Merge branch 'vendor/GDTOA'
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static int vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update vm_load to slow down faulting processes.
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389         vm_object_t object;
390         int pageout_status[count];
391         int numpagedout = 0;
392         int i;
393
394         /*
395          * Initiate I/O.  Bump the vm_page_t->busy counter.
396          */
397         for (i = 0; i < count; i++) {
398                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
399                 vm_page_io_start(mc[i]);
400         }
401
402         /*
403          * We must make the pages read-only.  This will also force the
404          * modified bit in the related pmaps to be cleared.  The pager
405          * cannot clear the bit for us since the I/O completion code
406          * typically runs from an interrupt.  The act of making the page
407          * read-only handles the case for us.
408          */
409         for (i = 0; i < count; i++) {
410                 vm_page_protect(mc[i], VM_PROT_READ);
411         }
412
413         object = mc[0]->object;
414         vm_object_pip_add(object, count);
415
416         vm_pager_put_pages(object, mc, count,
417             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
418             pageout_status);
419
420         for (i = 0; i < count; i++) {
421                 vm_page_t mt = mc[i];
422
423                 switch (pageout_status[i]) {
424                 case VM_PAGER_OK:
425                         numpagedout++;
426                         break;
427                 case VM_PAGER_PEND:
428                         numpagedout++;
429                         break;
430                 case VM_PAGER_BAD:
431                         /*
432                          * Page outside of range of object. Right now we
433                          * essentially lose the changes by pretending it
434                          * worked.
435                          */
436                         pmap_clear_modify(mt);
437                         vm_page_undirty(mt);
438                         break;
439                 case VM_PAGER_ERROR:
440                 case VM_PAGER_FAIL:
441                         /*
442                          * A page typically cannot be paged out when we
443                          * have run out of swap.  We leave the page
444                          * marked inactive and will try to page it out
445                          * again later.
446                          *
447                          * Starvation of the active page list is used to
448                          * determine when the system is massively memory
449                          * starved.
450                          */
451                         break;
452                 case VM_PAGER_AGAIN:
453                         break;
454                 }
455
456                 /*
457                  * If the operation is still going, leave the page busy to
458                  * block all other accesses. Also, leave the paging in
459                  * progress indicator set so that we don't attempt an object
460                  * collapse.
461                  *
462                  * For any pages which have completed synchronously, 
463                  * deactivate the page if we are under a severe deficit.
464                  * Do not try to enter them into the cache, though, they
465                  * might still be read-heavy.
466                  */
467                 if (pageout_status[i] != VM_PAGER_PEND) {
468                         vm_object_pip_wakeup(object);
469                         vm_page_io_finish(mt);
470                         if (vm_page_count_severe())
471                                 vm_page_deactivate(mt);
472 #if 0
473                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
474                                 vm_page_protect(mt, VM_PROT_READ);
475 #endif
476                 }
477         }
478         return numpagedout;
479 }
480
481 #if !defined(NO_SWAPPING)
482 /*
483  *      vm_pageout_object_deactivate_pages
484  *
485  *      deactivate enough pages to satisfy the inactive target
486  *      requirements or if vm_page_proc_limit is set, then
487  *      deactivate all of the pages in the object and its
488  *      backing_objects.
489  *
490  *      The object and map must be locked.
491  */
492 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
493
494 static void
495 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
496         vm_pindex_t desired, int map_remove_only)
497 {
498         struct rb_vm_page_scan_info info;
499         int remove_mode;
500
501         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
502                 return;
503
504         while (object) {
505                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
506                         return;
507                 if (object->paging_in_progress)
508                         return;
509
510                 remove_mode = map_remove_only;
511                 if (object->shadow_count > 1)
512                         remove_mode = 1;
513
514                 /*
515                  * scan the objects entire memory queue.  spl protection is
516                  * required to avoid an interrupt unbusy/free race against
517                  * our busy check.
518                  */
519                 crit_enter();
520                 info.limit = remove_mode;
521                 info.map = map;
522                 info.desired = desired;
523                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
524                                 vm_pageout_object_deactivate_pages_callback,
525                                 &info
526                 );
527                 crit_exit();
528                 object = object->backing_object;
529         }
530 }
531                                         
532 static int
533 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
534 {
535         struct rb_vm_page_scan_info *info = data;
536         int actcount;
537
538         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
539                 return(-1);
540         }
541         mycpu->gd_cnt.v_pdpages++;
542         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
543             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
544             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
545                 return(0);
546         }
547
548         actcount = pmap_ts_referenced(p);
549         if (actcount) {
550                 vm_page_flag_set(p, PG_REFERENCED);
551         } else if (p->flags & PG_REFERENCED) {
552                 actcount = 1;
553         }
554
555         if ((p->queue != PQ_ACTIVE) &&
556                 (p->flags & PG_REFERENCED)) {
557                 vm_page_activate(p);
558                 p->act_count += actcount;
559                 vm_page_flag_clear(p, PG_REFERENCED);
560         } else if (p->queue == PQ_ACTIVE) {
561                 if ((p->flags & PG_REFERENCED) == 0) {
562                         p->act_count -= min(p->act_count, ACT_DECLINE);
563                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
564                                 vm_page_busy(p);
565                                 vm_page_protect(p, VM_PROT_NONE);
566                                 vm_page_wakeup(p);
567                                 vm_page_deactivate(p);
568                         } else {
569                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
570                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
571                         }
572                 } else {
573                         vm_page_activate(p);
574                         vm_page_flag_clear(p, PG_REFERENCED);
575                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
576                                 p->act_count += ACT_ADVANCE;
577                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
578                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
579                 }
580         } else if (p->queue == PQ_INACTIVE) {
581                 vm_page_busy(p);
582                 vm_page_protect(p, VM_PROT_NONE);
583                 vm_page_wakeup(p);
584         }
585         return(0);
586 }
587
588 /*
589  * deactivate some number of pages in a map, try to do it fairly, but
590  * that is really hard to do.
591  */
592 static void
593 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
594 {
595         vm_map_entry_t tmpe;
596         vm_object_t obj, bigobj;
597         int nothingwired;
598
599         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
600                 return;
601         }
602
603         bigobj = NULL;
604         nothingwired = TRUE;
605
606         /*
607          * first, search out the biggest object, and try to free pages from
608          * that.
609          */
610         tmpe = map->header.next;
611         while (tmpe != &map->header) {
612                 switch(tmpe->maptype) {
613                 case VM_MAPTYPE_NORMAL:
614                 case VM_MAPTYPE_VPAGETABLE:
615                         obj = tmpe->object.vm_object;
616                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
617                                 ((bigobj == NULL) ||
618                                  (bigobj->resident_page_count < obj->resident_page_count))) {
619                                 bigobj = obj;
620                         }
621                         break;
622                 default:
623                         break;
624                 }
625                 if (tmpe->wired_count > 0)
626                         nothingwired = FALSE;
627                 tmpe = tmpe->next;
628         }
629
630         if (bigobj)
631                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
632
633         /*
634          * Next, hunt around for other pages to deactivate.  We actually
635          * do this search sort of wrong -- .text first is not the best idea.
636          */
637         tmpe = map->header.next;
638         while (tmpe != &map->header) {
639                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
640                         break;
641                 switch(tmpe->maptype) {
642                 case VM_MAPTYPE_NORMAL:
643                 case VM_MAPTYPE_VPAGETABLE:
644                         obj = tmpe->object.vm_object;
645                         if (obj)
646                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
647                         break;
648                 default:
649                         break;
650                 }
651                 tmpe = tmpe->next;
652         };
653
654         /*
655          * Remove all mappings if a process is swapped out, this will free page
656          * table pages.
657          */
658         if (desired == 0 && nothingwired)
659                 pmap_remove(vm_map_pmap(map),
660                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
661         vm_map_unlock(map);
662 }
663 #endif
664
665 /*
666  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
667  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
668  * be trivially freed.
669  */
670 void
671 vm_pageout_page_free(vm_page_t m) 
672 {
673         vm_object_t object = m->object;
674         int type = object->type;
675
676         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
677                 vm_object_reference(object);
678         vm_page_busy(m);
679         vm_page_protect(m, VM_PROT_NONE);
680         vm_page_free(m);
681         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
682                 vm_object_deallocate(object);
683 }
684
685 /*
686  * vm_pageout_scan does the dirty work for the pageout daemon.
687  */
688 struct vm_pageout_scan_info {
689         struct proc *bigproc;
690         vm_offset_t bigsize;
691 };
692
693 static int vm_pageout_scan_callback(struct proc *p, void *data);
694
695 static int
696 vm_pageout_scan(int pass)
697 {
698         struct vm_pageout_scan_info info;
699         vm_page_t m, next;
700         struct vm_page marker;
701         int maxscan, pcount;
702         int recycle_count;
703         int inactive_shortage, active_shortage;
704         vm_object_t object;
705         int actcount;
706         int vnodes_skipped = 0;
707         int maxlaunder;
708
709         /*
710          * Do whatever cleanup that the pmap code can.
711          */
712         pmap_collect();
713
714         /*
715          * Calculate our target for the number of free+cache pages we
716          * want to get to.  This is higher then the number that causes
717          * allocations to stall (severe) in order to provide hysteresis,
718          * and if we don't make it all the way but get to the minimum
719          * we're happy.
720          */
721         inactive_shortage = vm_paging_target() + vm_pageout_deficit;
722         vm_pageout_deficit = 0;
723
724         /*
725          * Initialize our marker
726          */
727         bzero(&marker, sizeof(marker));
728         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
729         marker.queue = PQ_INACTIVE;
730         marker.wire_count = 1;
731
732         /*
733          * Start scanning the inactive queue for pages we can move to the
734          * cache or free.  The scan will stop when the target is reached or
735          * we have scanned the entire inactive queue.  Note that m->act_count
736          * is not used to form decisions for the inactive queue, only for the
737          * active queue.
738          *
739          * maxlaunder limits the number of dirty pages we flush per scan.
740          * For most systems a smaller value (16 or 32) is more robust under
741          * extreme memory and disk pressure because any unnecessary writes
742          * to disk can result in extreme performance degredation.  However,
743          * systems with excessive dirty pages (especially when MAP_NOSYNC is
744          * used) will die horribly with limited laundering.  If the pageout
745          * daemon cannot clean enough pages in the first pass, we let it go
746          * all out in succeeding passes.
747          */
748         if ((maxlaunder = vm_max_launder) <= 1)
749                 maxlaunder = 1;
750         if (pass)
751                 maxlaunder = 10000;
752
753         /*
754          * We will generally be in a critical section throughout the 
755          * scan, but we can release it temporarily when we are sitting on a
756          * non-busy page without fear.  this is required to prevent an
757          * interrupt from unbusying or freeing a page prior to our busy
758          * check, leaving us on the wrong queue or checking the wrong
759          * page.
760          */
761         crit_enter();
762 rescan0:
763         maxscan = vmstats.v_inactive_count;
764         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
765              m != NULL && maxscan-- > 0 && inactive_shortage > 0;
766              m = next
767          ) {
768                 mycpu->gd_cnt.v_pdpages++;
769
770                 /*
771                  * Give interrupts a chance
772                  */
773                 crit_exit();
774                 crit_enter();
775
776                 /*
777                  * It's easier for some of the conditions below to just loop
778                  * and catch queue changes here rather then check everywhere
779                  * else.
780                  */
781                 if (m->queue != PQ_INACTIVE)
782                         goto rescan0;
783                 next = TAILQ_NEXT(m, pageq);
784
785                 /*
786                  * skip marker pages
787                  */
788                 if (m->flags & PG_MARKER)
789                         continue;
790
791                 /*
792                  * A held page may be undergoing I/O, so skip it.
793                  */
794                 if (m->hold_count) {
795                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
796                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
797                         continue;
798                 }
799
800                 /*
801                  * Dont mess with busy pages, keep in the front of the
802                  * queue, most likely are being paged out.
803                  */
804                 if (m->busy || (m->flags & PG_BUSY)) {
805                         continue;
806                 }
807
808                 if (m->object->ref_count == 0) {
809                         /*
810                          * If the object is not being used, we ignore previous 
811                          * references.
812                          */
813                         vm_page_flag_clear(m, PG_REFERENCED);
814                         pmap_clear_reference(m);
815
816                 } else if (((m->flags & PG_REFERENCED) == 0) &&
817                             (actcount = pmap_ts_referenced(m))) {
818                         /*
819                          * Otherwise, if the page has been referenced while 
820                          * in the inactive queue, we bump the "activation
821                          * count" upwards, making it less likely that the
822                          * page will be added back to the inactive queue
823                          * prematurely again.  Here we check the page tables
824                          * (or emulated bits, if any), given the upper level
825                          * VM system not knowing anything about existing 
826                          * references.
827                          */
828                         vm_page_activate(m);
829                         m->act_count += (actcount + ACT_ADVANCE);
830                         continue;
831                 }
832
833                 /*
834                  * If the upper level VM system knows about any page 
835                  * references, we activate the page.  We also set the 
836                  * "activation count" higher than normal so that we will less 
837                  * likely place pages back onto the inactive queue again.
838                  */
839                 if ((m->flags & PG_REFERENCED) != 0) {
840                         vm_page_flag_clear(m, PG_REFERENCED);
841                         actcount = pmap_ts_referenced(m);
842                         vm_page_activate(m);
843                         m->act_count += (actcount + ACT_ADVANCE + 1);
844                         continue;
845                 }
846
847                 /*
848                  * If the upper level VM system doesn't know anything about 
849                  * the page being dirty, we have to check for it again.  As 
850                  * far as the VM code knows, any partially dirty pages are 
851                  * fully dirty.
852                  *
853                  * Pages marked PG_WRITEABLE may be mapped into the user
854                  * address space of a process running on another cpu.  A
855                  * user process (without holding the MP lock) running on
856                  * another cpu may be able to touch the page while we are
857                  * trying to remove it.  vm_page_cache() will handle this
858                  * case for us.
859                  */
860                 if (m->dirty == 0) {
861                         vm_page_test_dirty(m);
862                 } else {
863                         vm_page_dirty(m);
864                 }
865
866                 if (m->valid == 0) {
867                         /*
868                          * Invalid pages can be easily freed
869                          */
870                         vm_pageout_page_free(m);
871                         mycpu->gd_cnt.v_dfree++;
872                         --inactive_shortage;
873                 } else if (m->dirty == 0) {
874                         /*
875                          * Clean pages can be placed onto the cache queue.
876                          * This effectively frees them.
877                          */
878                         vm_page_cache(m);
879                         --inactive_shortage;
880                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
881                         /*
882                          * Dirty pages need to be paged out, but flushing
883                          * a page is extremely expensive verses freeing
884                          * a clean page.  Rather then artificially limiting
885                          * the number of pages we can flush, we instead give
886                          * dirty pages extra priority on the inactive queue
887                          * by forcing them to be cycled through the queue
888                          * twice before being flushed, after which the 
889                          * (now clean) page will cycle through once more
890                          * before being freed.  This significantly extends
891                          * the thrash point for a heavily loaded machine.
892                          */
893                         vm_page_flag_set(m, PG_WINATCFLS);
894                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
895                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
896                 } else if (maxlaunder > 0) {
897                         /*
898                          * We always want to try to flush some dirty pages if
899                          * we encounter them, to keep the system stable.
900                          * Normally this number is small, but under extreme
901                          * pressure where there are insufficient clean pages
902                          * on the inactive queue, we may have to go all out.
903                          */
904                         int swap_pageouts_ok;
905                         struct vnode *vp = NULL;
906
907                         object = m->object;
908
909                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
910                                 swap_pageouts_ok = 1;
911                         } else {
912                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
913                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
914                                 vm_page_count_min(0));
915                                                                                 
916                         }
917
918                         /*
919                          * We don't bother paging objects that are "dead".  
920                          * Those objects are in a "rundown" state.
921                          */
922                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
923                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
924                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
925                                 continue;
926                         }
927
928                         /*
929                          * The object is already known NOT to be dead.   It
930                          * is possible for the vget() to block the whole
931                          * pageout daemon, but the new low-memory handling
932                          * code should prevent it.
933                          *
934                          * The previous code skipped locked vnodes and, worse,
935                          * reordered pages in the queue.  This results in
936                          * completely non-deterministic operation because,
937                          * quite often, a vm_fault has initiated an I/O and
938                          * is holding a locked vnode at just the point where
939                          * the pageout daemon is woken up.
940                          *
941                          * We can't wait forever for the vnode lock, we might
942                          * deadlock due to a vn_read() getting stuck in
943                          * vm_wait while holding this vnode.  We skip the 
944                          * vnode if we can't get it in a reasonable amount
945                          * of time.
946                          */
947
948                         if (object->type == OBJT_VNODE) {
949                                 vp = object->handle;
950
951                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
952                                         ++pageout_lock_miss;
953                                         if (object->flags & OBJ_MIGHTBEDIRTY)
954                                                     vnodes_skipped++;
955                                         continue;
956                                 }
957
958                                 /*
959                                  * The page might have been moved to another
960                                  * queue during potential blocking in vget()
961                                  * above.  The page might have been freed and
962                                  * reused for another vnode.  The object might
963                                  * have been reused for another vnode.
964                                  */
965                                 if (m->queue != PQ_INACTIVE ||
966                                     m->object != object ||
967                                     object->handle != vp) {
968                                         if (object->flags & OBJ_MIGHTBEDIRTY)
969                                                 vnodes_skipped++;
970                                         vput(vp);
971                                         continue;
972                                 }
973         
974                                 /*
975                                  * The page may have been busied during the
976                                  * blocking in vput();  We don't move the
977                                  * page back onto the end of the queue so that
978                                  * statistics are more correct if we don't.
979                                  */
980                                 if (m->busy || (m->flags & PG_BUSY)) {
981                                         vput(vp);
982                                         continue;
983                                 }
984
985                                 /*
986                                  * If the page has become held it might
987                                  * be undergoing I/O, so skip it
988                                  */
989                                 if (m->hold_count) {
990                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
991                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
992                                         if (object->flags & OBJ_MIGHTBEDIRTY)
993                                                 vnodes_skipped++;
994                                         vput(vp);
995                                         continue;
996                                 }
997                         }
998
999                         /*
1000                          * If a page is dirty, then it is either being washed
1001                          * (but not yet cleaned) or it is still in the
1002                          * laundry.  If it is still in the laundry, then we
1003                          * start the cleaning operation. 
1004                          *
1005                          * This operation may cluster, invalidating the 'next'
1006                          * pointer.  To prevent an inordinate number of
1007                          * restarts we use our marker to remember our place.
1008                          *
1009                          * decrement inactive_shortage on success to account
1010                          * for the (future) cleaned page.  Otherwise we
1011                          * could wind up laundering or cleaning too many
1012                          * pages.
1013                          */
1014                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1015                         if (vm_pageout_clean(m) != 0) {
1016                                 --inactive_shortage;
1017                                 --maxlaunder;
1018                         }
1019                         next = TAILQ_NEXT(&marker, pageq);
1020                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1021                         if (vp != NULL)
1022                                 vput(vp);
1023                 }
1024         }
1025
1026         /*
1027          * We want to move pages from the active queue to the inactive
1028          * queue to get the inactive queue to the inactive target.  If
1029          * we still have a page shortage from above we try to directly free
1030          * clean pages instead of moving them.
1031          *
1032          * If we do still have a shortage we keep track of the number of
1033          * pages we free or cache (recycle_count) as a measure of thrashing
1034          * between the active and inactive queues.
1035          *
1036          * We do not do this if we were able to satisfy the requirement
1037          * entirely from the inactive queue.
1038          *
1039          * NOTE: Both variables can end up negative.
1040          * NOTE: We are still in a critical section.
1041          */
1042         active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1043         if (inactive_shortage <= 0)
1044                 active_shortage = 0;
1045
1046         pcount = vmstats.v_active_count;
1047         recycle_count = 0;
1048         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1049
1050         while ((m != NULL) && (pcount-- > 0) &&
1051                (inactive_shortage > 0 || active_shortage > 0)
1052         ) {
1053                 /*
1054                  * Give interrupts a chance.
1055                  */
1056                 crit_exit();
1057                 crit_enter();
1058
1059                 /*
1060                  * If the page was ripped out from under us, just stop.
1061                  */
1062                 if (m->queue != PQ_ACTIVE)
1063                         break;
1064                 next = TAILQ_NEXT(m, pageq);
1065
1066                 /*
1067                  * Don't deactivate pages that are busy.
1068                  */
1069                 if ((m->busy != 0) ||
1070                     (m->flags & PG_BUSY) ||
1071                     (m->hold_count != 0)) {
1072                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1073                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1074                         m = next;
1075                         continue;
1076                 }
1077
1078                 /*
1079                  * The count for pagedaemon pages is done after checking the
1080                  * page for eligibility...
1081                  */
1082                 mycpu->gd_cnt.v_pdpages++;
1083
1084                 /*
1085                  * Check to see "how much" the page has been used and clear
1086                  * the tracking access bits.  If the object has no references
1087                  * don't bother paying the expense.
1088                  */
1089                 actcount = 0;
1090                 if (m->object->ref_count != 0) {
1091                         if (m->flags & PG_REFERENCED)
1092                                 ++actcount;
1093                         actcount += pmap_ts_referenced(m);
1094                         if (actcount) {
1095                                 m->act_count += ACT_ADVANCE + actcount;
1096                                 if (m->act_count > ACT_MAX)
1097                                         m->act_count = ACT_MAX;
1098                         }
1099                 }
1100                 vm_page_flag_clear(m, PG_REFERENCED);
1101
1102                 /*
1103                  * actcount is only valid if the object ref_count is non-zero.
1104                  */
1105                 if (actcount && m->object->ref_count != 0) {
1106                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1107                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1108                 } else {
1109                         m->act_count -= min(m->act_count, ACT_DECLINE);
1110                         if (vm_pageout_algorithm ||
1111                             m->object->ref_count == 0 ||
1112                             m->act_count < pass + 1
1113                         ) {
1114                                 /*
1115                                  * Deactivate the page.  If we had a
1116                                  * shortage from our inactive scan try to
1117                                  * free (cache) the page instead.
1118                                  */
1119                                 --active_shortage;
1120                                 if (inactive_shortage > 0 ||
1121                                     m->object->ref_count == 0) {
1122                                         if (inactive_shortage > 0)
1123                                                 ++recycle_count;
1124                                         vm_page_busy(m);
1125                                         vm_page_protect(m, VM_PROT_NONE);
1126                                         vm_page_wakeup(m);
1127                                         if (m->dirty == 0) {
1128                                                 --inactive_shortage;
1129                                                 vm_page_cache(m);
1130                                         } else {
1131                                                 vm_page_deactivate(m);
1132                                         }
1133                                 } else {
1134                                         vm_page_deactivate(m);
1135                                 }
1136                         } else {
1137                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1138                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1139                         }
1140                 }
1141                 m = next;
1142         }
1143
1144         /*
1145          * We try to maintain some *really* free pages, this allows interrupt
1146          * code to be guaranteed space.  Since both cache and free queues 
1147          * are considered basically 'free', moving pages from cache to free
1148          * does not effect other calculations.
1149          *
1150          * NOTE: we are still in a critical section.
1151          *
1152          * Pages moved from PQ_CACHE to totally free are not counted in the
1153          * pages_freed counter.
1154          */
1155         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1156                 static int cache_rover = 0;
1157                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1158                 if (m == NULL)
1159                         break;
1160                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1161                     m->busy || 
1162                     m->hold_count || 
1163                     m->wire_count) {
1164 #ifdef INVARIANTS
1165                         kprintf("Warning: busy page %p found in cache\n", m);
1166 #endif
1167                         vm_page_deactivate(m);
1168                         continue;
1169                 }
1170                 KKASSERT((m->flags & PG_MAPPED) == 0);
1171                 KKASSERT(m->dirty == 0);
1172                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1173                 vm_pageout_page_free(m);
1174                 mycpu->gd_cnt.v_dfree++;
1175         }
1176
1177         crit_exit();
1178
1179 #if !defined(NO_SWAPPING)
1180         /*
1181          * Idle process swapout -- run once per second.
1182          */
1183         if (vm_swap_idle_enabled) {
1184                 static long lsec;
1185                 if (time_second != lsec) {
1186                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1187                         vm_req_vmdaemon();
1188                         lsec = time_second;
1189                 }
1190         }
1191 #endif
1192                 
1193         /*
1194          * If we didn't get enough free pages, and we have skipped a vnode
1195          * in a writeable object, wakeup the sync daemon.  And kick swapout
1196          * if we did not get enough free pages.
1197          */
1198         if (vm_paging_target() > 0) {
1199                 if (vnodes_skipped && vm_page_count_min(0))
1200                         speedup_syncer();
1201 #if !defined(NO_SWAPPING)
1202                 if (vm_swap_enabled && vm_page_count_target()) {
1203                         vm_req_vmdaemon();
1204                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1205                 }
1206 #endif
1207         }
1208
1209         /*
1210          * Handle catastrophic conditions.  Under good conditions we should
1211          * be at the target, well beyond our minimum.  If we could not even
1212          * reach our minimum the system is under heavy stress.
1213          *
1214          * Determine whether we have run out of memory.  This occurs when
1215          * swap_pager_full is TRUE and the only pages left in the page
1216          * queues are dirty.  We will still likely have page shortages.
1217          *
1218          * - swap_pager_full is set if insufficient swap was
1219          *   available to satisfy a requested pageout.
1220          *
1221          * - the inactive queue is bloated (4 x size of active queue),
1222          *   meaning it is unable to get rid of dirty pages and.
1223          *
1224          * - vm_page_count_min() without counting pages recycled from the
1225          *   active queue (recycle_count) means we could not recover
1226          *   enough pages to meet bare minimum needs.  This test only
1227          *   works if the inactive queue is bloated.
1228          *
1229          * - due to a positive inactive_shortage we shifted the remaining
1230          *   dirty pages from the active queue to the inactive queue
1231          *   trying to find clean ones to free.
1232          */
1233         if (swap_pager_full && vm_page_count_min(recycle_count))
1234                 kprintf("Warning: system low on memory+swap!\n");
1235         if (swap_pager_full && vm_page_count_min(recycle_count) &&
1236             vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1237             inactive_shortage > 0) {
1238                 /*
1239                  * Kill something.
1240                  */
1241                 info.bigproc = NULL;
1242                 info.bigsize = 0;
1243                 allproc_scan(vm_pageout_scan_callback, &info);
1244                 if (info.bigproc != NULL) {
1245                         killproc(info.bigproc, "out of swap space");
1246                         info.bigproc->p_nice = PRIO_MIN;
1247                         info.bigproc->p_usched->resetpriority(
1248                                 FIRST_LWP_IN_PROC(info.bigproc));
1249                         wakeup(&vmstats.v_free_count);
1250                         PRELE(info.bigproc);
1251                 }
1252         }
1253         return(inactive_shortage);
1254 }
1255
1256 static int
1257 vm_pageout_scan_callback(struct proc *p, void *data)
1258 {
1259         struct vm_pageout_scan_info *info = data;
1260         vm_offset_t size;
1261
1262         /*
1263          * Never kill system processes or init.  If we have configured swap
1264          * then try to avoid killing low-numbered pids.
1265          */
1266         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1267             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1268                 return (0);
1269         }
1270
1271         /*
1272          * if the process is in a non-running type state,
1273          * don't touch it.
1274          */
1275         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1276                 return (0);
1277
1278         /*
1279          * Get the approximate process size.  Note that anonymous pages
1280          * with backing swap will be counted twice, but there should not
1281          * be too many such pages due to the stress the VM system is
1282          * under at this point.
1283          */
1284         size = vmspace_anonymous_count(p->p_vmspace) +
1285                 vmspace_swap_count(p->p_vmspace);
1286
1287         /*
1288          * If the this process is bigger than the biggest one
1289          * remember it.
1290          */
1291         if (info->bigsize < size) {
1292                 if (info->bigproc)
1293                         PRELE(info->bigproc);
1294                 PHOLD(p);
1295                 info->bigproc = p;
1296                 info->bigsize = size;
1297         }
1298         return(0);
1299 }
1300
1301 /*
1302  * This routine tries to maintain the pseudo LRU active queue,
1303  * so that during long periods of time where there is no paging,
1304  * that some statistic accumulation still occurs.  This code
1305  * helps the situation where paging just starts to occur.
1306  */
1307 static void
1308 vm_pageout_page_stats(void)
1309 {
1310         vm_page_t m,next;
1311         int pcount,tpcount;             /* Number of pages to check */
1312         static int fullintervalcount = 0;
1313         int page_shortage;
1314
1315         page_shortage = 
1316             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1317             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1318
1319         if (page_shortage <= 0)
1320                 return;
1321
1322         crit_enter();
1323
1324         pcount = vmstats.v_active_count;
1325         fullintervalcount += vm_pageout_stats_interval;
1326         if (fullintervalcount < vm_pageout_full_stats_interval) {
1327                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1328                 if (pcount > tpcount)
1329                         pcount = tpcount;
1330         } else {
1331                 fullintervalcount = 0;
1332         }
1333
1334         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1335         while ((m != NULL) && (pcount-- > 0)) {
1336                 int actcount;
1337
1338                 if (m->queue != PQ_ACTIVE) {
1339                         break;
1340                 }
1341
1342                 next = TAILQ_NEXT(m, pageq);
1343                 /*
1344                  * Don't deactivate pages that are busy.
1345                  */
1346                 if ((m->busy != 0) ||
1347                     (m->flags & PG_BUSY) ||
1348                     (m->hold_count != 0)) {
1349                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1350                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1351                         m = next;
1352                         continue;
1353                 }
1354
1355                 actcount = 0;
1356                 if (m->flags & PG_REFERENCED) {
1357                         vm_page_flag_clear(m, PG_REFERENCED);
1358                         actcount += 1;
1359                 }
1360
1361                 actcount += pmap_ts_referenced(m);
1362                 if (actcount) {
1363                         m->act_count += ACT_ADVANCE + actcount;
1364                         if (m->act_count > ACT_MAX)
1365                                 m->act_count = ACT_MAX;
1366                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1367                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1368                 } else {
1369                         if (m->act_count == 0) {
1370                                 /*
1371                                  * We turn off page access, so that we have
1372                                  * more accurate RSS stats.  We don't do this
1373                                  * in the normal page deactivation when the
1374                                  * system is loaded VM wise, because the
1375                                  * cost of the large number of page protect
1376                                  * operations would be higher than the value
1377                                  * of doing the operation.
1378                                  */
1379                                 vm_page_busy(m);
1380                                 vm_page_protect(m, VM_PROT_NONE);
1381                                 vm_page_wakeup(m);
1382                                 vm_page_deactivate(m);
1383                         } else {
1384                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1385                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1386                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1387                         }
1388                 }
1389
1390                 m = next;
1391         }
1392         crit_exit();
1393 }
1394
1395 static int
1396 vm_pageout_free_page_calc(vm_size_t count)
1397 {
1398         if (count < vmstats.v_page_count)
1399                  return 0;
1400         /*
1401          * free_reserved needs to include enough for the largest swap pager
1402          * structures plus enough for any pv_entry structs when paging.
1403          */
1404         if (vmstats.v_page_count > 1024)
1405                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1406         else
1407                 vmstats.v_free_min = 4;
1408         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1409                 vmstats.v_interrupt_free_min;
1410         vmstats.v_free_reserved = vm_pageout_page_count +
1411                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1412         vmstats.v_free_severe = vmstats.v_free_min / 2;
1413         vmstats.v_free_min += vmstats.v_free_reserved;
1414         vmstats.v_free_severe += vmstats.v_free_reserved;
1415         return 1;
1416 }
1417
1418
1419 /*
1420  * vm_pageout is the high level pageout daemon.
1421  */
1422 static void
1423 vm_pageout(void)
1424 {
1425         int pass;
1426         int inactive_shortage;
1427
1428         /*
1429          * Initialize some paging parameters.
1430          */
1431         curthread->td_flags |= TDF_SYSTHREAD;
1432
1433         vmstats.v_interrupt_free_min = 2;
1434         if (vmstats.v_page_count < 2000)
1435                 vm_pageout_page_count = 8;
1436
1437         vm_pageout_free_page_calc(vmstats.v_page_count);
1438
1439         /*
1440          * v_free_target and v_cache_min control pageout hysteresis.  Note
1441          * that these are more a measure of the VM cache queue hysteresis
1442          * then the VM free queue.  Specifically, v_free_target is the
1443          * high water mark (free+cache pages).
1444          *
1445          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1446          * low water mark, while v_free_min is the stop.  v_cache_min must
1447          * be big enough to handle memory needs while the pageout daemon
1448          * is signalled and run to free more pages.
1449          */
1450         if (vmstats.v_free_count > 6144)
1451                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1452         else
1453                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1454
1455         if (vmstats.v_free_count > 2048) {
1456                 vmstats.v_cache_min = vmstats.v_free_target;
1457                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1458                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1459         } else {
1460                 vmstats.v_cache_min = 0;
1461                 vmstats.v_cache_max = 0;
1462                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1463         }
1464         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1465                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1466
1467         /* XXX does not really belong here */
1468         if (vm_page_max_wired == 0)
1469                 vm_page_max_wired = vmstats.v_free_count / 3;
1470
1471         if (vm_pageout_stats_max == 0)
1472                 vm_pageout_stats_max = vmstats.v_free_target;
1473
1474         /*
1475          * Set interval in seconds for stats scan.
1476          */
1477         if (vm_pageout_stats_interval == 0)
1478                 vm_pageout_stats_interval = 5;
1479         if (vm_pageout_full_stats_interval == 0)
1480                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1481         
1482
1483         /*
1484          * Set maximum free per pass
1485          */
1486         if (vm_pageout_stats_free_max == 0)
1487                 vm_pageout_stats_free_max = 5;
1488
1489         swap_pager_swap_init();
1490         pass = 0;
1491
1492         /*
1493          * The pageout daemon is never done, so loop forever.
1494          */
1495         while (TRUE) {
1496                 int error;
1497
1498                 if (vm_pages_needed == 0) {
1499                         /*
1500                          * Wait for an action request
1501                          */
1502                         error = tsleep(&vm_pages_needed,
1503                                        0, "psleep",
1504                                        vm_pageout_stats_interval * hz);
1505                         if (error && vm_pages_needed == 0) {
1506                                 vm_pageout_page_stats();
1507                                 continue;
1508                         }
1509                         vm_pages_needed = 1;
1510                 }
1511
1512                 /*
1513                  * If we have enough free memory, wakeup waiters.
1514                  */
1515                 crit_enter();
1516                 if (!vm_page_count_min(0))
1517                         wakeup(&vmstats.v_free_count);
1518                 mycpu->gd_cnt.v_pdwakeups++;
1519                 crit_exit();
1520                 inactive_shortage = vm_pageout_scan(pass);
1521
1522                 /*
1523                  * Try to avoid thrashing the system with activity.
1524                  */
1525                 if (inactive_shortage > 0) {
1526                         ++pass;
1527                         if (swap_pager_full) {
1528                                 /*
1529                                  * Running out of memory, catastrophic back-off
1530                                  * to one-second intervals.
1531                                  */
1532                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1533                         } else if (pass < 10 && vm_pages_needed > 1) {
1534                                 /*
1535                                  * Normal operation, additional processes
1536                                  * have already kicked us.  Retry immediately.
1537                                  */
1538                         } else if (pass < 10) {
1539                                 /*
1540                                  * Normal operation, fewer processes.  Delay
1541                                  * a bit but allow wakeups.
1542                                  */
1543                                 vm_pages_needed = 0;
1544                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1545                                 vm_pages_needed = 1;
1546                         } else {
1547                                 /*
1548                                  * We've taken too many passes, forced delay.
1549                                  */
1550                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1551                         }
1552                 } else {
1553                         pass = 0;
1554                         vm_pages_needed = 0;
1555                 }
1556         }
1557 }
1558
1559 /*
1560  * Called after allocating a page out of the cache or free queue
1561  * to possibly wake the pagedaemon up to replentish our supply.
1562  *
1563  * We try to generate some hysteresis by waking the pagedaemon up
1564  * when our free+cache pages go below the severe level.  The pagedaemon
1565  * tries to get the count back up to at least the minimum, and through
1566  * to the target level if possible.
1567  *
1568  * If the pagedaemon is already active bump vm_pages_needed as a hint
1569  * that there are even more requests pending.
1570  */
1571 void
1572 pagedaemon_wakeup(void)
1573 {
1574         if (vm_page_count_severe() && curthread != pagethread) {
1575                 if (vm_pages_needed == 0) {
1576                         vm_pages_needed = 1;
1577                         wakeup(&vm_pages_needed);
1578                 } else if (vm_page_count_min(0)) {
1579                         ++vm_pages_needed;
1580                 }
1581         }
1582 }
1583
1584 #if !defined(NO_SWAPPING)
1585 static void
1586 vm_req_vmdaemon(void)
1587 {
1588         static int lastrun = 0;
1589
1590         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1591                 wakeup(&vm_daemon_needed);
1592                 lastrun = ticks;
1593         }
1594 }
1595
1596 static int vm_daemon_callback(struct proc *p, void *data __unused);
1597
1598 static void
1599 vm_daemon(void)
1600 {
1601         while (TRUE) {
1602                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1603                 if (vm_pageout_req_swapout) {
1604                         swapout_procs(vm_pageout_req_swapout);
1605                         vm_pageout_req_swapout = 0;
1606                 }
1607                 /*
1608                  * scan the processes for exceeding their rlimits or if
1609                  * process is swapped out -- deactivate pages
1610                  */
1611                 allproc_scan(vm_daemon_callback, NULL);
1612         }
1613 }
1614
1615 static int
1616 vm_daemon_callback(struct proc *p, void *data __unused)
1617 {
1618         vm_pindex_t limit, size;
1619
1620         /*
1621          * if this is a system process or if we have already
1622          * looked at this process, skip it.
1623          */
1624         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1625                 return (0);
1626
1627         /*
1628          * if the process is in a non-running type state,
1629          * don't touch it.
1630          */
1631         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1632                 return (0);
1633
1634         /*
1635          * get a limit
1636          */
1637         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1638                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1639
1640         /*
1641          * let processes that are swapped out really be
1642          * swapped out.  Set the limit to nothing to get as
1643          * many pages out to swap as possible.
1644          */
1645         if (p->p_flag & P_SWAPPEDOUT)
1646                 limit = 0;
1647
1648         size = vmspace_resident_count(p->p_vmspace);
1649         if (limit >= 0 && size >= limit) {
1650                 vm_pageout_map_deactivate_pages(
1651                     &p->p_vmspace->vm_map, limit);
1652         }
1653         return (0);
1654 }
1655
1656 #endif