
1123  * Release a jumbo buffer.
1124  */
1125 static void sk_jfree(buf, size)
1126         caddr_t                 buf;
1127         u_int                   size;
1128 {
1129         struct sk_if_softc      *sc_if;
1130         u_int64_t               **aptr;
1131         int                     i;
1132         struct sk_jpool_entry   *entry;
1133
1134         /* Extract the softc struct pointer. */
1135         aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1136         sc_if = (struct sk_if_softc *)(aptr[0]);
1137
1138         if (sc_if == NULL)
1139                 panic("sk_jfree: can't find softc pointer!");
1140
1141         if (size != SK_MCLBYTES)
1142                 panic("sk_jfree: freeing buffer of wrong size!");
1143
1144         /* calculate the slot this buffer belongs to */
1145
1146         i = ((vm_offset_t)aptr 
1147              - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1148
1149         if ((i < 0) || (i >= SK_JSLOTS))
1150                 panic("sk_jfree: asked to free buffer that we don't manage!");
1151         else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
1152                 panic("sk_jfree: buffer already free!");
1153         else {
1154                 sc_if->sk_cdata.sk_jslots[i].sk_inuse--;
1155                 if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) {
1156                         entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1157                         if (entry == NULL)
1158                                 panic("sk_jfree: buffer not in use!");
1159                         entry->slot = i;
1160                         SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, 
1161                                           jpool_entries);
1162                         SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 
1163                                           entry, jpool_entries);
1164                 }
1165         }
1166
1167         return;
1168 }
1169
1170 /*
1171  * Set media options.
1172  */
1173 static int sk_ifmedia_upd(ifp)
1174         struct ifnet            *ifp;
1175 {
1176         struct sk_if_softc      *sc_if = ifp->if_softc;
1177         struct mii_data         *mii;
1178
1179         mii = device_get_softc(sc_if->sk_miibus);
1180         sk_init(sc_if);
1181         mii_mediachg(mii);
1182
1183         return(0);
1184 }
1185
1186 /*
1187  * Report current media status.
1188  */
1189 static void sk_ifmedia_sts(ifp, ifmr)
1190         struct ifnet            *ifp;
1191         struct ifmediareq       *ifmr;
1192 {
1193         struct sk_if_softc      *sc_if;
1194         struct mii_data         *mii;
1195
1196         sc_if = ifp->if_softc;
1197         mii = device_get_softc(sc_if->sk_miibus);
1198
1199         mii_pollstat(mii);
1200         ifmr->ifm_active = mii->mii_media_active;
1201         ifmr->ifm_status = mii->mii_media_status;
1202
1203         return;
1204 }
1205
1206 static int sk_ioctl(ifp, command, data, cr)
1207         struct ifnet            *ifp;
1208         u_long                  command;
1209         caddr_t                 data;
1210         struct ucred            *cr;
1211 {
1212         struct sk_if_softc      *sc_if = ifp->if_softc;
1213         struct ifreq            *ifr = (struct ifreq *) data;
1214         int                     s, error = 0;
1215         struct mii_data         *mii;
1216
1217         s = splimp();
1218
1219         switch(command) {
1220         case SIOCSIFADDR:
1221         case SIOCGIFADDR:
1222                 error = ether_ioctl(ifp, command, data);
1223                 break;
1224         case SIOCSIFMTU:
1225                 if (ifr->ifr_mtu > SK_JUMBO_MTU)
1226                         error = EINVAL;
1227                 else {
1228                         ifp->if_mtu = ifr->ifr_mtu;
1229                         sk_init(sc_if);
1230                 }
1231                 break;
1232         case SIOCSIFFLAGS:
1233                 if (ifp->if_flags & IFF_UP) {
1234                         if (ifp->if_flags & IFF_RUNNING) {
1235                                 if ((ifp->if_flags ^ sc_if->sk_if_flags)
1236                                     & IFF_PROMISC) {
1237                                         sk_setpromisc(sc_if);
1238                                         sk_setmulti(sc_if);
1239                                 }
1240                         } else
1241                                 sk_init(sc_if);
1242                 } else {
1243                         if (ifp->if_flags & IFF_RUNNING)
1244                                 sk_stop(sc_if);
1245                 }
1246                 sc_if->sk_if_flags = ifp->if_flags;
1247                 error = 0;
1248                 break;
1249         case SIOCADDMULTI:
1250         case SIOCDELMULTI:
1251                 sk_setmulti(sc_if);
1252                 error = 0;
1253                 break;
1254         case SIOCGIFMEDIA:
1255         case SIOCSIFMEDIA:
1256                 mii = device_get_softc(sc_if->sk_miibus);
1257                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1258                 break;
1259         default:
1260                 error = EINVAL;
1261                 break;
1262         }
1263
1264         (void)splx(s);
1265
1266         return(error);
1267 }
1268
1269 /*
1270  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1271  * IDs against our list and return a device name if we find a match.
1272  */
1273 static int skc_probe(dev)
1274         device_t                dev;
1275 {
1276         struct sk_softc         *sc;
1277         struct sk_type          *t = sk_devs;
1278
1279         sc = device_get_softc(dev);
1280
1281         while(t->sk_name != NULL) {
1282                 if ((pci_get_vendor(dev) == t->sk_vid) &&
1283                     (pci_get_device(dev) == t->sk_did)) {
1284                         device_set_desc(dev, t->sk_name);
1285                         return(0);
1286                 }
1287                 t++;
1288         }
1289
1290         return(ENXIO);
1291 }
1292
1293 /*
1294  * Force the GEnesis into reset, then bring it out of reset.
1295  */
1296 static void sk_reset(sc)
1297         struct sk_softc         *sc;
1298 {
1299         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1300         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1301         if (sc->sk_type == SK_YUKON)
1302                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1303
1304         DELAY(1000);
1305         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1306         DELAY(2);
1307         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1308         if (sc->sk_type == SK_YUKON)
1309                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1310
1311         if (sc->sk_type == SK_GENESIS) {
1312                 /* Configure packet arbiter */
1313                 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1314                 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1315                 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1316                 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1317                 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1318         }
1319
1320         /* Enable RAM interface */
1321         sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1322
1323         /*
1324          * Configure interrupt moderation. The moderation timer
1325          * defers interrupts specified in the interrupt moderation
1326          * timer mask based on the timeout specified in the interrupt
1327          * moderation timer init register. Each bit in the timer
1328          * register represents 18.825ns, so to specify a timeout in
1329          * microseconds, we have to multiply by 54.
1330          */
1331         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1332         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1333             SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1334         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1335
1336         return;
1337 }
1338
1339 static int sk_probe(dev)
1340         device_t                dev;
1341 {
1342         struct sk_softc         *sc;
1343
1344         sc = device_get_softc(device_get_parent(dev));
1345
1346         /*
1347          * Not much to do here. We always know there will be
1348          * at least one XMAC present, and if there are two,
1349          * skc_attach() will create a second device instance
1350          * for us.
1351          */
1352         switch (sc->sk_type) {
1353         case SK_GENESIS:
1354                 device_set_desc(dev, "XaQti Corp. XMAC II");
1355                 break;
1356         case SK_YUKON:
1357                 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1358                 break;
1359         }
1360
1361         return(0);
1362 }
1363
1364 /*
1365  * Each XMAC chip is attached as a separate logical IP interface.
1366  * Single port cards will have only one logical interface of course.
1367  */
1368 static int sk_attach(dev)
1369         device_t                dev;
1370 {
1371         struct sk_softc         *sc;
1372         struct sk_if_softc      *sc_if;
1373         struct ifnet            *ifp;
1374         int                     i, port;
1375
1376         if (dev == NULL)
1377                 return(EINVAL);
1378
1379         sc_if = device_get_softc(dev);
1380         sc = device_get_softc(device_get_parent(dev));
1381         port = *(int *)device_get_ivars(dev);
1382         free(device_get_ivars(dev), M_DEVBUF);
1383         device_set_ivars(dev, NULL);
1384         sc_if->sk_dev = dev;
1385
1386         bzero((char *)sc_if, sizeof(struct sk_if_softc));
1387
1388         sc_if->sk_dev = dev;
1389         sc_if->sk_unit = device_get_unit(dev);
1390         sc_if->sk_port = port;
1391         sc_if->sk_softc = sc;
1392         sc->sk_if[port] = sc_if;
1393         if (port == SK_PORT_A)
1394                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1395         if (port == SK_PORT_B)
1396                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1397
1398         /*
1399          * Get station address for this interface. Note that
1400          * dual port cards actually come with three station
1401          * addresses: one for each port, plus an extra. The
1402          * extra one is used by the SysKonnect driver software
1403          * as a 'virtual' station address for when both ports
1404          * are operating in failover mode. Currently we don't
1405          * use this extra address.
1406          */
1407         for (i = 0; i < ETHER_ADDR_LEN; i++)
1408                 sc_if->arpcom.ac_enaddr[i] =
1409                     sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1410
1411         /*
1412          * Set up RAM buffer addresses. The NIC will have a certain
1413          * amount of SRAM on it, somewhere between 512K and 2MB. We
1414          * need to divide this up a) between the transmitter and
1415          * receiver and b) between the two XMACs, if this is a
1416          * dual port NIC. Our algotithm is to divide up the memory
1417          * evenly so that everyone gets a fair share.
1418          */
1419         if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1420                 u_int32_t               chunk, val;
1421
1422                 chunk = sc->sk_ramsize / 2;
1423                 val = sc->sk_rboff / sizeof(u_int64_t);
1424                 sc_if->sk_rx_ramstart = val;
1425                 val += (chunk / sizeof(u_int64_t));
1426                 sc_if->sk_rx_ramend = val - 1;
1427                 sc_if->sk_tx_ramstart = val;
1428                 val += (chunk / sizeof(u_int64_t));
1429                 sc_if->sk_tx_ramend = val - 1;
1430         } else {
1431                 u_int32_t               chunk, val;
1432
1433                 chunk = sc->sk_ramsize / 4;
1434                 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1435                     sizeof(u_int64_t);
1436                 sc_if->sk_rx_ramstart = val;
1437                 val += (chunk / sizeof(u_int64_t));
1438                 sc_if->sk_rx_ramend = val - 1;
1439                 sc_if->sk_tx_ramstart = val;
1440                 val += (chunk / sizeof(u_int64_t));
1441                 sc_if->sk_tx_ramend = val - 1;
1442         }
1443
1444         /* Read and save PHY type and set PHY address */
1445         sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1446         switch(sc_if->sk_phytype) {
1447         case SK_PHYTYPE_XMAC:
1448                 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1449                 break;
1450         case SK_PHYTYPE_BCOM:
1451                 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1452                 break;
1453         case SK_PHYTYPE_MARV_COPPER:
1454                 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1455                 break;
1456         default:
1457                 printf("skc%d: unsupported PHY type: %d\n",
1458                     sc->sk_unit, sc_if->sk_phytype);
1459                 return(ENODEV);
1460         }
1461
1462         /* Allocate the descriptor queues. */
1463         sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1464             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1465
1466         if (sc_if->sk_rdata == NULL) {
1467                 printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1468                 sc->sk_if[port] = NULL;
1469                 return(ENOMEM);
1470         }
1471
1472         bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1473
1474         /* Try to allocate memory for jumbo buffers. */
1475         if (sk_alloc_jumbo_mem(sc_if)) {
1476                 printf("sk%d: jumbo buffer allocation failed\n",
1477                     sc_if->sk_unit);
1478                 contigfree(sc_if->sk_rdata,
1479                     sizeof(struct sk_ring_data), M_DEVBUF);
1480                 sc->sk_if[port] = NULL;
1481                 return(ENOMEM);
1482         }
1483
1484         ifp = &sc_if->arpcom.ac_if;
1485         ifp->if_softc = sc_if;
1486         if_initname(ifp, "sk", sc_if->sk_unit);
1487         ifp->if_mtu = ETHERMTU;
1488         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1489         ifp->if_ioctl = sk_ioctl;
1490         ifp->if_start = sk_start;
1491         ifp->if_watchdog = sk_watchdog;
1492         ifp->if_init = sk_init;
1493         ifp->if_baudrate = 1000000000;
1494         ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1495
1496         /*
1497          * Do miibus setup.
1498          */
1499         switch (sc->sk_type) {
1500         case SK_GENESIS:
1501                 sk_init_xmac(sc_if);
1502                 break;
1503         case SK_YUKON:
1504                 sk_init_yukon(sc_if);
1505                 break;
1506         }
1507
1508         if (mii_phy_probe(dev, &sc_if->sk_miibus,
1509             sk_ifmedia_upd, sk_ifmedia_sts)) {
1510                 printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1511                 contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1512                     M_DEVBUF);
1513                 contigfree(sc_if->sk_rdata,
1514                     sizeof(struct sk_ring_data), M_DEVBUF);
1515                 return(ENXIO);
1516         }
1517
1518         /*
1519          * Call MI attach routine.
1520          */
1521         ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1522         callout_handle_init(&sc_if->sk_tick_ch);
1523
1524         return(0);
1525 }
1526
1527 /*
1528  * Attach the interface. Allocate softc structures, do ifmedia
1529  * setup and ethernet/BPF attach.
1530  */
1531 static int skc_attach(dev)
1532         device_t                dev;
1533 {
1534         int                     s;
1535         u_int32_t               command;
1536         struct sk_softc         *sc;
1537         int                     unit, error = 0, rid, *port;
1538
1539         s = splimp();
1540
1541         sc = device_get_softc(dev);
1542         unit = device_get_unit(dev);
1543         bzero(sc, sizeof(struct sk_softc));
1544         switch (pci_get_device(dev)) {
1545         case DEVICEID_SK_V1:
1546                 sc->sk_type = SK_GENESIS;
1547                 break;
1548         case DEVICEID_SK_V2:
1549         case DEVICEID_3COM_3C940:
1550                 sc->sk_type = SK_YUKON;
1551                 break;
1552         }
1553
1554         /*
1555          * Handle power management nonsense.
1556          */
1557         command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1558         if (command == 0x01) {
1559                 command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1560                 if (command & SK_PSTATE_MASK) {
1561                         u_int32_t               iobase, membase, irq;
1562
1563                         /* Save important PCI config data. */
1564                         iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1565                         membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1566                         irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1567
1568                         /* Reset the power state. */
1569                         printf("skc%d: chip is in D%d power mode "
1570                         "-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1571                         command &= 0xFFFFFFFC;
1572                         pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1573
1574                         /* Restore PCI config data. */
1575                         pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1576                         pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1577                         pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1578                 }
1579         }
1580
1581         /*
1582          * Map control/status registers.
1583          */
1584         command = pci_read_config(dev, PCIR_COMMAND, 4);
1585         command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1586         pci_write_config(dev, PCIR_COMMAND, command, 4);
1587         command = pci_read_config(dev, PCIR_COMMAND, 4);
1588
1589 #ifdef SK_USEIOSPACE
1590         if (!(command & PCIM_CMD_PORTEN)) {
1591                 printf("skc%d: failed to enable I/O ports!\n", unit);
1592                 error = ENXIO;
1593                 goto fail;
1594         }
1595 #else
1596         if (!(command & PCIM_CMD_MEMEN)) {
1597                 printf("skc%d: failed to enable memory mapping!\n", unit);
1598                 error = ENXIO;
1599                 goto fail;
1600         }
1601 #endif
1602
1603         rid = SK_RID;
1604         sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1605             0, ~0, 1, RF_ACTIVE);
1606
1607         if (sc->sk_res == NULL) {
1608                 printf("sk%d: couldn't map ports/memory\n", unit);
1609                 error = ENXIO;
1610                 goto fail;
1611         }
1612
1613         sc->sk_btag = rman_get_bustag(sc->sk_res);
1614         sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1615
1616         /* Allocate interrupt */
1617         rid = 0;
1618         sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1619             RF_SHAREABLE | RF_ACTIVE);
1620
1621         if (sc->sk_irq == NULL) {
1622                 printf("skc%d: couldn't map interrupt\n", unit);
1623                 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1624                 error = ENXIO;
1625                 goto fail;
1626         }
1627
1628         error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1629             sk_intr, sc, &sc->sk_intrhand);
1630
1631         if (error) {
1632                 printf("skc%d: couldn't set up irq\n", unit);
1633                 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1634                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1635                 goto fail;
1636         }
1637
1638         /* Reset the adapter. */
1639         sk_reset(sc);
1640
1641         sc->sk_unit = unit;
1642
1643         /* Read and save vital product data from EEPROM. */
1644         sk_vpd_read(sc);
1645
1646         if (sc->sk_type == SK_GENESIS) {
1647                 /* Read and save RAM size and RAMbuffer offset */
1648                 switch(sk_win_read_1(sc, SK_EPROM0)) {
1649                 case SK_RAMSIZE_512K_64:
1650                         sc->sk_ramsize = 0x80000;
1651                         sc->sk_rboff = SK_RBOFF_0;
1652                         break;
1653                 case SK_RAMSIZE_1024K_64:
1654                         sc->sk_ramsize = 0x100000;
1655                         sc->sk_rboff = SK_RBOFF_80000;
1656                         break;
1657                 case SK_RAMSIZE_1024K_128:
1658                         sc->sk_ramsize = 0x100000;
1659                         sc->sk_rboff = SK_RBOFF_0;
1660                         break;
1661                 case SK_RAMSIZE_2048K_128:
1662                         sc->sk_ramsize = 0x200000;
1663                         sc->sk_rboff = SK_RBOFF_0;
1664                         break;
1665                 default:
1666                         printf("skc%d: unknown ram size: %d\n",
1667                             sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1668                         bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1669                         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1670                         bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1671                         error = ENXIO;
1672                         goto fail;
1673                         break;
1674                 }
1675         } else {
1676                 sc->sk_ramsize = 0x20000;
1677                 sc->sk_rboff = SK_RBOFF_0;
1678         }
1679
1680         /* Read and save physical media type */
1681         switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1682         case SK_PMD_1000BASESX:
1683                 sc->sk_pmd = IFM_1000_SX;
1684                 break;
1685         case SK_PMD_1000BASELX:
1686                 sc->sk_pmd = IFM_1000_LX;
1687                 break;
1688         case SK_PMD_1000BASECX:
1689                 sc->sk_pmd = IFM_1000_CX;
1690                 break;
1691         case SK_PMD_1000BASETX:
1692                 sc->sk_pmd = IFM_1000_TX;
1693                 break;
1694         default:
1695                 printf("skc%d: unknown media type: 0x%x\n",
1696                     sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1697                 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1698                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1699                 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1700                 error = ENXIO;
1701                 goto fail;
1702         }
1703
1704         /* Announce the product name. */
1705         printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1706         sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1707         port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1708         *port = SK_PORT_A;
1709         device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1710
1711         if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1712                 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1713                 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1714                 *port = SK_PORT_B;
1715                 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1716         }
1717
1718         /* Turn on the 'driver is loaded' LED. */
1719         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1720
1721         bus_generic_attach(dev);
1722
1723 fail:
1724         splx(s);
1725         return(error);
1726 }
1727
1728 static int sk_detach(dev)
1729         device_t                dev;
1730 {
1731         struct sk_softc         *sc;
1732         struct sk_if_softc      *sc_if;
1733         struct ifnet            *ifp;
1734         int                     s;
1735
1736         s = splimp();
1737
1738         sc = device_get_softc(device_get_parent(dev));
1739         sc_if = device_get_softc(dev);
1740         ifp = &sc_if->arpcom.ac_if;
1741         sk_stop(sc_if);
1742         ether_ifdetach(ifp);
1743         bus_generic_detach(dev);
1744         if (sc_if->sk_miibus != NULL)
1745                 device_delete_child(dev, sc_if->sk_miibus);
1746         contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1747         contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1748
1749         return(0);
1750 }
1751
1752 static int skc_detach(dev)
1753         device_t                dev;
1754 {
1755         struct sk_softc         *sc;
1756         int                     s;
1757
1758         s = splimp();
1759
1760         sc = device_get_softc(dev);
1761
1762         bus_generic_detach(dev);
1763         if (sc->sk_devs[SK_PORT_A] != NULL)
1764                 device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1765         if (sc->sk_devs[SK_PORT_B] != NULL)
1766                 device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1767
1768         bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1769         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1770         bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1771
1772         splx(s);
1773
1774         return(0);
1775 }
1776
1777 static int sk_encap(sc_if, m_head, txidx)
1778         struct sk_if_softc      *sc_if;
1779         struct mbuf             *m_head;
1780         u_int32_t               *txidx;
1781 {
1782         struct sk_tx_desc       *f = NULL;
1783         struct mbuf             *m;
1784         u_int32_t               frag, cur, cnt = 0;
1785
1786         m = m_head;
1787         cur = frag = *txidx;
1788
1789         /*
1790          * Start packing the mbufs in this chain into
1791          * the fragment pointers. Stop when we run out
1792          * of fragments or hit the end of the mbuf chain.
1793          */
1794         for (m = m_head; m != NULL; m = m->m_next) {
1795                 if (m->m_len != 0) {
1796                         if ((SK_TX_RING_CNT -
1797                             (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1798                                 return(ENOBUFS);
1799                         f = &sc_if->sk_rdata->sk_tx_ring[frag];
1800                         f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1801                         f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1802                         if (cnt == 0)
1803                                 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1804                         else
1805                                 f->sk_ctl |= SK_TXCTL_OWN;
1806                         cur = frag;
1807                         SK_INC(frag, SK_TX_RING_CNT);
1808                         cnt++;
1809                 }
1810         }
1811
1812         if (m != NULL)
1813                 return(ENOBUFS);
1814
1815         sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1816                 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1817         sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1818         sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1819         sc_if->sk_cdata.sk_tx_cnt += cnt;
1820
1821         *txidx = frag;
1822
1823         return(0);
1824 }
1825
1826 static void sk_start(ifp)
1827         struct ifnet            *ifp;
1828 {
1829         struct sk_softc         *sc;
1830         struct sk_if_softc      *sc_if;
1831         struct mbuf             *m_head = NULL;
1832         u_int32_t               idx;
1833
1834         sc_if = ifp->if_softc;
1835         sc = sc_if->sk_softc;
1836
1837         idx = sc_if->sk_cdata.sk_tx_prod;
1838
1839         while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1840                 IF_DEQUEUE(&ifp->if_snd, m_head);
1841                 if (m_head == NULL)
1842                         break;
1843
1844                 /*
1845                  * Pack the data into the transmit ring. If we
1846                  * don't have room, set the OACTIVE flag and wait
1847                  * for the NIC to drain the ring.
1848                  */
1849                 if (sk_encap(sc_if, m_head, &idx)) {
1850                         IF_PREPEND(&ifp->if_snd, m_head);
1851                         ifp->if_flags |= IFF_OACTIVE;
1852                         break;
1853                 }
1854
1855                 /*
1856                  * If there's a BPF listener, bounce a copy of this frame
1857                  * to him.
1858                  */
1859                 if (ifp->if_bpf)
1860                         bpf_mtap(ifp, m_head);
1861         }
1862
1863         /* Transmit */
1864         sc_if->sk_cdata.sk_tx_prod = idx;
1865         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1866
1867         /* Set a timeout in case the chip goes out to lunch. */
1868         ifp->if_timer = 5;
1869
1870         return;
1871 }
1872
1873
1874 static void sk_watchdog(ifp)
1875         struct ifnet            *ifp;
1876 {
1877         struct sk_if_softc      *sc_if;
1878
1879         sc_if = ifp->if_softc;
1880
1881         printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1882         sk_init(sc_if);
1883
1884         return;
1885 }
1886
1887 static void skc_shutdown(dev)
1888         device_t                dev;
1889 {
1890         struct sk_softc         *sc;
1891
1892         sc = device_get_softc(dev);
1893
1894         /* Turn off the 'driver is loaded' LED. */
1895         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1896
1897         /*
1898          * Reset the GEnesis controller. Doing this should also
1899          * assert the resets on the attached XMAC(s).
1900          */
1901         sk_reset(sc);
1902
1903         return;
1904 }
1905
1906 static void sk_rxeof(sc_if)
1907         struct sk_if_softc      *sc_if;
1908 {
1909         struct mbuf             *m;
1910         struct ifnet            *ifp;
1911         struct sk_chain         *cur_rx;
1912         int                     total_len = 0;
1913         int                     i;
1914         u_int32_t               rxstat;
1915
1916         ifp = &sc_if->arpcom.ac_if;
1917         i = sc_if->sk_cdata.sk_rx_prod;
1918         cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1919
1920         while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1921
1922                 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1923                 rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1924                 m = cur_rx->sk_mbuf;
1925                 cur_rx->sk_mbuf = NULL;
1926                 total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1927                 SK_INC(i, SK_RX_RING_CNT);
1928
1929                 if (rxstat & XM_RXSTAT_ERRFRAME) {
1930                         ifp->if_ierrors++;
1931                         sk_newbuf(sc_if, cur_rx, m);
1932                         continue;
1933                 }
1934
1935                 /*
1936                  * Try to allocate a new jumbo buffer. If that
1937                  * fails, copy the packet to mbufs and put the
1938                  * jumbo buffer back in the ring so it can be
1939                  * re-used. If allocating mbufs fails, then we
1940                  * have to drop the packet.
1941                  */
1942                 if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1943                         struct mbuf             *m0;
1944                         m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1945                             total_len + ETHER_ALIGN, 0, ifp, NULL);
1946                         sk_newbuf(sc_if, cur_rx, m);
1947                         if (m0 == NULL) {
1948                                 printf("sk%d: no receive buffers "
1949                                     "available -- packet dropped!\n",
1950                                     sc_if->sk_unit);
1951                                 ifp->if_ierrors++;
1952                                 continue;
1953                         }
1954                         m_adj(m0, ETHER_ALIGN);
1955                         m = m0;
1956                 } else {
1957                         m->m_pkthdr.rcvif = ifp;
1958                         m->m_pkthdr.len = m->m_len = total_len;
1959                 }
1960
1961                 ifp->if_ipackets++;
1962                 (*ifp->if_input)(ifp, m);
1963         }
1964
1965         sc_if->sk_cdata.sk_rx_prod = i;
1966
1967         return;
1968 }
1969
1970 static void sk_txeof(sc_if)
1971         struct sk_if_softc      *sc_if;
1972 {
1973         struct sk_tx_desc       *cur_tx = NULL;
1974         struct ifnet            *ifp;
1975         u_int32_t               idx;
1976
1977         ifp = &sc_if->arpcom.ac_if;
1978
1979         /*
1980          * Go through our tx ring and free mbufs for those
1981          * frames that have been sent.
1982          */
1983         idx = sc_if->sk_cdata.sk_tx_cons;
1984         while(idx != sc_if->sk_cdata.sk_tx_prod) {
1985                 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1986                 if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1987                         break;
1988                 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1989                         ifp->if_opackets++;
1990                 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1991                         m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1992                         sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1993                 }
1994                 sc_if->sk_cdata.sk_tx_cnt--;
1995                 SK_INC(idx, SK_TX_RING_CNT);
1996                 ifp->if_timer = 0;
1997         }
1998
1999         sc_if->sk_cdata.sk_tx_cons = idx;
2000
2001         if (cur_tx != NULL)
2002                 ifp->if_flags &= ~IFF_OACTIVE;
2003
2004         return;
2005 }
2006
2007 static void sk_tick(xsc_if)
2008         void                    *xsc_if;
2009 {
2010         struct sk_if_softc      *sc_if;
2011         struct mii_data         *mii;
2012         struct ifnet            *ifp;
2013         int                     i;
2014
2015         sc_if = xsc_if;
2016         ifp = &sc_if->arpcom.ac_if;
2017         mii = device_get_softc(sc_if->sk_miibus);
2018
2019         if (!(ifp->if_flags & IFF_UP))
2020                 return;
2021
2022         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2023                 sk_intr_bcom(sc_if);
2024                 return;
2025         }
2026
2027         /*
2028          * According to SysKonnect, the correct way to verify that
2029          * the link has come back up is to poll bit 0 of the GPIO
2030          * register three times. This pin has the signal from the
2031          * link_sync pin connected to it; if we read the same link
2032          * state 3 times in a row, we know the link is up.
2033          */
2034         for (i = 0; i < 3; i++) {
2035                 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2036                         break;
2037         }
2038
2039         if (i != 3) {
2040                 sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2041                 return;
2042         }
2043
2044         /* Turn the GP0 interrupt back on. */
2045         SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2046         SK_XM_READ_2(sc_if, XM_ISR);
2047         mii_tick(mii);
2048         mii_pollstat(mii);
2049         untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2050
2051         return;
2052 }
2053
2054 static void sk_intr_bcom(sc_if)
2055         struct sk_if_softc      *sc_if;
2056 {
2057         struct sk_softc         *sc;
2058         struct mii_data         *mii;
2059         struct ifnet            *ifp;
2060         int                     status;
2061
2062         sc = sc_if->sk_softc;
2063         mii = device_get_softc(sc_if->sk_miibus);
2064         ifp = &sc_if->arpcom.ac_if;
2065
2066         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2067
2068         /*
2069          * Read the PHY interrupt register to make sure
2070          * we clear any pending interrupts.
2071          */
2072         status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2073
2074         if (!(ifp->if_flags & IFF_RUNNING)) {
2075                 sk_init_xmac(sc_if);
2076                 return;
2077         }
2078
2079         if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2080                 int                     lstat;
2081                 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2082                     BRGPHY_MII_AUXSTS);
2083
2084                 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2085                         mii_mediachg(mii);
2086                         /* Turn off the link LED. */
2087                         SK_IF_WRITE_1(sc_if, 0,
2088                             SK_LINKLED1_CTL, SK_LINKLED_OFF);
2089                         sc_if->sk_link = 0;
2090                 } else if (status & BRGPHY_ISR_LNK_CHG) {
2091                         sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2092                             BRGPHY_MII_IMR, 0xFF00);
2093                         mii_tick(mii);
2094                         sc_if->sk_link = 1;
2095                         /* Turn on the link LED. */
2096                         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2097                             SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2098                             SK_LINKLED_BLINK_OFF);
2099                         mii_pollstat(mii);
2100                 } else {
2101                         mii_tick(mii);
2102                         sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2103                 }
2104         }
2105
2106         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2107
2108         return;
2109 }
2110
2111 static void sk_intr_xmac(sc_if)
2112         struct sk_if_softc      *sc_if;
2113 {
2114         struct sk_softc         *sc;
2115         u_int16_t               status;
2116         struct mii_data         *mii;
2117
2118         sc = sc_if->sk_softc;
2119         mii = device_get_softc(sc_if->sk_miibus);
2120         status = SK_XM_READ_2(sc_if, XM_ISR);
2121
2122         /*
2123          * Link has gone down. Start MII tick timeout to
2124          * watch for link resync.
2125          */
2126         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2127                 if (status & XM_ISR_GP0_SET) {
2128                         SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2129                         sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2130                 }
2131
2132                 if (status & XM_ISR_AUTONEG_DONE) {
2133                         sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz);
2134                 }
2135         }
2136
2137         if (status & XM_IMR_TX_UNDERRUN)
2138                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2139
2140         if (status & XM_IMR_RX_OVERRUN)
2141                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2142
2143         status = SK_XM_READ_2(sc_if, XM_ISR);
2144
2145         return;
2146 }
2147
2148 static void sk_intr_yukon(sc_if)
2149         struct sk_if_softc      *sc_if;
2150 {
2151         int status;
2152
2153         status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2154
2155         return;
2156 }
2157
2158 static void sk_intr(xsc)
2159         void                    *xsc;
2160 {
2161         struct sk_softc         *sc = xsc;
2162         struct sk_if_softc      *sc_if0 = NULL, *sc_if1 = NULL;
2163         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2164         u_int32_t               status;
2165
2166         sc_if0 = sc->sk_if[SK_PORT_A];
2167         sc_if1 = sc->sk_if[SK_PORT_B];
2168
2169         if (sc_if0 != NULL)
2170                 ifp0 = &sc_if0->arpcom.ac_if;
2171         if (sc_if1 != NULL)
2172                 ifp1 = &sc_if1->arpcom.ac_if;
2173
2174         for (;;) {
2175                 status = CSR_READ_4(sc, SK_ISSR);
2176                 if (!(status & sc->sk_intrmask))
2177                         break;
2178
2179                 /* Handle receive interrupts first. */
2180                 if (status & SK_ISR_RX1_EOF) {
2181                         sk_rxeof(sc_if0);
2182                         CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2183                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2184                 }
2185                 if (status & SK_ISR_RX2_EOF) {
2186                         sk_rxeof(sc_if1);
2187                         CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2188                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2189                 }
2190
2191                 /* Then transmit interrupts. */
2192                 if (status & SK_ISR_TX1_S_EOF) {
2193                         sk_txeof(sc_if0);
2194                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2195                             SK_TXBMU_CLR_IRQ_EOF);
2196                 }
2197                 if (status & SK_ISR_TX2_S_EOF) {
2198                         sk_txeof(sc_if1);
2199                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2200                             SK_TXBMU_CLR_IRQ_EOF);
2201                 }
2202
2203                 /* Then MAC interrupts. */
2204                 if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2205                         if (sc->sk_type == SK_GENESIS)
2206                                 sk_intr_xmac(sc_if0);
2207                         else
2208                                 sk_intr_yukon(sc_if0);
2209                 }
2210
2211                 if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2212                         if (sc->sk_type == SK_GENESIS)
2213                                 sk_intr_xmac(sc_if1);
2214                         else
2215                                 sk_intr_yukon(sc_if0);
2216                 }
2217
2218                 if (status & SK_ISR_EXTERNAL_REG) {
2219                         if (ifp0 != NULL &&
2220                             sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2221                                 sk_intr_bcom(sc_if0);
2222                         if (ifp1 != NULL &&
2223                             sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2224                                 sk_intr_bcom(sc_if1);
2225                 }
2226         }
2227
2228         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2229
2230         if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
2231                 sk_start(ifp0);
2232         if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
2233                 sk_start(ifp1);
2234
2235         return;
2236 }
2237
2238 static void sk_init_xmac(sc_if)
2239         struct sk_if_softc      *sc_if;
2240 {
2241         struct sk_softc         *sc;
2242         struct ifnet            *ifp;
2243         struct sk_bcom_hack     bhack[] = {
2244         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2245         { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2246         { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2247         { 0, 0 } };
2248
2249         sc = sc_if->sk_softc;
2250         ifp = &sc_if->arpcom.ac_if;
2251
2252         /* Unreset the XMAC. */
2253         SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2254         DELAY(1000);
2255
2256         /* Reset the XMAC's internal state. */
2257         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2258
2259         /* Save the XMAC II revision */
2260         sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2261
2262         /*
2263          * Perform additional initialization for external PHYs,
2264          * namely for the 1000baseTX cards that use the XMAC's
2265          * GMII mode.
2266          */
2267         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2268                 int                     i = 0;
2269                 u_int32_t               val;
2270
2271                 /* Take PHY out of reset. */
2272                 val = sk_win_read_4(sc, SK_GPIO);
2273                 if (sc_if->sk_port == SK_PORT_A)
2274                         val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2275                 else
2276                         val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2277                 sk_win_write_4(sc, SK_GPIO, val);
2278
2279                 /* Enable GMII mode on the XMAC. */
2280                 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2281
2282                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2283                     BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2284                 DELAY(10000);
2285                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2286                     BRGPHY_MII_IMR, 0xFFF0);
2287
2288                 /*
2289                  * Early versions of the BCM5400 apparently have
2290                  * a bug that requires them to have their reserved
2291                  * registers initialized to some magic values. I don't
2292                  * know what the numbers do, I'm just the messenger.
2293                  */
2294                 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2295                     == 0x6041) {
2296                         while(bhack[i].reg) {
2297                                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2298                                     bhack[i].reg, bhack[i].val);
2299                                 i++;
2300                         }
2301                 }
2302         }
2303
2304         /* Set station address */
2305         SK_XM_WRITE_2(sc_if, XM_PAR0,
2306             *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2307         SK_XM_WRITE_2(sc_if, XM_PAR1,
2308             *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2309         SK_XM_WRITE_2(sc_if, XM_PAR2,
2310             *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2311         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2312
2313         if (ifp->if_flags & IFF_BROADCAST) {
2314                 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2315         } else {
2316                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2317         }
2318
2319         /* We don't need the FCS appended to the packet. */
2320         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2321
2322         /* We want short frames padded to 60 bytes. */
2323         SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2324
2325         /*
2326          * Enable the reception of all error frames. This is is
2327          * a necessary evil due to the design of the XMAC. The
2328          * XMAC's receive FIFO is only 8K in size, however jumbo
2329          * frames can be up to 9000 bytes in length. When bad
2330          * frame filtering is enabled, the XMAC's RX FIFO operates
2331          * in 'store and forward' mode. For this to work, the
2332          * entire frame has to fit into the FIFO, but that means
2333          * that jumbo frames larger than 8192 bytes will be
2334          * truncated. Disabling all bad frame filtering causes
2335          * the RX FIFO to operate in streaming mode, in which
2336          * case the XMAC will start transfering frames out of the
2337          * RX FIFO as soon as the FIFO threshold is reached.
2338          */
2339         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2340             XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2341             XM_MODE_RX_INRANGELEN);
2342
2343         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2344                 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2345         else
2346                 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2347
2348         /*
2349          * Bump up the transmit threshold. This helps hold off transmit
2350          * underruns when we're blasting traffic from both ports at once.
2351          */
2352         SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2353
2354         /* Set promiscuous mode */
2355         sk_setpromisc(sc_if);
2356
2357         /* Set multicast filter */
2358         sk_setmulti(sc_if);
2359
2360         /* Clear and enable interrupts */
2361         SK_XM_READ_2(sc_if, XM_ISR);
2362         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2363                 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2364         else
2365                 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2366
2367         /* Configure MAC arbiter */
2368         switch(sc_if->sk_xmac_rev) {
2369         case XM_XMAC_REV_B2:
2370                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2371                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2372                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2373                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2374                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2375                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2376                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2377                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2378                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2379                 break;
2380         case XM_XMAC_REV_C1:
2381                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2382                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2383                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2384                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2385                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2386                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2387                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2388                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2389                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2390                 break;
2391         default:
2392                 break;
2393         }
2394         sk_win_write_2(sc, SK_MACARB_CTL,
2395             SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2396
2397         sc_if->sk_link = 1;
2398
2399         return;
2400 }
2401
2402 static void sk_init_yukon(sc_if)
2403         struct sk_if_softc      *sc_if;
2404 {
2405         u_int32_t               phy;
2406         u_int16_t               reg;
2407         int                     i;
2408
2409         /* GMAC and GPHY Reset */
2410         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2411         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2412         DELAY(1000);
2413         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2414         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2415         DELAY(1000);
2416
2417         phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2418                 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2419
2420         switch(sc_if->sk_softc->sk_pmd) {
2421         case IFM_1000_SX:
2422         case IFM_1000_LX:
2423                 phy |= SK_GPHY_FIBER;
2424                 break;
2425
2426         case IFM_1000_CX:
2427         case IFM_1000_TX:
2428                 phy |= SK_GPHY_COPPER;
2429                 break;
2430         }
2431
2432         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2433         DELAY(1000);
2434         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2435         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2436                       SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2437
2438         /* unused read of the interrupt source register */
2439         SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2440
2441         reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2442
2443         /* MIB Counter Clear Mode set */
2444         reg |= YU_PAR_MIB_CLR;
2445         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2446
2447         /* MIB Counter Clear Mode clear */
2448         reg &= ~YU_PAR_MIB_CLR;
2449         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2450
2451         /* receive control reg */
2452         SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2453
2454         /* transmit parameter register */
2455         SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2456                       YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2457
2458         /* serial mode register */
2459         SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2460                       YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2461
2462         /* Setup Yukon's address */
2463         for (i = 0; i < 3; i++) {
2464                 /* Write Source Address 1 (unicast filter) */
2465                 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 
2466                               sc_if->arpcom.ac_enaddr[i * 2] |
2467                               sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2468         }
2469
2470         for (i = 0; i < 3; i++) {
2471                 reg = sk_win_read_2(sc_if->sk_softc,
2472                                     SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2473                 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2474         }
2475
2476         /* Set promiscuous mode */
2477         sk_setpromisc(sc_if);
2478
2479         /* Set multicast filter */
2480         sk_setmulti(sc_if);
2481
2482         /* enable interrupt mask for counter overflows */
2483         SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2484         SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2485         SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2486
2487         /* Configure RX MAC FIFO */
2488         SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2489         SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2490
2491         /* Configure TX MAC FIFO */
2492         SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2493         SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2494 }
2495
2496 /*
2497  * Note that to properly initialize any part of the GEnesis chip,
2498  * you first have to take it out of reset mode.
2499  */
2500 static void sk_init(xsc)
2501         void                    *xsc;
2502 {
2503         struct sk_if_softc      *sc_if = xsc;
2504         struct sk_softc         *sc;
2505         struct ifnet            *ifp;
2506         struct mii_data         *mii;
2507         int                     s;
2508         u_int16_t               reg;
2509
2510         s = splimp();
2511
2512         ifp = &sc_if->arpcom.ac_if;
2513         sc = sc_if->sk_softc;
2514         mii = device_get_softc(sc_if->sk_miibus);
2515
2516         /* Cancel pending I/O and free all RX/TX buffers. */
2517         sk_stop(sc_if);
2518
2519         if (sc->sk_type == SK_GENESIS) {
2520                 /* Configure LINK_SYNC LED */
2521                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2522                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2523                         SK_LINKLED_LINKSYNC_ON);
2524
2525                 /* Configure RX LED */
2526                 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,  
2527                         SK_RXLEDCTL_COUNTER_START);
2528
2529                 /* Configure TX LED */
2530                 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2531                         SK_TXLEDCTL_COUNTER_START);
2532         }
2533
2534         /* Configure I2C registers */
2535
2536         /* Configure XMAC(s) */
2537         switch (sc->sk_type) {
2538         case SK_GENESIS:
2539                 sk_init_xmac(sc_if);
2540                 break;
2541         case SK_YUKON:
2542                 sk_init_yukon(sc_if);
2543                 break;
2544         }
2545         mii_mediachg(mii);
2546
2547         if (sc->sk_type == SK_GENESIS) {
2548                 /* Configure MAC FIFOs */
2549                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2550                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2551                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2552
2553                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2554                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2555                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2556         }
2557
2558         /* Configure transmit arbiter(s) */
2559         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2560             SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2561
2562         /* Configure RAMbuffers */
2563         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2564         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2565         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2566         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2567         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2568         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2569
2570         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2571         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2572         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2573         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2574         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2575         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2576         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2577
2578         /* Configure BMUs */
2579         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2580         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2581             vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2582         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2583
2584         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2585         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2586             vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2587         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2588
2589         /* Init descriptors */
2590         if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2591                 printf("sk%d: initialization failed: no "
2592                     "memory for rx buffers\n", sc_if->sk_unit);
2593                 sk_stop(sc_if);
2594                 (void)splx(s);
2595                 return;
2596         }
2597         sk_init_tx_ring(sc_if);
2598
2599         /* Configure interrupt handling */
2600         CSR_READ_4(sc, SK_ISSR);
2601         if (sc_if->sk_port == SK_PORT_A)
2602                 sc->sk_intrmask |= SK_INTRS1;
2603         else
2604                 sc->sk_intrmask |= SK_INTRS2;
2605
2606         sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2607
2608         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2609
2610         /* Start BMUs. */
2611         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2612
2613         switch(sc->sk_type) {
2614         case SK_GENESIS:
2615                 /* Enable XMACs TX and RX state machines */
2616                 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2617                 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2618                 break;
2619         case SK_YUKON:
2620                 reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2621                 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2622                 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2623                 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2624         }
2625
2626         ifp->if_flags |= IFF_RUNNING;
2627         ifp->if_flags &= ~IFF_OACTIVE;
2628
2629         splx(s);
2630
2631         return;
2632 }
2633
2634 static void sk_stop(sc_if)
2635         struct sk_if_softc      *sc_if;
2636 {
2637         int                     i;
2638         struct sk_softc         *sc;
2639         struct ifnet            *ifp;
2640
2641         sc = sc_if->sk_softc;
2642         ifp = &sc_if->arpcom.ac_if;
2643
2644         untimeout(sk_tick, sc_if, sc_if->sk_tick_ch);
2645
2646         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2647                 u_int32_t               val;
2648
2649                 /* Put PHY back into reset. */
2650                 val = sk_win_read_4(sc, SK_GPIO);
2651                 if (sc_if->sk_port == SK_PORT_A) {
2652                         val |= SK_GPIO_DIR0;
2653                         val &= ~SK_GPIO_DAT0;
2654                 } else {
2655                         val |= SK_GPIO_DIR2;
2656                         val &= ~SK_GPIO_DAT2;
2657                 }
2658                 sk_win_write_4(sc, SK_GPIO, val);
2659         }
2660
2661         /* Turn off various components of this interface. */
2662         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2663         switch (sc->sk_type) {
2664         case SK_GENESIS:
2665                 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2666                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2667                 break;
2668         case SK_YUKON:
2669                 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2670                 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2671                 break;
2672         }
2673         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2674         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2675         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2676         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2677         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2678         SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2679         SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2680         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2681         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2682
2683         /* Disable interrupts */
2684         if (sc_if->sk_port == SK_PORT_A)
2685                 sc->sk_intrmask &= ~SK_INTRS1;
2686         else
2687                 sc->sk_intrmask &= ~SK_INTRS2;
2688         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2689
2690         SK_XM_READ_2(sc_if, XM_ISR);
2691         SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2692
2693         /* Free RX and TX mbufs still in the queues. */
2694         for (i = 0; i < SK_RX_RING_CNT; i++) {
2695                 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2696                         m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2697                         sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2698                 }
2699         }
2700
2701         for (i = 0; i < SK_TX_RING_CNT; i++) {
2702                 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2703                         m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2704                         sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2705                 }
2706         }
2707
2708         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2709
2710         return;
2711 }