sys/vfs/msdosfs: Sync with FreeBSD (non functional diffs)
[dragonfly.git] / sys / kern / kern_slaballoc.c
1 /*
2  * KERN_SLABALLOC.C     - Kernel SLAB memory allocator
3  * 
4  * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
5  * All rights reserved.
6  * 
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@backplane.com>
9  * 
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  * 
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * This module implements a slab allocator drop-in replacement for the
38  * kernel malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and fragmentation/overhead losses are limited
43  * to a fixed worst-case amount.
44  *
45  * The downside of this slab implementation is in the chunk size
46  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
47  * In a kernel implementation all this memory will be physical so
48  * the zone size is adjusted downward on machines with less physical
49  * memory.  The upside is that overhead is bounded... this is the *worst*
50  * case overhead.
51  *
52  * Slab management is done on a per-cpu basis and no locking or mutexes
53  * are required, only a critical section.  When one cpu frees memory
54  * belonging to another cpu's slab manager an asynchronous IPI message
55  * will be queued to execute the operation.   In addition, both the
56  * high level slab allocator and the low level zone allocator optimize
57  * M_ZERO requests, and the slab allocator does not have to pre initialize
58  * the linked list of chunks.
59  *
60  * XXX Balancing is needed between cpus.  Balance will be handled through
61  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
62  *
63  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64  * the new zone should be restricted to M_USE_RESERVE requests only.
65  *
66  *      Alloc Size      Chunking        Number of zones
67  *      0-127           8               16
68  *      128-255         16              8
69  *      256-511         32              8
70  *      512-1023        64              8
71  *      1024-2047       128             8
72  *      2048-4095       256             8
73  *      4096-8191       512             8
74  *      8192-16383      1024            8
75  *      16384-32767     2048            8
76  *      (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
77  *
78  *      Allocations >= ZoneLimit go directly to kmem.
79  *      (n * PAGE_SIZE, n > 2) allocations go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *                      API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96
97 #include "opt_vm.h"
98
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120
121 #include <machine/cpu.h>
122
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
125
126 #if (__VM_CACHELINE_SIZE == 32)
127 #define CAN_CACHEALIGN(sz)      ((sz) >= 256)
128 #elif (__VM_CACHELINE_SIZE == 64)
129 #define CAN_CACHEALIGN(sz)      ((sz) >= 512)
130 #elif (__VM_CACHELINE_SIZE == 128)
131 #define CAN_CACHEALIGN(sz)      ((sz) >= 1024)
132 #else
133 #error "unsupported cacheline size"
134 #endif
135
136 #define btokup(z)       (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
137
138 #define MEMORY_STRING   "ptr=%p type=%p size=%lu flags=%04x"
139 #define MEMORY_ARGS     void *ptr, void *type, unsigned long size, int flags
140
141 #if !defined(KTR_MEMORY)
142 #define KTR_MEMORY      KTR_ALL
143 #endif
144 KTR_INFO_MASTER(memory);
145 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
146 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
147 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
148 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
149 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
150 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
151 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
152 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
153 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
154 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
155 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
156
157 #define logmemory(name, ptr, type, size, flags)                         \
158         KTR_LOG(memory_ ## name, ptr, type, size, flags)
159 #define logmemory_quick(name)                                           \
160         KTR_LOG(memory_ ## name)
161
162 /*
163  * Fixed globals (not per-cpu)
164  */
165 static int ZoneSize;
166 static int ZoneLimit;
167 static int ZonePageCount;
168 static uintptr_t ZoneMask;
169 static int ZoneBigAlloc;                /* in KB */
170 static int ZoneGenAlloc;                /* in KB */
171 struct malloc_type *kmemstatistics;     /* exported to vmstat */
172 #ifdef INVARIANTS
173 static int32_t weirdary[16];
174 #endif
175
176 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
177 static void kmem_slab_free(void *ptr, vm_size_t bytes);
178
179 #if defined(INVARIANTS)
180 static void chunk_mark_allocated(SLZone *z, void *chunk);
181 static void chunk_mark_free(SLZone *z, void *chunk);
182 #else
183 #define chunk_mark_allocated(z, chunk)
184 #define chunk_mark_free(z, chunk)
185 #endif
186
187 /*
188  * Misc constants.  Note that allocations that are exact multiples of 
189  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
190  */
191 #define ZONE_RELS_THRESH        32              /* threshold number of zones */
192
193 #ifdef INVARIANTS
194 /*
195  * The WEIRD_ADDR is used as known text to copy into free objects to
196  * try to create deterministic failure cases if the data is accessed after
197  * free.
198  */    
199 #define WEIRD_ADDR      0xdeadc0de
200 #endif
201 #define ZERO_LENGTH_PTR ((void *)-8)
202
203 /*
204  * Misc global malloc buckets
205  */
206
207 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
208 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
209 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
210 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
211  
212 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
213 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
214
215 /*
216  * Initialize the slab memory allocator.  We have to choose a zone size based
217  * on available physical memory.  We choose a zone side which is approximately
218  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
219  * 128K.  The zone size is limited to the bounds set in slaballoc.h
220  * (typically 32K min, 128K max). 
221  */
222 static void kmeminit(void *dummy);
223
224 char *ZeroPage;
225
226 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
227
228 #ifdef INVARIANTS
229 /*
230  * If enabled any memory allocated without M_ZERO is initialized to -1.
231  */
232 static int  use_malloc_pattern;
233 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
234     &use_malloc_pattern, 0,
235     "Initialize memory to -1 if M_ZERO not specified");
236 #endif
237
238 static int ZoneRelsThresh = ZONE_RELS_THRESH;
239 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
240 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
241 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
242 static long SlabsAllocated;
243 static long SlabsFreed;
244 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
245             &SlabsAllocated, 0, "");
246 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
247             &SlabsFreed, 0, "");
248 static int SlabFreeToTail;
249 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
250             &SlabFreeToTail, 0, "");
251
252 static struct spinlock kmemstat_spin =
253                         SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
254
255 /*
256  * Returns the kernel memory size limit for the purposes of initializing
257  * various subsystem caches.  The smaller of available memory and the KVM
258  * memory space is returned.
259  *
260  * The size in megabytes is returned.
261  */
262 size_t
263 kmem_lim_size(void)
264 {
265     size_t limsize;
266
267     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
268     if (limsize > KvaSize)
269         limsize = KvaSize;
270     return (limsize / (1024 * 1024));
271 }
272
273 static void
274 kmeminit(void *dummy)
275 {
276     size_t limsize;
277     int usesize;
278 #ifdef INVARIANTS
279     int i;
280 #endif
281
282     limsize = kmem_lim_size();
283     usesize = (int)(limsize * 1024);    /* convert to KB */
284
285     /*
286      * If the machine has a large KVM space and more than 8G of ram,
287      * double the zone release threshold to reduce SMP invalidations.
288      * If more than 16G of ram, do it again.
289      *
290      * The BIOS eats a little ram so add some slop.  We want 8G worth of
291      * memory sticks to trigger the first adjustment.
292      */
293     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
294             if (limsize >= 7 * 1024)
295                     ZoneRelsThresh *= 2;
296             if (limsize >= 15 * 1024)
297                     ZoneRelsThresh *= 2;
298     }
299
300     /*
301      * Calculate the zone size.  This typically calculates to
302      * ZALLOC_MAX_ZONE_SIZE
303      */
304     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
305     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
306         ZoneSize <<= 1;
307     ZoneLimit = ZoneSize / 4;
308     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
309         ZoneLimit = ZALLOC_ZONE_LIMIT;
310     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
311     ZonePageCount = ZoneSize / PAGE_SIZE;
312
313 #ifdef INVARIANTS
314     for (i = 0; i < NELEM(weirdary); ++i)
315         weirdary[i] = WEIRD_ADDR;
316 #endif
317
318     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
319
320     if (bootverbose)
321         kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
322 }
323
324 /*
325  * (low level) Initialize slab-related elements in the globaldata structure.
326  *
327  * Occurs after kmeminit().
328  */
329 void
330 slab_gdinit(globaldata_t gd)
331 {
332         SLGlobalData *slgd;
333         int i;
334
335         slgd = &gd->gd_slab;
336         for (i = 0; i < NZONES; ++i)
337                 TAILQ_INIT(&slgd->ZoneAry[i]);
338         TAILQ_INIT(&slgd->FreeZones);
339         TAILQ_INIT(&slgd->FreeOvZones);
340 }
341
342 /*
343  * Initialize a malloc type tracking structure.
344  */
345 void
346 malloc_init(void *data)
347 {
348     struct malloc_type *type = data;
349     size_t limsize;
350
351     if (type->ks_magic != M_MAGIC)
352         panic("malloc type lacks magic");
353                                            
354     if (type->ks_limit != 0)
355         return;
356
357     if (vmstats.v_page_count == 0)
358         panic("malloc_init not allowed before vm init");
359
360     limsize = kmem_lim_size() * (1024 * 1024);
361     type->ks_limit = limsize / 10;
362
363     spin_lock(&kmemstat_spin);
364     type->ks_next = kmemstatistics;
365     kmemstatistics = type;
366     spin_unlock(&kmemstat_spin);
367 }
368
369 void
370 malloc_uninit(void *data)
371 {
372     struct malloc_type *type = data;
373     struct malloc_type *t;
374 #ifdef INVARIANTS
375     int i;
376     long ttl;
377 #endif
378
379     if (type->ks_magic != M_MAGIC)
380         panic("malloc type lacks magic");
381
382     if (vmstats.v_page_count == 0)
383         panic("malloc_uninit not allowed before vm init");
384
385     if (type->ks_limit == 0)
386         panic("malloc_uninit on uninitialized type");
387
388     /* Make sure that all pending kfree()s are finished. */
389     lwkt_synchronize_ipiqs("muninit");
390
391 #ifdef INVARIANTS
392     /*
393      * memuse is only correct in aggregation.  Due to memory being allocated
394      * on one cpu and freed on another individual array entries may be 
395      * negative or positive (canceling each other out).
396      */
397     for (i = ttl = 0; i < ncpus; ++i)
398         ttl += type->ks_use[i].memuse;
399     if (ttl) {
400         kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
401             ttl, type->ks_shortdesc, i);
402     }
403 #endif
404     spin_lock(&kmemstat_spin);
405     if (type == kmemstatistics) {
406         kmemstatistics = type->ks_next;
407     } else {
408         for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
409             if (t->ks_next == type) {
410                 t->ks_next = type->ks_next;
411                 break;
412             }
413         }
414     }
415     type->ks_next = NULL;
416     type->ks_limit = 0;
417     spin_unlock(&kmemstat_spin);
418 }
419
420 /*
421  * Increase the kmalloc pool limit for the specified pool.  No changes
422  * are the made if the pool would shrink.
423  */
424 void
425 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
426 {
427     if (type->ks_limit == 0)
428         malloc_init(type);
429     if (bytes == 0)
430         bytes = KvaSize;
431     if (type->ks_limit < bytes)
432         type->ks_limit = bytes;
433 }
434
435 void
436 kmalloc_set_unlimited(struct malloc_type *type)
437 {
438     type->ks_limit = kmem_lim_size() * (1024 * 1024);
439 }
440
441 /*
442  * Dynamically create a malloc pool.  This function is a NOP if *typep is
443  * already non-NULL.
444  */
445 void
446 kmalloc_create(struct malloc_type **typep, const char *descr)
447 {
448         struct malloc_type *type;
449
450         if (*typep == NULL) {
451                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
452                 type->ks_magic = M_MAGIC;
453                 type->ks_shortdesc = descr;
454                 malloc_init(type);
455                 *typep = type;
456         }
457 }
458
459 /*
460  * Destroy a dynamically created malloc pool.  This function is a NOP if
461  * the pool has already been destroyed.
462  */
463 void
464 kmalloc_destroy(struct malloc_type **typep)
465 {
466         if (*typep != NULL) {
467                 malloc_uninit(*typep);
468                 kfree(*typep, M_TEMP);
469                 *typep = NULL;
470         }
471 }
472
473 /*
474  * Calculate the zone index for the allocation request size and set the
475  * allocation request size to that particular zone's chunk size.
476  */
477 static __inline int
478 zoneindex(unsigned long *bytes, unsigned long *align)
479 {
480     unsigned int n = (unsigned int)*bytes;      /* unsigned for shift opt */
481
482     if (n < 128) {
483         *bytes = n = (n + 7) & ~7;
484         *align = 8;
485         return(n / 8 - 1);              /* 8 byte chunks, 16 zones */
486     }
487     if (n < 256) {
488         *bytes = n = (n + 15) & ~15;
489         *align = 16;
490         return(n / 16 + 7);
491     }
492     if (n < 8192) {
493         if (n < 512) {
494             *bytes = n = (n + 31) & ~31;
495             *align = 32;
496             return(n / 32 + 15);
497         }
498         if (n < 1024) {
499             *bytes = n = (n + 63) & ~63;
500             *align = 64;
501             return(n / 64 + 23);
502         } 
503         if (n < 2048) {
504             *bytes = n = (n + 127) & ~127;
505             *align = 128;
506             return(n / 128 + 31);
507         }
508         if (n < 4096) {
509             *bytes = n = (n + 255) & ~255;
510             *align = 256;
511             return(n / 256 + 39);
512         }
513         *bytes = n = (n + 511) & ~511;
514         *align = 512;
515         return(n / 512 + 47);
516     }
517 #if ZALLOC_ZONE_LIMIT > 8192
518     if (n < 16384) {
519         *bytes = n = (n + 1023) & ~1023;
520         *align = 1024;
521         return(n / 1024 + 55);
522     }
523 #endif
524 #if ZALLOC_ZONE_LIMIT > 16384
525     if (n < 32768) {
526         *bytes = n = (n + 2047) & ~2047;
527         *align = 2048;
528         return(n / 2048 + 63);
529     }
530 #endif
531     panic("Unexpected byte count %d", n);
532     return(0);
533 }
534
535 static __inline void
536 clean_zone_rchunks(SLZone *z)
537 {
538     SLChunk *bchunk;
539
540     while ((bchunk = z->z_RChunks) != NULL) {
541         cpu_ccfence();
542         if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
543             *z->z_LChunksp = bchunk;
544             while (bchunk) {
545                 chunk_mark_free(z, bchunk);
546                 z->z_LChunksp = &bchunk->c_Next;
547                 bchunk = bchunk->c_Next;
548                 ++z->z_NFree;
549             }
550             break;
551         }
552         /* retry */
553     }
554 }
555
556 /*
557  * If the zone becomes totally free and is not the only zone listed for a
558  * chunk size we move it to the FreeZones list.  We always leave at least
559  * one zone per chunk size listed, even if it is freeable.
560  *
561  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
562  * otherwise MP races can result in our free_remote code accessing a
563  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
564  * so one has to test both z_NFree and z_RCount.
565  *
566  * Since this code can be called from an IPI callback, do *NOT* try to mess
567  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
568  */
569 static __inline SLZone *
570 check_zone_free(SLGlobalData *slgd, SLZone *z)
571 {
572     SLZone *znext;
573
574     znext = TAILQ_NEXT(z, z_Entry);
575     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
576         (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
577         int *kup;
578
579         TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
580
581         z->z_Magic = -1;
582         TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
583         ++slgd->NFreeZones;
584         kup = btokup(z);
585         *kup = 0;
586     }
587     return znext;
588 }
589
590 #ifdef SLAB_DEBUG
591 /*
592  * Used to debug memory corruption issues.  Record up to (typically 32)
593  * allocation sources for this zone (for a particular chunk size).
594  */
595
596 static void
597 slab_record_source(SLZone *z, const char *file, int line)
598 {
599     int i;
600     int b = line & (SLAB_DEBUG_ENTRIES - 1);
601
602     i = b;
603     do {
604         if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
605                 return;
606         if (z->z_Sources[i].file == NULL)
607                 break;
608         i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
609     } while (i != b);
610     z->z_Sources[i].file = file;
611     z->z_Sources[i].line = line;
612 }
613
614 #endif
615
616 static __inline unsigned long
617 powerof2_size(unsigned long size)
618 {
619         int i;
620
621         if (size == 0 || powerof2(size))
622                 return size;
623
624         i = flsl(size);
625         return (1UL << i);
626 }
627
628 /*
629  * kmalloc()    (SLAB ALLOCATOR)
630  *
631  *      Allocate memory via the slab allocator.  If the request is too large,
632  *      or if it page-aligned beyond a certain size, we fall back to the
633  *      KMEM subsystem.  A SLAB tracking descriptor must be specified, use
634  *      &SlabMisc if you don't care.
635  *
636  *      M_RNOWAIT       - don't block.
637  *      M_NULLOK        - return NULL instead of blocking.
638  *      M_ZERO          - zero the returned memory.
639  *      M_USE_RESERVE   - allow greater drawdown of the free list
640  *      M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
641  *      M_POWEROF2      - roundup size to the nearest power of 2
642  *
643  * MPSAFE
644  */
645
646 /* don't let kmalloc macro mess up function declaration */
647 #undef kmalloc
648
649 #ifdef SLAB_DEBUG
650 void *
651 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
652               const char *file, int line)
653 #else
654 void *
655 kmalloc(unsigned long size, struct malloc_type *type, int flags)
656 #endif
657 {
658     SLZone *z;
659     SLChunk *chunk;
660     SLGlobalData *slgd;
661     struct globaldata *gd;
662     unsigned long align;
663     int zi;
664 #ifdef INVARIANTS
665     int i;
666 #endif
667
668     logmemory_quick(malloc_beg);
669     gd = mycpu;
670     slgd = &gd->gd_slab;
671
672     /*
673      * XXX silly to have this in the critical path.
674      */
675     if (type->ks_limit == 0) {
676         crit_enter();
677         malloc_init(type);
678         crit_exit();
679     }
680     ++type->ks_use[gd->gd_cpuid].calls;
681
682     /*
683      * Flagged for cache-alignment
684      */
685     if (flags & M_CACHEALIGN) {
686         if (size < __VM_CACHELINE_SIZE)
687                 size = __VM_CACHELINE_SIZE;
688         else if (!CAN_CACHEALIGN(size))
689                 flags |= M_POWEROF2;
690     }
691
692     /*
693      * Flagged to force nearest power-of-2 (higher or same)
694      */
695     if (flags & M_POWEROF2)
696         size = powerof2_size(size);
697
698     /*
699      * Handle the case where the limit is reached.  Panic if we can't return
700      * NULL.  The original malloc code looped, but this tended to
701      * simply deadlock the computer.
702      *
703      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
704      * to determine if a more complete limit check should be done.  The
705      * actual memory use is tracked via ks_use[cpu].memuse.
706      */
707     while (type->ks_loosememuse >= type->ks_limit) {
708         int i;
709         long ttl;
710
711         for (i = ttl = 0; i < ncpus; ++i)
712             ttl += type->ks_use[i].memuse;
713         type->ks_loosememuse = ttl;     /* not MP synchronized */
714         if ((ssize_t)ttl < 0)           /* deal with occassional race */
715                 ttl = 0;
716         if (ttl >= type->ks_limit) {
717             if (flags & M_NULLOK) {
718                 logmemory(malloc_end, NULL, type, size, flags);
719                 return(NULL);
720             }
721             panic("%s: malloc limit exceeded", type->ks_shortdesc);
722         }
723     }
724
725     /*
726      * Handle the degenerate size == 0 case.  Yes, this does happen.
727      * Return a special pointer.  This is to maintain compatibility with
728      * the original malloc implementation.  Certain devices, such as the
729      * adaptec driver, not only allocate 0 bytes, they check for NULL and
730      * also realloc() later on.  Joy.
731      */
732     if (size == 0) {
733         logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
734         return(ZERO_LENGTH_PTR);
735     }
736
737     /*
738      * Handle hysteresis from prior frees here in malloc().  We cannot
739      * safely manipulate the kernel_map in free() due to free() possibly
740      * being called via an IPI message or from sensitive interrupt code.
741      *
742      * NOTE: ku_pagecnt must be cleared before we free the slab or we
743      *       might race another cpu allocating the kva and setting
744      *       ku_pagecnt.
745      */
746     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
747         crit_enter();
748         if (slgd->NFreeZones > ZoneRelsThresh) {        /* crit sect race */
749             int *kup;
750
751             z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
752             KKASSERT(z != NULL);
753             TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
754             --slgd->NFreeZones;
755             kup = btokup(z);
756             *kup = 0;
757             kmem_slab_free(z, ZoneSize);        /* may block */
758             atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
759         }
760         crit_exit();
761     }
762
763     /*
764      * XXX handle oversized frees that were queued from kfree().
765      */
766     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
767         crit_enter();
768         if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
769             vm_size_t tsize;
770
771             KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
772             TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
773             tsize = z->z_ChunkSize;
774             kmem_slab_free(z, tsize);   /* may block */
775             atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
776         }
777         crit_exit();
778     }
779
780     /*
781      * Handle large allocations directly.  There should not be very many of
782      * these so performance is not a big issue.
783      *
784      * The backend allocator is pretty nasty on a SMP system.   Use the
785      * slab allocator for one and two page-sized chunks even though we lose
786      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
787      */
788     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
789         int *kup;
790
791         size = round_page(size);
792         chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
793         if (chunk == NULL) {
794             logmemory(malloc_end, NULL, type, size, flags);
795             return(NULL);
796         }
797         atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
798         flags &= ~M_ZERO;       /* result already zero'd if M_ZERO was set */
799         flags |= M_PASSIVE_ZERO;
800         kup = btokup(chunk);
801         *kup = size / PAGE_SIZE;
802         crit_enter();
803         goto done;
804     }
805
806     /*
807      * Attempt to allocate out of an existing zone.  First try the free list,
808      * then allocate out of unallocated space.  If we find a good zone move
809      * it to the head of the list so later allocations find it quickly
810      * (we might have thousands of zones in the list).
811      *
812      * Note: zoneindex() will panic of size is too large.
813      */
814     zi = zoneindex(&size, &align);
815     KKASSERT(zi < NZONES);
816     crit_enter();
817
818     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
819         /*
820          * Locate a chunk - we have to have at least one.  If this is the
821          * last chunk go ahead and do the work to retrieve chunks freed
822          * from remote cpus, and if the zone is still empty move it off
823          * the ZoneAry.
824          */
825         if (--z->z_NFree <= 0) {
826             KKASSERT(z->z_NFree == 0);
827
828             /*
829              * WARNING! This code competes with other cpus.  It is ok
830              * for us to not drain RChunks here but we might as well, and
831              * it is ok if more accumulate after we're done.
832              *
833              * Set RSignal before pulling rchunks off, indicating that we
834              * will be moving ourselves off of the ZoneAry.  Remote ends will
835              * read RSignal before putting rchunks on thus interlocking
836              * their IPI signaling.
837              */
838             if (z->z_RChunks == NULL)
839                 atomic_swap_int(&z->z_RSignal, 1);
840
841             clean_zone_rchunks(z);
842
843             /*
844              * Remove from the zone list if no free chunks remain.
845              * Clear RSignal
846              */
847             if (z->z_NFree == 0) {
848                 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
849             } else {
850                 z->z_RSignal = 0;
851             }
852         }
853
854         /*
855          * Fast path, we have chunks available in z_LChunks.
856          */
857         chunk = z->z_LChunks;
858         if (chunk) {
859                 chunk_mark_allocated(z, chunk);
860                 z->z_LChunks = chunk->c_Next;
861                 if (z->z_LChunks == NULL)
862                         z->z_LChunksp = &z->z_LChunks;
863 #ifdef SLAB_DEBUG
864                 slab_record_source(z, file, line);
865 #endif
866                 goto done;
867         }
868
869         /*
870          * No chunks are available in LChunks, the free chunk MUST be
871          * in the never-before-used memory area, controlled by UIndex.
872          *
873          * The consequences are very serious if our zone got corrupted so
874          * we use an explicit panic rather than a KASSERT.
875          */
876         if (z->z_UIndex + 1 != z->z_NMax)
877             ++z->z_UIndex;
878         else
879             z->z_UIndex = 0;
880
881         if (z->z_UIndex == z->z_UEndIndex)
882             panic("slaballoc: corrupted zone");
883
884         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
885         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
886             flags &= ~M_ZERO;
887             flags |= M_PASSIVE_ZERO;
888         }
889         chunk_mark_allocated(z, chunk);
890 #ifdef SLAB_DEBUG
891         slab_record_source(z, file, line);
892 #endif
893         goto done;
894     }
895
896     /*
897      * If all zones are exhausted we need to allocate a new zone for this
898      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
899      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
900      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
901      * we do not pre-zero it because we do not want to mess up the L1 cache.
902      *
903      * At least one subsystem, the tty code (see CROUND) expects power-of-2
904      * allocations to be power-of-2 aligned.  We maintain compatibility by
905      * adjusting the base offset below.
906      */
907     {
908         int off;
909         int *kup;
910
911         if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
912             TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
913             --slgd->NFreeZones;
914             bzero(z, sizeof(SLZone));
915             z->z_Flags |= SLZF_UNOTZEROD;
916         } else {
917             z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
918             if (z == NULL)
919                 goto fail;
920             atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
921         }
922
923         /*
924          * How big is the base structure?
925          */
926 #if defined(INVARIANTS)
927         /*
928          * Make room for z_Bitmap.  An exact calculation is somewhat more
929          * complicated so don't make an exact calculation.
930          */
931         off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
932         bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
933 #else
934         off = sizeof(SLZone);
935 #endif
936
937         /*
938          * Guarentee power-of-2 alignment for power-of-2-sized chunks.
939          * Otherwise properly align the data according to the chunk size.
940          */
941         if (powerof2(size))
942             align = size;
943         off = roundup2(off, align);
944
945         z->z_Magic = ZALLOC_SLAB_MAGIC;
946         z->z_ZoneIndex = zi;
947         z->z_NMax = (ZoneSize - off) / size;
948         z->z_NFree = z->z_NMax - 1;
949         z->z_BasePtr = (char *)z + off;
950         z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
951         z->z_ChunkSize = size;
952         z->z_CpuGd = gd;
953         z->z_Cpu = gd->gd_cpuid;
954         z->z_LChunksp = &z->z_LChunks;
955 #ifdef SLAB_DEBUG
956         bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
957         bzero(z->z_Sources, sizeof(z->z_Sources));
958 #endif
959         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
960         TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
961         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
962             flags &= ~M_ZERO;   /* already zero'd */
963             flags |= M_PASSIVE_ZERO;
964         }
965         kup = btokup(z);
966         *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
967         chunk_mark_allocated(z, chunk);
968 #ifdef SLAB_DEBUG
969         slab_record_source(z, file, line);
970 #endif
971
972         /*
973          * Slide the base index for initial allocations out of the next
974          * zone we create so we do not over-weight the lower part of the
975          * cpu memory caches.
976          */
977         slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
978                                 & (ZALLOC_MAX_ZONE_SIZE - 1);
979     }
980
981 done:
982     ++type->ks_use[gd->gd_cpuid].inuse;
983     type->ks_use[gd->gd_cpuid].memuse += size;
984     type->ks_use[gd->gd_cpuid].loosememuse += size;
985     if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) {
986         /* not MP synchronized */
987         type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse;
988         type->ks_use[gd->gd_cpuid].loosememuse = 0;
989     }
990     crit_exit();
991
992     if (flags & M_ZERO)
993         bzero(chunk, size);
994 #ifdef INVARIANTS
995     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
996         if (use_malloc_pattern) {
997             for (i = 0; i < size; i += sizeof(int)) {
998                 *(int *)((char *)chunk + i) = -1;
999             }
1000         }
1001         chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
1002     }
1003 #endif
1004     logmemory(malloc_end, chunk, type, size, flags);
1005     return(chunk);
1006 fail:
1007     crit_exit();
1008     logmemory(malloc_end, NULL, type, size, flags);
1009     return(NULL);
1010 }
1011
1012 /*
1013  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
1014  *
1015  * Generally speaking this routine is not called very often and we do
1016  * not attempt to optimize it beyond reusing the same pointer if the
1017  * new size fits within the chunking of the old pointer's zone.
1018  */
1019 #ifdef SLAB_DEBUG
1020 void *
1021 krealloc_debug(void *ptr, unsigned long size,
1022                struct malloc_type *type, int flags,
1023                const char *file, int line)
1024 #else
1025 void *
1026 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
1027 #endif
1028 {
1029     unsigned long osize;
1030     unsigned long align;
1031     SLZone *z;
1032     void *nptr;
1033     int *kup;
1034
1035     KKASSERT((flags & M_ZERO) == 0);    /* not supported */
1036
1037     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1038         return(kmalloc_debug(size, type, flags, file, line));
1039     if (size == 0) {
1040         kfree(ptr, type);
1041         return(NULL);
1042     }
1043
1044     /*
1045      * Handle oversized allocations.  XXX we really should require that a
1046      * size be passed to free() instead of this nonsense.
1047      */
1048     kup = btokup(ptr);
1049     if (*kup > 0) {
1050         osize = *kup << PAGE_SHIFT;
1051         if (osize == round_page(size))
1052             return(ptr);
1053         if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1054             return(NULL);
1055         bcopy(ptr, nptr, min(size, osize));
1056         kfree(ptr, type);
1057         return(nptr);
1058     }
1059
1060     /*
1061      * Get the original allocation's zone.  If the new request winds up
1062      * using the same chunk size we do not have to do anything.
1063      */
1064     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1065     kup = btokup(z);
1066     KKASSERT(*kup < 0);
1067     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1068
1069     /*
1070      * Allocate memory for the new request size.  Note that zoneindex has
1071      * already adjusted the request size to the appropriate chunk size, which
1072      * should optimize our bcopy().  Then copy and return the new pointer.
1073      *
1074      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1075      * necessary align the result.
1076      *
1077      * We can only zoneindex (to align size to the chunk size) if the new
1078      * size is not too large.
1079      */
1080     if (size < ZoneLimit) {
1081         zoneindex(&size, &align);
1082         if (z->z_ChunkSize == size)
1083             return(ptr);
1084     }
1085     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1086         return(NULL);
1087     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1088     kfree(ptr, type);
1089     return(nptr);
1090 }
1091
1092 /*
1093  * Return the kmalloc limit for this type, in bytes.
1094  */
1095 long
1096 kmalloc_limit(struct malloc_type *type)
1097 {
1098     if (type->ks_limit == 0) {
1099         crit_enter();
1100         if (type->ks_limit == 0)
1101             malloc_init(type);
1102         crit_exit();
1103     }
1104     return(type->ks_limit);
1105 }
1106
1107 /*
1108  * Allocate a copy of the specified string.
1109  *
1110  * (MP SAFE) (MAY BLOCK)
1111  */
1112 #ifdef SLAB_DEBUG
1113 char *
1114 kstrdup_debug(const char *str, struct malloc_type *type,
1115               const char *file, int line)
1116 #else
1117 char *
1118 kstrdup(const char *str, struct malloc_type *type)
1119 #endif
1120 {
1121     int zlen;   /* length inclusive of terminating NUL */
1122     char *nstr;
1123
1124     if (str == NULL)
1125         return(NULL);
1126     zlen = strlen(str) + 1;
1127     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1128     bcopy(str, nstr, zlen);
1129     return(nstr);
1130 }
1131
1132 #ifdef SLAB_DEBUG
1133 char *
1134 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1135               const char *file, int line)
1136 #else
1137 char *
1138 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1139 #endif
1140 {
1141     int zlen;   /* length inclusive of terminating NUL */
1142     char *nstr;
1143
1144     if (str == NULL)
1145         return(NULL);
1146     zlen = strnlen(str, maxlen) + 1;
1147     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1148     bcopy(str, nstr, zlen);
1149     nstr[zlen - 1] = '\0';
1150     return(nstr);
1151 }
1152
1153 /*
1154  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1155  * we own.  RCount will be bumped so the memory should be good, but validate
1156  * that it really is.
1157  */
1158 static void
1159 kfree_remote(void *ptr)
1160 {
1161     SLGlobalData *slgd;
1162     SLZone *z;
1163     int nfree;
1164     int *kup;
1165
1166     slgd = &mycpu->gd_slab;
1167     z = ptr;
1168     kup = btokup(z);
1169     KKASSERT(*kup == -((int)mycpuid + 1));
1170     KKASSERT(z->z_RCount > 0);
1171     atomic_subtract_int(&z->z_RCount, 1);
1172
1173     logmemory(free_rem_beg, z, NULL, 0L, 0);
1174     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1175     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1176     nfree = z->z_NFree;
1177
1178     /*
1179      * Indicate that we will no longer be off of the ZoneAry by
1180      * clearing RSignal.
1181      */
1182     if (z->z_RChunks)
1183         z->z_RSignal = 0;
1184
1185     /*
1186      * Atomically extract the bchunks list and then process it back
1187      * into the lchunks list.  We want to append our bchunks to the
1188      * lchunks list and not prepend since we likely do not have
1189      * cache mastership of the related data (not that it helps since
1190      * we are using c_Next).
1191      */
1192     clean_zone_rchunks(z);
1193     if (z->z_NFree && nfree == 0) {
1194         TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1195     }
1196
1197     check_zone_free(slgd, z);
1198     logmemory(free_rem_end, z, NULL, 0L, 0);
1199 }
1200
1201 /*
1202  * free (SLAB ALLOCATOR)
1203  *
1204  * Free a memory block previously allocated by malloc.
1205  *
1206  * Note: We do not attempt to update ks_loosememuse as MP races could
1207  * prevent us from checking memory limits in malloc.   YYY we may
1208  * consider updating ks_cpu.loosememuse.
1209  *
1210  * MPSAFE
1211  */
1212 void
1213 kfree(void *ptr, struct malloc_type *type)
1214 {
1215     SLZone *z;
1216     SLChunk *chunk;
1217     SLGlobalData *slgd;
1218     struct globaldata *gd;
1219     int *kup;
1220     unsigned long size;
1221     SLChunk *bchunk;
1222     int rsignal;
1223
1224     logmemory_quick(free_beg);
1225     gd = mycpu;
1226     slgd = &gd->gd_slab;
1227
1228     if (ptr == NULL)
1229         panic("trying to free NULL pointer");
1230
1231     /*
1232      * Handle special 0-byte allocations
1233      */
1234     if (ptr == ZERO_LENGTH_PTR) {
1235         logmemory(free_zero, ptr, type, -1UL, 0);
1236         logmemory_quick(free_end);
1237         return;
1238     }
1239
1240     /*
1241      * Panic on bad malloc type
1242      */
1243     if (type->ks_magic != M_MAGIC)
1244         panic("free: malloc type lacks magic");
1245
1246     /*
1247      * Handle oversized allocations.  XXX we really should require that a
1248      * size be passed to free() instead of this nonsense.
1249      *
1250      * This code is never called via an ipi.
1251      */
1252     kup = btokup(ptr);
1253     if (*kup > 0) {
1254         size = *kup << PAGE_SHIFT;
1255         *kup = 0;
1256 #ifdef INVARIANTS
1257         KKASSERT(sizeof(weirdary) <= size);
1258         bcopy(weirdary, ptr, sizeof(weirdary));
1259 #endif
1260         /*
1261          * NOTE: For oversized allocations we do not record the
1262          *           originating cpu.  It gets freed on the cpu calling
1263          *           kfree().  The statistics are in aggregate.
1264          *
1265          * note: XXX we have still inherited the interrupts-can't-block
1266          * assumption.  An interrupt thread does not bump
1267          * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1268          * primarily until we can fix softupdate's assumptions about free().
1269          */
1270         crit_enter();
1271         --type->ks_use[gd->gd_cpuid].inuse;
1272         type->ks_use[gd->gd_cpuid].memuse -= size;
1273         if (mycpu->gd_intr_nesting_level ||
1274             (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1275             logmemory(free_ovsz_delayed, ptr, type, size, 0);
1276             z = (SLZone *)ptr;
1277             z->z_Magic = ZALLOC_OVSZ_MAGIC;
1278             z->z_ChunkSize = size;
1279
1280             TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1281             crit_exit();
1282         } else {
1283             crit_exit();
1284             logmemory(free_ovsz, ptr, type, size, 0);
1285             kmem_slab_free(ptr, size);  /* may block */
1286             atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1287         }
1288         logmemory_quick(free_end);
1289         return;
1290     }
1291
1292     /*
1293      * Zone case.  Figure out the zone based on the fact that it is
1294      * ZoneSize aligned. 
1295      */
1296     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1297     kup = btokup(z);
1298     KKASSERT(*kup < 0);
1299     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1300
1301     /*
1302      * If we do not own the zone then use atomic ops to free to the
1303      * remote cpu linked list and notify the target zone using a
1304      * passive message.
1305      *
1306      * The target zone cannot be deallocated while we own a chunk of it,
1307      * so the zone header's storage is stable until the very moment
1308      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1309      *
1310      * (no critical section needed)
1311      */
1312     if (z->z_CpuGd != gd) {
1313         /*
1314          * Making these adjustments now allow us to avoid passing (type)
1315          * to the remote cpu.  Note that inuse/memuse is being
1316          * adjusted on OUR cpu, not the zone cpu, but it should all still
1317          * sum up properly and cancel out.
1318          */
1319         crit_enter();
1320         --type->ks_use[gd->gd_cpuid].inuse;
1321         type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1322         crit_exit();
1323
1324         /*
1325          * WARNING! This code competes with other cpus.  Once we
1326          *          successfully link the chunk to RChunks the remote
1327          *          cpu can rip z's storage out from under us.
1328          *
1329          *          Bumping RCount prevents z's storage from getting
1330          *          ripped out.
1331          */
1332         rsignal = z->z_RSignal;
1333         cpu_lfence();
1334         if (rsignal)
1335                 atomic_add_int(&z->z_RCount, 1);
1336
1337         chunk = ptr;
1338         for (;;) {
1339             bchunk = z->z_RChunks;
1340             cpu_ccfence();
1341             chunk->c_Next = bchunk;
1342             cpu_sfence();
1343
1344             if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1345                 break;
1346         }
1347
1348         /*
1349          * We have to signal the remote cpu if our actions will cause
1350          * the remote zone to be placed back on ZoneAry so it can
1351          * move the zone back on.
1352          *
1353          * We only need to deal with NULL->non-NULL RChunk transitions
1354          * and only if z_RSignal is set.  We interlock by reading rsignal
1355          * before adding our chunk to RChunks.  This should result in
1356          * virtually no IPI traffic.
1357          *
1358          * We can use a passive IPI to reduce overhead even further.
1359          */
1360         if (bchunk == NULL && rsignal) {
1361             logmemory(free_request, ptr, type,
1362                       (unsigned long)z->z_ChunkSize, 0);
1363             lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1364             /* z can get ripped out from under us from this point on */
1365         } else if (rsignal) {
1366             atomic_subtract_int(&z->z_RCount, 1);
1367             /* z can get ripped out from under us from this point on */
1368         }
1369         logmemory_quick(free_end);
1370         return;
1371     }
1372
1373     /*
1374      * kfree locally
1375      */
1376     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1377
1378     crit_enter();
1379     chunk = ptr;
1380     chunk_mark_free(z, chunk);
1381
1382     /*
1383      * Put weird data into the memory to detect modifications after freeing,
1384      * illegal pointer use after freeing (we should fault on the odd address),
1385      * and so forth.  XXX needs more work, see the old malloc code.
1386      */
1387 #ifdef INVARIANTS
1388     if (z->z_ChunkSize < sizeof(weirdary))
1389         bcopy(weirdary, chunk, z->z_ChunkSize);
1390     else
1391         bcopy(weirdary, chunk, sizeof(weirdary));
1392 #endif
1393
1394     /*
1395      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1396      * to the front of the linked list so it is more likely to be
1397      * reallocated, since it is already in our L1 cache.
1398      */
1399 #ifdef INVARIANTS
1400     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1401         panic("BADFREE %p", chunk);
1402 #endif
1403     chunk->c_Next = z->z_LChunks;
1404     z->z_LChunks = chunk;
1405     if (chunk->c_Next == NULL)
1406         z->z_LChunksp = &chunk->c_Next;
1407
1408 #ifdef INVARIANTS
1409     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1410         panic("BADFREE2");
1411 #endif
1412
1413     /*
1414      * Bump the number of free chunks.  If it becomes non-zero the zone
1415      * must be added back onto the appropriate list.  A fully allocated
1416      * zone that sees its first free is considered 'mature' and is placed
1417      * at the head, giving the system time to potentially free the remaining
1418      * entries even while other allocations are going on and making the zone
1419      * freeable.
1420      */
1421     if (z->z_NFree++ == 0) {
1422         if (SlabFreeToTail)
1423             TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1424         else
1425             TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1426     }
1427
1428     --type->ks_use[gd->gd_cpuid].inuse;
1429     type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1430
1431     check_zone_free(slgd, z);
1432     logmemory_quick(free_end);
1433     crit_exit();
1434 }
1435
1436 /*
1437  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1438  * free and can be moved to the free list if not moved by other means.
1439  *
1440  * Called once every 10 seconds on all cpus.
1441  */
1442 void
1443 slab_cleanup(void)
1444 {
1445     SLGlobalData *slgd = &mycpu->gd_slab;
1446     SLZone *z;
1447     int i;
1448
1449     crit_enter();
1450     for (i = 0; i < NZONES; ++i) {
1451         if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1452                 continue;
1453
1454         /*
1455          * Scan zones.
1456          */
1457         while (z) {
1458             /*
1459              * Shift all RChunks to the end of the LChunks list.  This is
1460              * an O(1) operation.
1461              *
1462              * Then free the zone if possible.
1463              */
1464             clean_zone_rchunks(z);
1465             z = check_zone_free(slgd, z);
1466         }
1467     }
1468     crit_exit();
1469 }
1470
1471 #if defined(INVARIANTS)
1472
1473 /*
1474  * Helper routines for sanity checks
1475  */
1476 static void
1477 chunk_mark_allocated(SLZone *z, void *chunk)
1478 {
1479     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1480     uint32_t *bitptr;
1481
1482     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1483     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1484             ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1485     bitptr = &z->z_Bitmap[bitdex >> 5];
1486     bitdex &= 31;
1487     KASSERT((*bitptr & (1 << bitdex)) == 0,
1488             ("memory chunk %p is already allocated!", chunk));
1489     *bitptr |= 1 << bitdex;
1490 }
1491
1492 static void
1493 chunk_mark_free(SLZone *z, void *chunk)
1494 {
1495     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1496     uint32_t *bitptr;
1497
1498     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1499     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1500             ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1501     bitptr = &z->z_Bitmap[bitdex >> 5];
1502     bitdex &= 31;
1503     KASSERT((*bitptr & (1 << bitdex)) != 0,
1504             ("memory chunk %p is already free!", chunk));
1505     *bitptr &= ~(1 << bitdex);
1506 }
1507
1508 #endif
1509
1510 /*
1511  * kmem_slab_alloc()
1512  *
1513  *      Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1514  *      specified alignment.  M_* flags are expected in the flags field.
1515  *
1516  *      Alignment must be a multiple of PAGE_SIZE.
1517  *
1518  *      NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1519  *      but when we move zalloc() over to use this function as its backend
1520  *      we will have to switch to kreserve/krelease and call reserve(0)
1521  *      after the new space is made available.
1522  *
1523  *      Interrupt code which has preempted other code is not allowed to
1524  *      use PQ_CACHE pages.  However, if an interrupt thread is run
1525  *      non-preemptively or blocks and then runs non-preemptively, then
1526  *      it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1527  */
1528 static void *
1529 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1530 {
1531     vm_size_t i;
1532     vm_offset_t addr;
1533     int count, vmflags, base_vmflags;
1534     vm_page_t mbase = NULL;
1535     vm_page_t m;
1536     thread_t td;
1537
1538     size = round_page(size);
1539     addr = vm_map_min(&kernel_map);
1540
1541     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1542     crit_enter();
1543     vm_map_lock(&kernel_map);
1544     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1545         vm_map_unlock(&kernel_map);
1546         if ((flags & M_NULLOK) == 0)
1547             panic("kmem_slab_alloc(): kernel_map ran out of space!");
1548         vm_map_entry_release(count);
1549         crit_exit();
1550         return(NULL);
1551     }
1552
1553     /*
1554      * kernel_object maps 1:1 to kernel_map.
1555      */
1556     vm_object_hold(&kernel_object);
1557     vm_object_reference_locked(&kernel_object);
1558     vm_map_insert(&kernel_map, &count,
1559                   &kernel_object, NULL,
1560                   addr, addr, addr + size,
1561                   VM_MAPTYPE_NORMAL,
1562                   VM_SUBSYS_KMALLOC,
1563                   VM_PROT_ALL, VM_PROT_ALL, 0);
1564     vm_object_drop(&kernel_object);
1565     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1566     vm_map_unlock(&kernel_map);
1567
1568     td = curthread;
1569
1570     base_vmflags = 0;
1571     if (flags & M_ZERO)
1572         base_vmflags |= VM_ALLOC_ZERO;
1573     if (flags & M_USE_RESERVE)
1574         base_vmflags |= VM_ALLOC_SYSTEM;
1575     if (flags & M_USE_INTERRUPT_RESERVE)
1576         base_vmflags |= VM_ALLOC_INTERRUPT;
1577     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1578         panic("kmem_slab_alloc: bad flags %08x (%p)",
1579               flags, ((int **)&size)[-1]);
1580     }
1581
1582     /*
1583      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1584      * be set if we are not preempting.
1585      *
1586      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1587      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1588      * implied in this case), though I'm not sure if we really need to
1589      * do that.
1590      */
1591     vmflags = base_vmflags;
1592     if (flags & M_WAITOK) {
1593         if (td->td_preempted)
1594             vmflags |= VM_ALLOC_SYSTEM;
1595         else
1596             vmflags |= VM_ALLOC_NORMAL;
1597     }
1598
1599     vm_object_hold(&kernel_object);
1600     for (i = 0; i < size; i += PAGE_SIZE) {
1601         m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1602         if (i == 0)
1603                 mbase = m;
1604
1605         /*
1606          * If the allocation failed we either return NULL or we retry.
1607          *
1608          * If M_WAITOK is specified we wait for more memory and retry.
1609          * If M_WAITOK is specified from a preemption we yield instead of
1610          * wait.  Livelock will not occur because the interrupt thread
1611          * will not be preempting anyone the second time around after the
1612          * yield.
1613          */
1614         if (m == NULL) {
1615             if (flags & M_WAITOK) {
1616                 if (td->td_preempted) {
1617                     lwkt_switch();
1618                 } else {
1619                     vm_wait(0);
1620                 }
1621                 i -= PAGE_SIZE; /* retry */
1622                 continue;
1623             }
1624             break;
1625         }
1626     }
1627
1628     /*
1629      * Check and deal with an allocation failure
1630      */
1631     if (i != size) {
1632         while (i != 0) {
1633             i -= PAGE_SIZE;
1634             m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1635             /* page should already be busy */
1636             vm_page_free(m);
1637         }
1638         vm_map_lock(&kernel_map);
1639         vm_map_delete(&kernel_map, addr, addr + size, &count);
1640         vm_map_unlock(&kernel_map);
1641         vm_object_drop(&kernel_object);
1642
1643         vm_map_entry_release(count);
1644         crit_exit();
1645         return(NULL);
1646     }
1647
1648     /*
1649      * Success!
1650      *
1651      * NOTE: The VM pages are still busied.  mbase points to the first one
1652      *       but we have to iterate via vm_page_next()
1653      */
1654     vm_object_drop(&kernel_object);
1655     crit_exit();
1656
1657     /*
1658      * Enter the pages into the pmap and deal with M_ZERO.
1659      */
1660     m = mbase;
1661     i = 0;
1662
1663     while (i < size) {
1664         /*
1665          * page should already be busy
1666          */
1667         m->valid = VM_PAGE_BITS_ALL;
1668         vm_page_wire(m);
1669         pmap_enter(&kernel_pmap, addr + i, m,
1670                    VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1671         if (flags & M_ZERO)
1672                 pagezero((char *)addr + i);
1673         KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1674         vm_page_flag_set(m, PG_REFERENCED);
1675         vm_page_wakeup(m);
1676
1677         i += PAGE_SIZE;
1678         vm_object_hold(&kernel_object);
1679         m = vm_page_next(m);
1680         vm_object_drop(&kernel_object);
1681     }
1682     smp_invltlb();
1683     vm_map_entry_release(count);
1684     atomic_add_long(&SlabsAllocated, 1);
1685     return((void *)addr);
1686 }
1687
1688 /*
1689  * kmem_slab_free()
1690  */
1691 static void
1692 kmem_slab_free(void *ptr, vm_size_t size)
1693 {
1694     crit_enter();
1695     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1696     atomic_add_long(&SlabsFreed, 1);
1697     crit_exit();
1698 }