Merge branches 'master' and 'suser_to_priv'
[dragonfly.git] / sys / dev / netif / re / if_re.c
1 /*
2  * Copyright (c) 2004
3  *      Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.99 2008/10/30 11:27:40 sephe Exp $
37  */
38
39 /*
40  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
41  *
42  * Written by Bill Paul <wpaul@windriver.com>
43  * Senior Networking Software Engineer
44  * Wind River Systems
45  */
46
47 /*
48  * This driver is designed to support RealTek's next generation of
49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
52  *
53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54  * with the older 8139 family, however it also supports a special
55  * C+ mode of operation that provides several new performance enhancing
56  * features. These include:
57  *
58  *      o Descriptor based DMA mechanism. Each descriptor represents
59  *        a single packet fragment. Data buffers may be aligned on
60  *        any byte boundary.
61  *
62  *      o 64-bit DMA
63  *
64  *      o TCP/IP checksum offload for both RX and TX
65  *
66  *      o High and normal priority transmit DMA rings
67  *
68  *      o VLAN tag insertion and extraction
69  *
70  *      o TCP large send (segmentation offload)
71  *
72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73  * programming API is fairly straightforward. The RX filtering, EEPROM
74  * access and PHY access is the same as it is on the older 8139 series
75  * chips.
76  *
77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78  * same programming API and feature set as the 8139C+ with the following
79  * differences and additions:
80  *
81  *      o 1000Mbps mode
82  *
83  *      o Jumbo frames
84  *
85  *      o GMII and TBI ports/registers for interfacing with copper
86  *        or fiber PHYs
87  *
88  *      o RX and TX DMA rings can have up to 1024 descriptors
89  *        (the 8139C+ allows a maximum of 64)
90  *
91  *      o Slight differences in register layout from the 8139C+
92  *
93  * The TX start and timer interrupt registers are at different locations
94  * on the 8169 than they are on the 8139C+. Also, the status word in the
95  * RX descriptor has a slightly different bit layout. The 8169 does not
96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97  * copper gigE PHY.
98  *
99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100  * (the 'S' stands for 'single-chip'). These devices have the same
101  * programming API as the older 8169, but also have some vendor-specific
102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104  * 
105  * This driver takes advantage of the RX and TX checksum offload and
106  * VLAN tag insertion/extraction features. It also implements TX
107  * interrupt moderation using the timer interrupt registers, which
108  * significantly reduces TX interrupt load. There is also support
109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
110  * jumbo frames larger than 7440, so the max MTU possible with this
111  * driver is 7422 bytes.
112  */
113
114 #define _IP_VHL
115
116 #include "opt_polling.h"
117
118 #include <sys/param.h>
119 #include <sys/bus.h>
120 #include <sys/endian.h>
121 #include <sys/kernel.h>
122 #include <sys/in_cksum.h>
123 #include <sys/interrupt.h>
124 #include <sys/malloc.h>
125 #include <sys/mbuf.h>
126 #include <sys/rman.h>
127 #include <sys/serialize.h>
128 #include <sys/socket.h>
129 #include <sys/sockio.h>
130 #include <sys/sysctl.h>
131
132 #include <net/bpf.h>
133 #include <net/ethernet.h>
134 #include <net/if.h>
135 #include <net/ifq_var.h>
136 #include <net/if_arp.h>
137 #include <net/if_dl.h>
138 #include <net/if_media.h>
139 #include <net/if_types.h>
140 #include <net/vlan/if_vlan_var.h>
141 #include <net/vlan/if_vlan_ether.h>
142
143 #include <netinet/ip.h>
144
145 #include <dev/netif/mii_layer/mii.h>
146 #include <dev/netif/mii_layer/miivar.h>
147
148 #include <bus/pci/pcidevs.h>
149 #include <bus/pci/pcireg.h>
150 #include <bus/pci/pcivar.h>
151
152 /* "device miibus" required.  See GENERIC if you get errors here. */
153 #include "miibus_if.h"
154
155 #include <dev/netif/re/if_rereg.h>
156 #include <dev/netif/re/if_revar.h>
157
158 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
159
160 /*
161  * Various supported device vendors/types and their names.
162  */
163 static const struct re_type {
164         uint16_t        re_vid;
165         uint16_t        re_did;
166         const char      *re_name;
167 } re_devs[] = {
168         { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
169           "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170
171         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
172           "RealTek 8139C+ 10/100BaseTX" },
173
174         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
175           "RealTek 810x PCIe 10/100baseTX" },
176
177         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
178           "RealTek 8111/8168 PCIe Gigabit Ethernet" },
179
180         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
181           "RealTek 8110/8169 Gigabit Ethernet" },
182
183         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
184           "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185
186         { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
187           "Corega CG-LAPCIGT Gigabit Ethernet" },
188
189         { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
190           "Linksys EG1032 Gigabit Ethernet" },
191
192         { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
193           "US Robotics 997902 Gigabit Ethernet" },
194
195         { PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
196           "TTTech MC322 Gigabit Ethernet" },
197
198         { 0, 0, NULL }
199 };
200
201 static const struct re_hwrev re_hwrevs[] = {
202         { RE_HWREV_8139CPLUS,   RE_MACVER_UNKN,         ETHERMTU,
203           RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
204
205         { RE_HWREV_8169,        RE_MACVER_UNKN,         ETHERMTU,
206           RE_C_HWCSUM | RE_C_8169 },
207
208         { RE_HWREV_8110S,       RE_MACVER_03,           RE_MTU_6K,
209           RE_C_HWCSUM | RE_C_8169 },
210
211         { RE_HWREV_8169S,       RE_MACVER_03,           RE_MTU_6K,
212           RE_C_HWCSUM | RE_C_8169 },
213
214         { RE_HWREV_8169SB,      RE_MACVER_04,           RE_MTU_6K,
215           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
216
217         { RE_HWREV_8169SC1,     RE_MACVER_05,           RE_MTU_6K,
218           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
219
220         { RE_HWREV_8169SC2,     RE_MACVER_06,           RE_MTU_6K,
221           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
222
223         { RE_HWREV_8168B1,      RE_MACVER_21,           RE_MTU_6K,
224           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
225
226         { RE_HWREV_8168B2,      RE_MACVER_23,           RE_MTU_6K,
227           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
228
229         { RE_HWREV_8168B3,      RE_MACVER_23,           RE_MTU_6K,
230           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
231
232         { RE_HWREV_8168C,       RE_MACVER_29,           RE_MTU_6K,
233           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
234           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
235
236         { RE_HWREV_8168CP,      RE_MACVER_2B,           RE_MTU_6K,
237           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
238           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
239
240         { RE_HWREV_8168D,       RE_MACVER_2A,           RE_MTU_9K,
241           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
242           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
243
244         { RE_HWREV_8100E,       RE_MACVER_UNKN,         ETHERMTU,
245           RE_C_HWCSUM | RE_C_FASTE },
246
247         { RE_HWREV_8101E1,      RE_MACVER_16,           ETHERMTU,
248           RE_C_HWCSUM | RE_C_FASTE },
249
250         { RE_HWREV_8101E2,      RE_MACVER_16,           ETHERMTU,
251           RE_C_HWCSUM | RE_C_FASTE },
252
253         { RE_HWREV_8102E,       RE_MACVER_15,           ETHERMTU,
254           RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
255           RE_C_FASTE },
256
257         { RE_HWREV_8102EL,      RE_MACVER_15,           ETHERMTU,
258           RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
259           RE_C_FASTE },
260
261         { RE_HWREV_NULL, 0, 0, 0 }
262 };
263
264 static int      re_probe(device_t);
265 static int      re_attach(device_t);
266 static int      re_detach(device_t);
267 static int      re_suspend(device_t);
268 static int      re_resume(device_t);
269 static void     re_shutdown(device_t);
270
271 static void     re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
272 static void     re_dma_map_desc(void *, bus_dma_segment_t *, int,
273                                 bus_size_t, int);
274 static int      re_allocmem(device_t);
275 static void     re_freemem(device_t);
276 static void     re_freebufmem(struct re_softc *, int, int);
277 static int      re_encap(struct re_softc *, struct mbuf **, int *);
278 static int      re_newbuf_std(struct re_softc *, int, int);
279 static int      re_newbuf_jumbo(struct re_softc *, int, int);
280 static void     re_setup_rxdesc(struct re_softc *, int);
281 static int      re_rx_list_init(struct re_softc *);
282 static int      re_tx_list_init(struct re_softc *);
283 static int      re_rxeof(struct re_softc *);
284 static int      re_txeof(struct re_softc *);
285 static int      re_tx_collect(struct re_softc *);
286 static void     re_intr(void *);
287 static void     re_tick(void *);
288 static void     re_tick_serialized(void *);
289
290 static void     re_start(struct ifnet *);
291 static int      re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
292 static void     re_init(void *);
293 static void     re_stop(struct re_softc *);
294 static void     re_watchdog(struct ifnet *);
295 static int      re_ifmedia_upd(struct ifnet *);
296 static void     re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
297
298 static void     re_eeprom_putbyte(struct re_softc *, int);
299 static void     re_eeprom_getword(struct re_softc *, int, u_int16_t *);
300 static void     re_read_eeprom(struct re_softc *, caddr_t, int, int);
301 static void     re_get_eewidth(struct re_softc *);
302
303 static int      re_gmii_readreg(device_t, int, int);
304 static int      re_gmii_writereg(device_t, int, int, int);
305
306 static int      re_miibus_readreg(device_t, int, int);
307 static int      re_miibus_writereg(device_t, int, int, int);
308 static void     re_miibus_statchg(device_t);
309
310 static void     re_setmulti(struct re_softc *);
311 static void     re_reset(struct re_softc *, int);
312 static void     re_get_eaddr(struct re_softc *, uint8_t *);
313
314 static void     re_setup_hw_im(struct re_softc *);
315 static void     re_setup_sim_im(struct re_softc *);
316 static void     re_disable_hw_im(struct re_softc *);
317 static void     re_disable_sim_im(struct re_softc *);
318 static void     re_config_imtype(struct re_softc *, int);
319 static void     re_setup_intr(struct re_softc *, int, int);
320
321 static int      re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
322 static int      re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
323 static int      re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
324 static int      re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
325 static int      re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
326
327 static int      re_jpool_alloc(struct re_softc *);
328 static void     re_jpool_free(struct re_softc *);
329 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
330 static void     re_jbuf_free(void *);
331 static void     re_jbuf_ref(void *);
332
333 #ifdef RE_DIAG
334 static int      re_diag(struct re_softc *);
335 #endif
336
337 #ifdef DEVICE_POLLING
338 static void     re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
339 #endif
340
341 static device_method_t re_methods[] = {
342         /* Device interface */
343         DEVMETHOD(device_probe,         re_probe),
344         DEVMETHOD(device_attach,        re_attach),
345         DEVMETHOD(device_detach,        re_detach),
346         DEVMETHOD(device_suspend,       re_suspend),
347         DEVMETHOD(device_resume,        re_resume),
348         DEVMETHOD(device_shutdown,      re_shutdown),
349
350         /* bus interface */
351         DEVMETHOD(bus_print_child,      bus_generic_print_child),
352         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
353
354         /* MII interface */
355         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
356         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
357         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
358
359         { 0, 0 }
360 };
361
362 static driver_t re_driver = {
363         "re",
364         re_methods,
365         sizeof(struct re_softc)
366 };
367
368 static devclass_t re_devclass;
369
370 DECLARE_DUMMY_MODULE(if_re);
371 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
372 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
373 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
374
375 static int      re_rx_desc_count = RE_RX_DESC_CNT_DEF;
376 static int      re_tx_desc_count = RE_TX_DESC_CNT_DEF;
377
378 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
379 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
380
381 #define EE_SET(x)       \
382         CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
383
384 #define EE_CLR(x)       \
385         CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
386
387 static __inline void
388 re_free_rxchain(struct re_softc *sc)
389 {
390         if (sc->re_head != NULL) {
391                 m_freem(sc->re_head);
392                 sc->re_head = sc->re_tail = NULL;
393         }
394 }
395
396 /*
397  * Send a read command and address to the EEPROM, check for ACK.
398  */
399 static void
400 re_eeprom_putbyte(struct re_softc *sc, int addr)
401 {
402         int d, i;
403
404         d = addr | (RE_9346_READ << sc->re_eewidth);
405
406         /*
407          * Feed in each bit and strobe the clock.
408          */
409         for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
410                 if (d & i)
411                         EE_SET(RE_EE_DATAIN);
412                 else
413                         EE_CLR(RE_EE_DATAIN);
414                 DELAY(100);
415                 EE_SET(RE_EE_CLK);
416                 DELAY(150);
417                 EE_CLR(RE_EE_CLK);
418                 DELAY(100);
419         }
420 }
421
422 /*
423  * Read a word of data stored in the EEPROM at address 'addr.'
424  */
425 static void
426 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
427 {
428         int i;
429         uint16_t word = 0;
430
431         /*
432          * Send address of word we want to read.
433          */
434         re_eeprom_putbyte(sc, addr);
435
436         /*
437          * Start reading bits from EEPROM.
438          */
439         for (i = 0x8000; i != 0; i >>= 1) {
440                 EE_SET(RE_EE_CLK);
441                 DELAY(100);
442                 if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
443                         word |= i;
444                 EE_CLR(RE_EE_CLK);
445                 DELAY(100);
446         }
447
448         *dest = word;
449 }
450
451 /*
452  * Read a sequence of words from the EEPROM.
453  */
454 static void
455 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
456 {
457         int i;
458         uint16_t word = 0, *ptr;
459
460         CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
461         DELAY(100);
462
463         for (i = 0; i < cnt; i++) {
464                 CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
465                 re_eeprom_getword(sc, off + i, &word);
466                 CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
467                 ptr = (uint16_t *)(dest + (i * 2));
468                 *ptr = word;
469         }
470
471         CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
472 }
473
474 static void
475 re_get_eewidth(struct re_softc *sc)
476 {
477         uint16_t re_did = 0;
478
479         sc->re_eewidth = 6;
480         re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
481         if (re_did != 0x8129)
482                 sc->re_eewidth = 8;
483 }
484
485 static int
486 re_gmii_readreg(device_t dev, int phy, int reg)
487 {
488         struct re_softc *sc = device_get_softc(dev);
489         u_int32_t rval;
490         int i;
491
492         if (phy != 1)
493                 return(0);
494
495         /* Let the rgephy driver read the GMEDIASTAT register */
496
497         if (reg == RE_GMEDIASTAT)
498                 return(CSR_READ_1(sc, RE_GMEDIASTAT));
499
500         CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
501         DELAY(1000);
502
503         for (i = 0; i < RE_TIMEOUT; i++) {
504                 rval = CSR_READ_4(sc, RE_PHYAR);
505                 if (rval & RE_PHYAR_BUSY)
506                         break;
507                 DELAY(100);
508         }
509
510         if (i == RE_TIMEOUT) {
511                 device_printf(dev, "PHY read failed\n");
512                 return(0);
513         }
514
515         return(rval & RE_PHYAR_PHYDATA);
516 }
517
518 static int
519 re_gmii_writereg(device_t dev, int phy, int reg, int data)
520 {
521         struct re_softc *sc = device_get_softc(dev);
522         uint32_t rval;
523         int i;
524
525         CSR_WRITE_4(sc, RE_PHYAR,
526                     (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
527         DELAY(1000);
528
529         for (i = 0; i < RE_TIMEOUT; i++) {
530                 rval = CSR_READ_4(sc, RE_PHYAR);
531                 if ((rval & RE_PHYAR_BUSY) == 0)
532                         break;
533                 DELAY(100);
534         }
535
536         if (i == RE_TIMEOUT)
537                 device_printf(dev, "PHY write failed\n");
538
539         return(0);
540 }
541
542 static int
543 re_miibus_readreg(device_t dev, int phy, int reg)
544 {
545         struct re_softc *sc = device_get_softc(dev);
546         uint16_t rval = 0;
547         uint16_t re8139_reg = 0;
548
549         if (!RE_IS_8139CP(sc)) {
550                 rval = re_gmii_readreg(dev, phy, reg);
551                 return(rval);
552         }
553
554         /* Pretend the internal PHY is only at address 0 */
555         if (phy)
556                 return(0);
557
558         switch(reg) {
559         case MII_BMCR:
560                 re8139_reg = RE_BMCR;
561                 break;
562         case MII_BMSR:
563                 re8139_reg = RE_BMSR;
564                 break;
565         case MII_ANAR:
566                 re8139_reg = RE_ANAR;
567                 break;
568         case MII_ANER:
569                 re8139_reg = RE_ANER;
570                 break;
571         case MII_ANLPAR:
572                 re8139_reg = RE_LPAR;
573                 break;
574         case MII_PHYIDR1:
575         case MII_PHYIDR2:
576                 return(0);
577         /*
578          * Allow the rlphy driver to read the media status
579          * register. If we have a link partner which does not
580          * support NWAY, this is the register which will tell
581          * us the results of parallel detection.
582          */
583         case RE_MEDIASTAT:
584                 return(CSR_READ_1(sc, RE_MEDIASTAT));
585         default:
586                 device_printf(dev, "bad phy register\n");
587                 return(0);
588         }
589         rval = CSR_READ_2(sc, re8139_reg);
590         if (re8139_reg == RE_BMCR) {
591                 /* 8139C+ has different bit layout. */
592                 rval &= ~(BMCR_LOOP | BMCR_ISO);
593         }
594         return(rval);
595 }
596
597 static int
598 re_miibus_writereg(device_t dev, int phy, int reg, int data)
599 {
600         struct re_softc *sc= device_get_softc(dev);
601         u_int16_t re8139_reg = 0;
602
603         if (!RE_IS_8139CP(sc))
604                 return(re_gmii_writereg(dev, phy, reg, data));
605
606         /* Pretend the internal PHY is only at address 0 */
607         if (phy)
608                 return(0);
609
610         switch(reg) {
611         case MII_BMCR:
612                 re8139_reg = RE_BMCR;
613                 /* 8139C+ has different bit layout. */
614                 data &= ~(BMCR_LOOP | BMCR_ISO);
615                 break;
616         case MII_BMSR:
617                 re8139_reg = RE_BMSR;
618                 break;
619         case MII_ANAR:
620                 re8139_reg = RE_ANAR;
621                 break;
622         case MII_ANER:
623                 re8139_reg = RE_ANER;
624                 break;
625         case MII_ANLPAR:
626                 re8139_reg = RE_LPAR;
627                 break;
628         case MII_PHYIDR1:
629         case MII_PHYIDR2:
630                 return(0);
631         default:
632                 device_printf(dev, "bad phy register\n");
633                 return(0);
634         }
635         CSR_WRITE_2(sc, re8139_reg, data);
636         return(0);
637 }
638
639 static void
640 re_miibus_statchg(device_t dev)
641 {
642 }
643
644 /*
645  * Program the 64-bit multicast hash filter.
646  */
647 static void
648 re_setmulti(struct re_softc *sc)
649 {
650         struct ifnet *ifp = &sc->arpcom.ac_if;
651         int h = 0;
652         uint32_t hashes[2] = { 0, 0 };
653         struct ifmultiaddr *ifma;
654         uint32_t rxfilt;
655         int mcnt = 0;
656
657         rxfilt = CSR_READ_4(sc, RE_RXCFG);
658
659         /* Set the individual bit to receive frames for this host only. */
660         rxfilt |= RE_RXCFG_RX_INDIV;
661         /* Set capture broadcast bit to capture broadcast frames. */
662         rxfilt |= RE_RXCFG_RX_BROAD;
663
664         rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
665         if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
666                 rxfilt |= RE_RXCFG_RX_MULTI;
667
668                 /* If we want promiscuous mode, set the allframes bit. */
669                 if (ifp->if_flags & IFF_PROMISC)
670                         rxfilt |= RE_RXCFG_RX_ALLPHYS;
671
672                 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
673                 CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
674                 CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
675                 return;
676         }
677
678         /* first, zot all the existing hash bits */
679         CSR_WRITE_4(sc, RE_MAR0, 0);
680         CSR_WRITE_4(sc, RE_MAR4, 0);
681
682         /* now program new ones */
683         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
684                 if (ifma->ifma_addr->sa_family != AF_LINK)
685                         continue;
686                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
687                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
688                 if (h < 32)
689                         hashes[0] |= (1 << h);
690                 else
691                         hashes[1] |= (1 << (h - 32));
692                 mcnt++;
693         }
694
695         if (mcnt)
696                 rxfilt |= RE_RXCFG_RX_MULTI;
697         else
698                 rxfilt &= ~RE_RXCFG_RX_MULTI;
699
700         CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
701
702         /*
703          * For some unfathomable reason, RealTek decided to reverse
704          * the order of the multicast hash registers in the PCI Express
705          * parts. This means we have to write the hash pattern in reverse
706          * order for those devices.
707          */
708         if (sc->re_caps & RE_C_PCIE) {
709                 CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[0]));
710                 CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[1]));
711         } else {
712                 CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
713                 CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
714         }
715 }
716
717 static void
718 re_reset(struct re_softc *sc, int running)
719 {
720         int i;
721
722         if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
723                 CSR_WRITE_1(sc, RE_COMMAND,
724                             RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
725                 DELAY(100);
726         }
727
728         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
729
730         for (i = 0; i < RE_TIMEOUT; i++) {
731                 DELAY(10);
732                 if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
733                         break;
734         }
735         if (i == RE_TIMEOUT)
736                 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
737 }
738
739 #ifdef RE_DIAG
740 /*
741  * The following routine is designed to test for a defect on some
742  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
743  * lines connected to the bus, however for a 32-bit only card, they
744  * should be pulled high. The result of this defect is that the
745  * NIC will not work right if you plug it into a 64-bit slot: DMA
746  * operations will be done with 64-bit transfers, which will fail
747  * because the 64-bit data lines aren't connected.
748  *
749  * There's no way to work around this (short of talking a soldering
750  * iron to the board), however we can detect it. The method we use
751  * here is to put the NIC into digital loopback mode, set the receiver
752  * to promiscuous mode, and then try to send a frame. We then compare
753  * the frame data we sent to what was received. If the data matches,
754  * then the NIC is working correctly, otherwise we know the user has
755  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
756  * slot. In the latter case, there's no way the NIC can work correctly,
757  * so we print out a message on the console and abort the device attach.
758  */
759
760 static int
761 re_diag(struct re_softc *sc)
762 {
763         struct ifnet *ifp = &sc->arpcom.ac_if;
764         struct mbuf *m0;
765         struct ether_header *eh;
766         struct re_desc *cur_rx;
767         uint16_t status;
768         uint32_t rxstat;
769         int total_len, i, error = 0, phyaddr;
770         uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
771         uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
772
773         /* Allocate a single mbuf */
774
775         MGETHDR(m0, MB_DONTWAIT, MT_DATA);
776         if (m0 == NULL)
777                 return(ENOBUFS);
778
779         /*
780          * Initialize the NIC in test mode. This sets the chip up
781          * so that it can send and receive frames, but performs the
782          * following special functions:
783          * - Puts receiver in promiscuous mode
784          * - Enables digital loopback mode
785          * - Leaves interrupts turned off
786          */
787
788         ifp->if_flags |= IFF_PROMISC;
789         sc->re_flags |= RE_F_TESTMODE;
790         re_init(sc);
791         sc->re_flags |= RE_F_LINKED;
792         if (!RE_IS_8139CP(sc))
793                 phyaddr = 1;
794         else
795                 phyaddr = 0;
796
797         re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
798         for (i = 0; i < RE_TIMEOUT; i++) {
799                 status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
800                 if (!(status & BMCR_RESET))
801                         break;
802         }
803
804         re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
805         CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
806
807         DELAY(100000);
808
809         /* Put some data in the mbuf */
810
811         eh = mtod(m0, struct ether_header *);
812         bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
813         bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
814         eh->ether_type = htons(ETHERTYPE_IP);
815         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
816
817         /*
818          * Queue the packet, start transmission.
819          * Note: ifq_handoff() ultimately calls re_start() for us.
820          */
821
822         CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
823         error = ifq_handoff(ifp, m0, NULL);
824         if (error) {
825                 m0 = NULL;
826                 goto done;
827         }
828         m0 = NULL;
829
830         /* Wait for it to propagate through the chip */
831
832         DELAY(100000);
833         for (i = 0; i < RE_TIMEOUT; i++) {
834                 status = CSR_READ_2(sc, RE_ISR);
835                 CSR_WRITE_2(sc, RE_ISR, status);
836                 if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
837                     (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
838                         break;
839                 DELAY(10);
840         }
841
842         if (i == RE_TIMEOUT) {
843                 if_printf(ifp, "diagnostic failed to receive packet "
844                           "in loopback mode\n");
845                 error = EIO;
846                 goto done;
847         }
848
849         /*
850          * The packet should have been dumped into the first
851          * entry in the RX DMA ring. Grab it from there.
852          */
853
854         bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
855                         sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
856         bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
857                         BUS_DMASYNC_POSTWRITE);
858         bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
859
860         m0 = sc->re_ldata.re_rx_mbuf[0];
861         sc->re_ldata.re_rx_mbuf[0] = NULL;
862         eh = mtod(m0, struct ether_header *);
863
864         cur_rx = &sc->re_ldata.re_rx_list[0];
865         total_len = RE_RXBYTES(cur_rx);
866         rxstat = le32toh(cur_rx->re_cmdstat);
867
868         if (total_len != ETHER_MIN_LEN) {
869                 if_printf(ifp, "diagnostic failed, received short packet\n");
870                 error = EIO;
871                 goto done;
872         }
873
874         /* Test that the received packet data matches what we sent. */
875
876         if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
877             bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
878             be16toh(eh->ether_type) != ETHERTYPE_IP) {
879                 if_printf(ifp, "WARNING, DMA FAILURE!\n");
880                 if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
881                     dst, ":", src, ":", ETHERTYPE_IP);
882                 if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
883                     eh->ether_dhost, ":",  eh->ether_shost, ":",
884                     ntohs(eh->ether_type));
885                 if_printf(ifp, "You may have a defective 32-bit NIC plugged "
886                     "into a 64-bit PCI slot.\n");
887                 if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
888                     "for proper operation.\n");
889                 if_printf(ifp, "Read the re(4) man page for more details.\n");
890                 error = EIO;
891         }
892
893 done:
894         /* Turn interface off, release resources */
895
896         sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
897         ifp->if_flags &= ~IFF_PROMISC;
898         re_stop(sc);
899         if (m0 != NULL)
900                 m_freem(m0);
901
902         return (error);
903 }
904 #endif  /* RE_DIAG */
905
906 /*
907  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
908  * IDs against our list and return a device name if we find a match.
909  */
910 static int
911 re_probe(device_t dev)
912 {
913         const struct re_type *t;
914         const struct re_hwrev *hw_rev;
915         struct re_softc *sc;
916         int rid;
917         uint32_t hwrev, macmode, txcfg;
918         uint16_t vendor, product;
919
920         vendor = pci_get_vendor(dev);
921         product = pci_get_device(dev);
922
923         /*
924          * Only attach to rev.3 of the Linksys EG1032 adapter.
925          * Rev.2 is supported by sk(4).
926          */
927         if (vendor == PCI_VENDOR_LINKSYS &&
928             product == PCI_PRODUCT_LINKSYS_EG1032 &&
929             pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
930                 return ENXIO;
931
932         if (vendor == PCI_VENDOR_REALTEK &&
933             product == PCI_PRODUCT_REALTEK_RT8139 &&
934             pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
935                 /* Poor 8139 */
936                 return ENXIO;
937         }
938
939         for (t = re_devs; t->re_name != NULL; t++) {
940                 if (product == t->re_did && vendor == t->re_vid)
941                         break;
942         }
943
944         /*
945          * Check if we found a RealTek device.
946          */
947         if (t->re_name == NULL)
948                 return ENXIO;
949
950         /*
951          * Temporarily map the I/O space so we can read the chip ID register.
952          */
953         sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
954         rid = RE_PCI_LOIO;
955         sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
956                                             RF_ACTIVE);
957         if (sc->re_res == NULL) {
958                 device_printf(dev, "couldn't map ports/memory\n");
959                 kfree(sc, M_TEMP);
960                 return ENXIO;
961         }
962
963         sc->re_btag = rman_get_bustag(sc->re_res);
964         sc->re_bhandle = rman_get_bushandle(sc->re_res);
965
966         txcfg = CSR_READ_4(sc, RE_TXCFG);
967         hwrev = txcfg & RE_TXCFG_HWREV;
968         macmode = txcfg & RE_TXCFG_MACMODE;
969         bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
970         kfree(sc, M_TEMP);
971
972         /*
973          * and continue matching for the specific chip...
974          */
975         for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
976                 if (hw_rev->re_hwrev == hwrev) {
977                         sc = device_get_softc(dev);
978
979                         sc->re_hwrev = hw_rev->re_hwrev;
980                         sc->re_macver = hw_rev->re_macver;
981                         sc->re_caps = hw_rev->re_caps;
982                         sc->re_maxmtu = hw_rev->re_maxmtu;
983
984                         /*
985                          * Apply chip property fixup
986                          */
987                         switch (sc->re_hwrev) {
988                         case RE_HWREV_8101E1:
989                         case RE_HWREV_8101E2:
990                                 if (macmode == 0)
991                                         sc->re_macver = RE_MACVER_11;
992                                 else if (macmode == 0x200000)
993                                         sc->re_macver = RE_MACVER_12;
994                                 break;
995                         case RE_HWREV_8102E:
996                         case RE_HWREV_8102EL:
997                                 if (macmode == 0)
998                                         sc->re_macver = RE_MACVER_13;
999                                 else if (macmode == 0x100000)
1000                                         sc->re_macver = RE_MACVER_14;
1001                                 break;
1002                         case RE_HWREV_8168B2:
1003                         case RE_HWREV_8168B3:
1004                                 if (macmode == 0)
1005                                         sc->re_macver = RE_MACVER_22;
1006                                 break;
1007                         case RE_HWREV_8168C:
1008                                 if (macmode == 0)
1009                                         sc->re_macver = RE_MACVER_24;
1010                                 else if (macmode == 0x200000)
1011                                         sc->re_macver = RE_MACVER_25;
1012                                 else if (macmode == 0x300000)
1013                                         sc->re_macver = RE_MACVER_27;
1014                                 break;
1015                         case RE_HWREV_8168CP:
1016                                 if (macmode == 0)
1017                                         sc->re_macver = RE_MACVER_26;
1018                                 else if (macmode == 0x100000)
1019                                         sc->re_macver = RE_MACVER_28;
1020                                 break;
1021                         }
1022                         if (pci_is_pcie(dev))
1023                                 sc->re_caps |= RE_C_PCIE;
1024
1025                         device_set_desc(dev, t->re_name);
1026                         return 0;
1027                 }
1028         }
1029
1030         if (bootverbose) {
1031                 device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1032                               hwrev, macmode);
1033         }
1034         return ENXIO;
1035 }
1036
1037 static void
1038 re_dma_map_desc(void *xarg, bus_dma_segment_t *segs, int nsegs,
1039                 bus_size_t mapsize, int error)
1040 {
1041         struct re_dmaload_arg *arg = xarg;
1042         int i;
1043
1044         if (error)
1045                 return;
1046
1047         if (nsegs > arg->re_nsegs) {
1048                 arg->re_nsegs = 0;
1049                 return;
1050         }
1051
1052         arg->re_nsegs = nsegs;
1053         for (i = 0; i < nsegs; ++i)
1054                 arg->re_segs[i] = segs[i];
1055 }
1056
1057 /*
1058  * Map a single buffer address.
1059  */
1060
1061 static void
1062 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1063 {
1064         uint32_t *addr;
1065
1066         if (error)
1067                 return;
1068
1069         KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1070         addr = arg;
1071         *addr = segs->ds_addr;
1072 }
1073
1074 static int
1075 re_allocmem(device_t dev)
1076 {
1077         struct re_softc *sc = device_get_softc(dev);
1078         int error, i;
1079
1080         /*
1081          * Allocate list data
1082          */
1083         sc->re_ldata.re_tx_mbuf =
1084         kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1085                 M_DEVBUF, M_ZERO | M_WAITOK);
1086
1087         sc->re_ldata.re_rx_mbuf =
1088         kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1089                 M_DEVBUF, M_ZERO | M_WAITOK);
1090
1091         sc->re_ldata.re_rx_paddr =
1092         kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1093                 M_DEVBUF, M_ZERO | M_WAITOK);
1094
1095         sc->re_ldata.re_tx_dmamap =
1096         kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1097                 M_DEVBUF, M_ZERO | M_WAITOK);
1098
1099         sc->re_ldata.re_rx_dmamap =
1100         kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1101                 M_DEVBUF, M_ZERO | M_WAITOK);
1102
1103         /*
1104          * Allocate the parent bus DMA tag appropriate for PCI.
1105          */
1106         error = bus_dma_tag_create(NULL,        /* parent */
1107                         1, 0,                   /* alignment, boundary */
1108                         BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1109                         BUS_SPACE_MAXADDR,      /* highaddr */
1110                         NULL, NULL,             /* filter, filterarg */
1111                         MAXBSIZE, RE_MAXSEGS,   /* maxsize, nsegments */
1112                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1113                         BUS_DMA_ALLOCNOW,       /* flags */
1114                         &sc->re_parent_tag);
1115         if (error) {
1116                 device_printf(dev, "could not allocate parent dma tag\n");
1117                 return error;
1118         }
1119
1120         /* Allocate tag for TX descriptor list. */
1121         error = bus_dma_tag_create(sc->re_parent_tag,
1122                         RE_RING_ALIGN, 0,
1123                         BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1124                         NULL, NULL,
1125                         RE_TX_LIST_SZ(sc), 1, RE_TX_LIST_SZ(sc),
1126                         BUS_DMA_ALLOCNOW,
1127                         &sc->re_ldata.re_tx_list_tag);
1128         if (error) {
1129                 device_printf(dev, "could not allocate TX ring dma tag\n");
1130                 return(error);
1131         }
1132
1133         /* Allocate DMA'able memory for the TX ring */
1134         error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
1135                         (void **)&sc->re_ldata.re_tx_list,
1136                         BUS_DMA_WAITOK | BUS_DMA_ZERO,
1137                         &sc->re_ldata.re_tx_list_map);
1138         if (error) {
1139                 device_printf(dev, "could not allocate TX ring\n");
1140                 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1141                 sc->re_ldata.re_tx_list_tag = NULL;
1142                 return(error);
1143         }
1144
1145         /* Load the map for the TX ring. */
1146         error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
1147                         sc->re_ldata.re_tx_list_map,
1148                         sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc),
1149                         re_dma_map_addr, &sc->re_ldata.re_tx_list_addr,
1150                         BUS_DMA_NOWAIT);
1151         if (error) {
1152                 device_printf(dev, "could not get address of TX ring\n");
1153                 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1154                                 sc->re_ldata.re_tx_list,
1155                                 sc->re_ldata.re_tx_list_map);
1156                 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1157                 sc->re_ldata.re_tx_list_tag = NULL;
1158                 return(error);
1159         }
1160
1161         /* Allocate tag for RX descriptor list. */
1162         error = bus_dma_tag_create(sc->re_parent_tag,
1163                         RE_RING_ALIGN, 0,
1164                         BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1165                         NULL, NULL,
1166                         RE_RX_LIST_SZ(sc), 1, RE_RX_LIST_SZ(sc),
1167                         BUS_DMA_ALLOCNOW,
1168                         &sc->re_ldata.re_rx_list_tag);
1169         if (error) {
1170                 device_printf(dev, "could not allocate RX ring dma tag\n");
1171                 return(error);
1172         }
1173
1174         /* Allocate DMA'able memory for the RX ring */
1175         error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
1176                         (void **)&sc->re_ldata.re_rx_list,
1177                         BUS_DMA_WAITOK | BUS_DMA_ZERO,
1178                         &sc->re_ldata.re_rx_list_map);
1179         if (error) {
1180                 device_printf(dev, "could not allocate RX ring\n");
1181                 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1182                 sc->re_ldata.re_rx_list_tag = NULL;
1183                 return(error);
1184         }
1185
1186         /* Load the map for the RX ring. */
1187         error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
1188                         sc->re_ldata.re_rx_list_map,
1189                         sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc),
1190                         re_dma_map_addr, &sc->re_ldata.re_rx_list_addr,
1191                         BUS_DMA_NOWAIT);
1192         if (error) {
1193                 device_printf(dev, "could not get address of RX ring\n");
1194                 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1195                                 sc->re_ldata.re_rx_list,
1196                                 sc->re_ldata.re_rx_list_map);
1197                 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1198                 sc->re_ldata.re_rx_list_tag = NULL;
1199                 return(error);
1200         }
1201
1202         /* Allocate map for RX/TX mbufs. */
1203         error = bus_dma_tag_create(sc->re_parent_tag,
1204                         ETHER_ALIGN, 0,
1205                         BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
1206                         NULL, NULL,
1207                         RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1208                         BUS_DMA_ALLOCNOW,
1209                         &sc->re_ldata.re_mtag);
1210         if (error) {
1211                 device_printf(dev, "could not allocate buf dma tag\n");
1212                 return(error);
1213         }
1214
1215         /* Create spare DMA map for RX */
1216         error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1217                         &sc->re_ldata.re_rx_spare);
1218         if (error) {
1219                 device_printf(dev, "can't create spare DMA map for RX\n");
1220                 bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1221                 sc->re_ldata.re_mtag = NULL;
1222                 return error;
1223         }
1224
1225         /* Create DMA maps for TX buffers */
1226         for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1227                 error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1228                                 &sc->re_ldata.re_tx_dmamap[i]);
1229                 if (error) {
1230                         device_printf(dev, "can't create DMA map for TX buf\n");
1231                         re_freebufmem(sc, i, 0);
1232                         return(error);
1233                 }
1234         }
1235
1236         /* Create DMA maps for RX buffers */
1237         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1238                 error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1239                                 &sc->re_ldata.re_rx_dmamap[i]);
1240                 if (error) {
1241                         device_printf(dev, "can't create DMA map for RX buf\n");
1242                         re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1243                         return(error);
1244                 }
1245         }
1246
1247         /* Create jumbo buffer pool for RX if required */
1248         if (sc->re_caps & RE_C_CONTIGRX) {
1249                 error = re_jpool_alloc(sc);
1250                 if (error) {
1251                         re_jpool_free(sc);
1252                         /* Disable jumbo frame support */
1253                         sc->re_maxmtu = ETHERMTU;
1254                 }
1255         }
1256         return(0);
1257 }
1258
1259 static void
1260 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1261 {
1262         int i;
1263
1264         /* Destroy all the RX and TX buffer maps */
1265         if (sc->re_ldata.re_mtag) {
1266                 for (i = 0; i < tx_cnt; i++) {
1267                         bus_dmamap_destroy(sc->re_ldata.re_mtag,
1268                                            sc->re_ldata.re_tx_dmamap[i]);
1269                 }
1270                 for (i = 0; i < rx_cnt; i++) {
1271                         bus_dmamap_destroy(sc->re_ldata.re_mtag,
1272                                            sc->re_ldata.re_rx_dmamap[i]);
1273                 }
1274                 bus_dmamap_destroy(sc->re_ldata.re_mtag,
1275                                    sc->re_ldata.re_rx_spare);
1276                 bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1277                 sc->re_ldata.re_mtag = NULL;
1278         }
1279 }
1280
1281 static void
1282 re_freemem(device_t dev)
1283 {
1284         struct re_softc *sc = device_get_softc(dev);
1285
1286         /* Unload and free the RX DMA ring memory and map */
1287         if (sc->re_ldata.re_rx_list_tag) {
1288                 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1289                                   sc->re_ldata.re_rx_list_map);
1290                 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1291                                 sc->re_ldata.re_rx_list,
1292                                 sc->re_ldata.re_rx_list_map);
1293                 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1294         }
1295
1296         /* Unload and free the TX DMA ring memory and map */
1297         if (sc->re_ldata.re_tx_list_tag) {
1298                 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1299                                   sc->re_ldata.re_tx_list_map);
1300                 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1301                                 sc->re_ldata.re_tx_list,
1302                                 sc->re_ldata.re_tx_list_map);
1303                 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1304         }
1305
1306         /* Free RX/TX buf DMA stuffs */
1307         re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1308
1309         /* Unload and free the stats buffer and map */
1310         if (sc->re_ldata.re_stag) {
1311                 bus_dmamap_unload(sc->re_ldata.re_stag,
1312                                   sc->re_ldata.re_rx_list_map);
1313                 bus_dmamem_free(sc->re_ldata.re_stag,
1314                                 sc->re_ldata.re_stats,
1315                                 sc->re_ldata.re_smap);
1316                 bus_dma_tag_destroy(sc->re_ldata.re_stag);
1317         }
1318
1319         if (sc->re_caps & RE_C_CONTIGRX)
1320                 re_jpool_free(sc);
1321
1322         if (sc->re_parent_tag)
1323                 bus_dma_tag_destroy(sc->re_parent_tag);
1324
1325         if (sc->re_ldata.re_tx_mbuf != NULL)
1326                 kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1327         if (sc->re_ldata.re_rx_mbuf != NULL)
1328                 kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1329         if (sc->re_ldata.re_rx_paddr != NULL)
1330                 kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1331         if (sc->re_ldata.re_tx_dmamap != NULL)
1332                 kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1333         if (sc->re_ldata.re_rx_dmamap != NULL)
1334                 kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1335 }
1336
1337 /*
1338  * Attach the interface. Allocate softc structures, do ifmedia
1339  * setup and ethernet/BPF attach.
1340  */
1341 static int
1342 re_attach(device_t dev)
1343 {
1344         struct re_softc *sc = device_get_softc(dev);
1345         struct ifnet *ifp;
1346         uint8_t eaddr[ETHER_ADDR_LEN];
1347         int error = 0, rid, qlen;
1348
1349         callout_init(&sc->re_timer);
1350         sc->re_dev = dev;
1351
1352         if (RE_IS_8139CP(sc)) {
1353                 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1354                 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1355         } else {
1356                 sc->re_rx_desc_cnt = re_rx_desc_count;
1357                 if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1358                         sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1359
1360                 sc->re_tx_desc_cnt = re_tx_desc_count;
1361                 if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1362                         sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1363         }
1364
1365         qlen = RE_IFQ_MAXLEN;
1366         if (sc->re_tx_desc_cnt > qlen)
1367                 qlen = sc->re_tx_desc_cnt;
1368
1369         sc->re_rxbuf_size = MCLBYTES;
1370         sc->re_newbuf = re_newbuf_std;
1371
1372         sc->re_tx_time = 5;             /* 125us */
1373         sc->re_rx_time = 2;             /* 50us */
1374         if (sc->re_caps & RE_C_PCIE)
1375                 sc->re_sim_time = 75;   /* 75us */
1376         else
1377                 sc->re_sim_time = 125;  /* 125us */
1378         if (!RE_IS_8139CP(sc)) {
1379                 /* simulated interrupt moderation */
1380                 sc->re_imtype = RE_IMTYPE_SIM;
1381         } else {
1382                 sc->re_imtype = RE_IMTYPE_NONE;
1383         }
1384         re_config_imtype(sc, sc->re_imtype);
1385
1386         sysctl_ctx_init(&sc->re_sysctl_ctx);
1387         sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1388                                              SYSCTL_STATIC_CHILDREN(_hw),
1389                                              OID_AUTO,
1390                                              device_get_nameunit(dev),
1391                                              CTLFLAG_RD, 0, "");
1392         if (sc->re_sysctl_tree == NULL) {
1393                 device_printf(dev, "can't add sysctl node\n");
1394                 error = ENXIO;
1395                 goto fail;
1396         }
1397         SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1398                        SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1399                        "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1400                        0, "RX desc count");
1401         SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1402                        SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1403                        "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1404                        0, "TX desc count");
1405         SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1406                         SYSCTL_CHILDREN(sc->re_sysctl_tree),
1407                         OID_AUTO, "sim_time",
1408                         CTLTYPE_INT | CTLFLAG_RW,
1409                         sc, 0, re_sysctl_simtime, "I",
1410                         "Simulated interrupt moderation time (usec).");
1411         SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1412                         SYSCTL_CHILDREN(sc->re_sysctl_tree),
1413                         OID_AUTO, "imtype",
1414                         CTLTYPE_INT | CTLFLAG_RW,
1415                         sc, 0, re_sysctl_imtype, "I",
1416                         "Interrupt moderation type -- "
1417                         "0:disable, 1:simulated, "
1418                         "2:hardware(if supported)");
1419         if (sc->re_caps & RE_C_HWIM) {
1420                 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1421                                 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1422                                 OID_AUTO, "hw_rxtime",
1423                                 CTLTYPE_INT | CTLFLAG_RW,
1424                                 sc, 0, re_sysctl_rxtime, "I",
1425                                 "Hardware interrupt moderation time "
1426                                 "(unit: 25usec).");
1427                 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1428                                 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1429                                 OID_AUTO, "hw_txtime",
1430                                 CTLTYPE_INT | CTLFLAG_RW,
1431                                 sc, 0, re_sysctl_txtime, "I",
1432                                 "Hardware interrupt moderation time "
1433                                 "(unit: 25usec).");
1434         }
1435
1436 #ifndef BURN_BRIDGES
1437         /*
1438          * Handle power management nonsense.
1439          */
1440
1441         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1442                 uint32_t membase, irq;
1443
1444                 /* Save important PCI config data. */
1445                 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1446                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1447
1448                 /* Reset the power state. */
1449                 device_printf(dev, "chip is in D%d power mode "
1450                     "-- setting to D0\n", pci_get_powerstate(dev));
1451
1452                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1453
1454                 /* Restore PCI config data. */
1455                 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1456                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1457         }
1458 #endif
1459         /*
1460          * Map control/status registers.
1461          */
1462         pci_enable_busmaster(dev);
1463
1464         rid = RE_PCI_LOIO;
1465         sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1466                                             RF_ACTIVE);
1467
1468         if (sc->re_res == NULL) {
1469                 device_printf(dev, "couldn't map ports\n");
1470                 error = ENXIO;
1471                 goto fail;
1472         }
1473
1474         sc->re_btag = rman_get_bustag(sc->re_res);
1475         sc->re_bhandle = rman_get_bushandle(sc->re_res);
1476
1477         /* Allocate interrupt */
1478         rid = 0;
1479         sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1480                                             RF_SHAREABLE | RF_ACTIVE);
1481
1482         if (sc->re_irq == NULL) {
1483                 device_printf(dev, "couldn't map interrupt\n");
1484                 error = ENXIO;
1485                 goto fail;
1486         }
1487
1488         /* Reset the adapter. */
1489         re_reset(sc, 0);
1490
1491         if (RE_IS_8139CP(sc)) {
1492                 sc->re_bus_speed = 33; /* XXX */
1493         } else if (sc->re_caps & RE_C_PCIE) {
1494                 sc->re_bus_speed = 125;
1495         } else {
1496                 uint8_t cfg2;
1497
1498                 cfg2 = CSR_READ_1(sc, RE_CFG2);
1499                 switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1500                 case RE_CFG2_PCICLK_33MHZ:
1501                         sc->re_bus_speed = 33;
1502                         break;
1503                 case RE_CFG2_PCICLK_66MHZ:
1504                         sc->re_bus_speed = 66;
1505                         break;
1506                 default:
1507                         device_printf(dev, "unknown bus speed, assume 33MHz\n");
1508                         sc->re_bus_speed = 33;
1509                         break;
1510                 }
1511                 if (cfg2 & RE_CFG2_PCI64)
1512                         sc->re_caps |= RE_C_PCI64;
1513         }
1514         device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1515                       "PCI%s %dMHz\n",
1516                       sc->re_hwrev, sc->re_macver,
1517                       (sc->re_caps & RE_C_PCIE) ?
1518                       "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1519                       sc->re_bus_speed);
1520
1521         /*
1522          * NOTE:
1523          * DO NOT try to adjust config1 and config5 which was spotted in
1524          * Realtek's Linux drivers.  It will _permanently_ damage certain
1525          * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1526          */
1527
1528         re_get_eaddr(sc, eaddr);
1529
1530         if (!RE_IS_8139CP(sc)) {
1531                 /* Set RX length mask */
1532                 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1533                 sc->re_txstart = RE_GTXSTART;
1534         } else {
1535                 /* Set RX length mask */
1536                 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1537                 sc->re_txstart = RE_TXSTART;
1538         }
1539
1540         /* Allocate DMA stuffs */
1541         error = re_allocmem(dev);
1542         if (error)
1543                 goto fail;
1544
1545         /*
1546          * Apply some magic PCI settings from Realtek ...
1547          */
1548         if (RE_IS_8169(sc)) {
1549                 CSR_WRITE_1(sc, 0x82, 1);
1550                 pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1551         }
1552         pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1553
1554         if (sc->re_caps & RE_C_MAC2) {
1555                 /*
1556                  * Following part is extracted from Realtek BSD driver v176.
1557                  * However, this does _not_ make much/any sense:
1558                  * 8168C's PCI Express device control is located at 0x78,
1559                  * so the reading from 0x79 (higher part of 0x78) and setting
1560                  * the 4~6bits intend to enlarge the "max read request size"
1561                  * (we will do it).  The content of the rest part of this
1562                  * register is not meaningful to other PCI registers, so
1563                  * writing the value to 0x54 could be completely wrong.
1564                  * 0x80 is the lower part of PCI Express device status, non-
1565                  * reserved bits are RW1C, writing 0 to them will not have
1566                  * any effect at all.
1567                  */
1568 #ifdef foo
1569                 uint8_t val;
1570
1571                 val = pci_read_config(dev, 0x79, 1);
1572                 val = (val & ~0x70) | 0x50;
1573                 pci_write_config(dev, 0x54, val, 1);
1574                 pci_write_config(dev, 0x80, 0, 1);
1575 #endif
1576         }
1577
1578         /*
1579          * Apply some PHY fixup from Realtek ...
1580          */
1581         if (sc->re_hwrev == RE_HWREV_8110S) {
1582                 CSR_WRITE_1(sc, 0x82, 1);
1583                 re_miibus_writereg(dev, 1, 0xb, 0);
1584         }
1585         if (sc->re_caps & RE_C_PHYPMGT) {
1586                 /* Power up PHY */
1587                 re_miibus_writereg(dev, 1, 0x1f, 0);
1588                 re_miibus_writereg(dev, 1, 0xe, 0);
1589         }
1590
1591         /* Do MII setup */
1592         if (mii_phy_probe(dev, &sc->re_miibus,
1593             re_ifmedia_upd, re_ifmedia_sts)) {
1594                 device_printf(dev, "MII without any phy!\n");
1595                 error = ENXIO;
1596                 goto fail;
1597         }
1598
1599         ifp = &sc->arpcom.ac_if;
1600         ifp->if_softc = sc;
1601         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1602         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1603         ifp->if_ioctl = re_ioctl;
1604         ifp->if_start = re_start;
1605 #ifdef DEVICE_POLLING
1606         ifp->if_poll = re_poll;
1607 #endif
1608         ifp->if_watchdog = re_watchdog;
1609         ifp->if_init = re_init;
1610         if (!RE_IS_8139CP(sc)) /* XXX */
1611                 ifp->if_baudrate = 1000000000;
1612         else
1613                 ifp->if_baudrate = 100000000;
1614         ifq_set_maxlen(&ifp->if_snd, qlen);
1615         ifq_set_ready(&ifp->if_snd);
1616
1617         ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1618         if (sc->re_caps & RE_C_HWCSUM)
1619                 ifp->if_capabilities |= IFCAP_HWCSUM;
1620
1621         ifp->if_capenable = ifp->if_capabilities;
1622         if (ifp->if_capabilities & IFCAP_HWCSUM)
1623                 ifp->if_hwassist = RE_CSUM_FEATURES;
1624         else
1625                 ifp->if_hwassist = 0;
1626
1627         /*
1628          * Call MI attach routine.
1629          */
1630         ether_ifattach(ifp, eaddr, NULL);
1631
1632 #ifdef RE_DIAG
1633         /*
1634          * Perform hardware diagnostic on the original RTL8169.
1635          * Some 32-bit cards were incorrectly wired and would
1636          * malfunction if plugged into a 64-bit slot.
1637          */
1638         if (sc->re_hwrev == RE_HWREV_8169) {
1639                 lwkt_serialize_enter(ifp->if_serializer);
1640                 error = re_diag(sc);
1641                 lwkt_serialize_exit(ifp->if_serializer);
1642
1643                 if (error) {
1644                         device_printf(dev, "hardware diagnostic failure\n");
1645                         ether_ifdetach(ifp);
1646                         goto fail;
1647                 }
1648         }
1649 #endif  /* RE_DIAG */
1650
1651         /* Hook interrupt last to avoid having to lock softc */
1652         error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1653                                &sc->re_intrhand, ifp->if_serializer);
1654
1655         if (error) {
1656                 device_printf(dev, "couldn't set up irq\n");
1657                 ether_ifdetach(ifp);
1658                 goto fail;
1659         }
1660
1661         ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->re_irq));
1662         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1663
1664 fail:
1665         if (error)
1666                 re_detach(dev);
1667
1668         return (error);
1669 }
1670
1671 /*
1672  * Shutdown hardware and free up resources. This can be called any
1673  * time after the mutex has been initialized. It is called in both
1674  * the error case in attach and the normal detach case so it needs
1675  * to be careful about only freeing resources that have actually been
1676  * allocated.
1677  */
1678 static int
1679 re_detach(device_t dev)
1680 {
1681         struct re_softc *sc = device_get_softc(dev);
1682         struct ifnet *ifp = &sc->arpcom.ac_if;
1683
1684         /* These should only be active if attach succeeded */
1685         if (device_is_attached(dev)) {
1686                 lwkt_serialize_enter(ifp->if_serializer);
1687                 re_stop(sc);
1688                 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1689                 lwkt_serialize_exit(ifp->if_serializer);
1690
1691                 ether_ifdetach(ifp);
1692         }
1693         if (sc->re_miibus)
1694                 device_delete_child(dev, sc->re_miibus);
1695         bus_generic_detach(dev);
1696
1697         if (sc->re_sysctl_tree != NULL)
1698                 sysctl_ctx_free(&sc->re_sysctl_ctx);
1699
1700         if (sc->re_irq)
1701                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1702         if (sc->re_res) {
1703                 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1704                                      sc->re_res);
1705         }
1706
1707         /* Free DMA stuffs */
1708         re_freemem(dev);
1709
1710         return(0);
1711 }
1712
1713 static void
1714 re_setup_rxdesc(struct re_softc *sc, int idx)
1715 {
1716         bus_addr_t paddr;
1717         uint32_t cmdstat;
1718         struct re_desc *d;
1719
1720         paddr = sc->re_ldata.re_rx_paddr[idx];
1721         d = &sc->re_ldata.re_rx_list[idx];
1722
1723         d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1724         d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1725
1726         cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1727         if (idx == (sc->re_rx_desc_cnt - 1))
1728                 cmdstat |= RE_RDESC_CMD_EOR;
1729         d->re_cmdstat = htole32(cmdstat);
1730 }
1731
1732 static int
1733 re_newbuf_std(struct re_softc *sc, int idx, int init)
1734 {
1735         struct re_dmaload_arg arg;
1736         bus_dma_segment_t seg;
1737         bus_dmamap_t map;
1738         struct mbuf *m;
1739         int error;
1740
1741         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1742         if (m == NULL) {
1743                 error = ENOBUFS;
1744
1745                 if (init) {
1746                         if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1747                         return error;
1748                 } else {
1749                         goto back;
1750                 }
1751         }
1752         m->m_len = m->m_pkthdr.len = MCLBYTES;
1753
1754         /*
1755          * NOTE:
1756          * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1757          * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1758          */
1759
1760         arg.re_nsegs = 1;
1761         arg.re_segs = &seg;
1762         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1763                                      sc->re_ldata.re_rx_spare, m,
1764                                      re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1765         if (error || arg.re_nsegs == 0) {
1766                 if (!error) {
1767                         if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
1768                         bus_dmamap_unload(sc->re_ldata.re_mtag,
1769                                           sc->re_ldata.re_rx_spare);
1770                         error = EFBIG;
1771                 }
1772                 m_freem(m);
1773
1774                 if (init) {
1775                         if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1776                         return error;
1777                 } else {
1778                         goto back;
1779                 }
1780         }
1781
1782         if (!init) {
1783                 bus_dmamap_sync(sc->re_ldata.re_mtag,
1784                                 sc->re_ldata.re_rx_dmamap[idx],
1785                                 BUS_DMASYNC_POSTREAD);
1786                 bus_dmamap_unload(sc->re_ldata.re_mtag,
1787                                   sc->re_ldata.re_rx_dmamap[idx]);
1788         }
1789         sc->re_ldata.re_rx_mbuf[idx] = m;
1790         sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1791
1792         map = sc->re_ldata.re_rx_dmamap[idx];
1793         sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1794         sc->re_ldata.re_rx_spare = map;
1795 back:
1796         re_setup_rxdesc(sc, idx);
1797         return error;
1798 }
1799
1800 static int
1801 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1802 {
1803         struct mbuf *m;
1804         struct re_jbuf *jbuf;
1805         int error = 0;
1806
1807         MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1808         if (m == NULL) {
1809                 error = ENOBUFS;
1810                 if (init) {
1811                         if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1812                         return error;
1813                 } else {
1814                         goto back;
1815                 }
1816         }
1817
1818         jbuf = re_jbuf_alloc(sc);
1819         if (jbuf == NULL) {
1820                 m_freem(m);
1821
1822                 error = ENOBUFS;
1823                 if (init) {
1824                         if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1825                         return error;
1826                 } else {
1827                         goto back;
1828                 }
1829         }
1830
1831         m->m_ext.ext_arg = jbuf;
1832         m->m_ext.ext_buf = jbuf->re_buf;
1833         m->m_ext.ext_free = re_jbuf_free;
1834         m->m_ext.ext_ref = re_jbuf_ref;
1835         m->m_ext.ext_size = sc->re_rxbuf_size;
1836
1837         m->m_data = m->m_ext.ext_buf;
1838         m->m_flags |= M_EXT;
1839         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1840
1841         /*
1842          * NOTE:
1843          * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1844          * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1845          */
1846
1847         sc->re_ldata.re_rx_mbuf[idx] = m;
1848         sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1849 back:
1850         re_setup_rxdesc(sc, idx);
1851         return error;
1852 }
1853
1854 static int
1855 re_tx_list_init(struct re_softc *sc)
1856 {
1857         bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1858
1859         /* Flush the TX descriptors */
1860         bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1861                         sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1862
1863         sc->re_ldata.re_tx_prodidx = 0;
1864         sc->re_ldata.re_tx_considx = 0;
1865         sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1866
1867         return(0);
1868 }
1869
1870 static int
1871 re_rx_list_init(struct re_softc *sc)
1872 {
1873         int i, error;
1874
1875         bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1876
1877         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1878                 error = sc->re_newbuf(sc, i, 1);
1879                 if (error)
1880                         return(error);
1881         }
1882
1883         /* Flush the RX descriptors */
1884         bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1885                         sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1886
1887         sc->re_ldata.re_rx_prodidx = 0;
1888         sc->re_head = sc->re_tail = NULL;
1889
1890         return(0);
1891 }
1892
1893 #define RE_IP4_PACKET   0x1
1894 #define RE_TCP_PACKET   0x2
1895 #define RE_UDP_PACKET   0x4
1896
1897 static __inline uint8_t
1898 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1899 {
1900         uint8_t packet_type = 0;
1901
1902         if (sc->re_caps & RE_C_MAC2) {
1903                 if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1904                         packet_type |= RE_IP4_PACKET;
1905         } else {
1906                 if (rxstat & RE_RDESC_STAT_PROTOID)
1907                         packet_type |= RE_IP4_PACKET;
1908         }
1909         if (RE_TCPPKT(rxstat))
1910                 packet_type |= RE_TCP_PACKET;
1911         else if (RE_UDPPKT(rxstat))
1912                 packet_type |= RE_UDP_PACKET;
1913         return packet_type;
1914 }
1915
1916 /*
1917  * RX handler for C+ and 8169. For the gigE chips, we support
1918  * the reception of jumbo frames that have been fragmented
1919  * across multiple 2K mbuf cluster buffers.
1920  */
1921 static int
1922 re_rxeof(struct re_softc *sc)
1923 {
1924         struct ifnet *ifp = &sc->arpcom.ac_if;
1925         struct mbuf *m;
1926         struct re_desc  *cur_rx;
1927         uint32_t rxstat, rxctrl;
1928         int i, total_len, rx = 0;
1929         struct mbuf_chain chain[MAXCPU];
1930
1931         /* Invalidate the descriptor memory */
1932
1933         bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1934                         sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1935
1936         ether_input_chain_init(chain);
1937
1938         for (i = sc->re_ldata.re_rx_prodidx;
1939              RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1940                 cur_rx = &sc->re_ldata.re_rx_list[i];
1941                 m = sc->re_ldata.re_rx_mbuf[i];
1942                 total_len = RE_RXBYTES(cur_rx);
1943                 rxstat = le32toh(cur_rx->re_cmdstat);
1944                 rxctrl = le32toh(cur_rx->re_control);
1945
1946                 rx = 1;
1947
1948 #ifdef INVARIANTS
1949                 if (sc->re_flags & RE_F_USE_JPOOL)
1950                         KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1951 #endif
1952
1953                 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1954                         if (sc->re_flags & RE_F_DROP_RXFRAG) {
1955                                 re_setup_rxdesc(sc, i);
1956                                 continue;
1957                         }
1958
1959                         if (sc->re_newbuf(sc, i, 0)) {
1960                                 /* Drop upcoming fragments */
1961                                 sc->re_flags |= RE_F_DROP_RXFRAG;
1962                                 continue;
1963                         }
1964
1965                         m->m_len = MCLBYTES;
1966                         if (sc->re_head == NULL) {
1967                                 sc->re_head = sc->re_tail = m;
1968                         } else {
1969                                 sc->re_tail->m_next = m;
1970                                 sc->re_tail = m;
1971                         }
1972                         continue;
1973                 } else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1974                         /*
1975                          * Last fragment of a multi-fragment packet.
1976                          *
1977                          * Since error already happened, this fragment
1978                          * must be dropped as well as the fragment chain.
1979                          */
1980                         re_setup_rxdesc(sc, i);
1981                         re_free_rxchain(sc);
1982                         sc->re_flags &= ~RE_F_DROP_RXFRAG;
1983                         continue;
1984                 }
1985
1986                 /*
1987                  * NOTE: for the 8139C+, the frame length field
1988                  * is always 12 bits in size, but for the gigE chips,
1989                  * it is 13 bits (since the max RX frame length is 16K).
1990                  * Unfortunately, all 32 bits in the status word
1991                  * were already used, so to make room for the extra
1992                  * length bit, RealTek took out the 'frame alignment
1993                  * error' bit and shifted the other status bits
1994                  * over one slot. The OWN, EOR, FS and LS bits are
1995                  * still in the same places. We have already extracted
1996                  * the frame length and checked the OWN bit, so rather
1997                  * than using an alternate bit mapping, we shift the
1998                  * status bits one space to the right so we can evaluate
1999                  * them using the 8169 status as though it was in the
2000                  * same format as that of the 8139C+.
2001                  */
2002                 if (!RE_IS_8139CP(sc))
2003                         rxstat >>= 1;
2004
2005                 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
2006                         ifp->if_ierrors++;
2007                         /*
2008                          * If this is part of a multi-fragment packet,
2009                          * discard all the pieces.
2010                          */
2011                         re_free_rxchain(sc);
2012                         re_setup_rxdesc(sc, i);
2013                         continue;
2014                 }
2015
2016                 /*
2017                  * If allocating a replacement mbuf fails,
2018                  * reload the current one.
2019                  */
2020
2021                 if (sc->re_newbuf(sc, i, 0)) {
2022                         ifp->if_ierrors++;
2023                         continue;
2024                 }
2025
2026                 if (sc->re_head != NULL) {
2027                         m->m_len = total_len % MCLBYTES;
2028                         /* 
2029                          * Special case: if there's 4 bytes or less
2030                          * in this buffer, the mbuf can be discarded:
2031                          * the last 4 bytes is the CRC, which we don't
2032                          * care about anyway.
2033                          */
2034                         if (m->m_len <= ETHER_CRC_LEN) {
2035                                 sc->re_tail->m_len -=
2036                                     (ETHER_CRC_LEN - m->m_len);
2037                                 m_freem(m);
2038                         } else {
2039                                 m->m_len -= ETHER_CRC_LEN;
2040                                 sc->re_tail->m_next = m;
2041                         }
2042                         m = sc->re_head;
2043                         sc->re_head = sc->re_tail = NULL;
2044                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2045                 } else {
2046                         m->m_pkthdr.len = m->m_len =
2047                             (total_len - ETHER_CRC_LEN);
2048                 }
2049
2050                 ifp->if_ipackets++;
2051                 m->m_pkthdr.rcvif = ifp;
2052
2053                 /* Do RX checksumming if enabled */
2054
2055                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2056                         uint8_t packet_type;
2057
2058                         packet_type = re_packet_type(sc, rxstat, rxctrl);
2059
2060                         /* Check IP header checksum */
2061                         if (packet_type & RE_IP4_PACKET) {
2062                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2063                                 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2064                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2065                         }
2066
2067                         /* Check TCP/UDP checksum */
2068                         if (((packet_type & RE_TCP_PACKET) &&
2069                              (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2070                             ((packet_type & RE_UDP_PACKET) &&
2071                              (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2072                                 m->m_pkthdr.csum_flags |=
2073                                     CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2074                                     CSUM_FRAG_NOT_CHECKED;
2075                                 m->m_pkthdr.csum_data = 0xffff;
2076                         }
2077                 }
2078
2079                 if (rxctrl & RE_RDESC_CTL_HASTAG) {
2080                         m->m_flags |= M_VLANTAG;
2081                         m->m_pkthdr.ether_vlantag =
2082                                 be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2083                 }
2084                 ether_input_chain(ifp, m, chain);
2085         }
2086
2087         ether_input_dispatch(chain);
2088
2089         /* Flush the RX DMA ring */
2090
2091         bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
2092                         sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
2093
2094         sc->re_ldata.re_rx_prodidx = i;
2095
2096         return rx;
2097 }
2098
2099 #undef RE_IP4_PACKET
2100 #undef RE_TCP_PACKET
2101 #undef RE_UDP_PACKET
2102
2103 static int
2104 re_tx_collect(struct re_softc *sc)
2105 {
2106         struct ifnet *ifp = &sc->arpcom.ac_if;
2107         uint32_t txstat;
2108         int idx, tx = 0;
2109
2110         /* Invalidate the TX descriptor list */
2111         bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2112                         sc->re_ldata.re_tx_list_map, BUS_DMASYNC_POSTREAD);
2113
2114         for (idx = sc->re_ldata.re_tx_considx;
2115              sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2116              RE_TXDESC_INC(sc, idx)) {
2117                 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2118                 if (txstat & RE_TDESC_CMD_OWN)
2119                         break;
2120
2121                 tx = 1;
2122
2123                 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2124
2125                 /*
2126                  * We only stash mbufs in the last descriptor
2127                  * in a fragment chain, which also happens to
2128                  * be the only place where the TX status bits
2129                  * are valid.
2130                  */
2131                 if (txstat & RE_TDESC_CMD_EOF) {
2132                         m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2133                         sc->re_ldata.re_tx_mbuf[idx] = NULL;
2134                         bus_dmamap_unload(sc->re_ldata.re_mtag,
2135                             sc->re_ldata.re_tx_dmamap[idx]);
2136                         if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2137                             RE_TDESC_STAT_COLCNT))
2138                                 ifp->if_collisions++;
2139                         if (txstat & RE_TDESC_STAT_TXERRSUM)
2140                                 ifp->if_oerrors++;
2141                         else
2142                                 ifp->if_opackets++;
2143                 }
2144                 sc->re_ldata.re_tx_free++;
2145         }
2146         sc->re_ldata.re_tx_considx = idx;
2147
2148         return tx;
2149 }
2150
2151 static int
2152 re_txeof(struct re_softc *sc)
2153 {
2154         struct ifnet *ifp = &sc->arpcom.ac_if;
2155         int tx;
2156
2157         tx = re_tx_collect(sc);
2158
2159         /* There is enough free TX descs */
2160         if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2161                 ifp->if_flags &= ~IFF_OACTIVE;
2162
2163         /*
2164          * Some chips will ignore a second TX request issued while an
2165          * existing transmission is in progress. If the transmitter goes
2166          * idle but there are still packets waiting to be sent, we need
2167          * to restart the channel here to flush them out. This only seems
2168          * to be required with the PCIe devices.
2169          */
2170         if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2171                 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2172         else
2173                 ifp->if_timer = 0;
2174
2175         return tx;
2176 }
2177
2178 static void
2179 re_tick(void *xsc)
2180 {
2181         struct re_softc *sc = xsc;
2182
2183         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2184         re_tick_serialized(xsc);
2185         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2186 }
2187
2188 static void
2189 re_tick_serialized(void *xsc)
2190 {
2191         struct re_softc *sc = xsc;
2192         struct ifnet *ifp = &sc->arpcom.ac_if;
2193         struct mii_data *mii;
2194
2195         ASSERT_SERIALIZED(ifp->if_serializer);
2196
2197         mii = device_get_softc(sc->re_miibus);
2198         mii_tick(mii);
2199         if (sc->re_flags & RE_F_LINKED) {
2200                 if (!(mii->mii_media_status & IFM_ACTIVE))
2201                         sc->re_flags &= ~RE_F_LINKED;
2202         } else {
2203                 if (mii->mii_media_status & IFM_ACTIVE &&
2204                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2205                         sc->re_flags |= RE_F_LINKED;
2206                         if (!ifq_is_empty(&ifp->if_snd))
2207                                 if_devstart(ifp);
2208                 }
2209         }
2210
2211         callout_reset(&sc->re_timer, hz, re_tick, sc);
2212 }
2213
2214 #ifdef DEVICE_POLLING
2215
2216 static void
2217 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2218 {
2219         struct re_softc *sc = ifp->if_softc;
2220
2221         ASSERT_SERIALIZED(ifp->if_serializer);
2222
2223         switch(cmd) {
2224         case POLL_REGISTER:
2225                 /* disable interrupts */
2226                 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2227                 break;
2228
2229         case POLL_DEREGISTER:
2230                 /* enable interrupts */
2231                 re_setup_intr(sc, 1, sc->re_imtype);
2232                 break;
2233
2234         default:
2235                 sc->rxcycles = count;
2236                 re_rxeof(sc);
2237                 re_txeof(sc);
2238
2239                 if (!ifq_is_empty(&ifp->if_snd))
2240                         if_devstart(ifp);
2241
2242                 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2243                         uint16_t       status;
2244
2245                         status = CSR_READ_2(sc, RE_ISR);
2246                         if (status == 0xffff)
2247                                 return;
2248                         if (status)
2249                                 CSR_WRITE_2(sc, RE_ISR, status);
2250
2251                         /*
2252                          * XXX check behaviour on receiver stalls.
2253                          */
2254
2255                         if (status & RE_ISR_SYSTEM_ERR)
2256                                 re_init(sc);
2257                 }
2258                 break;
2259         }
2260 }
2261 #endif /* DEVICE_POLLING */
2262
2263 static void
2264 re_intr(void *arg)
2265 {
2266         struct re_softc *sc = arg;
2267         struct ifnet *ifp = &sc->arpcom.ac_if;
2268         uint16_t status;
2269         int rx, tx;
2270
2271         ASSERT_SERIALIZED(ifp->if_serializer);
2272
2273         if ((sc->re_flags & RE_F_SUSPENDED) ||
2274             (ifp->if_flags & IFF_RUNNING) == 0)
2275                 return;
2276
2277         rx = tx = 0;
2278         for (;;) {
2279                 status = CSR_READ_2(sc, RE_ISR);
2280                 /* If the card has gone away the read returns 0xffff. */
2281                 if (status == 0xffff)
2282                         break;
2283                 if (status)
2284                         CSR_WRITE_2(sc, RE_ISR, status);
2285
2286                 if ((status & sc->re_intrs) == 0)
2287                         break;
2288
2289                 if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2290                         rx |= re_rxeof(sc);
2291
2292                 if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2293                         tx |= re_txeof(sc);
2294
2295                 if (status & RE_ISR_SYSTEM_ERR)
2296                         re_init(sc);
2297
2298                 if (status & RE_ISR_LINKCHG) {
2299                         callout_stop(&sc->re_timer);
2300                         re_tick_serialized(sc);
2301                 }
2302         }
2303
2304         if (sc->re_imtype == RE_IMTYPE_SIM) {
2305                 if ((sc->re_flags & RE_F_TIMER_INTR)) {
2306                         if ((tx | rx) == 0) {
2307                                 /*
2308                                  * Nothing needs to be processed, fallback
2309                                  * to use TX/RX interrupts.
2310                                  */
2311                                 re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2312
2313                                 /*
2314                                  * Recollect, mainly to avoid the possible
2315                                  * race introduced by changing interrupt
2316                                  * masks.
2317                                  */
2318                                 re_rxeof(sc);
2319                                 tx = re_txeof(sc);
2320                         } else {
2321                                 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2322                         }
2323                 } else if (tx | rx) {
2324                         /*
2325                          * Assume that using simulated interrupt moderation
2326                          * (hardware timer based) could reduce the interript
2327                          * rate.
2328                          */
2329                         re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2330                 }
2331         }
2332
2333         if (tx && !ifq_is_empty(&ifp->if_snd))
2334                 if_devstart(ifp);
2335 }
2336
2337 static int
2338 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2339 {
2340         struct ifnet *ifp = &sc->arpcom.ac_if;
2341         struct mbuf *m;
2342         struct re_dmaload_arg arg;
2343         bus_dma_segment_t segs[RE_MAXSEGS];
2344         bus_dmamap_t map;
2345         int error, maxsegs, idx, i;
2346         struct re_desc *d, *tx_ring;
2347         uint32_t cmd_csum, ctl_csum, vlantag;
2348
2349         KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2350                 ("not enough free TX desc\n"));
2351
2352         m = *m_head;
2353         map = sc->re_ldata.re_tx_dmamap[*idx0];
2354
2355         /*
2356          * Set up checksum offload. Note: checksum offload bits must
2357          * appear in all descriptors of a multi-descriptor transmit
2358          * attempt. (This is according to testing done with an 8169
2359          * chip. I'm not sure if this is a requirement or a bug.)
2360          */
2361         cmd_csum = ctl_csum = 0;
2362         if (m->m_pkthdr.csum_flags & CSUM_IP) {
2363                 cmd_csum |= RE_TDESC_CMD_IPCSUM;
2364                 ctl_csum |= RE_TDESC_CTL_IPCSUM;
2365         }
2366         if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2367                 cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2368                 ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2369         }
2370         if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2371                 cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2372                 ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2373         }
2374
2375         /* For MAC2 chips, csum flags are set on re_control */
2376         if (sc->re_caps & RE_C_MAC2)
2377                 cmd_csum = 0;
2378         else
2379                 ctl_csum = 0;
2380
2381         if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2382                 /*
2383                  * With some of the RealTek chips, using the checksum offload
2384                  * support in conjunction with the autopadding feature results
2385                  * in the transmission of corrupt frames. For example, if we
2386                  * need to send a really small IP fragment that's less than 60
2387                  * bytes in size, and IP header checksumming is enabled, the
2388                  * resulting ethernet frame that appears on the wire will
2389                  * have garbled payload. To work around this, if TX checksum
2390                  * offload is enabled, we always manually pad short frames out
2391                  * to the minimum ethernet frame size.
2392                  *
2393                  * Note: this appears unnecessary for TCP, and doing it for TCP
2394                  * with PCIe adapters seems to result in bad checksums.
2395                  */
2396                 if ((m->m_pkthdr.csum_flags &
2397                      (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2398                     (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2399                     m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2400                         error = m_devpad(m, RE_MIN_FRAMELEN);
2401                         if (error)
2402                                 goto back;
2403                 }
2404         }
2405
2406         vlantag = 0;
2407         if (m->m_flags & M_VLANTAG) {
2408                 vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2409                           RE_TDESC_CTL_INSTAG;
2410         }
2411
2412         maxsegs = sc->re_ldata.re_tx_free;
2413         if (maxsegs > RE_MAXSEGS)
2414                 maxsegs = RE_MAXSEGS;
2415
2416         arg.re_nsegs = maxsegs;
2417         arg.re_segs = segs;
2418         error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map, m,
2419                                      re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2420         if (error && error != EFBIG) {
2421                 if_printf(ifp, "can't map mbuf (error %d)\n", error);
2422                 goto back;
2423         }
2424
2425         /*
2426          * Too many segments to map, coalesce into a single mbuf
2427          */
2428         if (!error && arg.re_nsegs == 0) {
2429                 bus_dmamap_unload(sc->re_ldata.re_mtag, map);
2430                 error = EFBIG;
2431         }
2432         if (error) {
2433                 struct mbuf *m_new;
2434
2435                 m_new = m_defrag(m, MB_DONTWAIT);
2436                 if (m_new == NULL) {
2437                         if_printf(ifp, "can't defrag TX mbuf\n");
2438                         error = ENOBUFS;
2439                         goto back;
2440                 } else {
2441                         *m_head = m = m_new;
2442                 }
2443
2444                 arg.re_nsegs = maxsegs;
2445                 arg.re_segs = segs;
2446                 error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map, m,
2447                                              re_dma_map_desc, &arg,
2448                                              BUS_DMA_NOWAIT);
2449                 if (error || arg.re_nsegs == 0) {
2450                         if (!error) {
2451                                 bus_dmamap_unload(sc->re_ldata.re_mtag, map);
2452                                 error = EFBIG;
2453                         }
2454                         if_printf(ifp, "can't map mbuf (error %d)\n", error);
2455                         goto back;
2456                 }
2457         }
2458         bus_dmamap_sync(sc->re_ldata.re_mtag, map, BUS_DMASYNC_PREWRITE);
2459
2460         /*
2461          * Map the segment array into descriptors.  We also keep track
2462          * of the end of the ring and set the end-of-ring bits as needed,
2463          * and we set the ownership bits in all except the very first
2464          * descriptor, whose ownership bits will be turned on later.
2465          */
2466         tx_ring = sc->re_ldata.re_tx_list;
2467         idx = *idx0;
2468         i = 0;
2469         for (;;) {
2470                 uint32_t cmdstat;
2471
2472                 d = &tx_ring[idx];
2473
2474                 cmdstat = segs[i].ds_len;
2475                 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2476                 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2477                 if (i == 0)
2478                         cmdstat |= RE_TDESC_CMD_SOF;
2479                 else
2480                         cmdstat |= RE_TDESC_CMD_OWN;
2481                 if (idx == (sc->re_tx_desc_cnt - 1))
2482                         cmdstat |= RE_TDESC_CMD_EOR;
2483                 d->re_cmdstat = htole32(cmdstat | cmd_csum);
2484                 d->re_control = htole32(ctl_csum | vlantag);
2485
2486                 i++;
2487                 if (i == arg.re_nsegs)
2488                         break;
2489                 RE_TXDESC_INC(sc, idx);
2490         }
2491         d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2492
2493         /* Transfer ownership of packet to the chip. */
2494         d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2495         if (*idx0 != idx)
2496                 tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2497
2498         /*
2499          * Insure that the map for this transmission
2500          * is placed at the array index of the last descriptor
2501          * in this chain.
2502          */
2503         sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2504         sc->re_ldata.re_tx_dmamap[idx] = map;
2505
2506         sc->re_ldata.re_tx_mbuf[idx] = m;
2507         sc->re_ldata.re_tx_free -= arg.re_nsegs;
2508
2509         RE_TXDESC_INC(sc, idx);
2510         *idx0 = idx;
2511 back:
2512         if (error) {
2513                 m_freem(m);
2514                 *m_head = NULL;
2515         }
2516         return error;
2517 }
2518
2519 /*
2520  * Main transmit routine for C+ and gigE NICs.
2521  */
2522
2523 static void
2524 re_start(struct ifnet *ifp)
2525 {
2526         struct re_softc *sc = ifp->if_softc;
2527         struct mbuf *m_head;
2528         int idx, need_trans, oactive, error;
2529
2530         ASSERT_SERIALIZED(ifp->if_serializer);
2531
2532         if ((sc->re_flags & RE_F_LINKED) == 0) {
2533                 ifq_purge(&ifp->if_snd);
2534                 return;
2535         }
2536
2537         if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2538                 return;
2539
2540         idx = sc->re_ldata.re_tx_prodidx;
2541
2542         need_trans = 0;
2543         oactive = 0;
2544         while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2545                 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2546                         if (!oactive) {
2547                                 if (re_tx_collect(sc)) {
2548                                         oactive = 1;
2549                                         continue;
2550                                 }
2551                         }
2552                         ifp->if_flags |= IFF_OACTIVE;
2553                         break;
2554                 }
2555
2556                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2557                 if (m_head == NULL)
2558                         break;
2559
2560                 error = re_encap(sc, &m_head, &idx);
2561                 if (error) {
2562                         /* m_head is freed by re_encap(), if we reach here */
2563                         ifp->if_oerrors++;
2564
2565                         if (error == EFBIG && !oactive) {
2566                                 if (re_tx_collect(sc)) {
2567                                         oactive = 1;
2568                                         continue;
2569                                 }
2570                         }
2571                         ifp->if_flags |= IFF_OACTIVE;
2572                         break;
2573                 }
2574
2575                 oactive = 0;
2576                 need_trans = 1;
2577
2578                 /*
2579                  * If there's a BPF listener, bounce a copy of this frame
2580                  * to him.
2581                  */
2582                 ETHER_BPF_MTAP(ifp, m_head);
2583         }
2584
2585         if (!need_trans)
2586                 return;
2587
2588         /* Flush the TX descriptors */
2589         bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2590                         sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
2591
2592         sc->re_ldata.re_tx_prodidx = idx;
2593
2594         /*
2595          * RealTek put the TX poll request register in a different
2596          * location on the 8169 gigE chip. I don't know why.
2597          */
2598         CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2599
2600         /*
2601          * Set a timeout in case the chip goes out to lunch.
2602          */
2603         ifp->if_timer = 5;
2604 }
2605
2606 static void
2607 re_init(void *xsc)
2608 {
2609         struct re_softc *sc = xsc;
2610         struct ifnet *ifp = &sc->arpcom.ac_if;
2611         struct mii_data *mii;
2612         int error, framelen;
2613
2614         ASSERT_SERIALIZED(ifp->if_serializer);
2615
2616         mii = device_get_softc(sc->re_miibus);
2617
2618         /*
2619          * Cancel pending I/O and free all RX/TX buffers.
2620          */
2621         re_stop(sc);
2622
2623         if (sc->re_caps & RE_C_CONTIGRX) {
2624                 if (ifp->if_mtu > ETHERMTU) {
2625                         KKASSERT(sc->re_ldata.re_jbuf != NULL);
2626                         sc->re_flags |= RE_F_USE_JPOOL;
2627                         sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2628                         sc->re_newbuf = re_newbuf_jumbo;
2629                 } else {
2630                         sc->re_flags &= ~RE_F_USE_JPOOL;
2631                         sc->re_rxbuf_size = MCLBYTES;
2632                         sc->re_newbuf = re_newbuf_std;
2633                 }
2634         }
2635
2636         /*
2637          * Adjust max read request size according to MTU; mainly to
2638          * improve TX performance for common case (ETHERMTU) on GigE
2639          * NICs.  However, this could _not_ be done on 10/100 only
2640          * NICs; their DMA engines will malfunction using non-default
2641          * max read request size.
2642          */
2643         if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2644                 if (ifp->if_mtu > ETHERMTU) {
2645                         /*
2646                          * 512 seems to be the only value that works
2647                          * reliably with jumbo frame
2648                          */
2649                         pcie_set_max_readrq(sc->re_dev,
2650                                 PCIEM_DEVCTL_MAX_READRQ_512);
2651                 } else {
2652                         pcie_set_max_readrq(sc->re_dev,
2653                                 PCIEM_DEVCTL_MAX_READRQ_4096);
2654                 }
2655         }
2656
2657         /*
2658          * Enable C+ RX and TX mode, as well as VLAN stripping and
2659          * RX checksum offload. We must configure the C+ register
2660          * before all others.
2661          */
2662         CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2663                     RE_CPLUSCMD_PCI_MRW |
2664                     (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2665                      RE_CPLUSCMD_VLANSTRIP : 0) |
2666                     (ifp->if_capenable & IFCAP_RXCSUM ?
2667                      RE_CPLUSCMD_RXCSUM_ENB : 0));
2668
2669         /*
2670          * Init our MAC address.  Even though the chipset
2671          * documentation doesn't mention it, we need to enter "Config
2672          * register write enable" mode to modify the ID registers.
2673          */
2674         CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2675         CSR_WRITE_4(sc, RE_IDR0,
2676             htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2677         CSR_WRITE_2(sc, RE_IDR4,
2678             htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2679         CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2680
2681         /*
2682          * For C+ mode, initialize the RX descriptors and mbufs.
2683          */
2684         error = re_rx_list_init(sc);
2685         if (error) {
2686                 re_stop(sc);
2687                 return;
2688         }
2689         error = re_tx_list_init(sc);
2690         if (error) {
2691                 re_stop(sc);
2692                 return;
2693         }
2694
2695         /*
2696          * Load the addresses of the RX and TX lists into the chip.
2697          */
2698         CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2699             RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2700         CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2701             RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2702
2703         CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2704             RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2705         CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2706             RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2707
2708         /*
2709          * Enable transmit and receive.
2710          */
2711         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2712
2713         /*
2714          * Set the initial TX and RX configuration.
2715          */
2716         if (sc->re_flags & RE_F_TESTMODE) {
2717                 if (!RE_IS_8139CP(sc))
2718                         CSR_WRITE_4(sc, RE_TXCFG,
2719                                     RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2720                 else
2721                         CSR_WRITE_4(sc, RE_TXCFG,
2722                                     RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2723         } else
2724                 CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2725
2726         framelen = RE_FRAMELEN(ifp->if_mtu);
2727         if (framelen < MCLBYTES)
2728                 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2729         else
2730                 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2731
2732         CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2733
2734         /*
2735          * Program the multicast filter, if necessary.
2736          */
2737         re_setmulti(sc);
2738
2739 #ifdef DEVICE_POLLING
2740         /*
2741          * Disable interrupts if we are polling.
2742          */
2743         if (ifp->if_flags & IFF_POLLING)
2744                 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2745         else    /* otherwise ... */
2746 #endif /* DEVICE_POLLING */
2747         /*
2748          * Enable interrupts.
2749          */
2750         if (sc->re_flags & RE_F_TESTMODE)
2751                 CSR_WRITE_2(sc, RE_IMR, 0);
2752         else
2753                 re_setup_intr(sc, 1, sc->re_imtype);
2754         CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2755
2756         /* Start RX/TX process. */
2757         CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2758
2759 #ifdef notdef
2760         /* Enable receiver and transmitter. */
2761         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2762 #endif
2763
2764         /*
2765          * For 8169 gigE NICs, set the max allowed RX packet
2766          * size so we can receive jumbo frames.
2767          */
2768         if (!RE_IS_8139CP(sc)) {
2769                 if (sc->re_caps & RE_C_CONTIGRX)
2770                         CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2771                 else
2772                         CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2773         }
2774
2775         if (sc->re_flags & RE_F_TESTMODE)
2776                 return;
2777
2778         mii_mediachg(mii);
2779
2780         CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2781
2782         ifp->if_flags |= IFF_RUNNING;
2783         ifp->if_flags &= ~IFF_OACTIVE;
2784
2785         callout_reset(&sc->re_timer, hz, re_tick, sc);
2786 }
2787
2788 /*
2789  * Set media options.
2790  */
2791 static int
2792 re_ifmedia_upd(struct ifnet *ifp)
2793 {
2794         struct re_softc *sc = ifp->if_softc;
2795         struct mii_data *mii;
2796
2797         ASSERT_SERIALIZED(ifp->if_serializer);
2798
2799         mii = device_get_softc(sc->re_miibus);
2800         mii_mediachg(mii);
2801
2802         return(0);
2803 }
2804
2805 /*
2806  * Report current media status.
2807  */
2808 static void
2809 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2810 {
2811         struct re_softc *sc = ifp->if_softc;
2812         struct mii_data *mii;
2813
2814         ASSERT_SERIALIZED(ifp->if_serializer);
2815
2816         mii = device_get_softc(sc->re_miibus);
2817
2818         mii_pollstat(mii);
2819         ifmr->ifm_active = mii->mii_media_active;
2820         ifmr->ifm_status = mii->mii_media_status;
2821 }
2822
2823 static int
2824 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2825 {
2826         struct re_softc *sc = ifp->if_softc;
2827         struct ifreq *ifr = (struct ifreq *) data;
2828         struct mii_data *mii;
2829         int error = 0, mask;
2830
2831         ASSERT_SERIALIZED(ifp->if_serializer);
2832
2833         switch(command) {
2834         case SIOCSIFMTU:
2835                 if (ifr->ifr_mtu > sc->re_maxmtu) {
2836                         error = EINVAL;
2837                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2838                         ifp->if_mtu = ifr->ifr_mtu;
2839                         if (ifp->if_flags & IFF_RUNNING)
2840                                 ifp->if_init(sc);
2841                 }
2842                 break;
2843
2844         case SIOCSIFFLAGS:
2845                 if (ifp->if_flags & IFF_UP) {
2846                         if (ifp->if_flags & IFF_RUNNING) {
2847                                 if ((ifp->if_flags ^ sc->re_if_flags) &
2848                                     (IFF_PROMISC | IFF_ALLMULTI))
2849                                         re_setmulti(sc);
2850                         } else {
2851                                 re_init(sc);
2852                         }
2853                 } else if (ifp->if_flags & IFF_RUNNING) {
2854                         re_stop(sc);
2855                 }
2856                 sc->re_if_flags = ifp->if_flags;
2857                 break;
2858
2859         case SIOCADDMULTI:
2860         case SIOCDELMULTI:
2861                 re_setmulti(sc);
2862                 break;
2863
2864         case SIOCGIFMEDIA:
2865         case SIOCSIFMEDIA:
2866                 mii = device_get_softc(sc->re_miibus);
2867                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2868                 break;
2869
2870         case SIOCSIFCAP:
2871                 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2872                        ifp->if_capabilities;
2873                 ifp->if_capenable ^= mask;
2874
2875                 if (mask & IFCAP_HWCSUM) {
2876                         if (ifp->if_capenable & IFCAP_TXCSUM)
2877                                 ifp->if_hwassist = RE_CSUM_FEATURES;
2878                         else
2879                                 ifp->if_hwassist = 0;
2880                 }
2881                 if (mask && (ifp->if_flags & IFF_RUNNING))
2882                         re_init(sc);
2883                 break;
2884
2885         default:
2886                 error = ether_ioctl(ifp, command, data);
2887                 break;
2888         }
2889         return(error);
2890 }
2891
2892 static void
2893 re_watchdog(struct ifnet *ifp)
2894 {
2895         struct re_softc *sc = ifp->if_softc;
2896
2897         ASSERT_SERIALIZED(ifp->if_serializer);
2898
2899         if_printf(ifp, "watchdog timeout\n");
2900
2901         ifp->if_oerrors++;
2902
2903         re_txeof(sc);
2904         re_rxeof(sc);
2905
2906         re_init(sc);
2907
2908         if (!ifq_is_empty(&ifp->if_snd))
2909                 if_devstart(ifp);
2910 }
2911
2912 /*
2913  * Stop the adapter and free any mbufs allocated to the
2914  * RX and TX lists.
2915  */
2916 static void
2917 re_stop(struct re_softc *sc)
2918 {
2919         struct ifnet *ifp = &sc->arpcom.ac_if;
2920         int i;
2921
2922         ASSERT_SERIALIZED(ifp->if_serializer);
2923
2924         /* Reset the adapter. */
2925         re_reset(sc, ifp->if_flags & IFF_RUNNING);
2926
2927         ifp->if_timer = 0;
2928         callout_stop(&sc->re_timer);
2929
2930         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2931         sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2932
2933         CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2934         CSR_WRITE_2(sc, RE_IMR, 0x0000);
2935         CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2936
2937         re_free_rxchain(sc);
2938
2939         /* Free the TX list buffers. */
2940         for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2941                 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2942                         bus_dmamap_unload(sc->re_ldata.re_mtag,
2943                                           sc->re_ldata.re_tx_dmamap[i]);
2944                         m_freem(sc->re_ldata.re_tx_mbuf[i]);
2945                         sc->re_ldata.re_tx_mbuf[i] = NULL;
2946                 }
2947         }
2948
2949         /* Free the RX list buffers. */
2950         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2951                 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2952                         if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2953                                 bus_dmamap_unload(sc->re_ldata.re_mtag,
2954                                                   sc->re_ldata.re_rx_dmamap[i]);
2955                         }
2956                         m_freem(sc->re_ldata.re_rx_mbuf[i]);
2957                         sc->re_ldata.re_rx_mbuf[i] = NULL;
2958                 }
2959         }
2960 }
2961
2962 /*
2963  * Device suspend routine.  Stop the interface and save some PCI
2964  * settings in case the BIOS doesn't restore them properly on
2965  * resume.
2966  */
2967 static int
2968 re_suspend(device_t dev)
2969 {
2970 #ifndef BURN_BRIDGES
2971         int i;
2972 #endif
2973         struct re_softc *sc = device_get_softc(dev);
2974         struct ifnet *ifp = &sc->arpcom.ac_if;
2975
2976         lwkt_serialize_enter(ifp->if_serializer);
2977
2978         re_stop(sc);
2979
2980 #ifndef BURN_BRIDGES
2981         for (i = 0; i < 5; i++)
2982                 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2983         sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2984         sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2985         sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2986         sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2987 #endif
2988
2989         sc->re_flags |= RE_F_SUSPENDED;
2990
2991         lwkt_serialize_exit(ifp->if_serializer);
2992
2993         return (0);
2994 }
2995
2996 /*
2997  * Device resume routine.  Restore some PCI settings in case the BIOS
2998  * doesn't, re-enable busmastering, and restart the interface if
2999  * appropriate.
3000  */
3001 static int
3002 re_resume(device_t dev)
3003 {
3004         struct re_softc *sc = device_get_softc(dev);
3005         struct ifnet *ifp = &sc->arpcom.ac_if;
3006 #ifndef BURN_BRIDGES
3007         int i;
3008 #endif
3009
3010         lwkt_serialize_enter(ifp->if_serializer);
3011
3012 #ifndef BURN_BRIDGES
3013         /* better way to do this? */
3014         for (i = 0; i < 5; i++)
3015                 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3016         pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3017         pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3018         pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3019         pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3020
3021         /* reenable busmastering */
3022         pci_enable_busmaster(dev);
3023         pci_enable_io(dev, SYS_RES_IOPORT);
3024 #endif
3025
3026         /* reinitialize interface if necessary */
3027         if (ifp->if_flags & IFF_UP)
3028                 re_init(sc);
3029
3030         sc->re_flags &= ~RE_F_SUSPENDED;
3031
3032         lwkt_serialize_exit(ifp->if_serializer);
3033
3034         return (0);
3035 }
3036
3037 /*
3038  * Stop all chip I/O so that the kernel's probe routines don't
3039  * get confused by errant DMAs when rebooting.
3040  */
3041 static void
3042 re_shutdown(device_t dev)
3043 {
3044         struct re_softc *sc = device_get_softc(dev);
3045         struct ifnet *ifp = &sc->arpcom.ac_if;
3046
3047         lwkt_serialize_enter(ifp->if_serializer);
3048         re_stop(sc);
3049         lwkt_serialize_exit(ifp->if_serializer);
3050 }
3051
3052 static int
3053 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
3054 {
3055         struct re_softc *sc = arg1;
3056
3057         return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
3058 }
3059
3060 static int
3061 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
3062 {
3063         struct re_softc *sc = arg1;
3064
3065         return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
3066 }
3067
3068 static int
3069 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
3070 {
3071         struct re_softc *sc = arg1;
3072         struct ifnet *ifp = &sc->arpcom.ac_if;
3073         int error, v;
3074
3075         lwkt_serialize_enter(ifp->if_serializer);
3076
3077         v = *hwtime;
3078         error = sysctl_handle_int(oidp, &v, 0, req);
3079         if (error || req->newptr == NULL)
3080                 goto back;
3081
3082         if (v <= 0) {
3083                 error = EINVAL;
3084                 goto back;
3085         }
3086
3087         if (v != *hwtime) {
3088                 *hwtime = v;
3089
3090                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3091                     IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
3092                         re_setup_hw_im(sc);
3093         }
3094 back:
3095         lwkt_serialize_exit(ifp->if_serializer);
3096         return error;
3097 }
3098
3099 static int
3100 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3101 {
3102         struct re_softc *sc = arg1;
3103         struct ifnet *ifp = &sc->arpcom.ac_if;
3104         int error, v;
3105
3106         lwkt_serialize_enter(ifp->if_serializer);
3107
3108         v = sc->re_sim_time;
3109         error = sysctl_handle_int(oidp, &v, 0, req);
3110         if (error || req->newptr == NULL)
3111                 goto back;
3112
3113         if (v <= 0) {
3114                 error = EINVAL;
3115                 goto back;
3116         }
3117
3118         if (v != sc->re_sim_time) {
3119                 sc->re_sim_time = v;
3120
3121                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3122                     IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3123 #ifdef foo
3124                         int reg;
3125
3126                         /*
3127                          * Following code causes various strange
3128                          * performance problems.  Hmm ...
3129                          */
3130                         CSR_WRITE_2(sc, RE_IMR, 0);
3131                         if (!RE_IS_8139CP(sc))
3132                                 reg = RE_TIMERINT_8169;
3133                         else
3134                                 reg = RE_TIMERINT;
3135                         CSR_WRITE_4(sc, reg, 0);
3136                         CSR_READ_4(sc, reg); /* flush */
3137
3138                         CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3139                         re_setup_sim_im(sc);
3140 #else
3141                         re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3142                         DELAY(10);
3143                         re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3144 #endif
3145                 }
3146         }
3147 back:
3148         lwkt_serialize_exit(ifp->if_serializer);
3149         return error;
3150 }
3151
3152 static int
3153 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3154 {
3155         struct re_softc *sc = arg1;
3156         struct ifnet *ifp = &sc->arpcom.ac_if;
3157         int error, v;
3158
3159         lwkt_serialize_enter(ifp->if_serializer);
3160
3161         v = sc->re_imtype;
3162         error = sysctl_handle_int(oidp, &v, 0, req);
3163         if (error || req->newptr == NULL)
3164                 goto back;
3165
3166         if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3167                 error = EINVAL;
3168                 goto back;
3169         }
3170         if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3171                 /* Can't do hardware interrupt moderation */
3172                 error = EOPNOTSUPP;
3173                 goto back;
3174         }
3175
3176         if (v != sc->re_imtype) {
3177                 sc->re_imtype = v;
3178                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3179                     IFF_RUNNING)
3180                         re_setup_intr(sc, 1, sc->re_imtype);
3181         }
3182 back:
3183         lwkt_serialize_exit(ifp->if_serializer);
3184         return error;
3185 }
3186
3187 static void
3188 re_setup_hw_im(struct re_softc *sc)
3189 {
3190         KKASSERT(sc->re_caps & RE_C_HWIM);
3191
3192         /*
3193          * Interrupt moderation
3194          *
3195          * 0xABCD
3196          * A - unknown (maybe TX related)
3197          * B - TX timer (unit: 25us)
3198          * C - unknown (maybe RX related)
3199          * D - RX timer (unit: 25us)
3200          *
3201          *
3202          * re(4)'s interrupt moderation is actually controlled by
3203          * two variables, like most other NICs (bge, bce etc.)
3204          * o  timer
3205          * o  number of packets [P]
3206          *
3207          * The logic relationship between these two variables is
3208          * similar to other NICs too:
3209          * if (timer expire || packets > [P])
3210          *     Interrupt is delivered
3211          *
3212          * Currently we only know how to set 'timer', but not
3213          * 'number of packets', which should be ~30, as far as I
3214          * tested (sink ~900Kpps, interrupt rate is 30KHz)
3215          */
3216         CSR_WRITE_2(sc, RE_IM,
3217                     RE_IM_RXTIME(sc->re_rx_time) |
3218                     RE_IM_TXTIME(sc->re_tx_time) |
3219                     RE_IM_MAGIC);
3220 }
3221
3222 static void
3223 re_disable_hw_im(struct re_softc *sc)
3224 {
3225         if (sc->re_caps & RE_C_HWIM)
3226                 CSR_WRITE_2(sc, RE_IM, 0);
3227 }
3228
3229 static void
3230 re_setup_sim_im(struct re_softc *sc)
3231 {
3232         if (!RE_IS_8139CP(sc)) {
3233                 uint32_t ticks;
3234
3235                 /*
3236                  * Datasheet says tick decreases at bus speed,
3237                  * but it seems the clock runs a little bit
3238                  * faster, so we do some compensation here.
3239                  */
3240                 ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3241                 CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3242         } else {
3243                 CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3244         }
3245         CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3246         sc->re_flags |= RE_F_TIMER_INTR;
3247 }
3248
3249 static void
3250 re_disable_sim_im(struct re_softc *sc)
3251 {
3252         if (!RE_IS_8139CP(sc))
3253                 CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3254         else
3255                 CSR_WRITE_4(sc, RE_TIMERINT, 0);
3256         sc->re_flags &= ~RE_F_TIMER_INTR;
3257 }
3258
3259 static void
3260 re_config_imtype(struct re_softc *sc, int imtype)
3261 {
3262         switch (imtype) {
3263         case RE_IMTYPE_HW:
3264                 KKASSERT(sc->re_caps & RE_C_HWIM);
3265                 /* FALL THROUGH */
3266         case RE_IMTYPE_NONE:
3267                 sc->re_intrs = RE_INTRS;
3268                 sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3269                                 RE_ISR_RX_OVERRUN;
3270                 sc->re_tx_ack = RE_ISR_TX_OK;
3271                 break;
3272
3273         case RE_IMTYPE_SIM:
3274                 sc->re_intrs = RE_INTRS_TIMER;
3275                 sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3276                 sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3277                 break;
3278
3279         default:
3280                 panic("%s: unknown imtype %d\n",
3281                       sc->arpcom.ac_if.if_xname, imtype);
3282         }
3283 }
3284
3285 static void
3286 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3287 {
3288         re_config_imtype(sc, imtype);
3289
3290         if (enable_intrs)
3291                 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3292         else
3293                 CSR_WRITE_2(sc, RE_IMR, 0); 
3294
3295         switch (imtype) {
3296         case RE_IMTYPE_NONE:
3297                 re_disable_sim_im(sc);
3298                 re_disable_hw_im(sc);
3299                 break;
3300
3301         case RE_IMTYPE_HW:
3302                 KKASSERT(sc->re_caps & RE_C_HWIM);
3303                 re_disable_sim_im(sc);
3304                 re_setup_hw_im(sc);
3305                 break;
3306
3307         case RE_IMTYPE_SIM:
3308                 re_disable_hw_im(sc);
3309                 re_setup_sim_im(sc);
3310                 break;
3311
3312         default:
3313                 panic("%s: unknown imtype %d\n",
3314                       sc->arpcom.ac_if.if_xname, imtype);
3315         }
3316 }
3317
3318 static void
3319 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3320 {
3321         int i;
3322
3323         if (sc->re_macver == RE_MACVER_11 || sc->re_macver == RE_MACVER_12) {
3324                 uint16_t re_did;
3325
3326                 re_get_eewidth(sc);
3327                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3328                 if (re_did == 0x8128) {
3329                         uint16_t as[ETHER_ADDR_LEN / 2];
3330
3331                         /*
3332                          * Get station address from the EEPROM.
3333                          */
3334                         re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
3335                         for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3336                                 as[i] = le16toh(as[i]);
3337                         bcopy(as, eaddr, sizeof(eaddr));
3338                         return;
3339                 }
3340         }
3341
3342         /*
3343          * Get station address from IDRx.
3344          */
3345         for (i = 0; i < ETHER_ADDR_LEN; ++i)
3346                 eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3347 }
3348
3349 static int
3350 re_jpool_alloc(struct re_softc *sc)
3351 {
3352         struct re_list_data *ldata = &sc->re_ldata;
3353         struct re_jbuf *jbuf;
3354         bus_addr_t paddr;
3355         bus_size_t jpool_size;
3356         caddr_t buf;
3357         int i, error;
3358
3359         lwkt_serialize_init(&ldata->re_jbuf_serializer);
3360
3361         ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3362                                  M_DEVBUF, M_WAITOK | M_ZERO);
3363
3364         jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3365
3366         error = bus_dma_tag_create(sc->re_parent_tag,
3367                         RE_BUF_ALIGN, 0,        /* alignment, boundary */
3368                         BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
3369                         BUS_SPACE_MAXADDR,      /* highaddr */
3370                         NULL, NULL,             /* filter, filterarg */
3371                         jpool_size, 1,          /* nsegments, maxsize */
3372                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
3373                         BUS_DMA_ALLOCNOW,       /* flags */
3374                         &ldata->re_jpool_tag);
3375         if (error) {
3376                 device_printf(sc->re_dev, "could not allocate jumbo dma tag\n");
3377                 return error;
3378         }
3379
3380         error = bus_dmamem_alloc(ldata->re_jpool_tag, (void **)&ldata->re_jpool,
3381                                  BUS_DMA_WAITOK, &ldata->re_jpool_map);
3382         if (error) {
3383                 device_printf(sc->re_dev,
3384                               "could not allocate jumbo dma memory\n");
3385                 bus_dma_tag_destroy(ldata->re_jpool_tag);
3386                 ldata->re_jpool_tag = NULL;
3387                 return error;
3388         }
3389
3390         error = bus_dmamap_load(ldata->re_jpool_tag, ldata->re_jpool_map,
3391                                 ldata->re_jpool, jpool_size,
3392                                 re_dma_map_addr, &paddr, BUS_DMA_WAITOK);
3393         if (error) {
3394                 device_printf(sc->re_dev, "could not load jumbo dma map\n");
3395                 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3396                                 ldata->re_jpool_map);
3397                 bus_dma_tag_destroy(ldata->re_jpool_tag);
3398                 ldata->re_jpool_tag = NULL;
3399                 return error;
3400         }
3401
3402         /* ..and split it into 9KB chunks */
3403         SLIST_INIT(&ldata->re_jbuf_free);
3404
3405         buf = ldata->re_jpool;
3406         for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3407                 jbuf = &ldata->re_jbuf[i];
3408
3409                 jbuf->re_sc = sc;
3410                 jbuf->re_inuse = 0;
3411                 jbuf->re_slot = i;
3412                 jbuf->re_buf = buf;
3413                 jbuf->re_paddr = paddr;
3414
3415                 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3416
3417                 buf += RE_JBUF_SIZE;
3418                 paddr += RE_JBUF_SIZE;
3419         }
3420         return 0;
3421 }
3422
3423 static void
3424 re_jpool_free(struct re_softc *sc)
3425 {
3426         struct re_list_data *ldata = &sc->re_ldata;
3427
3428         if (ldata->re_jpool_tag != NULL) {
3429                 bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3430                 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3431                                 ldata->re_jpool_map);
3432                 bus_dma_tag_destroy(ldata->re_jpool_tag);
3433                 ldata->re_jpool_tag = NULL;
3434         }
3435
3436         if (ldata->re_jbuf != NULL) {
3437                 kfree(ldata->re_jbuf, M_DEVBUF);
3438                 ldata->re_jbuf = NULL;
3439         }
3440 }
3441
3442 static struct re_jbuf *
3443 re_jbuf_alloc(struct re_softc *sc)
3444 {
3445         struct re_list_data *ldata = &sc->re_ldata;
3446         struct re_jbuf *jbuf;
3447
3448         lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3449
3450         jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3451         if (jbuf != NULL) {
3452                 SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3453                 jbuf->re_inuse = 1;
3454         }
3455
3456         lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3457
3458         return jbuf;
3459 }
3460
3461 static void
3462 re_jbuf_free(void *arg)
3463 {
3464         struct re_jbuf *jbuf = arg;
3465         struct re_softc *sc = jbuf->re_sc;
3466         struct re_list_data *ldata = &sc->re_ldata;
3467
3468         if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3469                 panic("%s: free wrong jumbo buffer\n",
3470                       sc->arpcom.ac_if.if_xname);
3471         } else if (jbuf->re_inuse == 0) {
3472                 panic("%s: jumbo buffer already freed\n",
3473                       sc->arpcom.ac_if.if_xname);
3474         }
3475
3476         lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3477         atomic_subtract_int(&jbuf->re_inuse, 1);
3478         if (jbuf->re_inuse == 0)
3479                 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3480         lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3481 }
3482
3483 static void
3484 re_jbuf_ref(void *arg)
3485 {
3486         struct re_jbuf *jbuf = arg;
3487         struct re_softc *sc = jbuf->re_sc;
3488         struct re_list_data *ldata = &sc->re_ldata;
3489
3490         if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3491                 panic("%s: ref wrong jumbo buffer\n",
3492                       sc->arpcom.ac_if.if_xname);
3493         } else if (jbuf->re_inuse == 0) {
3494                 panic("%s: jumbo buffer already freed\n",
3495                       sc->arpcom.ac_if.if_xname);
3496         }
3497         atomic_add_int(&jbuf->re_inuse, 1);
3498 }