Update all my personal copyrights to the Dragonfly Standard Copyright.
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.65 2004/07/16 05:51:10 dillon Exp $
35  */
36
37 /*
38  * Each cpu in a system has its own self-contained light weight kernel
39  * thread scheduler, which means that generally speaking we only need
40  * to use a critical section to avoid problems.  Foreign thread 
41  * scheduling is queued via (async) IPIs.
42  */
43
44 #ifdef _KERNEL
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/rtprio.h>
51 #include <sys/queue.h>
52 #include <sys/thread2.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 #include <machine/cpu.h>
56 #include <sys/lock.h>
57 #include <sys/caps.h>
58
59 #include <vm/vm.h>
60 #include <vm/vm_param.h>
61 #include <vm/vm_kern.h>
62 #include <vm/vm_object.h>
63 #include <vm/vm_page.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_pager.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_zone.h>
68
69 #include <machine/stdarg.h>
70 #include <machine/ipl.h>
71 #include <machine/smp.h>
72
73 #define THREAD_STACK    (UPAGES * PAGE_SIZE)
74
75 #else
76
77 #include <sys/stdint.h>
78 #include <libcaps/thread.h>
79 #include <sys/thread.h>
80 #include <sys/msgport.h>
81 #include <sys/errno.h>
82 #include <libcaps/globaldata.h>
83 #include <machine/cpufunc.h>
84 #include <sys/thread2.h>
85 #include <sys/msgport2.h>
86 #include <stdio.h>
87 #include <stdlib.h>
88 #include <string.h>
89 #include <machine/lock.h>
90
91 #endif
92
93 static int untimely_switch = 0;
94 #ifdef  INVARIANTS
95 static int panic_on_cscount = 0;
96 #endif
97 static __int64_t switch_count = 0;
98 static __int64_t preempt_hit = 0;
99 static __int64_t preempt_miss = 0;
100 static __int64_t preempt_weird = 0;
101
102 #ifdef _KERNEL
103
104 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
105 #ifdef  INVARIANTS
106 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
107 #endif
108 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
109 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
110 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
112
113 #endif
114
115 /*
116  * These helper procedures handle the runq, they can only be called from
117  * within a critical section.
118  *
119  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
120  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
121  * instead of 'mycpu' when referencing the globaldata structure.   Once
122  * SMP live enqueuing and dequeueing only occurs on the current cpu.
123  */
124 static __inline
125 void
126 _lwkt_dequeue(thread_t td)
127 {
128     if (td->td_flags & TDF_RUNQ) {
129         int nq = td->td_pri & TDPRI_MASK;
130         struct globaldata *gd = td->td_gd;
131
132         td->td_flags &= ~TDF_RUNQ;
133         TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
134         /* runqmask is passively cleaned up by the switcher */
135     }
136 }
137
138 static __inline
139 void
140 _lwkt_enqueue(thread_t td)
141 {
142     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING)) == 0) {
143         int nq = td->td_pri & TDPRI_MASK;
144         struct globaldata *gd = td->td_gd;
145
146         td->td_flags |= TDF_RUNQ;
147         TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
148         gd->gd_runqmask |= 1 << nq;
149     }
150 }
151
152 /*
153  * Schedule a thread to run.  As the current thread we can always safely
154  * schedule ourselves, and a shortcut procedure is provided for that
155  * function.
156  *
157  * (non-blocking, self contained on a per cpu basis)
158  */
159 void
160 lwkt_schedule_self(thread_t td)
161 {
162     crit_enter_quick(td);
163     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
164     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
165     _lwkt_enqueue(td);
166 #ifdef _KERNEL
167     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
168         panic("SCHED SELF PANIC");
169 #endif
170     crit_exit_quick(td);
171 }
172
173 /*
174  * Deschedule a thread.
175  *
176  * (non-blocking, self contained on a per cpu basis)
177  */
178 void
179 lwkt_deschedule_self(thread_t td)
180 {
181     crit_enter_quick(td);
182     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
183     _lwkt_dequeue(td);
184     crit_exit_quick(td);
185 }
186
187 #ifdef _KERNEL
188
189 /*
190  * LWKTs operate on a per-cpu basis
191  *
192  * WARNING!  Called from early boot, 'mycpu' may not work yet.
193  */
194 void
195 lwkt_gdinit(struct globaldata *gd)
196 {
197     int i;
198
199     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
200         TAILQ_INIT(&gd->gd_tdrunq[i]);
201     gd->gd_runqmask = 0;
202     TAILQ_INIT(&gd->gd_tdallq);
203 }
204
205 #endif /* _KERNEL */
206
207 /*
208  * Initialize a thread wait structure prior to first use.
209  *
210  * NOTE!  called from low level boot code, we cannot do anything fancy!
211  */
212 void
213 lwkt_wait_init(lwkt_wait_t w)
214 {
215     lwkt_token_init(&w->wa_token);
216     TAILQ_INIT(&w->wa_waitq);
217     w->wa_gen = 0;
218     w->wa_count = 0;
219 }
220
221 /*
222  * Create a new thread.  The thread must be associated with a process context
223  * or LWKT start address before it can be scheduled.  If the target cpu is
224  * -1 the thread will be created on the current cpu.
225  *
226  * If you intend to create a thread without a process context this function
227  * does everything except load the startup and switcher function.
228  */
229 thread_t
230 lwkt_alloc_thread(struct thread *td, int cpu)
231 {
232     void *stack;
233     int flags = 0;
234     globaldata_t gd = mycpu;
235
236     if (td == NULL) {
237         crit_enter_gd(gd);
238         if (gd->gd_tdfreecount > 0) {
239             --gd->gd_tdfreecount;
240             td = TAILQ_FIRST(&gd->gd_tdfreeq);
241             KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
242                 ("lwkt_alloc_thread: unexpected NULL or corrupted td"));
243             TAILQ_REMOVE(&gd->gd_tdfreeq, td, td_threadq);
244             crit_exit_gd(gd);
245             stack = td->td_kstack;
246             flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
247         } else {
248             crit_exit_gd(gd);
249 #ifdef _KERNEL
250             td = zalloc(thread_zone);
251 #else
252             td = malloc(sizeof(struct thread));
253 #endif
254             td->td_kstack = NULL;
255             flags |= TDF_ALLOCATED_THREAD;
256         }
257     }
258     if ((stack = td->td_kstack) == NULL) {
259 #ifdef _KERNEL
260         stack = (void *)kmem_alloc(kernel_map, THREAD_STACK);
261 #else
262         stack = libcaps_alloc_stack(THREAD_STACK);
263 #endif
264         flags |= TDF_ALLOCATED_STACK;
265     }
266     if (cpu < 0)
267         lwkt_init_thread(td, stack, flags, mycpu);
268     else
269         lwkt_init_thread(td, stack, flags, globaldata_find(cpu));
270     return(td);
271 }
272
273 #ifdef _KERNEL
274
275 /*
276  * Initialize a preexisting thread structure.  This function is used by
277  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
278  *
279  * All threads start out in a critical section at a priority of
280  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
281  * appropriate.  This function may send an IPI message when the 
282  * requested cpu is not the current cpu and consequently gd_tdallq may
283  * not be initialized synchronously from the point of view of the originating
284  * cpu.
285  *
286  * NOTE! we have to be careful in regards to creating threads for other cpus
287  * if SMP has not yet been activated.
288  */
289 #ifdef SMP
290
291 static void
292 lwkt_init_thread_remote(void *arg)
293 {
294     thread_t td = arg;
295
296     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
297 }
298
299 #endif
300
301 void
302 lwkt_init_thread(thread_t td, void *stack, int flags, struct globaldata *gd)
303 {
304     globaldata_t mygd = mycpu;
305
306     bzero(td, sizeof(struct thread));
307     td->td_kstack = stack;
308     td->td_flags |= flags;
309     td->td_gd = gd;
310     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
311     lwkt_initport(&td->td_msgport, td);
312     pmap_init_thread(td);
313 #ifdef SMP
314     /*
315      * Normally initializing a thread for a remote cpu requires sending an
316      * IPI.  However, the idlethread is setup before the other cpus are
317      * activated so we have to treat it as a special case.  XXX manipulation
318      * of gd_tdallq requires the BGL.
319      */
320     if (gd == mygd || td == &gd->gd_idlethread) {
321         crit_enter_gd(mygd);
322         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
323         crit_exit_gd(mygd);
324     } else {
325         lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
326     }
327 #else
328     crit_enter_gd(mygd);
329     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
330     crit_exit_gd(mygd);
331 #endif
332 }
333
334 #endif /* _KERNEL */
335
336 void
337 lwkt_set_comm(thread_t td, const char *ctl, ...)
338 {
339     __va_list va;
340
341     __va_start(va, ctl);
342     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
343     __va_end(va);
344 }
345
346 void
347 lwkt_hold(thread_t td)
348 {
349     ++td->td_refs;
350 }
351
352 void
353 lwkt_rele(thread_t td)
354 {
355     KKASSERT(td->td_refs > 0);
356     --td->td_refs;
357 }
358
359 #ifdef _KERNEL
360
361 void
362 lwkt_wait_free(thread_t td)
363 {
364     while (td->td_refs)
365         tsleep(td, 0, "tdreap", hz);
366 }
367
368 #endif
369
370 void
371 lwkt_free_thread(thread_t td)
372 {
373     struct globaldata *gd = mycpu;
374
375     KASSERT((td->td_flags & TDF_RUNNING) == 0,
376         ("lwkt_free_thread: did not exit! %p", td));
377
378     crit_enter_gd(gd);
379     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
380     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
381         (td->td_flags & TDF_ALLOCATED_THREAD)
382     ) {
383         ++gd->gd_tdfreecount;
384         TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
385         crit_exit_gd(gd);
386     } else {
387         crit_exit_gd(gd);
388         if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
389 #ifdef _KERNEL
390             kmem_free(kernel_map, (vm_offset_t)td->td_kstack, THREAD_STACK);
391 #else
392             libcaps_free_stack(td->td_kstack, THREAD_STACK);
393 #endif
394             /* gd invalid */
395             td->td_kstack = NULL;
396         }
397         if (td->td_flags & TDF_ALLOCATED_THREAD) {
398 #ifdef _KERNEL
399             zfree(thread_zone, td);
400 #else
401             free(td);
402 #endif
403         }
404     }
405 }
406
407
408 /*
409  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
410  * switch to the idlethread.  Switching must occur within a critical
411  * section to avoid races with the scheduling queue.
412  *
413  * We always have full control over our cpu's run queue.  Other cpus
414  * that wish to manipulate our queue must use the cpu_*msg() calls to
415  * talk to our cpu, so a critical section is all that is needed and
416  * the result is very, very fast thread switching.
417  *
418  * The LWKT scheduler uses a fixed priority model and round-robins at
419  * each priority level.  User process scheduling is a totally
420  * different beast and LWKT priorities should not be confused with
421  * user process priorities.
422  *
423  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
424  * cleans it up.  Note that the td_switch() function cannot do anything that
425  * requires the MP lock since the MP lock will have already been setup for
426  * the target thread (not the current thread).  It's nice to have a scheduler
427  * that does not need the MP lock to work because it allows us to do some
428  * really cool high-performance MP lock optimizations.
429  */
430
431 void
432 lwkt_switch(void)
433 {
434     globaldata_t gd = mycpu;
435     thread_t td = gd->gd_curthread;
436     thread_t ntd;
437 #ifdef SMP
438     int mpheld;
439 #endif
440
441     /*
442      * Switching from within a 'fast' (non thread switched) interrupt is
443      * illegal.
444      */
445     if (gd->gd_intr_nesting_level && panicstr == NULL) {
446         panic("lwkt_switch: cannot switch from within a fast interrupt, yet");
447     }
448
449     /*
450      * Passive release (used to transition from user to kernel mode
451      * when we block or switch rather then when we enter the kernel).
452      * This function is NOT called if we are switching into a preemption
453      * or returning from a preemption.  Typically this causes us to lose
454      * our current process designation (if we have one) and become a true
455      * LWKT thread, and may also hand the current process designation to
456      * another process and schedule thread.
457      */
458     if (td->td_release)
459             td->td_release(td);
460
461     crit_enter_gd(gd);
462     ++switch_count;
463
464 #ifdef SMP
465     /*
466      * td_mpcount cannot be used to determine if we currently hold the
467      * MP lock because get_mplock() will increment it prior to attempting
468      * to get the lock, and switch out if it can't.  Our ownership of 
469      * the actual lock will remain stable while we are in a critical section
470      * (but, of course, another cpu may own or release the lock so the
471      * actual value of mp_lock is not stable).
472      */
473     mpheld = MP_LOCK_HELD();
474 #ifdef  INVARIANTS
475     if (td->td_cscount) {
476         printf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
477                 td);
478         if (panic_on_cscount)
479             panic("switching while mastering cpusync");
480     }
481 #endif
482 #endif
483     if ((ntd = td->td_preempted) != NULL) {
484         /*
485          * We had preempted another thread on this cpu, resume the preempted
486          * thread.  This occurs transparently, whether the preempted thread
487          * was scheduled or not (it may have been preempted after descheduling
488          * itself). 
489          *
490          * We have to setup the MP lock for the original thread after backing
491          * out the adjustment that was made to curthread when the original
492          * was preempted.
493          */
494         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
495 #ifdef SMP
496         if (ntd->td_mpcount && mpheld == 0) {
497             panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
498                td, ntd, td->td_mpcount, ntd->td_mpcount);
499         }
500         if (ntd->td_mpcount) {
501             td->td_mpcount -= ntd->td_mpcount;
502             KKASSERT(td->td_mpcount >= 0);
503         }
504 #endif
505         ntd->td_flags |= TDF_PREEMPT_DONE;
506         /* YYY release mp lock on switchback if original doesn't need it */
507     } else {
508         /*
509          * Priority queue / round-robin at each priority.  Note that user
510          * processes run at a fixed, low priority and the user process
511          * scheduler deals with interactions between user processes
512          * by scheduling and descheduling them from the LWKT queue as
513          * necessary.
514          *
515          * We have to adjust the MP lock for the target thread.  If we 
516          * need the MP lock and cannot obtain it we try to locate a
517          * thread that does not need the MP lock.  If we cannot, we spin
518          * instead of HLT.
519          *
520          * A similar issue exists for the tokens held by the target thread.
521          * If we cannot obtain ownership of the tokens we cannot immediately
522          * schedule the thread.
523          */
524
525         /*
526          * We are switching threads.  If there are any pending requests for
527          * tokens we can satisfy all of them here.
528          */
529 #ifdef SMP
530         if (gd->gd_tokreqbase)
531                 lwkt_drain_token_requests();
532 #endif
533
534 again:
535         if (gd->gd_runqmask) {
536             int nq = bsrl(gd->gd_runqmask);
537             if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
538                 gd->gd_runqmask &= ~(1 << nq);
539                 goto again;
540             }
541 #ifdef SMP
542             /*
543              * If the target needs the MP lock and we couldn't get it,
544              * or if the target is holding tokens and we could not 
545              * gain ownership of the tokens, continue looking for a
546              * thread to schedule and spin instead of HLT if we can't.
547              */
548             if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
549                 (ntd->td_toks && lwkt_chktokens(ntd) == 0)
550             ) {
551                 u_int32_t rqmask = gd->gd_runqmask;
552                 while (rqmask) {
553                     TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
554                         if (ntd->td_mpcount && !mpheld && !cpu_try_mplock())
555                             continue;
556                         mpheld = MP_LOCK_HELD();
557                         if (ntd->td_toks && !lwkt_chktokens(ntd))
558                             continue;
559                         break;
560                     }
561                     if (ntd)
562                         break;
563                     rqmask &= ~(1 << nq);
564                     nq = bsrl(rqmask);
565                 }
566                 if (ntd == NULL) {
567                     ntd = &gd->gd_idlethread;
568                     ntd->td_flags |= TDF_IDLE_NOHLT;
569                 } else {
570                     TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
571                     TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
572                 }
573             } else {
574                 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
575                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
576             }
577 #else
578             TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
579             TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
580 #endif
581         } else {
582             /*
583              * We have nothing to run but only let the idle loop halt
584              * the cpu if there are no pending interrupts.
585              */
586             ntd = &gd->gd_idlethread;
587             if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
588                 ntd->td_flags |= TDF_IDLE_NOHLT;
589         }
590     }
591     KASSERT(ntd->td_pri >= TDPRI_CRIT,
592         ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
593
594     /*
595      * Do the actual switch.  If the new target does not need the MP lock
596      * and we are holding it, release the MP lock.  If the new target requires
597      * the MP lock we have already acquired it for the target.
598      */
599 #ifdef SMP
600     if (ntd->td_mpcount == 0 ) {
601         if (MP_LOCK_HELD())
602             cpu_rel_mplock();
603     } else {
604         ASSERT_MP_LOCK_HELD();
605     }
606 #endif
607     if (td != ntd)
608         td->td_switch(ntd);
609     /* NOTE: current cpu may have changed after switch */
610     crit_exit_quick(td);
611 }
612
613 /*
614  * Request that the target thread preempt the current thread.  Preemption
615  * only works under a specific set of conditions:
616  *
617  *      - We are not preempting ourselves
618  *      - The target thread is owned by the current cpu
619  *      - We are not currently being preempted
620  *      - The target is not currently being preempted
621  *      - We are able to satisfy the target's MP lock requirements (if any).
622  *
623  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
624  * this is called via lwkt_schedule() through the td_preemptable callback.
625  * critpri is the managed critical priority that we should ignore in order
626  * to determine whether preemption is possible (aka usually just the crit
627  * priority of lwkt_schedule() itself).
628  *
629  * XXX at the moment we run the target thread in a critical section during
630  * the preemption in order to prevent the target from taking interrupts
631  * that *WE* can't.  Preemption is strictly limited to interrupt threads
632  * and interrupt-like threads, outside of a critical section, and the
633  * preempted source thread will be resumed the instant the target blocks
634  * whether or not the source is scheduled (i.e. preemption is supposed to
635  * be as transparent as possible).
636  *
637  * The target thread inherits our MP count (added to its own) for the
638  * duration of the preemption in order to preserve the atomicy of the
639  * MP lock during the preemption.  Therefore, any preempting targets must be
640  * careful in regards to MP assertions.  Note that the MP count may be
641  * out of sync with the physical mp_lock, but we do not have to preserve
642  * the original ownership of the lock if it was out of synch (that is, we
643  * can leave it synchronized on return).
644  */
645 void
646 lwkt_preempt(thread_t ntd, int critpri)
647 {
648     struct globaldata *gd = mycpu;
649     thread_t td;
650 #ifdef SMP
651     int mpheld;
652     int savecnt;
653 #endif
654
655     /*
656      * The caller has put us in a critical section.  We can only preempt
657      * if the caller of the caller was not in a critical section (basically
658      * a local interrupt), as determined by the 'critpri' parameter. 
659      *
660      * YYY The target thread must be in a critical section (else it must
661      * inherit our critical section?  I dunno yet).
662      *
663      * Any tokens held by the target may not be held by thread(s) being
664      * preempted.  We take the easy way out and do not preempt if
665      * the target is holding tokens.
666      *
667      * Set need_lwkt_resched() unconditionally for now YYY.
668      */
669     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
670
671     td = gd->gd_curthread;
672     need_lwkt_resched();
673     if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
674         ++preempt_miss;
675         return;
676     }
677     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
678         ++preempt_miss;
679         return;
680     }
681 #ifdef SMP
682     if (ntd->td_gd != gd) {
683         ++preempt_miss;
684         return;
685     }
686 #endif
687     /*
688      * Take the easy way out and do not preempt if the target is holding
689      * one or more tokens.  We could test whether the thread(s) being
690      * preempted interlock against the target thread's tokens and whether
691      * we can get all the target thread's tokens, but this situation 
692      * should not occur very often so its easier to simply not preempt.
693      */
694     if (ntd->td_toks != NULL) {
695         ++preempt_miss;
696         return;
697     }
698     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
699         ++preempt_weird;
700         return;
701     }
702     if (ntd->td_preempted) {
703         ++preempt_hit;
704         return;
705     }
706 #ifdef SMP
707     /*
708      * note: an interrupt might have occured just as we were transitioning
709      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
710      * (non-zero) but not actually synchronized with the actual state of the
711      * lock.  We can use it to imply an MP lock requirement for the
712      * preemption but we cannot use it to test whether we hold the MP lock
713      * or not.
714      */
715     savecnt = td->td_mpcount;
716     mpheld = MP_LOCK_HELD();
717     ntd->td_mpcount += td->td_mpcount;
718     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
719         ntd->td_mpcount -= td->td_mpcount;
720         ++preempt_miss;
721         return;
722     }
723 #endif
724
725     ++preempt_hit;
726     ntd->td_preempted = td;
727     td->td_flags |= TDF_PREEMPT_LOCK;
728     td->td_switch(ntd);
729     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
730 #ifdef SMP
731     KKASSERT(savecnt == td->td_mpcount);
732     mpheld = MP_LOCK_HELD();
733     if (mpheld && td->td_mpcount == 0)
734         cpu_rel_mplock();
735     else if (mpheld == 0 && td->td_mpcount)
736         panic("lwkt_preempt(): MP lock was not held through");
737 #endif
738     ntd->td_preempted = NULL;
739     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
740 }
741
742 /*
743  * Yield our thread while higher priority threads are pending.  This is
744  * typically called when we leave a critical section but it can be safely
745  * called while we are in a critical section.
746  *
747  * This function will not generally yield to equal priority threads but it
748  * can occur as a side effect.  Note that lwkt_switch() is called from
749  * inside the critical section to prevent its own crit_exit() from reentering
750  * lwkt_yield_quick().
751  *
752  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
753  * came along but was blocked and made pending.
754  *
755  * (self contained on a per cpu basis)
756  */
757 void
758 lwkt_yield_quick(void)
759 {
760     globaldata_t gd = mycpu;
761     thread_t td = gd->gd_curthread;
762
763     /*
764      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
765      * it with a non-zero cpl then we might not wind up calling splz after
766      * a task switch when the critical section is exited even though the
767      * new task could accept the interrupt.
768      *
769      * XXX from crit_exit() only called after last crit section is released.
770      * If called directly will run splz() even if in a critical section.
771      *
772      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
773      * except for this special case, we MUST call splz() here to handle any
774      * pending ints, particularly after we switch, or we might accidently
775      * halt the cpu with interrupts pending.
776      */
777     if (gd->gd_reqflags && td->td_nest_count < 2)
778         splz();
779
780     /*
781      * YYY enabling will cause wakeup() to task-switch, which really
782      * confused the old 4.x code.  This is a good way to simulate
783      * preemption and MP without actually doing preemption or MP, because a
784      * lot of code assumes that wakeup() does not block.
785      */
786     if (untimely_switch && td->td_nest_count == 0 &&
787         gd->gd_intr_nesting_level == 0
788     ) {
789         crit_enter_quick(td);
790         /*
791          * YYY temporary hacks until we disassociate the userland scheduler
792          * from the LWKT scheduler.
793          */
794         if (td->td_flags & TDF_RUNQ) {
795             lwkt_switch();              /* will not reenter yield function */
796         } else {
797             lwkt_schedule_self(td);     /* make sure we are scheduled */
798             lwkt_switch();              /* will not reenter yield function */
799             lwkt_deschedule_self(td);   /* make sure we are descheduled */
800         }
801         crit_exit_noyield(td);
802     }
803 }
804
805 /*
806  * This implements a normal yield which, unlike _quick, will yield to equal
807  * priority threads as well.  Note that gd_reqflags tests will be handled by
808  * the crit_exit() call in lwkt_switch().
809  *
810  * (self contained on a per cpu basis)
811  */
812 void
813 lwkt_yield(void)
814 {
815     lwkt_schedule_self(curthread);
816     lwkt_switch();
817 }
818
819 /*
820  * Generic schedule.  Possibly schedule threads belonging to other cpus and
821  * deal with threads that might be blocked on a wait queue.
822  *
823  * We have a little helper inline function which does additional work after
824  * the thread has been enqueued, including dealing with preemption and
825  * setting need_lwkt_resched() (which prevents the kernel from returning
826  * to userland until it has processed higher priority threads).
827  */
828 static __inline
829 void
830 _lwkt_schedule_post(thread_t ntd, int cpri)
831 {
832     if (ntd->td_preemptable) {
833         ntd->td_preemptable(ntd, cpri); /* YYY +token */
834     } else {
835         if ((ntd->td_flags & TDF_NORESCHED) == 0) {
836             if ((ntd->td_pri & TDPRI_MASK) >= TDPRI_KERN_USER)
837                 need_lwkt_resched();
838         }
839     }
840 }
841
842 void
843 lwkt_schedule(thread_t td)
844 {
845     globaldata_t mygd = mycpu;
846
847 #ifdef  INVARIANTS
848     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
849     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc 
850         && td->td_proc->p_stat == SSLEEP
851     ) {
852         printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
853             curthread,
854             curthread->td_proc ? curthread->td_proc->p_pid : -1,
855             curthread->td_proc ? curthread->td_proc->p_stat : -1,
856             td,
857             td->td_proc ? curthread->td_proc->p_pid : -1,
858             td->td_proc ? curthread->td_proc->p_stat : -1
859         );
860         panic("SCHED PANIC");
861     }
862 #endif
863     crit_enter_gd(mygd);
864     if (td == mygd->gd_curthread) {
865         _lwkt_enqueue(td);
866     } else {
867         lwkt_wait_t w;
868
869         /*
870          * If the thread is on a wait list we have to send our scheduling
871          * request to the owner of the wait structure.  Otherwise we send
872          * the scheduling request to the cpu owning the thread.  Races
873          * are ok, the target will forward the message as necessary (the
874          * message may chase the thread around before it finally gets
875          * acted upon).
876          *
877          * (remember, wait structures use stable storage)
878          *
879          * NOTE: tokens no longer enter a critical section, so we only need
880          * to account for the crit_enter() above when calling
881          * _lwkt_schedule_post().
882          */
883         if ((w = td->td_wait) != NULL) {
884             lwkt_tokref wref;
885
886             if (lwkt_trytoken(&wref, &w->wa_token)) {
887                 TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
888                 --w->wa_count;
889                 td->td_wait = NULL;
890 #ifdef SMP
891                 if (td->td_gd == mycpu) {
892                     _lwkt_enqueue(td);
893                     _lwkt_schedule_post(td, TDPRI_CRIT);
894                 } else {
895                     lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
896                 }
897 #else
898                 _lwkt_enqueue(td);
899                 _lwkt_schedule_post(td, TDPRI_CRIT);
900 #endif
901                 lwkt_reltoken(&wref);
902             } else {
903                 lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
904             }
905         } else {
906             /*
907              * If the wait structure is NULL and we own the thread, there
908              * is no race (since we are in a critical section).  If we
909              * do not own the thread there might be a race but the
910              * target cpu will deal with it.
911              */
912 #ifdef SMP
913             if (td->td_gd == mygd) {
914                 _lwkt_enqueue(td);
915                 _lwkt_schedule_post(td, TDPRI_CRIT);
916             } else {
917                 lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
918             }
919 #else
920             _lwkt_enqueue(td);
921             _lwkt_schedule_post(td, TDPRI_CRIT);
922 #endif
923         }
924     }
925     crit_exit_gd(mygd);
926 }
927
928 /*
929  * Managed acquisition.  This code assumes that the MP lock is held for
930  * the tdallq operation and that the thread has been descheduled from its
931  * original cpu.  We also have to wait for the thread to be entirely switched
932  * out on its original cpu (this is usually fast enough that we never loop)
933  * since the LWKT system does not have to hold the MP lock while switching
934  * and the target may have released it before switching.
935  */
936 void
937 lwkt_acquire(thread_t td)
938 {
939     globaldata_t gd;
940     globaldata_t mygd;
941
942     gd = td->td_gd;
943     mygd = mycpu;
944     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
945     while (td->td_flags & TDF_RUNNING)  /* XXX spin */
946         cpu_mb1();
947     if (gd != mygd) {
948         crit_enter_gd(mygd);
949         TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);      /* protected by BGL */
950         td->td_gd = mygd;
951         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq); /* protected by BGL */
952         crit_exit_gd(mygd);
953     }
954 }
955
956 /*
957  * Generic deschedule.  Descheduling threads other then your own should be
958  * done only in carefully controlled circumstances.  Descheduling is 
959  * asynchronous.  
960  *
961  * This function may block if the cpu has run out of messages.
962  */
963 void
964 lwkt_deschedule(thread_t td)
965 {
966     crit_enter();
967     if (td == curthread) {
968         _lwkt_dequeue(td);
969     } else {
970         if (td->td_gd == mycpu) {
971             _lwkt_dequeue(td);
972         } else {
973             lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_deschedule, td);
974         }
975     }
976     crit_exit();
977 }
978
979 /*
980  * Set the target thread's priority.  This routine does not automatically
981  * switch to a higher priority thread, LWKT threads are not designed for
982  * continuous priority changes.  Yield if you want to switch.
983  *
984  * We have to retain the critical section count which uses the high bits
985  * of the td_pri field.  The specified priority may also indicate zero or
986  * more critical sections by adding TDPRI_CRIT*N.
987  *
988  * Note that we requeue the thread whether it winds up on a different runq
989  * or not.  uio_yield() depends on this and the routine is not normally
990  * called with the same priority otherwise.
991  */
992 void
993 lwkt_setpri(thread_t td, int pri)
994 {
995     KKASSERT(pri >= 0);
996     KKASSERT(td->td_gd == mycpu);
997     crit_enter();
998     if (td->td_flags & TDF_RUNQ) {
999         _lwkt_dequeue(td);
1000         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1001         _lwkt_enqueue(td);
1002     } else {
1003         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1004     }
1005     crit_exit();
1006 }
1007
1008 void
1009 lwkt_setpri_self(int pri)
1010 {
1011     thread_t td = curthread;
1012
1013     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1014     crit_enter();
1015     if (td->td_flags & TDF_RUNQ) {
1016         _lwkt_dequeue(td);
1017         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1018         _lwkt_enqueue(td);
1019     } else {
1020         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1021     }
1022     crit_exit();
1023 }
1024
1025 /*
1026  * Migrate the current thread to the specified cpu.  The BGL must be held
1027  * (for the gd_tdallq manipulation XXX).  This is accomplished by 
1028  * descheduling ourselves from the current cpu, moving our thread to the
1029  * tdallq of the target cpu, IPI messaging the target cpu, and switching out.
1030  * TDF_MIGRATING prevents scheduling races while the thread is being migrated.
1031  */
1032 #ifdef SMP
1033 static void lwkt_setcpu_remote(void *arg);
1034 #endif
1035
1036 void
1037 lwkt_setcpu_self(globaldata_t rgd)
1038 {
1039 #ifdef SMP
1040     thread_t td = curthread;
1041
1042     if (td->td_gd != rgd) {
1043         crit_enter_quick(td);
1044         td->td_flags |= TDF_MIGRATING;
1045         lwkt_deschedule_self(td);
1046         TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq); /* protected by BGL */
1047         TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq); /* protected by BGL */
1048         lwkt_send_ipiq(rgd, (ipifunc_t)lwkt_setcpu_remote, td);
1049         lwkt_switch();
1050         /* we are now on the target cpu */
1051         crit_exit_quick(td);
1052     }
1053 #endif
1054 }
1055
1056 /*
1057  * Remote IPI for cpu migration (called while in a critical section so we
1058  * do not have to enter another one).  The thread has already been moved to
1059  * our cpu's allq, but we must wait for the thread to be completely switched
1060  * out on the originating cpu before we schedule it on ours or the stack
1061  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1062  * change to main memory.
1063  *
1064  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1065  * against wakeups.  It is best if this interface is used only when there
1066  * are no pending events that might try to schedule the thread.
1067  */
1068 #ifdef SMP
1069 static void
1070 lwkt_setcpu_remote(void *arg)
1071 {
1072     thread_t td = arg;
1073     globaldata_t gd = mycpu;
1074
1075     while (td->td_flags & TDF_RUNNING)
1076         cpu_mb1();
1077     td->td_gd = gd;
1078     cpu_mb2();
1079     td->td_flags &= ~TDF_MIGRATING;
1080     _lwkt_enqueue(td);
1081 }
1082 #endif
1083
1084 struct proc *
1085 lwkt_preempted_proc(void)
1086 {
1087     thread_t td = curthread;
1088     while (td->td_preempted)
1089         td = td->td_preempted;
1090     return(td->td_proc);
1091 }
1092
1093 /*
1094  * Block on the specified wait queue until signaled.  A generation number
1095  * must be supplied to interlock the wait queue.  The function will
1096  * return immediately if the generation number does not match the wait
1097  * structure's generation number.
1098  */
1099 void
1100 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
1101 {
1102     thread_t td = curthread;
1103     lwkt_tokref ilock;
1104
1105     lwkt_gettoken(&ilock, &w->wa_token);
1106     crit_enter();
1107     if (w->wa_gen == *gen) {
1108         _lwkt_dequeue(td);
1109         TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
1110         ++w->wa_count;
1111         td->td_wait = w;
1112         td->td_wmesg = wmesg;
1113     again:
1114         lwkt_switch();
1115         if (td->td_wmesg != NULL) {
1116             _lwkt_dequeue(td);
1117             goto again;
1118         }
1119     }
1120     crit_exit();
1121     *gen = w->wa_gen;
1122     lwkt_reltoken(&ilock);
1123 }
1124
1125 /*
1126  * Signal a wait queue.  We gain ownership of the wait queue in order to
1127  * signal it.  Once a thread is removed from the wait queue we have to
1128  * deal with the cpu owning the thread.
1129  *
1130  * Note: alternatively we could message the target cpu owning the wait
1131  * queue.  YYY implement as sysctl.
1132  */
1133 void
1134 lwkt_signal(lwkt_wait_t w, int count)
1135 {
1136     thread_t td;
1137     lwkt_tokref ilock;
1138
1139     lwkt_gettoken(&ilock, &w->wa_token);
1140     ++w->wa_gen;
1141     crit_enter();
1142     if (count < 0)
1143         count = w->wa_count;
1144     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1145         --count;
1146         --w->wa_count;
1147         TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1148         td->td_wait = NULL;
1149         td->td_wmesg = NULL;
1150         if (td->td_gd == mycpu) {
1151             _lwkt_enqueue(td);
1152         } else {
1153             lwkt_send_ipiq(td->td_gd, (ipifunc_t)lwkt_schedule, td);
1154         }
1155     }
1156     crit_exit();
1157     lwkt_reltoken(&ilock);
1158 }
1159
1160 /*
1161  * Create a kernel process/thread/whatever.  It shares it's address space
1162  * with proc0 - ie: kernel only.
1163  *
1164  * NOTE!  By default new threads are created with the MP lock held.  A 
1165  * thread which does not require the MP lock should release it by calling
1166  * rel_mplock() at the start of the new thread.
1167  */
1168 int
1169 lwkt_create(void (*func)(void *), void *arg,
1170     struct thread **tdp, thread_t template, int tdflags, int cpu,
1171     const char *fmt, ...)
1172 {
1173     thread_t td;
1174     __va_list ap;
1175
1176     td = lwkt_alloc_thread(template, cpu);
1177     if (tdp)
1178         *tdp = td;
1179     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1180     td->td_flags |= TDF_VERBOSE | tdflags;
1181 #ifdef SMP
1182     td->td_mpcount = 1;
1183 #endif
1184
1185     /*
1186      * Set up arg0 for 'ps' etc
1187      */
1188     __va_start(ap, fmt);
1189     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1190     __va_end(ap);
1191
1192     /*
1193      * Schedule the thread to run
1194      */
1195     if ((td->td_flags & TDF_STOPREQ) == 0)
1196         lwkt_schedule(td);
1197     else
1198         td->td_flags &= ~TDF_STOPREQ;
1199     return 0;
1200 }
1201
1202 /*
1203  * kthread_* is specific to the kernel and is not needed by userland.
1204  */
1205 #ifdef _KERNEL
1206
1207 /*
1208  * Destroy an LWKT thread.   Warning!  This function is not called when
1209  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1210  * uses a different reaping mechanism.
1211  */
1212 void
1213 lwkt_exit(void)
1214 {
1215     thread_t td = curthread;
1216     globaldata_t gd;
1217
1218     if (td->td_flags & TDF_VERBOSE)
1219         printf("kthread %p %s has exited\n", td, td->td_comm);
1220     caps_exit(td);
1221     crit_enter_quick(td);
1222     lwkt_deschedule_self(td);
1223     gd = mycpu;
1224     KKASSERT(gd == td->td_gd);
1225     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1226     if (td->td_flags & TDF_ALLOCATED_THREAD) {
1227         ++gd->gd_tdfreecount;
1228         TAILQ_INSERT_TAIL(&gd->gd_tdfreeq, td, td_threadq);
1229     }
1230     cpu_thread_exit();
1231 }
1232
1233 /*
1234  * Create a kernel process/thread/whatever.  It shares it's address space
1235  * with proc0 - ie: kernel only.  5.x compatible.
1236  *
1237  * NOTE!  By default kthreads are created with the MP lock held.  A
1238  * thread which does not require the MP lock should release it by calling
1239  * rel_mplock() at the start of the new thread.
1240  */
1241 int
1242 kthread_create(void (*func)(void *), void *arg,
1243     struct thread **tdp, const char *fmt, ...)
1244 {
1245     thread_t td;
1246     __va_list ap;
1247
1248     td = lwkt_alloc_thread(NULL, -1);
1249     if (tdp)
1250         *tdp = td;
1251     cpu_set_thread_handler(td, kthread_exit, func, arg);
1252     td->td_flags |= TDF_VERBOSE;
1253 #ifdef SMP
1254     td->td_mpcount = 1;
1255 #endif
1256
1257     /*
1258      * Set up arg0 for 'ps' etc
1259      */
1260     __va_start(ap, fmt);
1261     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1262     __va_end(ap);
1263
1264     /*
1265      * Schedule the thread to run
1266      */
1267     lwkt_schedule(td);
1268     return 0;
1269 }
1270
1271 /*
1272  * Destroy an LWKT thread.   Warning!  This function is not called when
1273  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1274  * uses a different reaping mechanism.
1275  *
1276  * XXX duplicates lwkt_exit()
1277  */
1278 void
1279 kthread_exit(void)
1280 {
1281     lwkt_exit();
1282 }
1283
1284 #endif /* _KERNEL */
1285
1286 void
1287 crit_panic(void)
1288 {
1289     thread_t td = curthread;
1290     int lpri = td->td_pri;
1291
1292     td->td_pri = 0;
1293     panic("td_pri is/would-go negative! %p %d", td, lpri);
1294 }
1295