sys/vfs/msdosfs: Sync with FreeBSD (non functional diffs)
[dragonfly.git] / sys / opencrypto / crypto.c
1 /*      $FreeBSD: src/sys/opencrypto/crypto.c,v 1.28 2007/10/20 23:23:22 julian Exp $   */
2 /*-
3  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25
26 /*
27  * Cryptographic Subsystem.
28  *
29  * This code is derived from the Openbsd Cryptographic Framework (OCF)
30  * that has the copyright shown below.  Very little of the original
31  * code remains.
32  */
33
34 /*-
35  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
36  *
37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
39  * supported the development of this code.
40  *
41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
42  *
43  * Permission to use, copy, and modify this software with or without fee
44  * is hereby granted, provided that this entire notice is included in
45  * all source code copies of any software which is or includes a copy or
46  * modification of this software.
47  *
48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52  * PURPOSE.
53  */
54
55 #define CRYPTO_TIMING                           /* enable timing support */
56
57 #include "opt_ddb.h"
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/eventhandler.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/lock.h>
65 #include <sys/module.h>
66 #include <sys/malloc.h>
67 #include <sys/proc.h>
68 #include <sys/sysctl.h>
69 #include <sys/objcache.h>
70
71 #include <sys/thread2.h>
72
73 #include <ddb/ddb.h>
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h>                   /* XXX for M_XDATA */
77
78 #include <sys/kobj.h>
79 #include <sys/bus.h>
80 #include "cryptodev_if.h"
81
82 /*
83  * Crypto drivers register themselves by allocating a slot in the
84  * crypto_drivers table with crypto_get_driverid() and then registering
85  * each algorithm they support with crypto_register() and crypto_kregister().
86  */
87 static  struct lock crypto_drivers_lock;        /* lock on driver table */
88 #define CRYPTO_DRIVER_LOCK()    lockmgr(&crypto_drivers_lock, LK_EXCLUSIVE)
89 #define CRYPTO_DRIVER_UNLOCK()  lockmgr(&crypto_drivers_lock, LK_RELEASE)
90 #define CRYPTO_DRIVER_ASSERT()  KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0)
91
92 /*
93  * Crypto device/driver capabilities structure.
94  *
95  * Synchronization:
96  * (d) - protected by CRYPTO_DRIVER_LOCK()
97  * (q) - protected by CRYPTO_Q_LOCK()
98  * Not tagged fields are read-only.
99  */
100 struct cryptocap {
101         device_t        cc_dev;                 /* (d) device/driver */
102         u_int32_t       cc_sessions;            /* (d) # of sessions */
103         u_int32_t       cc_koperations;         /* (d) # os asym operations */
104         /*
105          * Largest possible operator length (in bits) for each type of
106          * encryption algorithm. XXX not used
107          */
108         u_int16_t       cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
109         u_int8_t        cc_alg[CRYPTO_ALGORITHM_MAX + 1];
110         u_int8_t        cc_kalg[CRK_ALGORITHM_MAX + 1];
111
112         int             cc_flags;               /* (d) flags */
113 #define CRYPTOCAP_F_CLEANUP     0x80000000      /* needs resource cleanup */
114         int             cc_qblocked;            /* (q) symmetric q blocked */
115         int             cc_kqblocked;           /* (q) asymmetric q blocked */
116 };
117 static  struct cryptocap *crypto_drivers = NULL;
118 static  int crypto_drivers_num = 0;
119
120 typedef struct crypto_tdinfo {
121         TAILQ_HEAD(,cryptop)    crp_q;          /* request queues */
122         TAILQ_HEAD(,cryptkop)   crp_kq;
123         thread_t                crp_td;
124         struct lock             crp_lock;
125         int                     crp_sleep;
126 } *crypto_tdinfo_t;
127
128 /*
129  * There are two queues for crypto requests; one for symmetric (e.g.
130  * cipher) operations and one for asymmetric (e.g. MOD) operations.
131  * See below for how synchronization is handled.
132  * A single lock is used to lock access to both queues.  We could
133  * have one per-queue but having one simplifies handling of block/unblock
134  * operations.
135  */
136 static  struct crypto_tdinfo tdinfo_array[MAXCPU];
137
138 #define CRYPTO_Q_LOCK(tdinfo)   lockmgr(&tdinfo->crp_lock, LK_EXCLUSIVE)
139 #define CRYPTO_Q_UNLOCK(tdinfo) lockmgr(&tdinfo->crp_lock, LK_RELEASE)
140
141 /*
142  * There are two queues for processing completed crypto requests; one
143  * for the symmetric and one for the asymmetric ops.  We only need one
144  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
145  * lock is used to lock access to both queues.  Note that this lock
146  * must be separate from the lock on request queues to insure driver
147  * callbacks don't generate lock order reversals.
148  */
149 static  TAILQ_HEAD(,cryptop) crp_ret_q;         /* callback queues */
150 static  TAILQ_HEAD(,cryptkop) crp_ret_kq;
151 static  struct lock crypto_ret_q_lock;
152 #define CRYPTO_RETQ_LOCK()      lockmgr(&crypto_ret_q_lock, LK_EXCLUSIVE)
153 #define CRYPTO_RETQ_UNLOCK()    lockmgr(&crypto_ret_q_lock, LK_RELEASE)
154 #define CRYPTO_RETQ_EMPTY()     (TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
155
156 /*
157  * Crypto op and desciptor data structures are allocated
158  * from separate object caches.
159  */
160 static struct objcache *cryptop_oc, *cryptodesc_oc;
161
162 static MALLOC_DEFINE(M_CRYPTO_OP, "crypto op", "crypto op");
163 static MALLOC_DEFINE(M_CRYPTO_DESC, "crypto desc", "crypto desc");
164
165 int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
166 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
167            &crypto_userasymcrypto, 0,
168            "Enable/disable user-mode access to asymmetric crypto support");
169 int     crypto_devallowsoft = 0;        /* only use hardware crypto for asym */
170 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
171            &crypto_devallowsoft, 0,
172            "Enable/disable use of software asym crypto support");
173 int     crypto_altdispatch = 0;         /* dispatch to alternative cpu */
174 SYSCTL_INT(_kern, OID_AUTO, cryptoaltdispatch, CTLFLAG_RW,
175            &crypto_altdispatch, 0,
176            "Do not queue crypto op on current cpu");
177
178 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
179
180 static  void crypto_proc(void *dummy);
181 static  void crypto_ret_proc(void *dummy);
182 static  struct thread *cryptoretthread;
183 static  void crypto_destroy(void);
184 static  int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
185 static  int crypto_kinvoke(struct cryptkop *krp, int flags);
186
187 static struct cryptostats cryptostats;
188 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
189             cryptostats, "Crypto system statistics");
190
191 #ifdef CRYPTO_TIMING
192 static  int crypto_timing = 0;
193 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
194            &crypto_timing, 0, "Enable/disable crypto timing support");
195 #endif
196
197 static int
198 crypto_init(void)
199 {
200         crypto_tdinfo_t tdinfo;
201         int error;
202         int n;
203
204         lockinit(&crypto_drivers_lock, "crypto driver table", 0, LK_CANRECURSE);
205
206         TAILQ_INIT(&crp_ret_q);
207         TAILQ_INIT(&crp_ret_kq);
208         lockinit(&crypto_ret_q_lock, "crypto return queues", 0, LK_CANRECURSE);
209
210         cryptop_oc = objcache_create_simple(M_CRYPTO_OP, sizeof(struct cryptop));
211         cryptodesc_oc = objcache_create_simple(M_CRYPTO_DESC,
212                                 sizeof(struct cryptodesc));
213         if (cryptodesc_oc == NULL || cryptop_oc == NULL) {
214                 kprintf("crypto_init: cannot setup crypto caches\n");
215                 error = ENOMEM;
216                 goto bad;
217         }
218
219         crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
220         crypto_drivers = kmalloc(crypto_drivers_num * sizeof(struct cryptocap),
221                                  M_CRYPTO_DATA, M_WAITOK | M_ZERO);
222
223         for (n = 0; n < ncpus; ++n) {
224                 tdinfo = &tdinfo_array[n];
225                 TAILQ_INIT(&tdinfo->crp_q);
226                 TAILQ_INIT(&tdinfo->crp_kq);
227                 lockinit(&tdinfo->crp_lock, "crypto op queues",
228                          0, LK_CANRECURSE);
229                 kthread_create_cpu(crypto_proc, tdinfo, &tdinfo->crp_td,
230                                    n, "crypto %d", n);
231         }
232         kthread_create(crypto_ret_proc, NULL,
233                        &cryptoretthread, "crypto returns");
234         return 0;
235 bad:
236         crypto_destroy();
237         return error;
238 }
239
240 /*
241  * Signal a crypto thread to terminate.  We use the driver
242  * table lock to synchronize the sleep/wakeups so that we
243  * are sure the threads have terminated before we release
244  * the data structures they use.  See crypto_finis below
245  * for the other half of this song-and-dance.
246  */
247 static void
248 crypto_terminate(struct thread **tp, void *q)
249 {
250         struct thread *t;
251
252         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
253         t = *tp;
254         *tp = NULL;
255         if (t) {
256                 kprintf("crypto_terminate: start\n");
257                 wakeup_one(q);
258                 crit_enter();
259                 tsleep_interlock(t, 0);
260                 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */
261                 crit_exit();
262                 tsleep(t, PINTERLOCKED, "crypto_destroy", 0);
263                 CRYPTO_DRIVER_LOCK();
264                 kprintf("crypto_terminate: end\n");
265         }
266 }
267
268 static void
269 crypto_destroy(void)
270 {
271         crypto_tdinfo_t tdinfo;
272         int n;
273
274         /*
275          * Terminate any crypto threads.
276          */
277         CRYPTO_DRIVER_LOCK();
278         for (n = 0; n < ncpus; ++n) {
279                 tdinfo = &tdinfo_array[n];
280                 crypto_terminate(&tdinfo->crp_td, &tdinfo->crp_q);
281                 lockuninit(&tdinfo->crp_lock);
282         }
283         crypto_terminate(&cryptoretthread, &crp_ret_q);
284         CRYPTO_DRIVER_UNLOCK();
285
286         /* XXX flush queues??? */
287
288         /*
289          * Reclaim dynamically allocated resources.
290          */
291         if (crypto_drivers != NULL)
292                 kfree(crypto_drivers, M_CRYPTO_DATA);
293
294         if (cryptodesc_oc != NULL)
295                 objcache_destroy(cryptodesc_oc);
296         if (cryptop_oc != NULL)
297                 objcache_destroy(cryptop_oc);
298         lockuninit(&crypto_ret_q_lock);
299         lockuninit(&crypto_drivers_lock);
300 }
301
302 static struct cryptocap *
303 crypto_checkdriver(u_int32_t hid)
304 {
305         if (crypto_drivers == NULL)
306                 return NULL;
307         return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
308 }
309
310 /*
311  * Compare a driver's list of supported algorithms against another
312  * list; return non-zero if all algorithms are supported.
313  */
314 static int
315 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
316 {
317         const struct cryptoini *cr;
318
319         /* See if all the algorithms are supported. */
320         for (cr = cri; cr; cr = cr->cri_next)
321                 if (cap->cc_alg[cr->cri_alg] == 0)
322                         return 0;
323         return 1;
324 }
325
326 /*
327  * Select a driver for a new session that supports the specified
328  * algorithms and, optionally, is constrained according to the flags.
329  * The algorithm we use here is pretty stupid; just use the
330  * first driver that supports all the algorithms we need. If there
331  * are multiple drivers we choose the driver with the fewest active
332  * sessions.  We prefer hardware-backed drivers to software ones.
333  *
334  * XXX We need more smarts here (in real life too, but that's
335  * XXX another story altogether).
336  */
337 static struct cryptocap *
338 crypto_select_driver(const struct cryptoini *cri, int flags)
339 {
340         struct cryptocap *cap, *best;
341         int match, hid;
342
343         CRYPTO_DRIVER_ASSERT();
344
345         /*
346          * Look first for hardware crypto devices if permitted.
347          */
348         if (flags & CRYPTOCAP_F_HARDWARE)
349                 match = CRYPTOCAP_F_HARDWARE;
350         else
351                 match = CRYPTOCAP_F_SOFTWARE;
352         best = NULL;
353 again:
354         for (hid = 0; hid < crypto_drivers_num; hid++) {
355                 cap = &crypto_drivers[hid];
356                 /*
357                  * If it's not initialized, is in the process of
358                  * going away, or is not appropriate (hardware
359                  * or software based on match), then skip.
360                  */
361                 if (cap->cc_dev == NULL ||
362                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
363                     (cap->cc_flags & match) == 0)
364                         continue;
365
366                 /* verify all the algorithms are supported. */
367                 if (driver_suitable(cap, cri)) {
368                         if (best == NULL ||
369                             cap->cc_sessions < best->cc_sessions)
370                                 best = cap;
371                 }
372         }
373         if (best != NULL)
374                 return best;
375         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
376                 /* sort of an Algol 68-style for loop */
377                 match = CRYPTOCAP_F_SOFTWARE;
378                 goto again;
379         }
380         return best;
381 }
382
383 /*
384  * Create a new session.  The crid argument specifies a crypto
385  * driver to use or constraints on a driver to select (hardware
386  * only, software only, either).  Whatever driver is selected
387  * must be capable of the requested crypto algorithms.
388  */
389 int
390 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
391 {
392         struct cryptocap *cap;
393         u_int32_t hid, lid;
394         int err;
395
396         CRYPTO_DRIVER_LOCK();
397         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
398                 /*
399                  * Use specified driver; verify it is capable.
400                  */
401                 cap = crypto_checkdriver(crid);
402                 if (cap != NULL && !driver_suitable(cap, cri))
403                         cap = NULL;
404         } else {
405                 /*
406                  * No requested driver; select based on crid flags.
407                  */
408                 cap = crypto_select_driver(cri, crid);
409                 /*
410                  * if NULL then can't do everything in one session.
411                  * XXX Fix this. We need to inject a "virtual" session
412                  * XXX layer right about here.
413                  */
414         }
415         if (cap != NULL) {
416                 /* Call the driver initialization routine. */
417                 hid = cap - crypto_drivers;
418                 lid = hid;              /* Pass the driver ID. */
419                 err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
420                 if (err == 0) {
421                         (*sid) = (cap->cc_flags & 0xff000000)
422                                | (hid & 0x00ffffff);
423                         (*sid) <<= 32;
424                         (*sid) |= (lid & 0xffffffff);
425                         cap->cc_sessions++;
426                 }
427         } else
428                 err = EINVAL;
429         CRYPTO_DRIVER_UNLOCK();
430         return err;
431 }
432
433 static void
434 crypto_remove(struct cryptocap *cap)
435 {
436
437         KKASSERT(lockstatus(&crypto_drivers_lock, curthread) != 0);
438         if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
439                 bzero(cap, sizeof(*cap));
440 }
441
442 /*
443  * Delete an existing session (or a reserved session on an unregistered
444  * driver).
445  */
446 int
447 crypto_freesession(u_int64_t sid)
448 {
449         struct cryptocap *cap;
450         u_int32_t hid;
451         int err;
452
453         CRYPTO_DRIVER_LOCK();
454
455         if (crypto_drivers == NULL) {
456                 err = EINVAL;
457                 goto done;
458         }
459
460         /* Determine two IDs. */
461         hid = CRYPTO_SESID2HID(sid);
462
463         if (hid >= crypto_drivers_num) {
464                 err = ENOENT;
465                 goto done;
466         }
467         cap = &crypto_drivers[hid];
468
469         if (cap->cc_sessions)
470                 cap->cc_sessions--;
471
472         /* Call the driver cleanup routine, if available. */
473         err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
474
475         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
476                 crypto_remove(cap);
477
478 done:
479         CRYPTO_DRIVER_UNLOCK();
480         return err;
481 }
482
483 /*
484  * Return an unused driver id.  Used by drivers prior to registering
485  * support for the algorithms they handle.
486  */
487 int32_t
488 crypto_get_driverid(device_t dev, int flags)
489 {
490         struct cryptocap *newdrv;
491         int i;
492
493         if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
494                 kprintf("%s: no flags specified when registering driver\n",
495                     device_get_nameunit(dev));
496                 return -1;
497         }
498
499         CRYPTO_DRIVER_LOCK();
500
501         for (i = 0; i < crypto_drivers_num; i++) {
502                 if (crypto_drivers[i].cc_dev == NULL &&
503                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
504                         break;
505                 }
506         }
507
508         /* Out of entries, allocate some more. */
509         if (i == crypto_drivers_num) {
510                 /* Be careful about wrap-around. */
511                 if (2 * crypto_drivers_num <= crypto_drivers_num) {
512                         CRYPTO_DRIVER_UNLOCK();
513                         kprintf("crypto: driver count wraparound!\n");
514                         return -1;
515                 }
516
517                 newdrv = kmalloc(2 * crypto_drivers_num *
518                                  sizeof(struct cryptocap),
519                                  M_CRYPTO_DATA, M_WAITOK|M_ZERO);
520
521                 bcopy(crypto_drivers, newdrv,
522                     crypto_drivers_num * sizeof(struct cryptocap));
523
524                 crypto_drivers_num *= 2;
525
526                 kfree(crypto_drivers, M_CRYPTO_DATA);
527                 crypto_drivers = newdrv;
528         }
529
530         /* NB: state is zero'd on free */
531         crypto_drivers[i].cc_sessions = 1;      /* Mark */
532         crypto_drivers[i].cc_dev = dev;
533         crypto_drivers[i].cc_flags = flags;
534         if (bootverbose)
535                 kprintf("crypto: assign %s driver id %u, flags %u\n",
536                     device_get_nameunit(dev), i, flags);
537
538         CRYPTO_DRIVER_UNLOCK();
539
540         return i;
541 }
542
543 /*
544  * Lookup a driver by name.  We match against the full device
545  * name and unit, and against just the name.  The latter gives
546  * us a simple widlcarding by device name.  On success return the
547  * driver/hardware identifier; otherwise return -1.
548  */
549 int
550 crypto_find_driver(const char *match)
551 {
552         int i, len = strlen(match);
553
554         CRYPTO_DRIVER_LOCK();
555         for (i = 0; i < crypto_drivers_num; i++) {
556                 device_t dev = crypto_drivers[i].cc_dev;
557                 if (dev == NULL ||
558                     (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
559                         continue;
560                 if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
561                     strncmp(match, device_get_name(dev), len) == 0)
562                         break;
563         }
564         CRYPTO_DRIVER_UNLOCK();
565         return i < crypto_drivers_num ? i : -1;
566 }
567
568 /*
569  * Return the device_t for the specified driver or NULL
570  * if the driver identifier is invalid.
571  */
572 device_t
573 crypto_find_device_byhid(int hid)
574 {
575         struct cryptocap *cap = crypto_checkdriver(hid);
576         return cap != NULL ? cap->cc_dev : NULL;
577 }
578
579 /*
580  * Return the device/driver capabilities.
581  */
582 int
583 crypto_getcaps(int hid)
584 {
585         struct cryptocap *cap = crypto_checkdriver(hid);
586         return cap != NULL ? cap->cc_flags : 0;
587 }
588
589 /*
590  * Register support for a key-related algorithm.  This routine
591  * is called once for each algorithm supported a driver.
592  */
593 int
594 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
595 {
596         struct cryptocap *cap;
597         int err;
598
599         CRYPTO_DRIVER_LOCK();
600
601         cap = crypto_checkdriver(driverid);
602         if (cap != NULL &&
603             (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
604                 /*
605                  * XXX Do some performance testing to determine placing.
606                  * XXX We probably need an auxiliary data structure that
607                  * XXX describes relative performances.
608                  */
609
610                 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
611                 if (bootverbose)
612                         kprintf("crypto: %s registers key alg %u flags %u\n"
613                                 , device_get_nameunit(cap->cc_dev)
614                                 , kalg
615                                 , flags
616                         );
617
618                 err = 0;
619         } else
620                 err = EINVAL;
621
622         CRYPTO_DRIVER_UNLOCK();
623         return err;
624 }
625
626 /*
627  * Register support for a non-key-related algorithm.  This routine
628  * is called once for each such algorithm supported by a driver.
629  */
630 int
631 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
632                 u_int32_t flags)
633 {
634         struct cryptocap *cap;
635         int err;
636
637         CRYPTO_DRIVER_LOCK();
638
639         cap = crypto_checkdriver(driverid);
640         /* NB: algorithms are in the range [1..max] */
641         if (cap != NULL &&
642             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
643                 /*
644                  * XXX Do some performance testing to determine placing.
645                  * XXX We probably need an auxiliary data structure that
646                  * XXX describes relative performances.
647                  */
648
649                 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
650                 cap->cc_max_op_len[alg] = maxoplen;
651                 if (bootverbose)
652                         kprintf("crypto: %s registers alg %u flags %u maxoplen %u\n"
653                                 , device_get_nameunit(cap->cc_dev)
654                                 , alg
655                                 , flags
656                                 , maxoplen
657                         );
658                 cap->cc_sessions = 0;           /* Unmark */
659                 err = 0;
660         } else
661                 err = EINVAL;
662
663         CRYPTO_DRIVER_UNLOCK();
664         return err;
665 }
666
667 static void
668 driver_finis(struct cryptocap *cap)
669 {
670         u_int32_t ses, kops;
671
672         CRYPTO_DRIVER_ASSERT();
673
674         ses = cap->cc_sessions;
675         kops = cap->cc_koperations;
676         bzero(cap, sizeof(*cap));
677         if (ses != 0 || kops != 0) {
678                 /*
679                  * If there are pending sessions,
680                  * just mark as invalid.
681                  */
682                 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
683                 cap->cc_sessions = ses;
684                 cap->cc_koperations = kops;
685         }
686 }
687
688 /*
689  * Unregister a crypto driver. If there are pending sessions using it,
690  * leave enough information around so that subsequent calls using those
691  * sessions will correctly detect the driver has been unregistered and
692  * reroute requests.
693  */
694 int
695 crypto_unregister(u_int32_t driverid, int alg)
696 {
697         struct cryptocap *cap;
698         int i, err;
699
700         CRYPTO_DRIVER_LOCK();
701         cap = crypto_checkdriver(driverid);
702         if (cap != NULL &&
703             (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
704             cap->cc_alg[alg] != 0) {
705                 cap->cc_alg[alg] = 0;
706                 cap->cc_max_op_len[alg] = 0;
707
708                 /* Was this the last algorithm ? */
709                 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++) {
710                         if (cap->cc_alg[i] != 0)
711                                 break;
712                 }
713
714                 if (i == CRYPTO_ALGORITHM_MAX + 1)
715                         driver_finis(cap);
716                 err = 0;
717         } else {
718                 err = EINVAL;
719         }
720         CRYPTO_DRIVER_UNLOCK();
721
722         return err;
723 }
724
725 /*
726  * Unregister all algorithms associated with a crypto driver.
727  * If there are pending sessions using it, leave enough information
728  * around so that subsequent calls using those sessions will
729  * correctly detect the driver has been unregistered and reroute
730  * requests.
731  */
732 int
733 crypto_unregister_all(u_int32_t driverid)
734 {
735         struct cryptocap *cap;
736         int err;
737
738         CRYPTO_DRIVER_LOCK();
739         cap = crypto_checkdriver(driverid);
740         if (cap != NULL) {
741                 driver_finis(cap);
742                 err = 0;
743         } else {
744                 err = EINVAL;
745         }
746         CRYPTO_DRIVER_UNLOCK();
747
748         return err;
749 }
750
751 /*
752  * Clear blockage on a driver.  The what parameter indicates whether
753  * the driver is now ready for cryptop's and/or cryptokop's.
754  */
755 int
756 crypto_unblock(u_int32_t driverid, int what)
757 {
758         crypto_tdinfo_t tdinfo;
759         struct cryptocap *cap;
760         int err;
761         int n;
762
763         CRYPTO_DRIVER_LOCK();
764         cap = crypto_checkdriver(driverid);
765         if (cap != NULL) {
766                 if (what & CRYPTO_SYMQ)
767                         cap->cc_qblocked = 0;
768                 if (what & CRYPTO_ASYMQ)
769                         cap->cc_kqblocked = 0;
770                 for (n = 0; n < ncpus; ++n) {
771                         tdinfo = &tdinfo_array[n];
772                         CRYPTO_Q_LOCK(tdinfo);
773                         if (tdinfo->crp_sleep)
774                                 wakeup_one(&tdinfo->crp_q);
775                         CRYPTO_Q_UNLOCK(tdinfo);
776                 }
777                 err = 0;
778         } else {
779                 err = EINVAL;
780         }
781         CRYPTO_DRIVER_UNLOCK();
782
783         return err;
784 }
785
786 static volatile int dispatch_rover;
787
788 /*
789  * Add a crypto request to a queue, to be processed by the kernel thread.
790  */
791 int
792 crypto_dispatch(struct cryptop *crp)
793 {
794         crypto_tdinfo_t tdinfo;
795         struct cryptocap *cap;
796         u_int32_t hid;
797         int result;
798         int n;
799
800         cryptostats.cs_ops++;
801
802 #ifdef CRYPTO_TIMING
803         if (crypto_timing)
804                 nanouptime(&crp->crp_tstamp);
805 #endif
806
807         hid = CRYPTO_SESID2HID(crp->crp_sid);
808
809         /*
810          * Dispatch the crypto op directly to the driver if the caller
811          * marked the request to be processed immediately or this is
812          * a synchronous callback chain occuring from within a crypto
813          * processing thread.
814          *
815          * Fall through to queueing the driver is blocked.
816          */
817         if ((crp->crp_flags & CRYPTO_F_BATCH) == 0 ||
818             curthread->td_type == TD_TYPE_CRYPTO) {
819                 cap = crypto_checkdriver(hid);
820                 /* Driver cannot disappeared when there is an active session. */
821                 KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
822                 if (!cap->cc_qblocked) {
823                         result = crypto_invoke(cap, crp, 0);
824                         if (result != ERESTART)
825                                 return (result);
826                         /*
827                          * The driver ran out of resources, put the request on
828                          * the queue.
829                          */
830                 }
831         }
832
833         /*
834          * Dispatch to a cpu for action if possible.  Dispatch to a different
835          * cpu than the current cpu.
836          */
837         if (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SMP) {
838                 n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
839                 if (crypto_altdispatch && mycpu->gd_cpuid == n)
840                         ++n;
841                 n = n % ncpus;
842         } else {
843                 n = 0;
844         }
845         tdinfo = &tdinfo_array[n];
846
847         CRYPTO_Q_LOCK(tdinfo);
848         TAILQ_INSERT_TAIL(&tdinfo->crp_q, crp, crp_next);
849         if (tdinfo->crp_sleep)
850                 wakeup_one(&tdinfo->crp_q);
851         CRYPTO_Q_UNLOCK(tdinfo);
852         return 0;
853 }
854
855 /*
856  * Add an asymetric crypto request to a queue,
857  * to be processed by the kernel thread.
858  */
859 int
860 crypto_kdispatch(struct cryptkop *krp)
861 {
862         crypto_tdinfo_t tdinfo;
863         int error;
864         int n;
865
866         cryptostats.cs_kops++;
867
868 #if 0
869         /* not sure how to test F_SMP here */
870         n = atomic_fetchadd_int(&dispatch_rover, 1) & 255;
871         n = n % ncpus;
872 #endif
873         n = 0;
874         tdinfo = &tdinfo_array[n];
875
876         error = crypto_kinvoke(krp, krp->krp_crid);
877
878         if (error == ERESTART) {
879                 CRYPTO_Q_LOCK(tdinfo);
880                 TAILQ_INSERT_TAIL(&tdinfo->crp_kq, krp, krp_next);
881                 if (tdinfo->crp_sleep)
882                         wakeup_one(&tdinfo->crp_q);
883                 CRYPTO_Q_UNLOCK(tdinfo);
884                 error = 0;
885         }
886         return error;
887 }
888
889 /*
890  * Verify a driver is suitable for the specified operation.
891  */
892 static __inline int
893 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
894 {
895         return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
896 }
897
898 /*
899  * Select a driver for an asym operation.  The driver must
900  * support the necessary algorithm.  The caller can constrain
901  * which device is selected with the flags parameter.  The
902  * algorithm we use here is pretty stupid; just use the first
903  * driver that supports the algorithms we need. If there are
904  * multiple suitable drivers we choose the driver with the
905  * fewest active operations.  We prefer hardware-backed
906  * drivers to software ones when either may be used.
907  */
908 static struct cryptocap *
909 crypto_select_kdriver(const struct cryptkop *krp, int flags)
910 {
911         struct cryptocap *cap, *best;
912         int match, hid;
913
914         CRYPTO_DRIVER_ASSERT();
915
916         /*
917          * Look first for hardware crypto devices if permitted.
918          */
919         if (flags & CRYPTOCAP_F_HARDWARE)
920                 match = CRYPTOCAP_F_HARDWARE;
921         else
922                 match = CRYPTOCAP_F_SOFTWARE;
923         best = NULL;
924 again:
925         for (hid = 0; hid < crypto_drivers_num; hid++) {
926                 cap = &crypto_drivers[hid];
927                 /*
928                  * If it's not initialized, is in the process of
929                  * going away, or is not appropriate (hardware
930                  * or software based on match), then skip.
931                  */
932                 if (cap->cc_dev == NULL ||
933                     (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
934                     (cap->cc_flags & match) == 0)
935                         continue;
936
937                 /* verify all the algorithms are supported. */
938                 if (kdriver_suitable(cap, krp)) {
939                         if (best == NULL ||
940                             cap->cc_koperations < best->cc_koperations)
941                                 best = cap;
942                 }
943         }
944         if (best != NULL)
945                 return best;
946         if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
947                 /* sort of an Algol 68-style for loop */
948                 match = CRYPTOCAP_F_SOFTWARE;
949                 goto again;
950         }
951         return best;
952 }
953
954 /*
955  * Dispatch an assymetric crypto request.
956  */
957 static int
958 crypto_kinvoke(struct cryptkop *krp, int crid)
959 {
960         struct cryptocap *cap = NULL;
961         int error;
962
963         KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
964         KASSERT(krp->krp_callback != NULL,
965             ("%s: krp->crp_callback == NULL", __func__));
966
967         CRYPTO_DRIVER_LOCK();
968         if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
969                 cap = crypto_checkdriver(crid);
970                 if (cap != NULL) {
971                         /*
972                          * Driver present, it must support the necessary
973                          * algorithm and, if s/w drivers are excluded,
974                          * it must be registered as hardware-backed.
975                          */
976                         if (!kdriver_suitable(cap, krp) ||
977                             (!crypto_devallowsoft &&
978                              (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
979                                 cap = NULL;
980                 }
981         } else {
982                 /*
983                  * No requested driver; select based on crid flags.
984                  */
985                 if (!crypto_devallowsoft)       /* NB: disallow s/w drivers */
986                         crid &= ~CRYPTOCAP_F_SOFTWARE;
987                 cap = crypto_select_kdriver(krp, crid);
988         }
989         if (cap != NULL && !cap->cc_kqblocked) {
990                 krp->krp_hid = cap - crypto_drivers;
991                 cap->cc_koperations++;
992                 CRYPTO_DRIVER_UNLOCK();
993                 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
994                 CRYPTO_DRIVER_LOCK();
995                 if (error == ERESTART) {
996                         cap->cc_koperations--;
997                         CRYPTO_DRIVER_UNLOCK();
998                         return (error);
999                 }
1000         } else {
1001                 /*
1002                  * NB: cap is !NULL if device is blocked; in
1003                  *     that case return ERESTART so the operation
1004                  *     is resubmitted if possible.
1005                  */
1006                 error = (cap == NULL) ? ENODEV : ERESTART;
1007         }
1008         CRYPTO_DRIVER_UNLOCK();
1009
1010         if (error) {
1011                 krp->krp_status = error;
1012                 crypto_kdone(krp);
1013         }
1014         return 0;
1015 }
1016
1017 #ifdef CRYPTO_TIMING
1018 static void
1019 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1020 {
1021         struct timespec now, t;
1022
1023         nanouptime(&now);
1024         t.tv_sec = now.tv_sec - tv->tv_sec;
1025         t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1026         if (t.tv_nsec < 0) {
1027                 t.tv_sec--;
1028                 t.tv_nsec += 1000000000;
1029         }
1030         timespecadd(&ts->acc, &t);
1031         if (timespeccmp(&t, &ts->min, <))
1032                 ts->min = t;
1033         if (timespeccmp(&t, &ts->max, >))
1034                 ts->max = t;
1035         ts->count++;
1036
1037         *tv = now;
1038 }
1039 #endif
1040
1041 /*
1042  * Dispatch a crypto request to the appropriate crypto devices.
1043  */
1044 static int
1045 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1046 {
1047
1048         KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1049         KASSERT(crp->crp_callback != NULL,
1050             ("%s: crp->crp_callback == NULL", __func__));
1051         KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1052
1053 #ifdef CRYPTO_TIMING
1054         if (crypto_timing)
1055                 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1056 #endif
1057         if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1058                 struct cryptodesc *crd;
1059                 u_int64_t nid;
1060
1061                 /*
1062                  * Driver has unregistered; migrate the session and return
1063                  * an error to the caller so they'll resubmit the op.
1064                  *
1065                  * XXX: What if there are more already queued requests for this
1066                  *      session?
1067                  */
1068                 crypto_freesession(crp->crp_sid);
1069
1070                 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1071                         crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1072
1073                 /* XXX propagate flags from initial session? */
1074                 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1075                     CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1076                         crp->crp_sid = nid;
1077
1078                 crp->crp_etype = EAGAIN;
1079                 crypto_done(crp);
1080                 return 0;
1081         } else {
1082                 /*
1083                  * Invoke the driver to process the request.
1084                  */
1085                 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1086         }
1087 }
1088
1089 /*
1090  * Release a set of crypto descriptors.
1091  */
1092 void
1093 crypto_freereq(struct cryptop *crp)
1094 {
1095         struct cryptodesc *crd;
1096 #ifdef DIAGNOSTIC
1097         crypto_tdinfo_t tdinfo;
1098         struct cryptop *crp2;
1099         int n;
1100 #endif
1101
1102         if (crp == NULL)
1103                 return;
1104
1105 #ifdef DIAGNOSTIC
1106         for (n = 0; n < ncpus; ++n) {
1107                 tdinfo = &tdinfo_array[n];
1108
1109                 CRYPTO_Q_LOCK(tdinfo);
1110                 TAILQ_FOREACH(crp2, &tdinfo->crp_q, crp_next) {
1111                         KASSERT(crp2 != crp,
1112                             ("Freeing cryptop from the crypto queue (%p).",
1113                             crp));
1114                 }
1115                 CRYPTO_Q_UNLOCK(tdinfo);
1116         }
1117         CRYPTO_RETQ_LOCK();
1118         TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1119                 KASSERT(crp2 != crp,
1120                     ("Freeing cryptop from the return queue (%p).",
1121                     crp));
1122         }
1123         CRYPTO_RETQ_UNLOCK();
1124 #endif
1125
1126         while ((crd = crp->crp_desc) != NULL) {
1127                 crp->crp_desc = crd->crd_next;
1128                 objcache_put(cryptodesc_oc, crd);
1129         }
1130         objcache_put(cryptop_oc, crp);
1131 }
1132
1133 /*
1134  * Acquire a set of crypto descriptors.
1135  */
1136 struct cryptop *
1137 crypto_getreq(int num)
1138 {
1139         struct cryptodesc *crd;
1140         struct cryptop *crp;
1141
1142         crp = objcache_get(cryptop_oc, M_WAITOK);
1143         if (crp != NULL) {
1144                 bzero(crp, sizeof (*crp));
1145                 while (num--) {
1146                         crd = objcache_get(cryptodesc_oc, M_WAITOK);
1147                         if (crd == NULL) {
1148                                 crypto_freereq(crp);
1149                                 return NULL;
1150                         }
1151                         bzero(crd, sizeof (*crd));
1152
1153                         crd->crd_next = crp->crp_desc;
1154                         crp->crp_desc = crd;
1155                 }
1156         }
1157         return crp;
1158 }
1159
1160 /*
1161  * Invoke the callback on behalf of the driver.
1162  */
1163 void
1164 crypto_done(struct cryptop *crp)
1165 {
1166         KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1167                 ("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1168         crp->crp_flags |= CRYPTO_F_DONE;
1169         if (crp->crp_etype != 0)
1170                 cryptostats.cs_errs++;
1171 #ifdef CRYPTO_TIMING
1172         if (crypto_timing)
1173                 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1174 #endif
1175         /*
1176          * CBIMM means unconditionally do the callback immediately;
1177          * CBIFSYNC means do the callback immediately only if the
1178          * operation was done synchronously.  Both are used to avoid
1179          * doing extraneous context switches; the latter is mostly
1180          * used with the software crypto driver.
1181          */
1182         if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1183             ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1184              (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1185                 /*
1186                  * Do the callback directly.  This is ok when the
1187                  * callback routine does very little (e.g. the
1188                  * /dev/crypto callback method just does a wakeup).
1189                  */
1190 #ifdef CRYPTO_TIMING
1191                 if (crypto_timing) {
1192                         /*
1193                          * NB: We must copy the timestamp before
1194                          * doing the callback as the cryptop is
1195                          * likely to be reclaimed.
1196                          */
1197                         struct timespec t = crp->crp_tstamp;
1198                         crypto_tstat(&cryptostats.cs_cb, &t);
1199                         crp->crp_callback(crp);
1200                         crypto_tstat(&cryptostats.cs_finis, &t);
1201                 } else
1202 #endif
1203                         crp->crp_callback(crp);
1204         } else {
1205                 /*
1206                  * Normal case; queue the callback for the thread.
1207                  */
1208                 CRYPTO_RETQ_LOCK();
1209                 if (CRYPTO_RETQ_EMPTY())
1210                         wakeup_one(&crp_ret_q); /* shared wait channel */
1211                 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1212                 CRYPTO_RETQ_UNLOCK();
1213         }
1214 }
1215
1216 /*
1217  * Invoke the callback on behalf of the driver.
1218  */
1219 void
1220 crypto_kdone(struct cryptkop *krp)
1221 {
1222         struct cryptocap *cap;
1223
1224         if (krp->krp_status != 0)
1225                 cryptostats.cs_kerrs++;
1226         CRYPTO_DRIVER_LOCK();
1227         /* XXX: What if driver is loaded in the meantime? */
1228         if (krp->krp_hid < crypto_drivers_num) {
1229                 cap = &crypto_drivers[krp->krp_hid];
1230                 cap->cc_koperations--;
1231                 KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1232                 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1233                         crypto_remove(cap);
1234         }
1235         CRYPTO_DRIVER_UNLOCK();
1236         CRYPTO_RETQ_LOCK();
1237         if (CRYPTO_RETQ_EMPTY())
1238                 wakeup_one(&crp_ret_q);         /* shared wait channel */
1239         TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1240         CRYPTO_RETQ_UNLOCK();
1241 }
1242
1243 int
1244 crypto_getfeat(int *featp)
1245 {
1246         int hid, kalg, feat = 0;
1247
1248         CRYPTO_DRIVER_LOCK();
1249         for (hid = 0; hid < crypto_drivers_num; hid++) {
1250                 const struct cryptocap *cap = &crypto_drivers[hid];
1251
1252                 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1253                     !crypto_devallowsoft) {
1254                         continue;
1255                 }
1256                 for (kalg = 0; kalg <= CRK_ALGORITHM_MAX; kalg++)
1257                         if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1258                                 feat |=  1 << kalg;
1259         }
1260         CRYPTO_DRIVER_UNLOCK();
1261         *featp = feat;
1262         return (0);
1263 }
1264
1265 /*
1266  * Terminate a thread at module unload.  The process that
1267  * initiated this is waiting for us to signal that we're gone;
1268  * wake it up and exit.  We use the driver table lock to insure
1269  * we don't do the wakeup before they're waiting.  There is no
1270  * race here because the waiter sleeps on the proc lock for the
1271  * thread so it gets notified at the right time because of an
1272  * extra wakeup that's done in exit1().
1273  */
1274 static void
1275 crypto_finis(void *chan)
1276 {
1277         CRYPTO_DRIVER_LOCK();
1278         wakeup_one(chan);
1279         CRYPTO_DRIVER_UNLOCK();
1280         kthread_exit();
1281 }
1282
1283 /*
1284  * Crypto thread, dispatches crypto requests.
1285  *
1286  * MPSAFE
1287  */
1288 static void
1289 crypto_proc(void *arg)
1290 {
1291         crypto_tdinfo_t tdinfo = arg;
1292         struct cryptop *crp, *submit;
1293         struct cryptkop *krp;
1294         struct cryptocap *cap;
1295         u_int32_t hid;
1296         int result, hint;
1297
1298         CRYPTO_Q_LOCK(tdinfo);
1299
1300         curthread->td_type = TD_TYPE_CRYPTO;
1301
1302         for (;;) {
1303                 /*
1304                  * Find the first element in the queue that can be
1305                  * processed and look-ahead to see if multiple ops
1306                  * are ready for the same driver.
1307                  */
1308                 submit = NULL;
1309                 hint = 0;
1310                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1311                         hid = CRYPTO_SESID2HID(crp->crp_sid);
1312                         cap = crypto_checkdriver(hid);
1313                         /*
1314                          * Driver cannot disappeared when there is an active
1315                          * session.
1316                          */
1317                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1318                             __func__, __LINE__));
1319                         if (cap == NULL || cap->cc_dev == NULL) {
1320                                 /* Op needs to be migrated, process it. */
1321                                 if (submit == NULL)
1322                                         submit = crp;
1323                                 break;
1324                         }
1325                         if (!cap->cc_qblocked) {
1326                                 if (submit != NULL) {
1327                                         /*
1328                                          * We stop on finding another op,
1329                                          * regardless whether its for the same
1330                                          * driver or not.  We could keep
1331                                          * searching the queue but it might be
1332                                          * better to just use a per-driver
1333                                          * queue instead.
1334                                          */
1335                                         if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1336                                                 hint = CRYPTO_HINT_MORE;
1337                                         break;
1338                                 } else {
1339                                         submit = crp;
1340                                         if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1341                                                 break;
1342                                         /* keep scanning for more are q'd */
1343                                 }
1344                         }
1345                 }
1346                 if (submit != NULL) {
1347                         TAILQ_REMOVE(&tdinfo->crp_q, submit, crp_next);
1348                         hid = CRYPTO_SESID2HID(submit->crp_sid);
1349                         cap = crypto_checkdriver(hid);
1350                         KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1351                             __func__, __LINE__));
1352
1353                         CRYPTO_Q_UNLOCK(tdinfo);
1354                         result = crypto_invoke(cap, submit, hint);
1355                         CRYPTO_Q_LOCK(tdinfo);
1356
1357                         if (result == ERESTART) {
1358                                 /*
1359                                  * The driver ran out of resources, mark the
1360                                  * driver ``blocked'' for cryptop's and put
1361                                  * the request back in the queue.  It would
1362                                  * best to put the request back where we got
1363                                  * it but that's hard so for now we put it
1364                                  * at the front.  This should be ok; putting
1365                                  * it at the end does not work.
1366                                  */
1367                                 /* XXX validate sid again? */
1368                                 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1369                                 TAILQ_INSERT_HEAD(&tdinfo->crp_q,
1370                                                   submit, crp_next);
1371                                 cryptostats.cs_blocks++;
1372                         }
1373                 }
1374
1375                 /* As above, but for key ops */
1376                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1377                         cap = crypto_checkdriver(krp->krp_hid);
1378                         if (cap == NULL || cap->cc_dev == NULL) {
1379                                 /*
1380                                  * Operation needs to be migrated, invalidate
1381                                  * the assigned device so it will reselect a
1382                                  * new one below.  Propagate the original
1383                                  * crid selection flags if supplied.
1384                                  */
1385                                 krp->krp_hid = krp->krp_crid &
1386                                     (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1387                                 if (krp->krp_hid == 0)
1388                                         krp->krp_hid =
1389                                     CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1390                                 break;
1391                         }
1392                         if (!cap->cc_kqblocked)
1393                                 break;
1394                 }
1395                 if (krp != NULL) {
1396                         TAILQ_REMOVE(&tdinfo->crp_kq, krp, krp_next);
1397
1398                         CRYPTO_Q_UNLOCK(tdinfo);
1399                         result = crypto_kinvoke(krp, krp->krp_hid);
1400                         CRYPTO_Q_LOCK(tdinfo);
1401
1402                         if (result == ERESTART) {
1403                                 /*
1404                                  * The driver ran out of resources, mark the
1405                                  * driver ``blocked'' for cryptkop's and put
1406                                  * the request back in the queue.  It would
1407                                  * best to put the request back where we got
1408                                  * it but that's hard so for now we put it
1409                                  * at the front.  This should be ok; putting
1410                                  * it at the end does not work.
1411                                  */
1412                                 /* XXX validate sid again? */
1413                                 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1414                                 TAILQ_INSERT_HEAD(&tdinfo->crp_kq,
1415                                                   krp, krp_next);
1416                                 cryptostats.cs_kblocks++;
1417                         }
1418                 }
1419
1420                 if (submit == NULL && krp == NULL) {
1421                         /*
1422                          * Nothing more to be processed.  Sleep until we're
1423                          * woken because there are more ops to process.
1424                          * This happens either by submission or by a driver
1425                          * becoming unblocked and notifying us through
1426                          * crypto_unblock.  Note that when we wakeup we
1427                          * start processing each queue again from the
1428                          * front. It's not clear that it's important to
1429                          * preserve this ordering since ops may finish
1430                          * out of order if dispatched to different devices
1431                          * and some become blocked while others do not.
1432                          */
1433                         tdinfo->crp_sleep = 1;
1434                         lksleep (&tdinfo->crp_q, &tdinfo->crp_lock,
1435                                  0, "crypto_wait", 0);
1436                         tdinfo->crp_sleep = 0;
1437                         if (tdinfo->crp_td == NULL)
1438                                 break;
1439                         cryptostats.cs_intrs++;
1440                 }
1441         }
1442         CRYPTO_Q_UNLOCK(tdinfo);
1443
1444         crypto_finis(&tdinfo->crp_q);
1445 }
1446
1447 /*
1448  * Crypto returns thread, does callbacks for processed crypto requests.
1449  * Callbacks are done here, rather than in the crypto drivers, because
1450  * callbacks typically are expensive and would slow interrupt handling.
1451  *
1452  * MPSAFE
1453  */
1454 static void
1455 crypto_ret_proc(void *dummy __unused)
1456 {
1457         struct cryptop *crpt;
1458         struct cryptkop *krpt;
1459
1460         CRYPTO_RETQ_LOCK();
1461         for (;;) {
1462                 /* Harvest return q's for completed ops */
1463                 crpt = TAILQ_FIRST(&crp_ret_q);
1464                 if (crpt != NULL)
1465                         TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1466
1467                 krpt = TAILQ_FIRST(&crp_ret_kq);
1468                 if (krpt != NULL)
1469                         TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1470
1471                 if (crpt != NULL || krpt != NULL) {
1472                         CRYPTO_RETQ_UNLOCK();
1473                         /*
1474                          * Run callbacks unlocked.
1475                          */
1476                         if (crpt != NULL) {
1477 #ifdef CRYPTO_TIMING
1478                                 if (crypto_timing) {
1479                                         /*
1480                                          * NB: We must copy the timestamp before
1481                                          * doing the callback as the cryptop is
1482                                          * likely to be reclaimed.
1483                                          */
1484                                         struct timespec t = crpt->crp_tstamp;
1485                                         crypto_tstat(&cryptostats.cs_cb, &t);
1486                                         crpt->crp_callback(crpt);
1487                                         crypto_tstat(&cryptostats.cs_finis, &t);
1488                                 } else
1489 #endif
1490                                         crpt->crp_callback(crpt);
1491                         }
1492                         if (krpt != NULL)
1493                                 krpt->krp_callback(krpt);
1494                         CRYPTO_RETQ_LOCK();
1495                 } else {
1496                         /*
1497                          * Nothing more to be processed.  Sleep until we're
1498                          * woken because there are more returns to process.
1499                          */
1500                         lksleep(&crp_ret_q, &crypto_ret_q_lock,
1501                                 0, "crypto_ret_wait", 0);
1502                         if (cryptoretthread == NULL)
1503                                 break;
1504                         cryptostats.cs_rets++;
1505                 }
1506         }
1507         CRYPTO_RETQ_UNLOCK();
1508
1509         crypto_finis(&crp_ret_q);
1510 }
1511
1512 #ifdef DDB
1513 static void
1514 db_show_drivers(void)
1515 {
1516         int hid;
1517
1518         db_printf("%12s %4s %4s %8s %2s %2s\n"
1519                 , "Device"
1520                 , "Ses"
1521                 , "Kops"
1522                 , "Flags"
1523                 , "QB"
1524                 , "KB"
1525         );
1526         for (hid = 0; hid < crypto_drivers_num; hid++) {
1527                 const struct cryptocap *cap = &crypto_drivers[hid];
1528                 if (cap->cc_dev == NULL)
1529                         continue;
1530                 db_printf("%-12s %4u %4u %08x %2u %2u\n"
1531                     , device_get_nameunit(cap->cc_dev)
1532                     , cap->cc_sessions
1533                     , cap->cc_koperations
1534                     , cap->cc_flags
1535                     , cap->cc_qblocked
1536                     , cap->cc_kqblocked
1537                 );
1538         }
1539 }
1540
1541 DB_SHOW_COMMAND(crypto, db_show_crypto)
1542 {
1543         crypto_tdinfo_t tdinfo;
1544         struct cryptop *crp;
1545         int n;
1546
1547         db_show_drivers();
1548         db_printf("\n");
1549
1550         db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1551             "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1552             "Desc", "Callback");
1553
1554         for (n = 0; n < ncpus; ++n) {
1555                 tdinfo = &tdinfo_array[n];
1556
1557                 TAILQ_FOREACH(crp, &tdinfo->crp_q, crp_next) {
1558                         db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1559                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1560                             , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1561                             , crp->crp_ilen, crp->crp_olen
1562                             , crp->crp_etype
1563                             , crp->crp_flags
1564                             , crp->crp_desc
1565                             , crp->crp_callback
1566                         );
1567                 }
1568         }
1569         if (!TAILQ_EMPTY(&crp_ret_q)) {
1570                 db_printf("\n%4s %4s %4s %8s\n",
1571                     "HID", "Etype", "Flags", "Callback");
1572                 TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1573                         db_printf("%4u %4u %04x %8p\n"
1574                             , (int) CRYPTO_SESID2HID(crp->crp_sid)
1575                             , crp->crp_etype
1576                             , crp->crp_flags
1577                             , crp->crp_callback
1578                         );
1579                 }
1580         }
1581 }
1582
1583 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1584 {
1585         crypto_tdinfo_t tdinfo;
1586         struct cryptkop *krp;
1587         int n;
1588
1589         db_show_drivers();
1590         db_printf("\n");
1591
1592         db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1593             "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1594
1595         for (n = 0; n < ncpus; ++n) {
1596                 tdinfo = &tdinfo_array[n];
1597
1598                 TAILQ_FOREACH(krp, &tdinfo->crp_kq, krp_next) {
1599                         db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1600                             , krp->krp_op
1601                             , krp->krp_status
1602                             , krp->krp_iparams, krp->krp_oparams
1603                             , krp->krp_crid, krp->krp_hid
1604                             , krp->krp_callback
1605                         );
1606                 }
1607         }
1608         if (!TAILQ_EMPTY(&crp_ret_q)) {
1609                 db_printf("%4s %5s %8s %4s %8s\n",
1610                     "Op", "Status", "CRID", "HID", "Callback");
1611                 TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1612                         db_printf("%4u %5u %08x %4u %8p\n"
1613                             , krp->krp_op
1614                             , krp->krp_status
1615                             , krp->krp_crid, krp->krp_hid
1616                             , krp->krp_callback
1617                         );
1618                 }
1619         }
1620 }
1621 #endif
1622
1623 int crypto_modevent(module_t mod, int type, void *unused);
1624
1625 /*
1626  * Initialization code, both for static and dynamic loading.
1627  * Note this is not invoked with the usual MODULE_DECLARE
1628  * mechanism but instead is listed as a dependency by the
1629  * cryptosoft driver.  This guarantees proper ordering of
1630  * calls on module load/unload.
1631  */
1632 int
1633 crypto_modevent(module_t mod, int type, void *unused)
1634 {
1635         int error = EINVAL;
1636
1637         switch (type) {
1638         case MOD_LOAD:
1639                 error = crypto_init();
1640                 if (error == 0 && bootverbose)
1641                         kprintf("crypto: <crypto core>\n");
1642                 break;
1643         case MOD_UNLOAD:
1644                 /*XXX disallow if active sessions */
1645                 error = 0;
1646                 crypto_destroy();
1647                 return 0;
1648         }
1649         return error;
1650 }
1651 MODULE_VERSION(crypto, 1);
1652 MODULE_DEPEND(crypto, zlib, 1, 1, 1);