Import binutils-2.20
[dragonfly.git] / contrib / binutils-2.20 / include / aout / aout64.h
1 /* `a.out' object-file definitions, including extensions to 64-bit fields
2
3    Copyright 1999, 2000, 2001, 2003 Free Software Foundation, Inc.
4
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 2 of the License, or
8    (at your option) any later version.
9    
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14    
15    You should have received a copy of the GNU General Public License
16    along with this program; if not, write to the Free Software
17    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
18
19 #ifndef __A_OUT_64_H__
20 #define __A_OUT_64_H__
21
22 #ifndef BYTES_IN_WORD
23 #define BYTES_IN_WORD 4
24 #endif
25
26 /* This is the layout on disk of the 32-bit or 64-bit exec header.  */
27
28 #ifndef external_exec
29 struct external_exec 
30 {
31   bfd_byte e_info[4];               /* Magic number and stuff.  */
32   bfd_byte e_text[BYTES_IN_WORD];   /* Length of text section in bytes.  */
33   bfd_byte e_data[BYTES_IN_WORD];   /* Length of data section in bytes.  */
34   bfd_byte e_bss[BYTES_IN_WORD];    /* Length of bss area in bytes.  */
35   bfd_byte e_syms[BYTES_IN_WORD];   /* Length of symbol table in bytes.  */
36   bfd_byte e_entry[BYTES_IN_WORD];  /* Start address.  */
37   bfd_byte e_trsize[BYTES_IN_WORD]; /* Length of text relocation info.  */
38   bfd_byte e_drsize[BYTES_IN_WORD]; /* Length of data relocation info.  */
39 };
40
41 #define EXEC_BYTES_SIZE (4 + BYTES_IN_WORD * 7)
42
43 /* Magic numbers for a.out files.  */
44
45 #if ARCH_SIZE==64
46 #define OMAGIC 0x1001           /* Code indicating object file.  */
47 #define ZMAGIC 0x1002           /* Code indicating demand-paged executable.  */
48 #define NMAGIC 0x1003           /* Code indicating pure executable.  */
49
50 /* There is no 64-bit QMAGIC as far as I know.  */
51
52 #define N_BADMAG(x)       (N_MAGIC(x) != OMAGIC         \
53                         && N_MAGIC(x) != NMAGIC         \
54                         && N_MAGIC(x) != ZMAGIC)
55 #else
56 #define OMAGIC 0407             /* Object file or impure executable.  */
57 #define NMAGIC 0410             /* Code indicating pure executable.  */
58 #define ZMAGIC 0413             /* Code indicating demand-paged executable.  */
59 #define BMAGIC 0415             /* Used by a b.out object.  */
60
61 /* This indicates a demand-paged executable with the header in the text.
62    It is used by 386BSD (and variants) and Linux, at least.  */
63 #ifndef QMAGIC
64 #define QMAGIC 0314
65 #endif
66 # ifndef N_BADMAG
67 #  define N_BADMAG(x)     (N_MAGIC(x) != OMAGIC         \
68                         && N_MAGIC(x) != NMAGIC         \
69                         && N_MAGIC(x) != ZMAGIC \
70                         && N_MAGIC(x) != QMAGIC)
71 # endif /* N_BADMAG */
72 #endif
73
74 #endif
75
76 #ifdef QMAGIC
77 #define N_IS_QMAGIC(x) (N_MAGIC (x) == QMAGIC)
78 #else
79 #define N_IS_QMAGIC(x) (0)
80 #endif
81
82 /* The difference between TARGET_PAGE_SIZE and N_SEGSIZE is that TARGET_PAGE_SIZE is
83    the finest granularity at which you can page something, thus it
84    controls the padding (if any) before the text segment of a ZMAGIC
85    file.  N_SEGSIZE is the resolution at which things can be marked as
86    read-only versus read/write, so it controls the padding between the
87    text segment and the data segment (in memory; on disk the padding
88    between them is TARGET_PAGE_SIZE).  TARGET_PAGE_SIZE and N_SEGSIZE are the same
89    for most machines, but different for sun3.  */
90
91 /* By default, segment size is constant.  But some machines override this
92    to be a function of the a.out header (e.g. machine type).  */
93
94 #ifndef N_SEGSIZE
95 #define N_SEGSIZE(x)    SEGMENT_SIZE
96 #endif
97 \f
98 /* Virtual memory address of the text section.
99    This is getting very complicated.  A good reason to discard a.out format
100    for something that specifies these fields explicitly.  But til then...
101
102    * OMAGIC and NMAGIC files:
103        (object files: text for "relocatable addr 0" right after the header)
104        start at 0, offset is EXEC_BYTES_SIZE, size as stated.
105    * The text address, offset, and size of ZMAGIC files depend
106      on the entry point of the file:
107      * entry point below TEXT_START_ADDR:
108        (hack for SunOS shared libraries)
109        start at 0, offset is 0, size as stated.
110      * If N_HEADER_IN_TEXT(x) is true (which defaults to being the
111        case when the entry point is EXEC_BYTES_SIZE or further into a page):
112        no padding is needed; text can start after exec header.  Sun
113        considers the text segment of such files to include the exec header;
114        for BFD's purposes, we don't, which makes more work for us.
115        start at TEXT_START_ADDR + EXEC_BYTES_SIZE, offset is EXEC_BYTES_SIZE,
116        size as stated minus EXEC_BYTES_SIZE.
117      * If N_HEADER_IN_TEXT(x) is false (which defaults to being the case when
118        the entry point is less than EXEC_BYTES_SIZE into a page (e.g. page
119        aligned)): (padding is needed so that text can start at a page boundary)
120        start at TEXT_START_ADDR, offset TARGET_PAGE_SIZE, size as stated.
121
122     Specific configurations may want to hardwire N_HEADER_IN_TEXT,
123     for efficiency or to allow people to play games with the entry point.
124     In that case, you would #define N_HEADER_IN_TEXT(x) as 1 for sunos,
125     and as 0 for most other hosts (Sony News, Vax Ultrix, etc).
126     (Do this in the appropriate bfd target file.)
127     (The default is a heuristic that will break if people try changing
128     the entry point, perhaps with the ld -e flag.)
129
130     * QMAGIC is always like a ZMAGIC for which N_HEADER_IN_TEXT is true,
131     and for which the starting address is TARGET_PAGE_SIZE (or should this be
132     SEGMENT_SIZE?) (TEXT_START_ADDR only applies to ZMAGIC, not to QMAGIC).  */
133
134 /* This macro is only relevant for ZMAGIC files; QMAGIC always has the header
135    in the text.  */
136 #ifndef N_HEADER_IN_TEXT
137 #define N_HEADER_IN_TEXT(x) \
138   (((x).a_entry & (TARGET_PAGE_SIZE-1)) >= EXEC_BYTES_SIZE)
139 #endif
140
141 /* Sun shared libraries, not linux.  This macro is only relevant for ZMAGIC
142    files.  */
143 #ifndef N_SHARED_LIB
144 #if defined (TEXT_START_ADDR) && TEXT_START_ADDR == 0
145 #define N_SHARED_LIB(x) (0)
146 #else
147 #define N_SHARED_LIB(x) ((x).a_entry < TEXT_START_ADDR)
148 #endif
149 #endif
150
151 /* Returning 0 not TEXT_START_ADDR for OMAGIC and NMAGIC is based on
152    the assumption that we are dealing with a .o file, not an
153    executable.  This is necessary for OMAGIC (but means we don't work
154    right on the output from ld -N); more questionable for NMAGIC.  */
155
156 #ifndef N_TXTADDR
157 #define N_TXTADDR(x) \
158     (/* The address of a QMAGIC file is always one page in,             \
159         with the header in the text.  */                                \
160      N_IS_QMAGIC (x)                                                    \
161      ? (bfd_vma) TARGET_PAGE_SIZE + EXEC_BYTES_SIZE                     \
162      : (N_MAGIC (x) != ZMAGIC                                           \
163         ? (bfd_vma) 0   /* Object file or NMAGIC.  */                   \
164         : (N_SHARED_LIB (x)                                             \
165            ? (bfd_vma) 0                                                \
166            : (N_HEADER_IN_TEXT (x)                                      \
167               ? (bfd_vma) TEXT_START_ADDR + EXEC_BYTES_SIZE             \
168               : (bfd_vma) TEXT_START_ADDR))))
169 #endif
170
171 /* If N_HEADER_IN_TEXT is not true for ZMAGIC, there is some padding
172    to make the text segment start at a certain boundary.  For most
173    systems, this boundary is TARGET_PAGE_SIZE.  But for Linux, in the
174    time-honored tradition of crazy ZMAGIC hacks, it is 1024 which is
175    not what TARGET_PAGE_SIZE needs to be for QMAGIC.  */
176
177 #ifndef ZMAGIC_DISK_BLOCK_SIZE
178 #define ZMAGIC_DISK_BLOCK_SIZE TARGET_PAGE_SIZE
179 #endif
180
181 #define N_DISK_BLOCK_SIZE(x) \
182   (N_MAGIC(x) == ZMAGIC ? ZMAGIC_DISK_BLOCK_SIZE : TARGET_PAGE_SIZE)
183
184 /* Offset in an a.out of the start of the text section. */
185 #ifndef N_TXTOFF
186 #define N_TXTOFF(x)                                                     \
187     (/* For {O,N,Q}MAGIC, no padding.  */                               \
188      N_MAGIC (x) != ZMAGIC                                              \
189      ? EXEC_BYTES_SIZE                                                  \
190      : (N_SHARED_LIB (x)                                                \
191         ? 0                                                             \
192         : (N_HEADER_IN_TEXT (x)                                         \
193            ? EXEC_BYTES_SIZE            /* No padding.  */              \
194            : ZMAGIC_DISK_BLOCK_SIZE     /* A page of padding.  */)))
195 #endif
196 /* Size of the text section.  It's always as stated, except that we
197    offset it to `undo' the adjustment to N_TXTADDR and N_TXTOFF
198    for ZMAGIC files that nominally include the exec header
199    as part of the first page of text.  (BFD doesn't consider the
200    exec header to be part of the text segment.)  */
201 #ifndef N_TXTSIZE
202 #define N_TXTSIZE(x) \
203   (/* For QMAGIC, we don't consider the header part of the text section.  */\
204    N_IS_QMAGIC (x)                                                      \
205    ? (x).a_text - EXEC_BYTES_SIZE                                       \
206    : ((N_MAGIC (x) != ZMAGIC || N_SHARED_LIB (x))                       \
207       ? (x).a_text                                                      \
208       : (N_HEADER_IN_TEXT (x)                                           \
209          ? (x).a_text - EXEC_BYTES_SIZE /* No padding.  */              \
210          : (x).a_text                   /* A page of padding.  */ )))
211 #endif
212 /* The address of the data segment in virtual memory.
213    It is the text segment address, plus text segment size, rounded
214    up to a N_SEGSIZE boundary for pure or pageable files.  */
215 #ifndef N_DATADDR
216 #define N_DATADDR(x) \
217   (N_MAGIC (x) == OMAGIC                                                \
218    ? (N_TXTADDR (x) + N_TXTSIZE (x))                                    \
219    : (N_SEGSIZE (x) + ((N_TXTADDR (x) + N_TXTSIZE (x) - 1)              \
220                        & ~ (bfd_vma) (N_SEGSIZE (x) - 1))))
221 #endif
222 /* The address of the BSS segment -- immediately after the data segment.  */
223
224 #define N_BSSADDR(x)    (N_DATADDR (x) + (x).a_data)
225
226 /* Offsets of the various portions of the file after the text segment.  */
227
228 /* For {Q,Z}MAGIC, there is padding to make the data segment start on
229    a page boundary.  Most of the time the a_text field (and thus
230    N_TXTSIZE) already contains this padding.  It is possible that for
231    BSDI and/or 386BSD it sometimes doesn't contain the padding, and
232    perhaps we should be adding it here.  But this seems kind of
233    questionable and probably should be BSDI/386BSD-specific if we do
234    do it.
235
236    For NMAGIC (at least for hp300 BSD, probably others), there is
237    padding in memory only, not on disk, so we must *not* ever pad here
238    for NMAGIC.  */
239
240 #ifndef N_DATOFF
241 #define N_DATOFF(x)     (N_TXTOFF (x) + N_TXTSIZE (x))
242 #endif
243 #ifndef N_TRELOFF
244 #define N_TRELOFF(x)    (N_DATOFF (x) + (x).a_data)
245 #endif
246 #ifndef N_DRELOFF
247 #define N_DRELOFF(x)    (N_TRELOFF (x) + (x).a_trsize)
248 #endif
249 #ifndef N_SYMOFF
250 #define N_SYMOFF(x)     (N_DRELOFF (x) + (x).a_drsize)
251 #endif
252 #ifndef N_STROFF
253 #define N_STROFF(x)     (N_SYMOFF (x) + (x).a_syms)
254 #endif
255 \f
256 /* Symbols */
257 #ifndef external_nlist
258 struct external_nlist
259 {
260   bfd_byte e_strx[BYTES_IN_WORD];       /* Index into string table of name.  */
261   bfd_byte e_type[1];                   /* Type of symbol.  */
262   bfd_byte e_other[1];                  /* Misc info (usually empty).  */
263   bfd_byte e_desc[2];                   /* Description field.  */
264   bfd_byte e_value[BYTES_IN_WORD];      /* Value of symbol.  */
265 };
266 #define EXTERNAL_NLIST_SIZE (BYTES_IN_WORD+4+BYTES_IN_WORD)
267 #endif
268
269 struct internal_nlist
270 {
271   unsigned long n_strx;                 /* Index into string table of name.  */
272   unsigned char n_type;                 /* Type of symbol.  */
273   unsigned char n_other;                /* Misc info (usually empty).  */
274   unsigned short n_desc;                /* Description field.  */
275   bfd_vma n_value;                      /* Value of symbol.  */
276 };
277
278 /* The n_type field is the symbol type, containing:  */
279
280 #define N_UNDF  0       /* Undefined symbol.  */
281 #define N_ABS   2       /* Absolute symbol -- defined at particular addr.  */
282 #define N_TEXT  4       /* Text sym -- defined at offset in text seg.  */
283 #define N_DATA  6       /* Data sym -- defined at offset in data seg.  */
284 #define N_BSS   8       /* BSS  sym -- defined at offset in zero'd seg.  */
285 #define N_COMM  0x12    /* Common symbol (visible after shared lib dynlink).  */
286 #define N_FN    0x1f    /* File name of .o file.  */
287 #define N_FN_SEQ 0x0C   /* N_FN from Sequent compilers (sigh).  */
288 /* Note: N_EXT can only be usefully OR-ed with N_UNDF, N_ABS, N_TEXT,
289    N_DATA, or N_BSS.  When the low-order bit of other types is set,
290    (e.g. N_WARNING versus N_FN), they are two different types.  */
291 #define N_EXT   1       /* External symbol (as opposed to local-to-this-file).  */
292 #define N_TYPE  0x1e
293 #define N_STAB  0xe0    /* If any of these bits are on, it's a debug symbol.  */
294
295 #define N_INDR 0x0a
296
297 /* The following symbols refer to set elements.
298    All the N_SET[ATDB] symbols with the same name form one set.
299    Space is allocated for the set in the text section, and each set
300    elements value is stored into one word of the space.
301    The first word of the space is the length of the set (number of elements).
302
303    The address of the set is made into an N_SETV symbol
304    whose name is the same as the name of the set.
305    This symbol acts like a N_DATA global symbol
306    in that it can satisfy undefined external references.  */
307
308 /* These appear as input to LD, in a .o file.  */
309 #define N_SETA  0x14            /* Absolute set element symbol.  */
310 #define N_SETT  0x16            /* Text set element symbol.  */
311 #define N_SETD  0x18            /* Data set element symbol.  */
312 #define N_SETB  0x1A            /* Bss set element symbol.  */
313
314 /* This is output from LD.  */
315 #define N_SETV  0x1C            /* Pointer to set vector in data area.  */
316
317 /* Warning symbol. The text gives a warning message, the next symbol
318    in the table will be undefined. When the symbol is referenced, the
319    message is printed.  */
320
321 #define N_WARNING 0x1e
322
323 /* Weak symbols.  These are a GNU extension to the a.out format.  The
324    semantics are those of ELF weak symbols.  Weak symbols are always
325    externally visible.  The N_WEAK? values are squeezed into the
326    available slots.  The value of a N_WEAKU symbol is 0.  The values
327    of the other types are the definitions.  */
328 #define N_WEAKU 0x0d            /* Weak undefined symbol.  */
329 #define N_WEAKA 0x0e            /* Weak absolute symbol.  */
330 #define N_WEAKT 0x0f            /* Weak text symbol.  */
331 #define N_WEAKD 0x10            /* Weak data symbol.  */
332 #define N_WEAKB 0x11            /* Weak bss symbol.  */
333
334 /* Relocations 
335
336   There are two types of relocation flavours for a.out systems,
337   standard and extended. The standard form is used on systems where the
338   instruction has room for all the bits of an offset to the operand, whilst
339   the extended form is used when an address operand has to be split over n
340   instructions. Eg, on the 68k, each move instruction can reference
341   the target with a displacement of 16 or 32 bits. On the sparc, move
342   instructions use an offset of 14 bits, so the offset is stored in
343   the reloc field, and the data in the section is ignored.  */
344
345 /* This structure describes a single relocation to be performed.
346    The text-relocation section of the file is a vector of these structures,
347    all of which apply to the text section.
348    Likewise, the data-relocation section applies to the data section.  */
349
350 struct reloc_std_external
351 {
352   bfd_byte r_address[BYTES_IN_WORD];    /* Offset of of data to relocate.  */
353   bfd_byte r_index[3];                  /* Symbol table index of symbol.  */
354   bfd_byte r_type[1];                   /* Relocation type.  */
355 };
356
357 #define RELOC_STD_BITS_PCREL_BIG        ((unsigned int) 0x80)
358 #define RELOC_STD_BITS_PCREL_LITTLE     ((unsigned int) 0x01)
359
360 #define RELOC_STD_BITS_LENGTH_BIG       ((unsigned int) 0x60)
361 #define RELOC_STD_BITS_LENGTH_SH_BIG    5
362 #define RELOC_STD_BITS_LENGTH_LITTLE    ((unsigned int) 0x06)
363 #define RELOC_STD_BITS_LENGTH_SH_LITTLE 1
364
365 #define RELOC_STD_BITS_EXTERN_BIG       ((unsigned int) 0x10)
366 #define RELOC_STD_BITS_EXTERN_LITTLE    ((unsigned int) 0x08)
367
368 #define RELOC_STD_BITS_BASEREL_BIG      ((unsigned int) 0x08)
369 #define RELOC_STD_BITS_BASEREL_LITTLE   ((unsigned int) 0x10)
370
371 #define RELOC_STD_BITS_JMPTABLE_BIG     ((unsigned int) 0x04)
372 #define RELOC_STD_BITS_JMPTABLE_LITTLE  ((unsigned int) 0x20)
373
374 #define RELOC_STD_BITS_RELATIVE_BIG     ((unsigned int) 0x02)
375 #define RELOC_STD_BITS_RELATIVE_LITTLE  ((unsigned int) 0x40)
376
377 #define RELOC_STD_SIZE  (BYTES_IN_WORD + 3 + 1)         /* Bytes per relocation entry.  */
378
379 struct reloc_std_internal
380 {
381   bfd_vma r_address;            /* Address (within segment) to be relocated.  */
382   /* The meaning of r_symbolnum depends on r_extern.  */
383   unsigned int r_symbolnum:24;
384   /* Nonzero means value is a pc-relative offset
385      and it should be relocated for changes in its own address
386      as well as for changes in the symbol or section specified.  */
387   unsigned int r_pcrel:1;
388   /* Length (as exponent of 2) of the field to be relocated.
389      Thus, a value of 2 indicates 1<<2 bytes.  */
390   unsigned int r_length:2;
391   /* 1 => relocate with value of symbol.
392      r_symbolnum is the index of the symbol
393      in files the symbol table.
394      0 => relocate with the address of a segment.
395      r_symbolnum is N_TEXT, N_DATA, N_BSS or N_ABS
396      (the N_EXT bit may be set also, but signifies nothing).  */
397   unsigned int r_extern:1;
398   /* The next three bits are for SunOS shared libraries, and seem to
399      be undocumented.  */
400   unsigned int r_baserel:1;     /* Linkage table relative.  */
401   unsigned int r_jmptable:1;    /* pc-relative to jump table.  */
402   unsigned int r_relative:1;    /* "relative relocation".  */
403   /* unused */
404   unsigned int r_pad:1;         /* Padding -- set to zero.  */
405 };
406
407
408 /* EXTENDED RELOCS.   */
409
410 struct reloc_ext_external
411 {
412   bfd_byte r_address[BYTES_IN_WORD];    /* Offset of of data to relocate.  */
413   bfd_byte r_index[3];                  /* Symbol table index of symbol.  */
414   bfd_byte r_type[1];                   /* Relocation type.  */
415   bfd_byte r_addend[BYTES_IN_WORD];     /* Datum addend.  */
416 };
417
418 #ifndef RELOC_EXT_BITS_EXTERN_BIG
419 #define RELOC_EXT_BITS_EXTERN_BIG       ((unsigned int) 0x80)
420 #endif
421
422 #ifndef RELOC_EXT_BITS_EXTERN_LITTLE
423 #define RELOC_EXT_BITS_EXTERN_LITTLE    ((unsigned int) 0x01)
424 #endif
425
426 #ifndef RELOC_EXT_BITS_TYPE_BIG
427 #define RELOC_EXT_BITS_TYPE_BIG         ((unsigned int) 0x1F)
428 #endif
429
430 #ifndef RELOC_EXT_BITS_TYPE_SH_BIG
431 #define RELOC_EXT_BITS_TYPE_SH_BIG      0
432 #endif
433
434 #ifndef RELOC_EXT_BITS_TYPE_LITTLE
435 #define RELOC_EXT_BITS_TYPE_LITTLE      ((unsigned int) 0xF8)
436 #endif
437
438 #ifndef RELOC_EXT_BITS_TYPE_SH_LITTLE
439 #define RELOC_EXT_BITS_TYPE_SH_LITTLE   3
440 #endif
441
442 /* Bytes per relocation entry.  */
443 #define RELOC_EXT_SIZE  (BYTES_IN_WORD + 3 + 1 + BYTES_IN_WORD)
444
445 enum reloc_type
446 {
447   /* Simple relocations.  */
448   RELOC_8,                      /* data[0:7] = addend + sv              */
449   RELOC_16,                     /* data[0:15] = addend + sv             */
450   RELOC_32,                     /* data[0:31] = addend + sv             */
451   /* PC-rel displacement.  */
452   RELOC_DISP8,                  /* data[0:7] = addend - pc + sv         */
453   RELOC_DISP16,                 /* data[0:15] = addend - pc + sv        */
454   RELOC_DISP32,                 /* data[0:31] = addend - pc + sv        */
455   /* Special.  */
456   RELOC_WDISP30,                /* data[0:29] = (addend + sv - pc)>>2   */
457   RELOC_WDISP22,                /* data[0:21] = (addend + sv - pc)>>2   */
458   RELOC_HI22,                   /* data[0:21] = (addend + sv)>>10       */
459   RELOC_22,                     /* data[0:21] = (addend + sv)           */
460   RELOC_13,                     /* data[0:12] = (addend + sv)           */
461   RELOC_LO10,                   /* data[0:9] = (addend + sv)            */
462   RELOC_SFA_BASE,               
463   RELOC_SFA_OFF13,
464   /* P.I.C. (base-relative).  */
465   RELOC_BASE10,                 /* Not sure - maybe we can do this the */
466   RELOC_BASE13,                 /* right way now */
467   RELOC_BASE22,
468   /* For some sort of pc-rel P.I.C. (?)  */
469   RELOC_PC10,
470   RELOC_PC22,
471   /* P.I.C. jump table.  */
472   RELOC_JMP_TBL,
473   /* Reputedly for shared libraries somehow.  */
474   RELOC_SEGOFF16,
475   RELOC_GLOB_DAT,
476   RELOC_JMP_SLOT,
477   RELOC_RELATIVE,
478
479   RELOC_11,     
480   RELOC_WDISP2_14,
481   RELOC_WDISP19,
482   RELOC_HHI22,                  /* data[0:21] = (addend + sv) >> 42     */
483   RELOC_HLO10,                  /* data[0:9] = (addend + sv) >> 32      */
484   
485   /* 29K relocation types.  */
486   RELOC_JUMPTARG,
487   RELOC_CONST,
488   RELOC_CONSTH,
489   
490   /* All the new ones I can think of, for sparc v9.  */
491   RELOC_64,                     /* data[0:63] = addend + sv             */
492   RELOC_DISP64,                 /* data[0:63] = addend - pc + sv        */
493   RELOC_WDISP21,                /* data[0:20] = (addend + sv - pc)>>2   */
494   RELOC_DISP21,                 /* data[0:20] = addend - pc + sv        */
495   RELOC_DISP14,                 /* data[0:13] = addend - pc + sv        */
496   /* Q .
497      What are the other ones,
498      Since this is a clean slate, can we throw away the ones we dont
499      understand ? Should we sort the values ? What about using a
500      microcode format like the 68k ?  */
501   NO_RELOC
502   };
503
504
505 struct reloc_internal
506 {
507   bfd_vma r_address;            /* Offset of of data to relocate.  */
508   long  r_index;                /* Symbol table index of symbol.  */
509   enum reloc_type r_type;       /* Relocation type.  */
510   bfd_vma r_addend;             /* Datum addend.  */
511 };
512
513 /* Q.
514    Should the length of the string table be 4 bytes or 8 bytes ?
515
516    Q.
517    What about archive indexes ?  */
518
519 #endif                          /* __A_OUT_64_H__ */