Merge branch 'vendor/SENDMAIL'
[dragonfly.git] / sys / dev / netif / re / if_re.c
1 /*
2  * Copyright (c) 2004
3  *      Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.99 2008/10/30 11:27:40 sephe Exp $
37  */
38
39 /*
40  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *      o Descriptor based DMA mechanism. Each descriptor represents
59  *        a single packet fragment. Data buffers may be aligned on
60  *        any byte boundary.
61  *
62  *      o 64-bit DMA
63  *
64  *      o TCP/IP checksum offload for both RX and TX
65  *
66  *      o High and normal priority transmit DMA rings
67  *
68  *      o VLAN tag insertion and extraction
69  *
70  *      o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *      o 1000Mbps mode
82  *
83  *      o Jumbo frames
84  *
85  *      o GMII and TBI ports/registers for interfacing with copper
86  *        or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *      o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  * 
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7440, so the max MTU possible with this
111  * driver is 7422 bytes.
112  */
113
114 #define _IP_VHL
115
116 #include "opt_polling.h"
117
118 #include <sys/param.h>
119 #include <sys/bus.h>
120 #include <sys/endian.h>
121 #include <sys/kernel.h>
122 #include <sys/in_cksum.h>
123 #include <sys/interrupt.h>
124 #include <sys/malloc.h>
125 #include <sys/mbuf.h>
126 #include <sys/rman.h>
127 #include <sys/serialize.h>
128 #include <sys/socket.h>
129 #include <sys/sockio.h>
130 #include <sys/sysctl.h>
131
132 #include <net/bpf.h>
133 #include <net/ethernet.h>
134 #include <net/if.h>
135 #include <net/ifq_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142
143 #include <netinet/ip.h>
144
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164         uint16_t        re_vid;
165         uint16_t        re_did;
166         const char      *re_name;
167 } re_devs[] = {
168         { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169           "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170
171         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172           "RealTek 8139C+ 10/100BaseTX" },
173
174         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175           "RealTek 810x PCIe 10/100baseTX" },
176
177         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178           "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179
180         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181           "RealTek 8110/8169 Gigabit Ethernet" },
182
183         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184           "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185
186         { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187           "Corega CG-LAPCIGT Gigabit Ethernet" },
188
189         { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190           "Linksys EG1032 Gigabit Ethernet" },
191
192         { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193           "US Robotics 997902 Gigabit Ethernet" },
194
195         { PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196           "TTTech MC322 Gigabit Ethernet" },
197
198         { 0, 0, NULL }
199 };
200
201 static const struct re_hwrev re_hwrevs[] = {
202         { RE_HWREV_8139CPLUS,   RE_MACVER_UNKN,         ETHERMTU,
203           RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204
205         { RE_HWREV_8169,        RE_MACVER_UNKN,         ETHERMTU,
206           RE_C_HWCSUM | RE_C_8169 },
207
208         { RE_HWREV_8110S,       RE_MACVER_03,           RE_MTU_6K,
209           RE_C_HWCSUM | RE_C_8169 },
210
211         { RE_HWREV_8169S,       RE_MACVER_03,           RE_MTU_6K,
212           RE_C_HWCSUM | RE_C_8169 },
213
214         { RE_HWREV_8169SB,      RE_MACVER_04,           RE_MTU_6K,
215           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216
217         { RE_HWREV_8169SC1,     RE_MACVER_05,           RE_MTU_6K,
218           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219
220         { RE_HWREV_8169SC2,     RE_MACVER_06,           RE_MTU_6K,
221           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222
223         { RE_HWREV_8168B1,      RE_MACVER_21,           RE_MTU_6K,
224           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225
226         { RE_HWREV_8168B2,      RE_MACVER_23,           RE_MTU_6K,
227           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228
229         { RE_HWREV_8168B3,      RE_MACVER_23,           RE_MTU_6K,
230           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231
232         { RE_HWREV_8168C,       RE_MACVER_29,           RE_MTU_6K,
233           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235
236         { RE_HWREV_8168CP,      RE_MACVER_2B,           RE_MTU_6K,
237           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239
240         { RE_HWREV_8168D,       RE_MACVER_2A,           RE_MTU_9K,
241           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243
244         { RE_HWREV_8100E,       RE_MACVER_UNKN,         ETHERMTU,
245           RE_C_HWCSUM | RE_C_FASTE },
246
247         { RE_HWREV_8101E1,      RE_MACVER_16,           ETHERMTU,
248           RE_C_HWCSUM | RE_C_FASTE },
249
250         { RE_HWREV_8101E2,      RE_MACVER_16,           ETHERMTU,
251           RE_C_HWCSUM | RE_C_FASTE },
252
253         { RE_HWREV_8102E,       RE_MACVER_15,           ETHERMTU,
254           RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
255           RE_C_FASTE },
256
257         { RE_HWREV_8102EL,      RE_MACVER_15,           ETHERMTU,
258           RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
259           RE_C_FASTE },
260
261         { RE_HWREV_NULL, 0, 0, 0 }
262 };
263
264 static int      re_probe(device_t);
265 static int      re_attach(device_t);
266 static int      re_detach(device_t);
267 static int      re_suspend(device_t);
268 static int      re_resume(device_t);
269 static void     re_shutdown(device_t);
270
271 static int      re_allocmem(device_t);
272 static void     re_freemem(device_t);
273 static void     re_freebufmem(struct re_softc *, int, int);
274 static int      re_encap(struct re_softc *, struct mbuf **, int *);
275 static int      re_newbuf_std(struct re_softc *, int, int);
276 static int      re_newbuf_jumbo(struct re_softc *, int, int);
277 static void     re_setup_rxdesc(struct re_softc *, int);
278 static int      re_rx_list_init(struct re_softc *);
279 static int      re_tx_list_init(struct re_softc *);
280 static int      re_rxeof(struct re_softc *);
281 static int      re_txeof(struct re_softc *);
282 static int      re_tx_collect(struct re_softc *);
283 static void     re_intr(void *);
284 static void     re_tick(void *);
285 static void     re_tick_serialized(void *);
286
287 static void     re_start(struct ifnet *);
288 static int      re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
289 static void     re_init(void *);
290 static void     re_stop(struct re_softc *);
291 static void     re_watchdog(struct ifnet *);
292 static int      re_ifmedia_upd(struct ifnet *);
293 static void     re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
294
295 static void     re_eeprom_putbyte(struct re_softc *, int);
296 static void     re_eeprom_getword(struct re_softc *, int, u_int16_t *);
297 static void     re_read_eeprom(struct re_softc *, caddr_t, int, int);
298 static void     re_get_eewidth(struct re_softc *);
299
300 static int      re_gmii_readreg(device_t, int, int);
301 static int      re_gmii_writereg(device_t, int, int, int);
302
303 static int      re_miibus_readreg(device_t, int, int);
304 static int      re_miibus_writereg(device_t, int, int, int);
305 static void     re_miibus_statchg(device_t);
306
307 static void     re_setmulti(struct re_softc *);
308 static void     re_reset(struct re_softc *, int);
309 static void     re_get_eaddr(struct re_softc *, uint8_t *);
310
311 static void     re_setup_hw_im(struct re_softc *);
312 static void     re_setup_sim_im(struct re_softc *);
313 static void     re_disable_hw_im(struct re_softc *);
314 static void     re_disable_sim_im(struct re_softc *);
315 static void     re_config_imtype(struct re_softc *, int);
316 static void     re_setup_intr(struct re_softc *, int, int);
317
318 static int      re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
319 static int      re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
320 static int      re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
321 static int      re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
322 static int      re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
323
324 static int      re_jpool_alloc(struct re_softc *);
325 static void     re_jpool_free(struct re_softc *);
326 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
327 static void     re_jbuf_free(void *);
328 static void     re_jbuf_ref(void *);
329
330 #ifdef RE_DIAG
331 static int      re_diag(struct re_softc *);
332 #endif
333
334 #ifdef DEVICE_POLLING
335 static void     re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
336 #endif
337
338 static device_method_t re_methods[] = {
339         /* Device interface */
340         DEVMETHOD(device_probe,         re_probe),
341         DEVMETHOD(device_attach,        re_attach),
342         DEVMETHOD(device_detach,        re_detach),
343         DEVMETHOD(device_suspend,       re_suspend),
344         DEVMETHOD(device_resume,        re_resume),
345         DEVMETHOD(device_shutdown,      re_shutdown),
346
347         /* bus interface */
348         DEVMETHOD(bus_print_child,      bus_generic_print_child),
349         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
350
351         /* MII interface */
352         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
353         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
354         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
355
356         { 0, 0 }
357 };
358
359 static driver_t re_driver = {
360         "re",
361         re_methods,
362         sizeof(struct re_softc)
363 };
364
365 static devclass_t re_devclass;
366
367 DECLARE_DUMMY_MODULE(if_re);
368 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
369 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
370 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
371 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
372
373 static int      re_rx_desc_count = RE_RX_DESC_CNT_DEF;
374 static int      re_tx_desc_count = RE_TX_DESC_CNT_DEF;
375
376 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
377 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
378
379 #define EE_SET(x)       \
380         CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
381
382 #define EE_CLR(x)       \
383         CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
384
385 static __inline void
386 re_free_rxchain(struct re_softc *sc)
387 {
388         if (sc->re_head != NULL) {
389                 m_freem(sc->re_head);
390                 sc->re_head = sc->re_tail = NULL;
391         }
392 }
393
394 /*
395  * Send a read command and address to the EEPROM, check for ACK.
396  */
397 static void
398 re_eeprom_putbyte(struct re_softc *sc, int addr)
399 {
400         int d, i;
401
402         d = addr | (RE_9346_READ << sc->re_eewidth);
403
404         /*
405          * Feed in each bit and strobe the clock.
406          */
407         for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
408                 if (d & i)
409                         EE_SET(RE_EE_DATAIN);
410                 else
411                         EE_CLR(RE_EE_DATAIN);
412                 DELAY(100);
413                 EE_SET(RE_EE_CLK);
414                 DELAY(150);
415                 EE_CLR(RE_EE_CLK);
416                 DELAY(100);
417         }
418 }
419
420 /*
421  * Read a word of data stored in the EEPROM at address 'addr.'
422  */
423 static void
424 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
425 {
426         int i;
427         uint16_t word = 0;
428
429         /*
430          * Send address of word we want to read.
431          */
432         re_eeprom_putbyte(sc, addr);
433
434         /*
435          * Start reading bits from EEPROM.
436          */
437         for (i = 0x8000; i != 0; i >>= 1) {
438                 EE_SET(RE_EE_CLK);
439                 DELAY(100);
440                 if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
441                         word |= i;
442                 EE_CLR(RE_EE_CLK);
443                 DELAY(100);
444         }
445
446         *dest = word;
447 }
448
449 /*
450  * Read a sequence of words from the EEPROM.
451  */
452 static void
453 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
454 {
455         int i;
456         uint16_t word = 0, *ptr;
457
458         CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
459         DELAY(100);
460
461         for (i = 0; i < cnt; i++) {
462                 CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
463                 re_eeprom_getword(sc, off + i, &word);
464                 CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
465                 ptr = (uint16_t *)(dest + (i * 2));
466                 *ptr = word;
467         }
468
469         CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
470 }
471
472 static void
473 re_get_eewidth(struct re_softc *sc)
474 {
475         uint16_t re_did = 0;
476
477         sc->re_eewidth = 6;
478         re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
479         if (re_did != 0x8129)
480                 sc->re_eewidth = 8;
481 }
482
483 static int
484 re_gmii_readreg(device_t dev, int phy, int reg)
485 {
486         struct re_softc *sc = device_get_softc(dev);
487         u_int32_t rval;
488         int i;
489
490         if (phy != 1)
491                 return(0);
492
493         /* Let the rgephy driver read the GMEDIASTAT register */
494
495         if (reg == RE_GMEDIASTAT)
496                 return(CSR_READ_1(sc, RE_GMEDIASTAT));
497
498         CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
499         DELAY(1000);
500
501         for (i = 0; i < RE_TIMEOUT; i++) {
502                 rval = CSR_READ_4(sc, RE_PHYAR);
503                 if (rval & RE_PHYAR_BUSY)
504                         break;
505                 DELAY(100);
506         }
507
508         if (i == RE_TIMEOUT) {
509                 device_printf(dev, "PHY read failed\n");
510                 return(0);
511         }
512
513         return(rval & RE_PHYAR_PHYDATA);
514 }
515
516 static int
517 re_gmii_writereg(device_t dev, int phy, int reg, int data)
518 {
519         struct re_softc *sc = device_get_softc(dev);
520         uint32_t rval;
521         int i;
522
523         CSR_WRITE_4(sc, RE_PHYAR,
524                     (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
525         DELAY(1000);
526
527         for (i = 0; i < RE_TIMEOUT; i++) {
528                 rval = CSR_READ_4(sc, RE_PHYAR);
529                 if ((rval & RE_PHYAR_BUSY) == 0)
530                         break;
531                 DELAY(100);
532         }
533
534         if (i == RE_TIMEOUT)
535                 device_printf(dev, "PHY write failed\n");
536
537         return(0);
538 }
539
540 static int
541 re_miibus_readreg(device_t dev, int phy, int reg)
542 {
543         struct re_softc *sc = device_get_softc(dev);
544         uint16_t rval = 0;
545         uint16_t re8139_reg = 0;
546
547         if (!RE_IS_8139CP(sc)) {
548                 rval = re_gmii_readreg(dev, phy, reg);
549                 return(rval);
550         }
551
552         /* Pretend the internal PHY is only at address 0 */
553         if (phy)
554                 return(0);
555
556         switch(reg) {
557         case MII_BMCR:
558                 re8139_reg = RE_BMCR;
559                 break;
560         case MII_BMSR:
561                 re8139_reg = RE_BMSR;
562                 break;
563         case MII_ANAR:
564                 re8139_reg = RE_ANAR;
565                 break;
566         case MII_ANER:
567                 re8139_reg = RE_ANER;
568                 break;
569         case MII_ANLPAR:
570                 re8139_reg = RE_LPAR;
571                 break;
572         case MII_PHYIDR1:
573         case MII_PHYIDR2:
574                 return(0);
575         /*
576          * Allow the rlphy driver to read the media status
577          * register. If we have a link partner which does not
578          * support NWAY, this is the register which will tell
579          * us the results of parallel detection.
580          */
581         case RE_MEDIASTAT:
582                 return(CSR_READ_1(sc, RE_MEDIASTAT));
583         default:
584                 device_printf(dev, "bad phy register\n");
585                 return(0);
586         }
587         rval = CSR_READ_2(sc, re8139_reg);
588         if (re8139_reg == RE_BMCR) {
589                 /* 8139C+ has different bit layout. */
590                 rval &= ~(BMCR_LOOP | BMCR_ISO);
591         }
592         return(rval);
593 }
594
595 static int
596 re_miibus_writereg(device_t dev, int phy, int reg, int data)
597 {
598         struct re_softc *sc= device_get_softc(dev);
599         u_int16_t re8139_reg = 0;
600
601         if (!RE_IS_8139CP(sc))
602                 return(re_gmii_writereg(dev, phy, reg, data));
603
604         /* Pretend the internal PHY is only at address 0 */
605         if (phy)
606                 return(0);
607
608         switch(reg) {
609         case MII_BMCR:
610                 re8139_reg = RE_BMCR;
611                 /* 8139C+ has different bit layout. */
612                 data &= ~(BMCR_LOOP | BMCR_ISO);
613                 break;
614         case MII_BMSR:
615                 re8139_reg = RE_BMSR;
616                 break;
617         case MII_ANAR:
618                 re8139_reg = RE_ANAR;
619                 break;
620         case MII_ANER:
621                 re8139_reg = RE_ANER;
622                 break;
623         case MII_ANLPAR:
624                 re8139_reg = RE_LPAR;
625                 break;
626         case MII_PHYIDR1:
627         case MII_PHYIDR2:
628                 return(0);
629         default:
630                 device_printf(dev, "bad phy register\n");
631                 return(0);
632         }
633         CSR_WRITE_2(sc, re8139_reg, data);
634         return(0);
635 }
636
637 static void
638 re_miibus_statchg(device_t dev)
639 {
640 }
641
642 /*
643  * Program the 64-bit multicast hash filter.
644  */
645 static void
646 re_setmulti(struct re_softc *sc)
647 {
648         struct ifnet *ifp = &sc->arpcom.ac_if;
649         int h = 0;
650         uint32_t hashes[2] = { 0, 0 };
651         struct ifmultiaddr *ifma;
652         uint32_t rxfilt;
653         int mcnt = 0;
654
655         rxfilt = CSR_READ_4(sc, RE_RXCFG);
656
657         /* Set the individual bit to receive frames for this host only. */
658         rxfilt |= RE_RXCFG_RX_INDIV;
659         /* Set capture broadcast bit to capture broadcast frames. */
660         rxfilt |= RE_RXCFG_RX_BROAD;
661
662         rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
663         if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
664                 rxfilt |= RE_RXCFG_RX_MULTI;
665
666                 /* If we want promiscuous mode, set the allframes bit. */
667                 if (ifp->if_flags & IFF_PROMISC)
668                         rxfilt |= RE_RXCFG_RX_ALLPHYS;
669
670                 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
671                 CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
672                 CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
673                 return;
674         }
675
676         /* first, zot all the existing hash bits */
677         CSR_WRITE_4(sc, RE_MAR0, 0);
678         CSR_WRITE_4(sc, RE_MAR4, 0);
679
680         /* now program new ones */
681         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
682                 if (ifma->ifma_addr->sa_family != AF_LINK)
683                         continue;
684                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
685                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
686                 if (h < 32)
687                         hashes[0] |= (1 << h);
688                 else
689                         hashes[1] |= (1 << (h - 32));
690                 mcnt++;
691         }
692
693         if (mcnt)
694                 rxfilt |= RE_RXCFG_RX_MULTI;
695         else
696                 rxfilt &= ~RE_RXCFG_RX_MULTI;
697
698         CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
699
700         /*
701          * For some unfathomable reason, RealTek decided to reverse
702          * the order of the multicast hash registers in the PCI Express
703          * parts. This means we have to write the hash pattern in reverse
704          * order for those devices.
705          */
706         if (sc->re_caps & RE_C_PCIE) {
707                 CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[0]));
708                 CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[1]));
709         } else {
710                 CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
711                 CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
712         }
713 }
714
715 static void
716 re_reset(struct re_softc *sc, int running)
717 {
718         int i;
719
720         if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
721                 CSR_WRITE_1(sc, RE_COMMAND,
722                             RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
723                 DELAY(100);
724         }
725
726         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
727
728         for (i = 0; i < RE_TIMEOUT; i++) {
729                 DELAY(10);
730                 if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
731                         break;
732         }
733         if (i == RE_TIMEOUT)
734                 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
735 }
736
737 #ifdef RE_DIAG
738 /*
739  * The following routine is designed to test for a defect on some
740  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
741  * lines connected to the bus, however for a 32-bit only card, they
742  * should be pulled high. The result of this defect is that the
743  * NIC will not work right if you plug it into a 64-bit slot: DMA
744  * operations will be done with 64-bit transfers, which will fail
745  * because the 64-bit data lines aren't connected.
746  *
747  * There's no way to work around this (short of talking a soldering
748  * iron to the board), however we can detect it. The method we use
749  * here is to put the NIC into digital loopback mode, set the receiver
750  * to promiscuous mode, and then try to send a frame. We then compare
751  * the frame data we sent to what was received. If the data matches,
752  * then the NIC is working correctly, otherwise we know the user has
753  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
754  * slot. In the latter case, there's no way the NIC can work correctly,
755  * so we print out a message on the console and abort the device attach.
756  */
757
758 static int
759 re_diag(struct re_softc *sc)
760 {
761         struct ifnet *ifp = &sc->arpcom.ac_if;
762         struct mbuf *m0;
763         struct ether_header *eh;
764         struct re_desc *cur_rx;
765         uint16_t status;
766         uint32_t rxstat;
767         int total_len, i, error = 0, phyaddr;
768         uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
769         uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
770
771         /* Allocate a single mbuf */
772
773         MGETHDR(m0, MB_DONTWAIT, MT_DATA);
774         if (m0 == NULL)
775                 return(ENOBUFS);
776
777         /*
778          * Initialize the NIC in test mode. This sets the chip up
779          * so that it can send and receive frames, but performs the
780          * following special functions:
781          * - Puts receiver in promiscuous mode
782          * - Enables digital loopback mode
783          * - Leaves interrupts turned off
784          */
785
786         ifp->if_flags |= IFF_PROMISC;
787         sc->re_flags |= RE_F_TESTMODE;
788         re_init(sc);
789         sc->re_flags |= RE_F_LINKED;
790         if (!RE_IS_8139CP(sc))
791                 phyaddr = 1;
792         else
793                 phyaddr = 0;
794
795         re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
796         for (i = 0; i < RE_TIMEOUT; i++) {
797                 status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
798                 if (!(status & BMCR_RESET))
799                         break;
800         }
801
802         re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
803         CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
804
805         DELAY(100000);
806
807         /* Put some data in the mbuf */
808
809         eh = mtod(m0, struct ether_header *);
810         bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
811         bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
812         eh->ether_type = htons(ETHERTYPE_IP);
813         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
814
815         /*
816          * Queue the packet, start transmission.
817          * Note: ifq_handoff() ultimately calls re_start() for us.
818          */
819
820         CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
821         error = ifq_handoff(ifp, m0, NULL);
822         if (error) {
823                 m0 = NULL;
824                 goto done;
825         }
826         m0 = NULL;
827
828         /* Wait for it to propagate through the chip */
829
830         DELAY(100000);
831         for (i = 0; i < RE_TIMEOUT; i++) {
832                 status = CSR_READ_2(sc, RE_ISR);
833                 CSR_WRITE_2(sc, RE_ISR, status);
834                 if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
835                     (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
836                         break;
837                 DELAY(10);
838         }
839
840         if (i == RE_TIMEOUT) {
841                 if_printf(ifp, "diagnostic failed to receive packet "
842                           "in loopback mode\n");
843                 error = EIO;
844                 goto done;
845         }
846
847         /*
848          * The packet should have been dumped into the first
849          * entry in the RX DMA ring. Grab it from there.
850          */
851
852         bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
853                         BUS_DMASYNC_POSTREAD);
854         bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
855                           sc->re_ldata.re_rx_dmamap[0]);
856
857         m0 = sc->re_ldata.re_rx_mbuf[0];
858         sc->re_ldata.re_rx_mbuf[0] = NULL;
859         eh = mtod(m0, struct ether_header *);
860
861         cur_rx = &sc->re_ldata.re_rx_list[0];
862         total_len = RE_RXBYTES(cur_rx);
863         rxstat = le32toh(cur_rx->re_cmdstat);
864
865         if (total_len != ETHER_MIN_LEN) {
866                 if_printf(ifp, "diagnostic failed, received short packet\n");
867                 error = EIO;
868                 goto done;
869         }
870
871         /* Test that the received packet data matches what we sent. */
872
873         if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
874             bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
875             be16toh(eh->ether_type) != ETHERTYPE_IP) {
876                 if_printf(ifp, "WARNING, DMA FAILURE!\n");
877                 if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
878                     dst, ":", src, ":", ETHERTYPE_IP);
879                 if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
880                     eh->ether_dhost, ":",  eh->ether_shost, ":",
881                     ntohs(eh->ether_type));
882                 if_printf(ifp, "You may have a defective 32-bit NIC plugged "
883                     "into a 64-bit PCI slot.\n");
884                 if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
885                     "for proper operation.\n");
886                 if_printf(ifp, "Read the re(4) man page for more details.\n");
887                 error = EIO;
888         }
889
890 done:
891         /* Turn interface off, release resources */
892
893         sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
894         ifp->if_flags &= ~IFF_PROMISC;
895         re_stop(sc);
896         if (m0 != NULL)
897                 m_freem(m0);
898
899         return (error);
900 }
901 #endif  /* RE_DIAG */
902
903 /*
904  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
905  * IDs against our list and return a device name if we find a match.
906  */
907 static int
908 re_probe(device_t dev)
909 {
910         const struct re_type *t;
911         const struct re_hwrev *hw_rev;
912         struct re_softc *sc;
913         int rid;
914         uint32_t hwrev, macmode, txcfg;
915         uint16_t vendor, product;
916
917         vendor = pci_get_vendor(dev);
918         product = pci_get_device(dev);
919
920         /*
921          * Only attach to rev.3 of the Linksys EG1032 adapter.
922          * Rev.2 is supported by sk(4).
923          */
924         if (vendor == PCI_VENDOR_LINKSYS &&
925             product == PCI_PRODUCT_LINKSYS_EG1032 &&
926             pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
927                 return ENXIO;
928
929         if (vendor == PCI_VENDOR_REALTEK &&
930             product == PCI_PRODUCT_REALTEK_RT8139 &&
931             pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
932                 /* Poor 8139 */
933                 return ENXIO;
934         }
935
936         for (t = re_devs; t->re_name != NULL; t++) {
937                 if (product == t->re_did && vendor == t->re_vid)
938                         break;
939         }
940
941         /*
942          * Check if we found a RealTek device.
943          */
944         if (t->re_name == NULL)
945                 return ENXIO;
946
947         /*
948          * Temporarily map the I/O space so we can read the chip ID register.
949          */
950         sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
951         rid = RE_PCI_LOIO;
952         sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
953                                             RF_ACTIVE);
954         if (sc->re_res == NULL) {
955                 device_printf(dev, "couldn't map ports/memory\n");
956                 kfree(sc, M_TEMP);
957                 return ENXIO;
958         }
959
960         sc->re_btag = rman_get_bustag(sc->re_res);
961         sc->re_bhandle = rman_get_bushandle(sc->re_res);
962
963         txcfg = CSR_READ_4(sc, RE_TXCFG);
964         hwrev = txcfg & RE_TXCFG_HWREV;
965         macmode = txcfg & RE_TXCFG_MACMODE;
966         bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
967         kfree(sc, M_TEMP);
968
969         /*
970          * and continue matching for the specific chip...
971          */
972         for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
973                 if (hw_rev->re_hwrev == hwrev) {
974                         sc = device_get_softc(dev);
975
976                         sc->re_hwrev = hw_rev->re_hwrev;
977                         sc->re_macver = hw_rev->re_macver;
978                         sc->re_caps = hw_rev->re_caps;
979                         sc->re_maxmtu = hw_rev->re_maxmtu;
980
981                         /*
982                          * Apply chip property fixup
983                          */
984                         switch (sc->re_hwrev) {
985                         case RE_HWREV_8101E1:
986                         case RE_HWREV_8101E2:
987                                 if (macmode == 0)
988                                         sc->re_macver = RE_MACVER_11;
989                                 else if (macmode == 0x200000)
990                                         sc->re_macver = RE_MACVER_12;
991                                 break;
992                         case RE_HWREV_8102E:
993                         case RE_HWREV_8102EL:
994                                 if (macmode == 0)
995                                         sc->re_macver = RE_MACVER_13;
996                                 else if (macmode == 0x100000)
997                                         sc->re_macver = RE_MACVER_14;
998                                 break;
999                         case RE_HWREV_8168B2:
1000                         case RE_HWREV_8168B3:
1001                                 if (macmode == 0)
1002                                         sc->re_macver = RE_MACVER_22;
1003                                 break;
1004                         case RE_HWREV_8168C:
1005                                 if (macmode == 0)
1006                                         sc->re_macver = RE_MACVER_24;
1007                                 else if (macmode == 0x200000)
1008                                         sc->re_macver = RE_MACVER_25;
1009                                 else if (macmode == 0x300000)
1010                                         sc->re_macver = RE_MACVER_27;
1011                                 break;
1012                         case RE_HWREV_8168CP:
1013                                 if (macmode == 0)
1014                                         sc->re_macver = RE_MACVER_26;
1015                                 else if (macmode == 0x100000)
1016                                         sc->re_macver = RE_MACVER_28;
1017                                 break;
1018                         }
1019                         if (pci_is_pcie(dev))
1020                                 sc->re_caps |= RE_C_PCIE;
1021
1022                         device_set_desc(dev, t->re_name);
1023                         return 0;
1024                 }
1025         }
1026
1027         if (bootverbose) {
1028                 device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1029                               hwrev, macmode);
1030         }
1031         return ENXIO;
1032 }
1033
1034 static int
1035 re_allocmem(device_t dev)
1036 {
1037         struct re_softc *sc = device_get_softc(dev);
1038         bus_dmamem_t dmem;
1039         int error, i;
1040
1041         /*
1042          * Allocate list data
1043          */
1044         sc->re_ldata.re_tx_mbuf =
1045         kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1046                 M_DEVBUF, M_ZERO | M_WAITOK);
1047
1048         sc->re_ldata.re_rx_mbuf =
1049         kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1050                 M_DEVBUF, M_ZERO | M_WAITOK);
1051
1052         sc->re_ldata.re_rx_paddr =
1053         kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1054                 M_DEVBUF, M_ZERO | M_WAITOK);
1055
1056         sc->re_ldata.re_tx_dmamap =
1057         kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1058                 M_DEVBUF, M_ZERO | M_WAITOK);
1059
1060         sc->re_ldata.re_rx_dmamap =
1061         kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1062                 M_DEVBUF, M_ZERO | M_WAITOK);
1063
1064         /*
1065          * Allocate the parent bus DMA tag appropriate for PCI.
1066          */
1067         error = bus_dma_tag_create(NULL,        /* parent */
1068                         1, 0,                   /* alignment, boundary */
1069                         BUS_SPACE_MAXADDR,      /* lowaddr */
1070                         BUS_SPACE_MAXADDR,      /* highaddr */
1071                         NULL, NULL,             /* filter, filterarg */
1072                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1073                         0,                      /* nsegments */
1074                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1075                         0,                      /* flags */
1076                         &sc->re_parent_tag);
1077         if (error) {
1078                 device_printf(dev, "could not allocate parent dma tag\n");
1079                 return error;
1080         }
1081
1082         /* Allocate TX descriptor list. */
1083         error = bus_dmamem_coherent(sc->re_parent_tag,
1084                         RE_RING_ALIGN, 0,
1085                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1086                         RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1087                         &dmem);
1088         if (error) {
1089                 device_printf(dev, "could not allocate TX ring\n");
1090                 return error;
1091         }
1092         sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1093         sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1094         sc->re_ldata.re_tx_list = dmem.dmem_addr;
1095         sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1096
1097         /* Allocate RX descriptor list. */
1098         error = bus_dmamem_coherent(sc->re_parent_tag,
1099                         RE_RING_ALIGN, 0,
1100                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1101                         RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1102                         &dmem);
1103         if (error) {
1104                 device_printf(dev, "could not allocate RX ring\n");
1105                 return error;
1106         }
1107         sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1108         sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1109         sc->re_ldata.re_rx_list = dmem.dmem_addr;
1110         sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1111
1112         /* Allocate maps for TX mbufs. */
1113         error = bus_dma_tag_create(sc->re_parent_tag,
1114                         1, 0,
1115                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1116                         NULL, NULL,
1117                         RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1118                         BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1119                         &sc->re_ldata.re_tx_mtag);
1120         if (error) {
1121                 device_printf(dev, "could not allocate TX buf dma tag\n");
1122                 return(error);
1123         }
1124
1125         /* Create DMA maps for TX buffers */
1126         for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1127                 error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1128                                 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1129                                 &sc->re_ldata.re_tx_dmamap[i]);
1130                 if (error) {
1131                         device_printf(dev, "can't create DMA map for TX buf\n");
1132                         re_freebufmem(sc, i, 0);
1133                         return(error);
1134                 }
1135         }
1136
1137         /* Allocate maps for RX mbufs. */
1138         error = bus_dma_tag_create(sc->re_parent_tag,
1139                         RE_RXBUF_ALIGN, 0,
1140                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1141                         NULL, NULL,
1142                         MCLBYTES, 1, MCLBYTES,
1143                         BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1144                         &sc->re_ldata.re_rx_mtag);
1145         if (error) {
1146                 device_printf(dev, "could not allocate RX buf dma tag\n");
1147                 return(error);
1148         }
1149
1150         /* Create spare DMA map for RX */
1151         error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1152                         &sc->re_ldata.re_rx_spare);
1153         if (error) {
1154                 device_printf(dev, "can't create spare DMA map for RX\n");
1155                 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1156                 sc->re_ldata.re_rx_mtag = NULL;
1157                 return error;
1158         }
1159
1160         /* Create DMA maps for RX buffers */
1161         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1162                 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1163                                 BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1164                 if (error) {
1165                         device_printf(dev, "can't create DMA map for RX buf\n");
1166                         re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1167                         return(error);
1168                 }
1169         }
1170
1171         /* Create jumbo buffer pool for RX if required */
1172         if (sc->re_caps & RE_C_CONTIGRX) {
1173                 error = re_jpool_alloc(sc);
1174                 if (error) {
1175                         re_jpool_free(sc);
1176                         /* Disable jumbo frame support */
1177                         sc->re_maxmtu = ETHERMTU;
1178                 }
1179         }
1180         return(0);
1181 }
1182
1183 static void
1184 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1185 {
1186         int i;
1187
1188         /* Destroy all the RX and TX buffer maps */
1189         if (sc->re_ldata.re_tx_mtag) {
1190                 for (i = 0; i < tx_cnt; i++) {
1191                         bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1192                                            sc->re_ldata.re_tx_dmamap[i]);
1193                 }
1194                 bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1195                 sc->re_ldata.re_tx_mtag = NULL;
1196         }
1197
1198         if (sc->re_ldata.re_rx_mtag) {
1199                 for (i = 0; i < rx_cnt; i++) {
1200                         bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1201                                            sc->re_ldata.re_rx_dmamap[i]);
1202                 }
1203                 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1204                                    sc->re_ldata.re_rx_spare);
1205                 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1206                 sc->re_ldata.re_rx_mtag = NULL;
1207         }
1208 }
1209
1210 static void
1211 re_freemem(device_t dev)
1212 {
1213         struct re_softc *sc = device_get_softc(dev);
1214
1215         /* Unload and free the RX DMA ring memory and map */
1216         if (sc->re_ldata.re_rx_list_tag) {
1217                 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1218                                   sc->re_ldata.re_rx_list_map);
1219                 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1220                                 sc->re_ldata.re_rx_list,
1221                                 sc->re_ldata.re_rx_list_map);
1222                 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1223         }
1224
1225         /* Unload and free the TX DMA ring memory and map */
1226         if (sc->re_ldata.re_tx_list_tag) {
1227                 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1228                                   sc->re_ldata.re_tx_list_map);
1229                 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1230                                 sc->re_ldata.re_tx_list,
1231                                 sc->re_ldata.re_tx_list_map);
1232                 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1233         }
1234
1235         /* Free RX/TX buf DMA stuffs */
1236         re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1237
1238         /* Unload and free the stats buffer and map */
1239         if (sc->re_ldata.re_stag) {
1240                 bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1241                 bus_dmamem_free(sc->re_ldata.re_stag,
1242                                 sc->re_ldata.re_stats,
1243                                 sc->re_ldata.re_smap);
1244                 bus_dma_tag_destroy(sc->re_ldata.re_stag);
1245         }
1246
1247         if (sc->re_caps & RE_C_CONTIGRX)
1248                 re_jpool_free(sc);
1249
1250         if (sc->re_parent_tag)
1251                 bus_dma_tag_destroy(sc->re_parent_tag);
1252
1253         if (sc->re_ldata.re_tx_mbuf != NULL)
1254                 kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1255         if (sc->re_ldata.re_rx_mbuf != NULL)
1256                 kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1257         if (sc->re_ldata.re_rx_paddr != NULL)
1258                 kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1259         if (sc->re_ldata.re_tx_dmamap != NULL)
1260                 kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1261         if (sc->re_ldata.re_rx_dmamap != NULL)
1262                 kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1263 }
1264
1265 /*
1266  * Attach the interface. Allocate softc structures, do ifmedia
1267  * setup and ethernet/BPF attach.
1268  */
1269 static int
1270 re_attach(device_t dev)
1271 {
1272         struct re_softc *sc = device_get_softc(dev);
1273         struct ifnet *ifp;
1274         uint8_t eaddr[ETHER_ADDR_LEN];
1275         int error = 0, rid, qlen;
1276
1277         callout_init(&sc->re_timer);
1278         sc->re_dev = dev;
1279
1280         if (RE_IS_8139CP(sc)) {
1281                 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1282                 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1283         } else {
1284                 sc->re_rx_desc_cnt = re_rx_desc_count;
1285                 if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1286                         sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1287
1288                 sc->re_tx_desc_cnt = re_tx_desc_count;
1289                 if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1290                         sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1291         }
1292
1293         qlen = RE_IFQ_MAXLEN;
1294         if (sc->re_tx_desc_cnt > qlen)
1295                 qlen = sc->re_tx_desc_cnt;
1296
1297         sc->re_rxbuf_size = MCLBYTES;
1298         sc->re_newbuf = re_newbuf_std;
1299
1300         sc->re_tx_time = 5;             /* 125us */
1301         sc->re_rx_time = 2;             /* 50us */
1302         if (sc->re_caps & RE_C_PCIE)
1303                 sc->re_sim_time = 75;   /* 75us */
1304         else
1305                 sc->re_sim_time = 125;  /* 125us */
1306         if (!RE_IS_8139CP(sc)) {
1307                 /* simulated interrupt moderation */
1308                 sc->re_imtype = RE_IMTYPE_SIM;
1309         } else {
1310                 sc->re_imtype = RE_IMTYPE_NONE;
1311         }
1312         re_config_imtype(sc, sc->re_imtype);
1313
1314         sysctl_ctx_init(&sc->re_sysctl_ctx);
1315         sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1316                                              SYSCTL_STATIC_CHILDREN(_hw),
1317                                              OID_AUTO,
1318                                              device_get_nameunit(dev),
1319                                              CTLFLAG_RD, 0, "");
1320         if (sc->re_sysctl_tree == NULL) {
1321                 device_printf(dev, "can't add sysctl node\n");
1322                 error = ENXIO;
1323                 goto fail;
1324         }
1325         SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1326                        SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1327                        "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1328                        0, "RX desc count");
1329         SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1330                        SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1331                        "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1332                        0, "TX desc count");
1333         SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1334                         SYSCTL_CHILDREN(sc->re_sysctl_tree),
1335                         OID_AUTO, "sim_time",
1336                         CTLTYPE_INT | CTLFLAG_RW,
1337                         sc, 0, re_sysctl_simtime, "I",
1338                         "Simulated interrupt moderation time (usec).");
1339         SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1340                         SYSCTL_CHILDREN(sc->re_sysctl_tree),
1341                         OID_AUTO, "imtype",
1342                         CTLTYPE_INT | CTLFLAG_RW,
1343                         sc, 0, re_sysctl_imtype, "I",
1344                         "Interrupt moderation type -- "
1345                         "0:disable, 1:simulated, "
1346                         "2:hardware(if supported)");
1347         if (sc->re_caps & RE_C_HWIM) {
1348                 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1349                                 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1350                                 OID_AUTO, "hw_rxtime",
1351                                 CTLTYPE_INT | CTLFLAG_RW,
1352                                 sc, 0, re_sysctl_rxtime, "I",
1353                                 "Hardware interrupt moderation time "
1354                                 "(unit: 25usec).");
1355                 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1356                                 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1357                                 OID_AUTO, "hw_txtime",
1358                                 CTLTYPE_INT | CTLFLAG_RW,
1359                                 sc, 0, re_sysctl_txtime, "I",
1360                                 "Hardware interrupt moderation time "
1361                                 "(unit: 25usec).");
1362         }
1363
1364 #ifndef BURN_BRIDGES
1365         /*
1366          * Handle power management nonsense.
1367          */
1368
1369         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1370                 uint32_t membase, irq;
1371
1372                 /* Save important PCI config data. */
1373                 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1374                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1375
1376                 /* Reset the power state. */
1377                 device_printf(dev, "chip is in D%d power mode "
1378                     "-- setting to D0\n", pci_get_powerstate(dev));
1379
1380                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1381
1382                 /* Restore PCI config data. */
1383                 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1384                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1385         }
1386 #endif
1387         /*
1388          * Map control/status registers.
1389          */
1390         pci_enable_busmaster(dev);
1391
1392         rid = RE_PCI_LOIO;
1393         sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1394                                             RF_ACTIVE);
1395
1396         if (sc->re_res == NULL) {
1397                 device_printf(dev, "couldn't map ports\n");
1398                 error = ENXIO;
1399                 goto fail;
1400         }
1401
1402         sc->re_btag = rman_get_bustag(sc->re_res);
1403         sc->re_bhandle = rman_get_bushandle(sc->re_res);
1404
1405         /* Allocate interrupt */
1406         rid = 0;
1407         sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1408                                             RF_SHAREABLE | RF_ACTIVE);
1409
1410         if (sc->re_irq == NULL) {
1411                 device_printf(dev, "couldn't map interrupt\n");
1412                 error = ENXIO;
1413                 goto fail;
1414         }
1415
1416         /* Reset the adapter. */
1417         re_reset(sc, 0);
1418
1419         if (RE_IS_8139CP(sc)) {
1420                 sc->re_bus_speed = 33; /* XXX */
1421         } else if (sc->re_caps & RE_C_PCIE) {
1422                 sc->re_bus_speed = 125;
1423         } else {
1424                 uint8_t cfg2;
1425
1426                 cfg2 = CSR_READ_1(sc, RE_CFG2);
1427                 switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1428                 case RE_CFG2_PCICLK_33MHZ:
1429                         sc->re_bus_speed = 33;
1430                         break;
1431                 case RE_CFG2_PCICLK_66MHZ:
1432                         sc->re_bus_speed = 66;
1433                         break;
1434                 default:
1435                         device_printf(dev, "unknown bus speed, assume 33MHz\n");
1436                         sc->re_bus_speed = 33;
1437                         break;
1438                 }
1439                 if (cfg2 & RE_CFG2_PCI64)
1440                         sc->re_caps |= RE_C_PCI64;
1441         }
1442         device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1443                       "PCI%s %dMHz\n",
1444                       sc->re_hwrev, sc->re_macver,
1445                       (sc->re_caps & RE_C_PCIE) ?
1446                       "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1447                       sc->re_bus_speed);
1448
1449         /*
1450          * NOTE:
1451          * DO NOT try to adjust config1 and config5 which was spotted in
1452          * Realtek's Linux drivers.  It will _permanently_ damage certain
1453          * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1454          */
1455
1456         re_get_eaddr(sc, eaddr);
1457
1458         if (!RE_IS_8139CP(sc)) {
1459                 /* Set RX length mask */
1460                 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1461                 sc->re_txstart = RE_GTXSTART;
1462         } else {
1463                 /* Set RX length mask */
1464                 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1465                 sc->re_txstart = RE_TXSTART;
1466         }
1467
1468         /* Allocate DMA stuffs */
1469         error = re_allocmem(dev);
1470         if (error)
1471                 goto fail;
1472
1473         /*
1474          * Apply some magic PCI settings from Realtek ...
1475          */
1476         if (RE_IS_8169(sc)) {
1477                 CSR_WRITE_1(sc, 0x82, 1);
1478                 pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1479         }
1480         pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1481
1482         if (sc->re_caps & RE_C_MAC2) {
1483                 /*
1484                  * Following part is extracted from Realtek BSD driver v176.
1485                  * However, this does _not_ make much/any sense:
1486                  * 8168C's PCI Express device control is located at 0x78,
1487                  * so the reading from 0x79 (higher part of 0x78) and setting
1488                  * the 4~6bits intend to enlarge the "max read request size"
1489                  * (we will do it).  The content of the rest part of this
1490                  * register is not meaningful to other PCI registers, so
1491                  * writing the value to 0x54 could be completely wrong.
1492                  * 0x80 is the lower part of PCI Express device status, non-
1493                  * reserved bits are RW1C, writing 0 to them will not have
1494                  * any effect at all.
1495                  */
1496 #ifdef foo
1497                 uint8_t val;
1498
1499                 val = pci_read_config(dev, 0x79, 1);
1500                 val = (val & ~0x70) | 0x50;
1501                 pci_write_config(dev, 0x54, val, 1);
1502                 pci_write_config(dev, 0x80, 0, 1);
1503 #endif
1504         }
1505
1506         /*
1507          * Apply some PHY fixup from Realtek ...
1508          */
1509         if (sc->re_hwrev == RE_HWREV_8110S) {
1510                 CSR_WRITE_1(sc, 0x82, 1);
1511                 re_miibus_writereg(dev, 1, 0xb, 0);
1512         }
1513         if (sc->re_caps & RE_C_PHYPMGT) {
1514                 /* Power up PHY */
1515                 re_miibus_writereg(dev, 1, 0x1f, 0);
1516                 re_miibus_writereg(dev, 1, 0xe, 0);
1517         }
1518
1519         /* Do MII setup */
1520         if (mii_phy_probe(dev, &sc->re_miibus,
1521             re_ifmedia_upd, re_ifmedia_sts)) {
1522                 device_printf(dev, "MII without any phy!\n");
1523                 error = ENXIO;
1524                 goto fail;
1525         }
1526
1527         ifp = &sc->arpcom.ac_if;
1528         ifp->if_softc = sc;
1529         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1530         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1531         ifp->if_ioctl = re_ioctl;
1532         ifp->if_start = re_start;
1533 #ifdef DEVICE_POLLING
1534         ifp->if_poll = re_poll;
1535 #endif
1536         ifp->if_watchdog = re_watchdog;
1537         ifp->if_init = re_init;
1538         if (!RE_IS_8139CP(sc)) /* XXX */
1539                 ifp->if_baudrate = 1000000000;
1540         else
1541                 ifp->if_baudrate = 100000000;
1542         ifq_set_maxlen(&ifp->if_snd, qlen);
1543         ifq_set_ready(&ifp->if_snd);
1544
1545         ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1546         if (sc->re_caps & RE_C_HWCSUM)
1547                 ifp->if_capabilities |= IFCAP_HWCSUM;
1548
1549         ifp->if_capenable = ifp->if_capabilities;
1550         if (ifp->if_capabilities & IFCAP_HWCSUM)
1551                 ifp->if_hwassist = RE_CSUM_FEATURES;
1552         else
1553                 ifp->if_hwassist = 0;
1554
1555         /*
1556          * Call MI attach routine.
1557          */
1558         ether_ifattach(ifp, eaddr, NULL);
1559
1560 #ifdef RE_DIAG
1561         /*
1562          * Perform hardware diagnostic on the original RTL8169.
1563          * Some 32-bit cards were incorrectly wired and would
1564          * malfunction if plugged into a 64-bit slot.
1565          */
1566         if (sc->re_hwrev == RE_HWREV_8169) {
1567                 lwkt_serialize_enter(ifp->if_serializer);
1568                 error = re_diag(sc);
1569                 lwkt_serialize_exit(ifp->if_serializer);
1570
1571                 if (error) {
1572                         device_printf(dev, "hardware diagnostic failure\n");
1573                         ether_ifdetach(ifp);
1574                         goto fail;
1575                 }
1576         }
1577 #endif  /* RE_DIAG */
1578
1579         /* Hook interrupt last to avoid having to lock softc */
1580         error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1581                                &sc->re_intrhand, ifp->if_serializer);
1582
1583         if (error) {
1584                 device_printf(dev, "couldn't set up irq\n");
1585                 ether_ifdetach(ifp);
1586                 goto fail;
1587         }
1588
1589         ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->re_irq));
1590         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1591
1592 fail:
1593         if (error)
1594                 re_detach(dev);
1595
1596         return (error);
1597 }
1598
1599 /*
1600  * Shutdown hardware and free up resources. This can be called any
1601  * time after the mutex has been initialized. It is called in both
1602  * the error case in attach and the normal detach case so it needs
1603  * to be careful about only freeing resources that have actually been
1604  * allocated.
1605  */
1606 static int
1607 re_detach(device_t dev)
1608 {
1609         struct re_softc *sc = device_get_softc(dev);
1610         struct ifnet *ifp = &sc->arpcom.ac_if;
1611
1612         /* These should only be active if attach succeeded */
1613         if (device_is_attached(dev)) {
1614                 lwkt_serialize_enter(ifp->if_serializer);
1615                 re_stop(sc);
1616                 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1617                 lwkt_serialize_exit(ifp->if_serializer);
1618
1619                 ether_ifdetach(ifp);
1620         }
1621         if (sc->re_miibus)
1622                 device_delete_child(dev, sc->re_miibus);
1623         bus_generic_detach(dev);
1624
1625         if (sc->re_sysctl_tree != NULL)
1626                 sysctl_ctx_free(&sc->re_sysctl_ctx);
1627
1628         if (sc->re_irq)
1629                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1630         if (sc->re_res) {
1631                 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1632                                      sc->re_res);
1633         }
1634
1635         /* Free DMA stuffs */
1636         re_freemem(dev);
1637
1638         return(0);
1639 }
1640
1641 static void
1642 re_setup_rxdesc(struct re_softc *sc, int idx)
1643 {
1644         bus_addr_t paddr;
1645         uint32_t cmdstat;
1646         struct re_desc *d;
1647
1648         paddr = sc->re_ldata.re_rx_paddr[idx];
1649         d = &sc->re_ldata.re_rx_list[idx];
1650
1651         d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1652         d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1653
1654         cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1655         if (idx == (sc->re_rx_desc_cnt - 1))
1656                 cmdstat |= RE_RDESC_CMD_EOR;
1657         d->re_cmdstat = htole32(cmdstat);
1658 }
1659
1660 static int
1661 re_newbuf_std(struct re_softc *sc, int idx, int init)
1662 {
1663         bus_dma_segment_t seg;
1664         bus_dmamap_t map;
1665         struct mbuf *m;
1666         int error, nsegs;
1667
1668         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1669         if (m == NULL) {
1670                 error = ENOBUFS;
1671
1672                 if (init) {
1673                         if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1674                         return error;
1675                 } else {
1676                         goto back;
1677                 }
1678         }
1679         m->m_len = m->m_pkthdr.len = MCLBYTES;
1680
1681         /*
1682          * NOTE:
1683          * re(4) chips need address of the receive buffer to be 8-byte
1684          * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1685          */
1686
1687         error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1688                         sc->re_ldata.re_rx_spare, m,
1689                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1690         if (error) {
1691                 m_freem(m);
1692                 if (init) {
1693                         if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1694                         return error;
1695                 } else {
1696                         goto back;
1697                 }
1698         }
1699
1700         if (!init) {
1701                 bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1702                                 sc->re_ldata.re_rx_dmamap[idx],
1703                                 BUS_DMASYNC_POSTREAD);
1704                 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1705                                   sc->re_ldata.re_rx_dmamap[idx]);
1706         }
1707         sc->re_ldata.re_rx_mbuf[idx] = m;
1708         sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1709
1710         map = sc->re_ldata.re_rx_dmamap[idx];
1711         sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1712         sc->re_ldata.re_rx_spare = map;
1713 back:
1714         re_setup_rxdesc(sc, idx);
1715         return error;
1716 }
1717
1718 static int
1719 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1720 {
1721         struct mbuf *m;
1722         struct re_jbuf *jbuf;
1723         int error = 0;
1724
1725         MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1726         if (m == NULL) {
1727                 error = ENOBUFS;
1728                 if (init) {
1729                         if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1730                         return error;
1731                 } else {
1732                         goto back;
1733                 }
1734         }
1735
1736         jbuf = re_jbuf_alloc(sc);
1737         if (jbuf == NULL) {
1738                 m_freem(m);
1739
1740                 error = ENOBUFS;
1741                 if (init) {
1742                         if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1743                         return error;
1744                 } else {
1745                         goto back;
1746                 }
1747         }
1748
1749         m->m_ext.ext_arg = jbuf;
1750         m->m_ext.ext_buf = jbuf->re_buf;
1751         m->m_ext.ext_free = re_jbuf_free;
1752         m->m_ext.ext_ref = re_jbuf_ref;
1753         m->m_ext.ext_size = sc->re_rxbuf_size;
1754
1755         m->m_data = m->m_ext.ext_buf;
1756         m->m_flags |= M_EXT;
1757         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1758
1759         /*
1760          * NOTE:
1761          * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1762          * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1763          */
1764
1765         sc->re_ldata.re_rx_mbuf[idx] = m;
1766         sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1767 back:
1768         re_setup_rxdesc(sc, idx);
1769         return error;
1770 }
1771
1772 static int
1773 re_tx_list_init(struct re_softc *sc)
1774 {
1775         bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1776
1777         sc->re_ldata.re_tx_prodidx = 0;
1778         sc->re_ldata.re_tx_considx = 0;
1779         sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1780
1781         return(0);
1782 }
1783
1784 static int
1785 re_rx_list_init(struct re_softc *sc)
1786 {
1787         int i, error;
1788
1789         bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1790
1791         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1792                 error = sc->re_newbuf(sc, i, 1);
1793                 if (error)
1794                         return(error);
1795         }
1796
1797         sc->re_ldata.re_rx_prodidx = 0;
1798         sc->re_head = sc->re_tail = NULL;
1799
1800         return(0);
1801 }
1802
1803 #define RE_IP4_PACKET   0x1
1804 #define RE_TCP_PACKET   0x2
1805 #define RE_UDP_PACKET   0x4
1806
1807 static __inline uint8_t
1808 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1809 {
1810         uint8_t packet_type = 0;
1811
1812         if (sc->re_caps & RE_C_MAC2) {
1813                 if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1814                         packet_type |= RE_IP4_PACKET;
1815         } else {
1816                 if (rxstat & RE_RDESC_STAT_PROTOID)
1817                         packet_type |= RE_IP4_PACKET;
1818         }
1819         if (RE_TCPPKT(rxstat))
1820                 packet_type |= RE_TCP_PACKET;
1821         else if (RE_UDPPKT(rxstat))
1822                 packet_type |= RE_UDP_PACKET;
1823         return packet_type;
1824 }
1825
1826 /*
1827  * RX handler for C+ and 8169. For the gigE chips, we support
1828  * the reception of jumbo frames that have been fragmented
1829  * across multiple 2K mbuf cluster buffers.
1830  */
1831 static int
1832 re_rxeof(struct re_softc *sc)
1833 {
1834         struct ifnet *ifp = &sc->arpcom.ac_if;
1835         struct mbuf *m;
1836         struct re_desc  *cur_rx;
1837         uint32_t rxstat, rxctrl;
1838         int i, total_len, rx = 0;
1839         struct mbuf_chain chain[MAXCPU];
1840
1841         ether_input_chain_init(chain);
1842
1843         for (i = sc->re_ldata.re_rx_prodidx;
1844              RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1845                 cur_rx = &sc->re_ldata.re_rx_list[i];
1846                 m = sc->re_ldata.re_rx_mbuf[i];
1847                 total_len = RE_RXBYTES(cur_rx);
1848                 rxstat = le32toh(cur_rx->re_cmdstat);
1849                 rxctrl = le32toh(cur_rx->re_control);
1850
1851                 rx = 1;
1852
1853 #ifdef INVARIANTS
1854                 if (sc->re_flags & RE_F_USE_JPOOL)
1855                         KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1856 #endif
1857
1858                 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1859                         if (sc->re_flags & RE_F_DROP_RXFRAG) {
1860                                 re_setup_rxdesc(sc, i);
1861                                 continue;
1862                         }
1863
1864                         if (sc->re_newbuf(sc, i, 0)) {
1865                                 /* Drop upcoming fragments */
1866                                 sc->re_flags |= RE_F_DROP_RXFRAG;
1867                                 continue;
1868                         }
1869
1870                         m->m_len = MCLBYTES;
1871                         if (sc->re_head == NULL) {
1872                                 sc->re_head = sc->re_tail = m;
1873                         } else {
1874                                 sc->re_tail->m_next = m;
1875                                 sc->re_tail = m;
1876                         }
1877                         continue;
1878                 } else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1879                         /*
1880                          * Last fragment of a multi-fragment packet.
1881                          *
1882                          * Since error already happened, this fragment
1883                          * must be dropped as well as the fragment chain.
1884                          */
1885                         re_setup_rxdesc(sc, i);
1886                         re_free_rxchain(sc);
1887                         sc->re_flags &= ~RE_F_DROP_RXFRAG;
1888                         continue;
1889                 }
1890
1891                 /*
1892                  * NOTE: for the 8139C+, the frame length field
1893                  * is always 12 bits in size, but for the gigE chips,
1894                  * it is 13 bits (since the max RX frame length is 16K).
1895                  * Unfortunately, all 32 bits in the status word
1896                  * were already used, so to make room for the extra
1897                  * length bit, RealTek took out the 'frame alignment
1898                  * error' bit and shifted the other status bits
1899                  * over one slot. The OWN, EOR, FS and LS bits are
1900                  * still in the same places. We have already extracted
1901                  * the frame length and checked the OWN bit, so rather
1902                  * than using an alternate bit mapping, we shift the
1903                  * status bits one space to the right so we can evaluate
1904                  * them using the 8169 status as though it was in the
1905                  * same format as that of the 8139C+.
1906                  */
1907                 if (!RE_IS_8139CP(sc))
1908                         rxstat >>= 1;
1909
1910                 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1911                         ifp->if_ierrors++;
1912                         /*
1913                          * If this is part of a multi-fragment packet,
1914                          * discard all the pieces.
1915                          */
1916                         re_free_rxchain(sc);
1917                         re_setup_rxdesc(sc, i);
1918                         continue;
1919                 }
1920
1921                 /*
1922                  * If allocating a replacement mbuf fails,
1923                  * reload the current one.
1924                  */
1925
1926                 if (sc->re_newbuf(sc, i, 0)) {
1927                         ifp->if_ierrors++;
1928                         continue;
1929                 }
1930
1931                 if (sc->re_head != NULL) {
1932                         m->m_len = total_len % MCLBYTES;
1933                         /* 
1934                          * Special case: if there's 4 bytes or less
1935                          * in this buffer, the mbuf can be discarded:
1936                          * the last 4 bytes is the CRC, which we don't
1937                          * care about anyway.
1938                          */
1939                         if (m->m_len <= ETHER_CRC_LEN) {
1940                                 sc->re_tail->m_len -=
1941                                     (ETHER_CRC_LEN - m->m_len);
1942                                 m_freem(m);
1943                         } else {
1944                                 m->m_len -= ETHER_CRC_LEN;
1945                                 sc->re_tail->m_next = m;
1946                         }
1947                         m = sc->re_head;
1948                         sc->re_head = sc->re_tail = NULL;
1949                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1950                 } else {
1951                         m->m_pkthdr.len = m->m_len =
1952                             (total_len - ETHER_CRC_LEN);
1953                 }
1954
1955                 ifp->if_ipackets++;
1956                 m->m_pkthdr.rcvif = ifp;
1957
1958                 /* Do RX checksumming if enabled */
1959
1960                 if (ifp->if_capenable & IFCAP_RXCSUM) {
1961                         uint8_t packet_type;
1962
1963                         packet_type = re_packet_type(sc, rxstat, rxctrl);
1964
1965                         /* Check IP header checksum */
1966                         if (packet_type & RE_IP4_PACKET) {
1967                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1968                                 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1969                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1970                         }
1971
1972                         /* Check TCP/UDP checksum */
1973                         if (((packet_type & RE_TCP_PACKET) &&
1974                              (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1975                             ((packet_type & RE_UDP_PACKET) &&
1976                              (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
1977                                 m->m_pkthdr.csum_flags |=
1978                                     CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
1979                                     CSUM_FRAG_NOT_CHECKED;
1980                                 m->m_pkthdr.csum_data = 0xffff;
1981                         }
1982                 }
1983
1984                 if (rxctrl & RE_RDESC_CTL_HASTAG) {
1985                         m->m_flags |= M_VLANTAG;
1986                         m->m_pkthdr.ether_vlantag =
1987                                 be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
1988                 }
1989                 ether_input_chain(ifp, m, NULL, chain);
1990         }
1991
1992         ether_input_dispatch(chain);
1993
1994         sc->re_ldata.re_rx_prodidx = i;
1995
1996         return rx;
1997 }
1998
1999 #undef RE_IP4_PACKET
2000 #undef RE_TCP_PACKET
2001 #undef RE_UDP_PACKET
2002
2003 static int
2004 re_tx_collect(struct re_softc *sc)
2005 {
2006         struct ifnet *ifp = &sc->arpcom.ac_if;
2007         uint32_t txstat;
2008         int idx, tx = 0;
2009
2010         for (idx = sc->re_ldata.re_tx_considx;
2011              sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2012              RE_TXDESC_INC(sc, idx)) {
2013                 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2014                 if (txstat & RE_TDESC_CMD_OWN)
2015                         break;
2016
2017                 tx = 1;
2018
2019                 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2020
2021                 /*
2022                  * We only stash mbufs in the last descriptor
2023                  * in a fragment chain, which also happens to
2024                  * be the only place where the TX status bits
2025                  * are valid.
2026                  */
2027                 if (txstat & RE_TDESC_CMD_EOF) {
2028                         bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2029                             sc->re_ldata.re_tx_dmamap[idx]);
2030                         m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2031                         sc->re_ldata.re_tx_mbuf[idx] = NULL;
2032                         if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2033                             RE_TDESC_STAT_COLCNT))
2034                                 ifp->if_collisions++;
2035                         if (txstat & RE_TDESC_STAT_TXERRSUM)
2036                                 ifp->if_oerrors++;
2037                         else
2038                                 ifp->if_opackets++;
2039                 }
2040                 sc->re_ldata.re_tx_free++;
2041         }
2042         sc->re_ldata.re_tx_considx = idx;
2043
2044         return tx;
2045 }
2046
2047 static int
2048 re_txeof(struct re_softc *sc)
2049 {
2050         struct ifnet *ifp = &sc->arpcom.ac_if;
2051         int tx;
2052
2053         tx = re_tx_collect(sc);
2054
2055         /* There is enough free TX descs */
2056         if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2057                 ifp->if_flags &= ~IFF_OACTIVE;
2058
2059         /*
2060          * Some chips will ignore a second TX request issued while an
2061          * existing transmission is in progress. If the transmitter goes
2062          * idle but there are still packets waiting to be sent, we need
2063          * to restart the channel here to flush them out. This only seems
2064          * to be required with the PCIe devices.
2065          */
2066         if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2067                 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2068         else
2069                 ifp->if_timer = 0;
2070
2071         return tx;
2072 }
2073
2074 static void
2075 re_tick(void *xsc)
2076 {
2077         struct re_softc *sc = xsc;
2078
2079         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2080         re_tick_serialized(xsc);
2081         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2082 }
2083
2084 static void
2085 re_tick_serialized(void *xsc)
2086 {
2087         struct re_softc *sc = xsc;
2088         struct ifnet *ifp = &sc->arpcom.ac_if;
2089         struct mii_data *mii;
2090
2091         ASSERT_SERIALIZED(ifp->if_serializer);
2092
2093         mii = device_get_softc(sc->re_miibus);
2094         mii_tick(mii);
2095         if (sc->re_flags & RE_F_LINKED) {
2096                 if (!(mii->mii_media_status & IFM_ACTIVE))
2097                         sc->re_flags &= ~RE_F_LINKED;
2098         } else {
2099                 if (mii->mii_media_status & IFM_ACTIVE &&
2100                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2101                         sc->re_flags |= RE_F_LINKED;
2102                         if (!ifq_is_empty(&ifp->if_snd))
2103                                 if_devstart(ifp);
2104                 }
2105         }
2106
2107         callout_reset(&sc->re_timer, hz, re_tick, sc);
2108 }
2109
2110 #ifdef DEVICE_POLLING
2111
2112 static void
2113 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2114 {
2115         struct re_softc *sc = ifp->if_softc;
2116
2117         ASSERT_SERIALIZED(ifp->if_serializer);
2118
2119         switch(cmd) {
2120         case POLL_REGISTER:
2121                 /* disable interrupts */
2122                 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2123                 break;
2124
2125         case POLL_DEREGISTER:
2126                 /* enable interrupts */
2127                 re_setup_intr(sc, 1, sc->re_imtype);
2128                 break;
2129
2130         default:
2131                 sc->rxcycles = count;
2132                 re_rxeof(sc);
2133                 re_txeof(sc);
2134
2135                 if (!ifq_is_empty(&ifp->if_snd))
2136                         if_devstart(ifp);
2137
2138                 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2139                         uint16_t       status;
2140
2141                         status = CSR_READ_2(sc, RE_ISR);
2142                         if (status == 0xffff)
2143                                 return;
2144                         if (status)
2145                                 CSR_WRITE_2(sc, RE_ISR, status);
2146
2147                         /*
2148                          * XXX check behaviour on receiver stalls.
2149                          */
2150
2151                         if (status & RE_ISR_SYSTEM_ERR)
2152                                 re_init(sc);
2153                 }
2154                 break;
2155         }
2156 }
2157 #endif /* DEVICE_POLLING */
2158
2159 static void
2160 re_intr(void *arg)
2161 {
2162         struct re_softc *sc = arg;
2163         struct ifnet *ifp = &sc->arpcom.ac_if;
2164         uint16_t status;
2165         int rx, tx;
2166
2167         ASSERT_SERIALIZED(ifp->if_serializer);
2168
2169         if ((sc->re_flags & RE_F_SUSPENDED) ||
2170             (ifp->if_flags & IFF_RUNNING) == 0)
2171                 return;
2172
2173         rx = tx = 0;
2174         for (;;) {
2175                 status = CSR_READ_2(sc, RE_ISR);
2176                 /* If the card has gone away the read returns 0xffff. */
2177                 if (status == 0xffff)
2178                         break;
2179                 if (status)
2180                         CSR_WRITE_2(sc, RE_ISR, status);
2181
2182                 if ((status & sc->re_intrs) == 0)
2183                         break;
2184
2185                 if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2186                         rx |= re_rxeof(sc);
2187
2188                 if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2189                         tx |= re_txeof(sc);
2190
2191                 if (status & RE_ISR_SYSTEM_ERR)
2192                         re_init(sc);
2193
2194                 if (status & RE_ISR_LINKCHG) {
2195                         callout_stop(&sc->re_timer);
2196                         re_tick_serialized(sc);
2197                 }
2198         }
2199
2200         if (sc->re_imtype == RE_IMTYPE_SIM) {
2201                 if ((sc->re_flags & RE_F_TIMER_INTR)) {
2202                         if ((tx | rx) == 0) {
2203                                 /*
2204                                  * Nothing needs to be processed, fallback
2205                                  * to use TX/RX interrupts.
2206                                  */
2207                                 re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2208
2209                                 /*
2210                                  * Recollect, mainly to avoid the possible
2211                                  * race introduced by changing interrupt
2212                                  * masks.
2213                                  */
2214                                 re_rxeof(sc);
2215                                 tx = re_txeof(sc);
2216                         } else {
2217                                 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2218                         }
2219                 } else if (tx | rx) {
2220                         /*
2221                          * Assume that using simulated interrupt moderation
2222                          * (hardware timer based) could reduce the interript
2223                          * rate.
2224                          */
2225                         re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2226                 }
2227         }
2228
2229         if (tx && !ifq_is_empty(&ifp->if_snd))
2230                 if_devstart(ifp);
2231 }
2232
2233 static int
2234 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2235 {
2236         struct mbuf *m = *m_head;
2237         bus_dma_segment_t segs[RE_MAXSEGS];
2238         bus_dmamap_t map;
2239         int error, maxsegs, idx, i, nsegs;
2240         struct re_desc *d, *tx_ring;
2241         uint32_t cmd_csum, ctl_csum, vlantag;
2242
2243         KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2244                 ("not enough free TX desc\n"));
2245
2246         map = sc->re_ldata.re_tx_dmamap[*idx0];
2247
2248         /*
2249          * Set up checksum offload. Note: checksum offload bits must
2250          * appear in all descriptors of a multi-descriptor transmit
2251          * attempt. (This is according to testing done with an 8169
2252          * chip. I'm not sure if this is a requirement or a bug.)
2253          */
2254         cmd_csum = ctl_csum = 0;
2255         if (m->m_pkthdr.csum_flags & CSUM_IP) {
2256                 cmd_csum |= RE_TDESC_CMD_IPCSUM;
2257                 ctl_csum |= RE_TDESC_CTL_IPCSUM;
2258         }
2259         if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2260                 cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2261                 ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2262         }
2263         if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2264                 cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2265                 ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2266         }
2267
2268         /* For MAC2 chips, csum flags are set on re_control */
2269         if (sc->re_caps & RE_C_MAC2)
2270                 cmd_csum = 0;
2271         else
2272                 ctl_csum = 0;
2273
2274         if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2275                 /*
2276                  * With some of the RealTek chips, using the checksum offload
2277                  * support in conjunction with the autopadding feature results
2278                  * in the transmission of corrupt frames. For example, if we
2279                  * need to send a really small IP fragment that's less than 60
2280                  * bytes in size, and IP header checksumming is enabled, the
2281                  * resulting ethernet frame that appears on the wire will
2282                  * have garbled payload. To work around this, if TX checksum
2283                  * offload is enabled, we always manually pad short frames out
2284                  * to the minimum ethernet frame size.
2285                  *
2286                  * Note: this appears unnecessary for TCP, and doing it for TCP
2287                  * with PCIe adapters seems to result in bad checksums.
2288                  */
2289                 if ((m->m_pkthdr.csum_flags &
2290                      (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2291                     (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2292                     m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2293                         error = m_devpad(m, RE_MIN_FRAMELEN);
2294                         if (error)
2295                                 goto back;
2296                 }
2297         }
2298
2299         vlantag = 0;
2300         if (m->m_flags & M_VLANTAG) {
2301                 vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2302                           RE_TDESC_CTL_INSTAG;
2303         }
2304
2305         maxsegs = sc->re_ldata.re_tx_free;
2306         if (maxsegs > RE_MAXSEGS)
2307                 maxsegs = RE_MAXSEGS;
2308
2309         error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2310                         m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2311         if (error)
2312                 goto back;
2313
2314         m = *m_head;
2315         bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2316
2317         /*
2318          * Map the segment array into descriptors.  We also keep track
2319          * of the end of the ring and set the end-of-ring bits as needed,
2320          * and we set the ownership bits in all except the very first
2321          * descriptor, whose ownership bits will be turned on later.
2322          */
2323         tx_ring = sc->re_ldata.re_tx_list;
2324         idx = *idx0;
2325         i = 0;
2326         for (;;) {
2327                 uint32_t cmdstat;
2328
2329                 d = &tx_ring[idx];
2330
2331                 cmdstat = segs[i].ds_len;
2332                 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2333                 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2334                 if (i == 0)
2335                         cmdstat |= RE_TDESC_CMD_SOF;
2336                 else
2337                         cmdstat |= RE_TDESC_CMD_OWN;
2338                 if (idx == (sc->re_tx_desc_cnt - 1))
2339                         cmdstat |= RE_TDESC_CMD_EOR;
2340                 d->re_cmdstat = htole32(cmdstat | cmd_csum);
2341                 d->re_control = htole32(ctl_csum | vlantag);
2342
2343                 i++;
2344                 if (i == nsegs)
2345                         break;
2346                 RE_TXDESC_INC(sc, idx);
2347         }
2348         d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2349
2350         /* Transfer ownership of packet to the chip. */
2351         d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2352         if (*idx0 != idx)
2353                 tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2354
2355         /*
2356          * Insure that the map for this transmission
2357          * is placed at the array index of the last descriptor
2358          * in this chain.
2359          */
2360         sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2361         sc->re_ldata.re_tx_dmamap[idx] = map;
2362
2363         sc->re_ldata.re_tx_mbuf[idx] = m;
2364         sc->re_ldata.re_tx_free -= nsegs;
2365
2366         RE_TXDESC_INC(sc, idx);
2367         *idx0 = idx;
2368 back:
2369         if (error) {
2370                 m_freem(*m_head);
2371                 *m_head = NULL;
2372         }
2373         return error;
2374 }
2375
2376 /*
2377  * Main transmit routine for C+ and gigE NICs.
2378  */
2379
2380 static void
2381 re_start(struct ifnet *ifp)
2382 {
2383         struct re_softc *sc = ifp->if_softc;
2384         struct mbuf *m_head;
2385         int idx, need_trans, oactive, error;
2386
2387         ASSERT_SERIALIZED(ifp->if_serializer);
2388
2389         if ((sc->re_flags & RE_F_LINKED) == 0) {
2390                 ifq_purge(&ifp->if_snd);
2391                 return;
2392         }
2393
2394         if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2395                 return;
2396
2397         idx = sc->re_ldata.re_tx_prodidx;
2398
2399         need_trans = 0;
2400         oactive = 0;
2401         while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2402                 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2403                         if (!oactive) {
2404                                 if (re_tx_collect(sc)) {
2405                                         oactive = 1;
2406                                         continue;
2407                                 }
2408                         }
2409                         ifp->if_flags |= IFF_OACTIVE;
2410                         break;
2411                 }
2412
2413                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2414                 if (m_head == NULL)
2415                         break;
2416
2417                 error = re_encap(sc, &m_head, &idx);
2418                 if (error) {
2419                         /* m_head is freed by re_encap(), if we reach here */
2420                         ifp->if_oerrors++;
2421
2422                         if (error == EFBIG && !oactive) {
2423                                 if (re_tx_collect(sc)) {
2424                                         oactive = 1;
2425                                         continue;
2426                                 }
2427                         }
2428                         ifp->if_flags |= IFF_OACTIVE;
2429                         break;
2430                 }
2431
2432                 oactive = 0;
2433                 need_trans = 1;
2434
2435                 /*
2436                  * If there's a BPF listener, bounce a copy of this frame
2437                  * to him.
2438                  */
2439                 ETHER_BPF_MTAP(ifp, m_head);
2440         }
2441
2442         if (!need_trans)
2443                 return;
2444
2445         sc->re_ldata.re_tx_prodidx = idx;
2446
2447         /*
2448          * RealTek put the TX poll request register in a different
2449          * location on the 8169 gigE chip. I don't know why.
2450          */
2451         CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2452
2453         /*
2454          * Set a timeout in case the chip goes out to lunch.
2455          */
2456         ifp->if_timer = 5;
2457 }
2458
2459 static void
2460 re_init(void *xsc)
2461 {
2462         struct re_softc *sc = xsc;
2463         struct ifnet *ifp = &sc->arpcom.ac_if;
2464         struct mii_data *mii;
2465         int error, framelen;
2466
2467         ASSERT_SERIALIZED(ifp->if_serializer);
2468
2469         mii = device_get_softc(sc->re_miibus);
2470
2471         /*
2472          * Cancel pending I/O and free all RX/TX buffers.
2473          */
2474         re_stop(sc);
2475
2476         if (sc->re_caps & RE_C_CONTIGRX) {
2477                 if (ifp->if_mtu > ETHERMTU) {
2478                         KKASSERT(sc->re_ldata.re_jbuf != NULL);
2479                         sc->re_flags |= RE_F_USE_JPOOL;
2480                         sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2481                         sc->re_newbuf = re_newbuf_jumbo;
2482                 } else {
2483                         sc->re_flags &= ~RE_F_USE_JPOOL;
2484                         sc->re_rxbuf_size = MCLBYTES;
2485                         sc->re_newbuf = re_newbuf_std;
2486                 }
2487         }
2488
2489         /*
2490          * Adjust max read request size according to MTU; mainly to
2491          * improve TX performance for common case (ETHERMTU) on GigE
2492          * NICs.  However, this could _not_ be done on 10/100 only
2493          * NICs; their DMA engines will malfunction using non-default
2494          * max read request size.
2495          */
2496         if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2497                 if (ifp->if_mtu > ETHERMTU) {
2498                         /*
2499                          * 512 seems to be the only value that works
2500                          * reliably with jumbo frame
2501                          */
2502                         pcie_set_max_readrq(sc->re_dev,
2503                                 PCIEM_DEVCTL_MAX_READRQ_512);
2504                 } else {
2505                         pcie_set_max_readrq(sc->re_dev,
2506                                 PCIEM_DEVCTL_MAX_READRQ_4096);
2507                 }
2508         }
2509
2510         /*
2511          * Enable C+ RX and TX mode, as well as VLAN stripping and
2512          * RX checksum offload. We must configure the C+ register
2513          * before all others.
2514          */
2515         CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2516                     RE_CPLUSCMD_PCI_MRW |
2517                     (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2518                      RE_CPLUSCMD_VLANSTRIP : 0) |
2519                     (ifp->if_capenable & IFCAP_RXCSUM ?
2520                      RE_CPLUSCMD_RXCSUM_ENB : 0));
2521
2522         /*
2523          * Init our MAC address.  Even though the chipset
2524          * documentation doesn't mention it, we need to enter "Config
2525          * register write enable" mode to modify the ID registers.
2526          */
2527         CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2528         CSR_WRITE_4(sc, RE_IDR0,
2529             htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2530         CSR_WRITE_2(sc, RE_IDR4,
2531             htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2532         CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2533
2534         /*
2535          * For C+ mode, initialize the RX descriptors and mbufs.
2536          */
2537         error = re_rx_list_init(sc);
2538         if (error) {
2539                 re_stop(sc);
2540                 return;
2541         }
2542         error = re_tx_list_init(sc);
2543         if (error) {
2544                 re_stop(sc);
2545                 return;
2546         }
2547
2548         /*
2549          * Load the addresses of the RX and TX lists into the chip.
2550          */
2551         CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2552             RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2553         CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2554             RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2555
2556         CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2557             RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2558         CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2559             RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2560
2561         /*
2562          * Enable transmit and receive.
2563          */
2564         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2565
2566         /*
2567          * Set the initial TX and RX configuration.
2568          */
2569         if (sc->re_flags & RE_F_TESTMODE) {
2570                 if (!RE_IS_8139CP(sc))
2571                         CSR_WRITE_4(sc, RE_TXCFG,
2572                                     RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2573                 else
2574                         CSR_WRITE_4(sc, RE_TXCFG,
2575                                     RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2576         } else
2577                 CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2578
2579         framelen = RE_FRAMELEN(ifp->if_mtu);
2580         if (framelen < MCLBYTES)
2581                 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2582         else
2583                 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2584
2585         CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2586
2587         /*
2588          * Program the multicast filter, if necessary.
2589          */
2590         re_setmulti(sc);
2591
2592 #ifdef DEVICE_POLLING
2593         /*
2594          * Disable interrupts if we are polling.
2595          */
2596         if (ifp->if_flags & IFF_POLLING)
2597                 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2598         else    /* otherwise ... */
2599 #endif /* DEVICE_POLLING */
2600         /*
2601          * Enable interrupts.
2602          */
2603         if (sc->re_flags & RE_F_TESTMODE)
2604                 CSR_WRITE_2(sc, RE_IMR, 0);
2605         else
2606                 re_setup_intr(sc, 1, sc->re_imtype);
2607         CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2608
2609         /* Start RX/TX process. */
2610         CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2611
2612 #ifdef notdef
2613         /* Enable receiver and transmitter. */
2614         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2615 #endif
2616
2617         /*
2618          * For 8169 gigE NICs, set the max allowed RX packet
2619          * size so we can receive jumbo frames.
2620          */
2621         if (!RE_IS_8139CP(sc)) {
2622                 if (sc->re_caps & RE_C_CONTIGRX)
2623                         CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2624                 else
2625                         CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2626         }
2627
2628         if (sc->re_flags & RE_F_TESTMODE)
2629                 return;
2630
2631         mii_mediachg(mii);
2632
2633         CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2634
2635         ifp->if_flags |= IFF_RUNNING;
2636         ifp->if_flags &= ~IFF_OACTIVE;
2637
2638         callout_reset(&sc->re_timer, hz, re_tick, sc);
2639 }
2640
2641 /*
2642  * Set media options.
2643  */
2644 static int
2645 re_ifmedia_upd(struct ifnet *ifp)
2646 {
2647         struct re_softc *sc = ifp->if_softc;
2648         struct mii_data *mii;
2649
2650         ASSERT_SERIALIZED(ifp->if_serializer);
2651
2652         mii = device_get_softc(sc->re_miibus);
2653         mii_mediachg(mii);
2654
2655         return(0);
2656 }
2657
2658 /*
2659  * Report current media status.
2660  */
2661 static void
2662 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2663 {
2664         struct re_softc *sc = ifp->if_softc;
2665         struct mii_data *mii;
2666
2667         ASSERT_SERIALIZED(ifp->if_serializer);
2668
2669         mii = device_get_softc(sc->re_miibus);
2670
2671         mii_pollstat(mii);
2672         ifmr->ifm_active = mii->mii_media_active;
2673         ifmr->ifm_status = mii->mii_media_status;
2674 }
2675
2676 static int
2677 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2678 {
2679         struct re_softc *sc = ifp->if_softc;
2680         struct ifreq *ifr = (struct ifreq *) data;
2681         struct mii_data *mii;
2682         int error = 0, mask;
2683
2684         ASSERT_SERIALIZED(ifp->if_serializer);
2685
2686         switch(command) {
2687         case SIOCSIFMTU:
2688                 if (ifr->ifr_mtu > sc->re_maxmtu) {
2689                         error = EINVAL;
2690                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2691                         ifp->if_mtu = ifr->ifr_mtu;
2692                         if (ifp->if_flags & IFF_RUNNING)
2693                                 ifp->if_init(sc);
2694                 }
2695                 break;
2696
2697         case SIOCSIFFLAGS:
2698                 if (ifp->if_flags & IFF_UP) {
2699                         if (ifp->if_flags & IFF_RUNNING) {
2700                                 if ((ifp->if_flags ^ sc->re_if_flags) &
2701                                     (IFF_PROMISC | IFF_ALLMULTI))
2702                                         re_setmulti(sc);
2703                         } else {
2704                                 re_init(sc);
2705                         }
2706                 } else if (ifp->if_flags & IFF_RUNNING) {
2707                         re_stop(sc);
2708                 }
2709                 sc->re_if_flags = ifp->if_flags;
2710                 break;
2711
2712         case SIOCADDMULTI:
2713         case SIOCDELMULTI:
2714                 re_setmulti(sc);
2715                 break;
2716
2717         case SIOCGIFMEDIA:
2718         case SIOCSIFMEDIA:
2719                 mii = device_get_softc(sc->re_miibus);
2720                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2721                 break;
2722
2723         case SIOCSIFCAP:
2724                 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2725                        ifp->if_capabilities;
2726                 ifp->if_capenable ^= mask;
2727
2728                 if (mask & IFCAP_HWCSUM) {
2729                         if (ifp->if_capenable & IFCAP_TXCSUM)
2730                                 ifp->if_hwassist = RE_CSUM_FEATURES;
2731                         else
2732                                 ifp->if_hwassist = 0;
2733                 }
2734                 if (mask && (ifp->if_flags & IFF_RUNNING))
2735                         re_init(sc);
2736                 break;
2737
2738         default:
2739                 error = ether_ioctl(ifp, command, data);
2740                 break;
2741         }
2742         return(error);
2743 }
2744
2745 static void
2746 re_watchdog(struct ifnet *ifp)
2747 {
2748         struct re_softc *sc = ifp->if_softc;
2749
2750         ASSERT_SERIALIZED(ifp->if_serializer);
2751
2752         if_printf(ifp, "watchdog timeout\n");
2753
2754         ifp->if_oerrors++;
2755
2756         re_txeof(sc);
2757         re_rxeof(sc);
2758
2759         re_init(sc);
2760
2761         if (!ifq_is_empty(&ifp->if_snd))
2762                 if_devstart(ifp);
2763 }
2764
2765 /*
2766  * Stop the adapter and free any mbufs allocated to the
2767  * RX and TX lists.
2768  */
2769 static void
2770 re_stop(struct re_softc *sc)
2771 {
2772         struct ifnet *ifp = &sc->arpcom.ac_if;
2773         int i;
2774
2775         ASSERT_SERIALIZED(ifp->if_serializer);
2776
2777         /* Reset the adapter. */
2778         re_reset(sc, ifp->if_flags & IFF_RUNNING);
2779
2780         ifp->if_timer = 0;
2781         callout_stop(&sc->re_timer);
2782
2783         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2784         sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2785
2786         CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2787         CSR_WRITE_2(sc, RE_IMR, 0x0000);
2788         CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2789
2790         re_free_rxchain(sc);
2791
2792         /* Free the TX list buffers. */
2793         for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2794                 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2795                         bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2796                                           sc->re_ldata.re_tx_dmamap[i]);
2797                         m_freem(sc->re_ldata.re_tx_mbuf[i]);
2798                         sc->re_ldata.re_tx_mbuf[i] = NULL;
2799                 }
2800         }
2801
2802         /* Free the RX list buffers. */
2803         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2804                 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2805                         if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2806                                 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2807                                                   sc->re_ldata.re_rx_dmamap[i]);
2808                         }
2809                         m_freem(sc->re_ldata.re_rx_mbuf[i]);
2810                         sc->re_ldata.re_rx_mbuf[i] = NULL;
2811                 }
2812         }
2813 }
2814
2815 /*
2816  * Device suspend routine.  Stop the interface and save some PCI
2817  * settings in case the BIOS doesn't restore them properly on
2818  * resume.
2819  */
2820 static int
2821 re_suspend(device_t dev)
2822 {
2823 #ifndef BURN_BRIDGES
2824         int i;
2825 #endif
2826         struct re_softc *sc = device_get_softc(dev);
2827         struct ifnet *ifp = &sc->arpcom.ac_if;
2828
2829         lwkt_serialize_enter(ifp->if_serializer);
2830
2831         re_stop(sc);
2832
2833 #ifndef BURN_BRIDGES
2834         for (i = 0; i < 5; i++)
2835                 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2836         sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2837         sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2838         sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2839         sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2840 #endif
2841
2842         sc->re_flags |= RE_F_SUSPENDED;
2843
2844         lwkt_serialize_exit(ifp->if_serializer);
2845
2846         return (0);
2847 }
2848
2849 /*
2850  * Device resume routine.  Restore some PCI settings in case the BIOS
2851  * doesn't, re-enable busmastering, and restart the interface if
2852  * appropriate.
2853  */
2854 static int
2855 re_resume(device_t dev)
2856 {
2857         struct re_softc *sc = device_get_softc(dev);
2858         struct ifnet *ifp = &sc->arpcom.ac_if;
2859 #ifndef BURN_BRIDGES
2860         int i;
2861 #endif
2862
2863         lwkt_serialize_enter(ifp->if_serializer);
2864
2865 #ifndef BURN_BRIDGES
2866         /* better way to do this? */
2867         for (i = 0; i < 5; i++)
2868                 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2869         pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2870         pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2871         pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2872         pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2873
2874         /* reenable busmastering */
2875         pci_enable_busmaster(dev);
2876         pci_enable_io(dev, SYS_RES_IOPORT);
2877 #endif
2878
2879         /* reinitialize interface if necessary */
2880         if (ifp->if_flags & IFF_UP)
2881                 re_init(sc);
2882
2883         sc->re_flags &= ~RE_F_SUSPENDED;
2884
2885         lwkt_serialize_exit(ifp->if_serializer);
2886
2887         return (0);
2888 }
2889
2890 /*
2891  * Stop all chip I/O so that the kernel's probe routines don't
2892  * get confused by errant DMAs when rebooting.
2893  */
2894 static void
2895 re_shutdown(device_t dev)
2896 {
2897         struct re_softc *sc = device_get_softc(dev);
2898         struct ifnet *ifp = &sc->arpcom.ac_if;
2899
2900         lwkt_serialize_enter(ifp->if_serializer);
2901         re_stop(sc);
2902         lwkt_serialize_exit(ifp->if_serializer);
2903 }
2904
2905 static int
2906 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2907 {
2908         struct re_softc *sc = arg1;
2909
2910         return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2911 }
2912
2913 static int
2914 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2915 {
2916         struct re_softc *sc = arg1;
2917
2918         return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2919 }
2920
2921 static int
2922 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2923 {
2924         struct re_softc *sc = arg1;
2925         struct ifnet *ifp = &sc->arpcom.ac_if;
2926         int error, v;
2927
2928         lwkt_serialize_enter(ifp->if_serializer);
2929
2930         v = *hwtime;
2931         error = sysctl_handle_int(oidp, &v, 0, req);
2932         if (error || req->newptr == NULL)
2933                 goto back;
2934
2935         if (v <= 0) {
2936                 error = EINVAL;
2937                 goto back;
2938         }
2939
2940         if (v != *hwtime) {
2941                 *hwtime = v;
2942
2943                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2944                     IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2945                         re_setup_hw_im(sc);
2946         }
2947 back:
2948         lwkt_serialize_exit(ifp->if_serializer);
2949         return error;
2950 }
2951
2952 static int
2953 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
2954 {
2955         struct re_softc *sc = arg1;
2956         struct ifnet *ifp = &sc->arpcom.ac_if;
2957         int error, v;
2958
2959         lwkt_serialize_enter(ifp->if_serializer);
2960
2961         v = sc->re_sim_time;
2962         error = sysctl_handle_int(oidp, &v, 0, req);
2963         if (error || req->newptr == NULL)
2964                 goto back;
2965
2966         if (v <= 0) {
2967                 error = EINVAL;
2968                 goto back;
2969         }
2970
2971         if (v != sc->re_sim_time) {
2972                 sc->re_sim_time = v;
2973
2974                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2975                     IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
2976 #ifdef foo
2977                         int reg;
2978
2979                         /*
2980                          * Following code causes various strange
2981                          * performance problems.  Hmm ...
2982                          */
2983                         CSR_WRITE_2(sc, RE_IMR, 0);
2984                         if (!RE_IS_8139CP(sc))
2985                                 reg = RE_TIMERINT_8169;
2986                         else
2987                                 reg = RE_TIMERINT;
2988                         CSR_WRITE_4(sc, reg, 0);
2989                         CSR_READ_4(sc, reg); /* flush */
2990
2991                         CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
2992                         re_setup_sim_im(sc);
2993 #else
2994                         re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2995                         DELAY(10);
2996                         re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2997 #endif
2998                 }
2999         }
3000 back:
3001         lwkt_serialize_exit(ifp->if_serializer);
3002         return error;
3003 }
3004
3005 static int
3006 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3007 {
3008         struct re_softc *sc = arg1;
3009         struct ifnet *ifp = &sc->arpcom.ac_if;
3010         int error, v;
3011
3012         lwkt_serialize_enter(ifp->if_serializer);
3013
3014         v = sc->re_imtype;
3015         error = sysctl_handle_int(oidp, &v, 0, req);
3016         if (error || req->newptr == NULL)
3017                 goto back;
3018
3019         if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3020                 error = EINVAL;
3021                 goto back;
3022         }
3023         if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3024                 /* Can't do hardware interrupt moderation */
3025                 error = EOPNOTSUPP;
3026                 goto back;
3027         }
3028
3029         if (v != sc->re_imtype) {
3030                 sc->re_imtype = v;
3031                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3032                     IFF_RUNNING)
3033                         re_setup_intr(sc, 1, sc->re_imtype);
3034         }
3035 back:
3036         lwkt_serialize_exit(ifp->if_serializer);
3037         return error;
3038 }
3039
3040 static void
3041 re_setup_hw_im(struct re_softc *sc)
3042 {
3043         KKASSERT(sc->re_caps & RE_C_HWIM);
3044
3045         /*
3046          * Interrupt moderation
3047          *
3048          * 0xABCD
3049          * A - unknown (maybe TX related)
3050          * B - TX timer (unit: 25us)
3051          * C - unknown (maybe RX related)
3052          * D - RX timer (unit: 25us)
3053          *
3054          *
3055          * re(4)'s interrupt moderation is actually controlled by
3056          * two variables, like most other NICs (bge, bce etc.)
3057          * o  timer
3058          * o  number of packets [P]
3059          *
3060          * The logic relationship between these two variables is
3061          * similar to other NICs too:
3062          * if (timer expire || packets > [P])
3063          *     Interrupt is delivered
3064          *
3065          * Currently we only know how to set 'timer', but not
3066          * 'number of packets', which should be ~30, as far as I
3067          * tested (sink ~900Kpps, interrupt rate is 30KHz)
3068          */
3069         CSR_WRITE_2(sc, RE_IM,
3070                     RE_IM_RXTIME(sc->re_rx_time) |
3071                     RE_IM_TXTIME(sc->re_tx_time) |
3072                     RE_IM_MAGIC);
3073 }
3074
3075 static void
3076 re_disable_hw_im(struct re_softc *sc)
3077 {
3078         if (sc->re_caps & RE_C_HWIM)
3079                 CSR_WRITE_2(sc, RE_IM, 0);
3080 }
3081
3082 static void
3083 re_setup_sim_im(struct re_softc *sc)
3084 {
3085         if (!RE_IS_8139CP(sc)) {
3086                 uint32_t ticks;
3087
3088                 /*
3089                  * Datasheet says tick decreases at bus speed,
3090                  * but it seems the clock runs a little bit
3091                  * faster, so we do some compensation here.
3092                  */
3093                 ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3094                 CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3095         } else {
3096                 CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3097         }
3098         CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3099         sc->re_flags |= RE_F_TIMER_INTR;
3100 }
3101
3102 static void
3103 re_disable_sim_im(struct re_softc *sc)
3104 {
3105         if (!RE_IS_8139CP(sc))
3106                 CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3107         else
3108                 CSR_WRITE_4(sc, RE_TIMERINT, 0);
3109         sc->re_flags &= ~RE_F_TIMER_INTR;
3110 }
3111
3112 static void
3113 re_config_imtype(struct re_softc *sc, int imtype)
3114 {
3115         switch (imtype) {
3116         case RE_IMTYPE_HW:
3117                 KKASSERT(sc->re_caps & RE_C_HWIM);
3118                 /* FALL THROUGH */
3119         case RE_IMTYPE_NONE:
3120                 sc->re_intrs = RE_INTRS;
3121                 sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3122                                 RE_ISR_RX_OVERRUN;
3123                 sc->re_tx_ack = RE_ISR_TX_OK;
3124                 break;
3125
3126         case RE_IMTYPE_SIM:
3127                 sc->re_intrs = RE_INTRS_TIMER;
3128                 sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3129                 sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3130                 break;
3131
3132         default:
3133                 panic("%s: unknown imtype %d\n",
3134                       sc->arpcom.ac_if.if_xname, imtype);
3135         }
3136 }
3137
3138 static void
3139 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3140 {
3141         re_config_imtype(sc, imtype);
3142
3143         if (enable_intrs)
3144                 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3145         else
3146                 CSR_WRITE_2(sc, RE_IMR, 0); 
3147
3148         switch (imtype) {
3149         case RE_IMTYPE_NONE:
3150                 re_disable_sim_im(sc);
3151                 re_disable_hw_im(sc);
3152                 break;
3153
3154         case RE_IMTYPE_HW:
3155                 KKASSERT(sc->re_caps & RE_C_HWIM);
3156                 re_disable_sim_im(sc);
3157                 re_setup_hw_im(sc);
3158                 break;
3159
3160         case RE_IMTYPE_SIM:
3161                 re_disable_hw_im(sc);
3162                 re_setup_sim_im(sc);
3163                 break;
3164
3165         default:
3166                 panic("%s: unknown imtype %d\n",
3167                       sc->arpcom.ac_if.if_xname, imtype);
3168         }
3169 }
3170
3171 static void
3172 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3173 {
3174         int i;
3175
3176         if (sc->re_macver == RE_MACVER_11 || sc->re_macver == RE_MACVER_12) {
3177                 uint16_t re_did;
3178
3179                 re_get_eewidth(sc);
3180                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3181                 if (re_did == 0x8128) {
3182                         uint16_t as[ETHER_ADDR_LEN / 2];
3183
3184                         /*
3185                          * Get station address from the EEPROM.
3186                          */
3187                         re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
3188                         for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3189                                 as[i] = le16toh(as[i]);
3190                         bcopy(as, eaddr, sizeof(eaddr));
3191                         return;
3192                 }
3193         }
3194
3195         /*
3196          * Get station address from IDRx.
3197          */
3198         for (i = 0; i < ETHER_ADDR_LEN; ++i)
3199                 eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3200 }
3201
3202 static int
3203 re_jpool_alloc(struct re_softc *sc)
3204 {
3205         struct re_list_data *ldata = &sc->re_ldata;
3206         struct re_jbuf *jbuf;
3207         bus_addr_t paddr;
3208         bus_size_t jpool_size;
3209         bus_dmamem_t dmem;
3210         caddr_t buf;
3211         int i, error;
3212
3213         lwkt_serialize_init(&ldata->re_jbuf_serializer);
3214
3215         ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3216                                  M_DEVBUF, M_WAITOK | M_ZERO);
3217
3218         jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3219
3220         error = bus_dmamem_coherent(sc->re_parent_tag,
3221                         RE_RXBUF_ALIGN, 0,
3222                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3223                         jpool_size, BUS_DMA_WAITOK, &dmem);
3224         if (error) {
3225                 device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3226                 return error;
3227         }
3228         ldata->re_jpool_tag = dmem.dmem_tag;
3229         ldata->re_jpool_map = dmem.dmem_map;
3230         ldata->re_jpool = dmem.dmem_addr;
3231         paddr = dmem.dmem_busaddr;
3232
3233         /* ..and split it into 9KB chunks */
3234         SLIST_INIT(&ldata->re_jbuf_free);
3235
3236         buf = ldata->re_jpool;
3237         for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3238                 jbuf = &ldata->re_jbuf[i];
3239
3240                 jbuf->re_sc = sc;
3241                 jbuf->re_inuse = 0;
3242                 jbuf->re_slot = i;
3243                 jbuf->re_buf = buf;
3244                 jbuf->re_paddr = paddr;
3245
3246                 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3247
3248                 buf += RE_JBUF_SIZE;
3249                 paddr += RE_JBUF_SIZE;
3250         }
3251         return 0;
3252 }
3253
3254 static void
3255 re_jpool_free(struct re_softc *sc)
3256 {
3257         struct re_list_data *ldata = &sc->re_ldata;
3258
3259         if (ldata->re_jpool_tag != NULL) {
3260                 bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3261                 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3262                                 ldata->re_jpool_map);
3263                 bus_dma_tag_destroy(ldata->re_jpool_tag);
3264                 ldata->re_jpool_tag = NULL;
3265         }
3266
3267         if (ldata->re_jbuf != NULL) {
3268                 kfree(ldata->re_jbuf, M_DEVBUF);
3269                 ldata->re_jbuf = NULL;
3270         }
3271 }
3272
3273 static struct re_jbuf *
3274 re_jbuf_alloc(struct re_softc *sc)
3275 {
3276         struct re_list_data *ldata = &sc->re_ldata;
3277         struct re_jbuf *jbuf;
3278
3279         lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3280
3281         jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3282         if (jbuf != NULL) {
3283                 SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3284                 jbuf->re_inuse = 1;
3285         }
3286
3287         lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3288
3289         return jbuf;
3290 }
3291
3292 static void
3293 re_jbuf_free(void *arg)
3294 {
3295         struct re_jbuf *jbuf = arg;
3296         struct re_softc *sc = jbuf->re_sc;
3297         struct re_list_data *ldata = &sc->re_ldata;
3298
3299         if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3300                 panic("%s: free wrong jumbo buffer\n",
3301                       sc->arpcom.ac_if.if_xname);
3302         } else if (jbuf->re_inuse == 0) {
3303                 panic("%s: jumbo buffer already freed\n",
3304                       sc->arpcom.ac_if.if_xname);
3305         }
3306
3307         lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3308         atomic_subtract_int(&jbuf->re_inuse, 1);
3309         if (jbuf->re_inuse == 0)
3310                 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3311         lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3312 }
3313
3314 static void
3315 re_jbuf_ref(void *arg)
3316 {
3317         struct re_jbuf *jbuf = arg;
3318         struct re_softc *sc = jbuf->re_sc;
3319         struct re_list_data *ldata = &sc->re_ldata;
3320
3321         if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3322                 panic("%s: ref wrong jumbo buffer\n",
3323                       sc->arpcom.ac_if.if_xname);
3324         } else if (jbuf->re_inuse == 0) {
3325                 panic("%s: jumbo buffer already freed\n",
3326                       sc->arpcom.ac_if.if_xname);
3327         }
3328         atomic_add_int(&jbuf->re_inuse, 1);
3329 }