Fix more wrong sizeof() usages, part 4/x
[dragonfly.git] / contrib / wpa_supplicant / src / crypto / md5.c
1 /*
2  * MD5 hash implementation and interface functions
3  * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Alternatively, this software may be distributed under the terms of BSD
10  * license.
11  *
12  * See README and COPYING for more details.
13  */
14
15 #include "includes.h"
16
17 #include "common.h"
18 #include "md5.h"
19 #include "crypto.h"
20
21
22 /**
23  * hmac_md5_vector - HMAC-MD5 over data vector (RFC 2104)
24  * @key: Key for HMAC operations
25  * @key_len: Length of the key in bytes
26  * @num_elem: Number of elements in the data vector
27  * @addr: Pointers to the data areas
28  * @len: Lengths of the data blocks
29  * @mac: Buffer for the hash (16 bytes)
30  */
31 void hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
32                      const u8 *addr[], const size_t *len, u8 *mac)
33 {
34         u8 k_pad[64]; /* padding - key XORd with ipad/opad */
35         u8 tk[16];
36         const u8 *_addr[6];
37         size_t i, _len[6];
38
39         if (num_elem > 5) {
40                 /*
41                  * Fixed limit on the number of fragments to avoid having to
42                  * allocate memory (which could fail).
43                  */
44                 return;
45         }
46
47         /* if key is longer than 64 bytes reset it to key = MD5(key) */
48         if (key_len > 64) {
49                 md5_vector(1, &key, &key_len, tk);
50                 key = tk;
51                 key_len = 16;
52         }
53
54         /* the HMAC_MD5 transform looks like:
55          *
56          * MD5(K XOR opad, MD5(K XOR ipad, text))
57          *
58          * where K is an n byte key
59          * ipad is the byte 0x36 repeated 64 times
60          * opad is the byte 0x5c repeated 64 times
61          * and text is the data being protected */
62
63         /* start out by storing key in ipad */
64         os_memset(k_pad, 0, sizeof(k_pad));
65         os_memcpy(k_pad, key, key_len);
66
67         /* XOR key with ipad values */
68         for (i = 0; i < 64; i++)
69                 k_pad[i] ^= 0x36;
70
71         /* perform inner MD5 */
72         _addr[0] = k_pad;
73         _len[0] = 64;
74         for (i = 0; i < num_elem; i++) {
75                 _addr[i + 1] = addr[i];
76                 _len[i + 1] = len[i];
77         }
78         md5_vector(1 + num_elem, _addr, _len, mac);
79
80         os_memset(k_pad, 0, sizeof(k_pad));
81         os_memcpy(k_pad, key, key_len);
82         /* XOR key with opad values */
83         for (i = 0; i < 64; i++)
84                 k_pad[i] ^= 0x5c;
85
86         /* perform outer MD5 */
87         _addr[0] = k_pad;
88         _len[0] = 64;
89         _addr[1] = mac;
90         _len[1] = MD5_MAC_LEN;
91         md5_vector(2, _addr, _len, mac);
92 }
93
94
95 /**
96  * hmac_md5 - HMAC-MD5 over data buffer (RFC 2104)
97  * @key: Key for HMAC operations
98  * @key_len: Length of the key in bytes
99  * @data: Pointers to the data area
100  * @data_len: Length of the data area
101  * @mac: Buffer for the hash (16 bytes)
102  */
103 void hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
104               u8 *mac)
105 {
106         hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
107 }
108
109
110 #ifdef INTERNAL_MD5
111
112 struct MD5Context {
113         u32 buf[4];
114         u32 bits[2];
115         u8 in[64];
116 };
117
118 #ifndef CONFIG_CRYPTO_INTERNAL
119 static void MD5Init(struct MD5Context *context);
120 static void MD5Update(struct MD5Context *context, unsigned char const *buf,
121                           unsigned len);
122 static void MD5Final(unsigned char digest[16], struct MD5Context *context);
123 #endif /* CONFIG_CRYPTO_INTERNAL */
124 static void MD5Transform(u32 buf[4], u32 const in[16]);
125
126
127 typedef struct MD5Context MD5_CTX;
128
129
130 /**
131  * md5_vector - MD5 hash for data vector
132  * @num_elem: Number of elements in the data vector
133  * @addr: Pointers to the data areas
134  * @len: Lengths of the data blocks
135  * @mac: Buffer for the hash
136  */
137 void md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
138 {
139         MD5_CTX ctx;
140         size_t i;
141
142         MD5Init(&ctx);
143         for (i = 0; i < num_elem; i++)
144                 MD5Update(&ctx, addr[i], len[i]);
145         MD5Final(mac, &ctx);
146 }
147
148
149 /* ===== start - public domain MD5 implementation ===== */
150 /*
151  * This code implements the MD5 message-digest algorithm.
152  * The algorithm is due to Ron Rivest.  This code was
153  * written by Colin Plumb in 1993, no copyright is claimed.
154  * This code is in the public domain; do with it what you wish.
155  *
156  * Equivalent code is available from RSA Data Security, Inc.
157  * This code has been tested against that, and is equivalent,
158  * except that you don't need to include two pages of legalese
159  * with every copy.
160  *
161  * To compute the message digest of a chunk of bytes, declare an
162  * MD5Context structure, pass it to MD5Init, call MD5Update as
163  * needed on buffers full of bytes, and then call MD5Final, which
164  * will fill a supplied 16-byte array with the digest.
165  */
166
167 #ifndef WORDS_BIGENDIAN
168 #define byteReverse(buf, len)   /* Nothing */
169 #else
170 /*
171  * Note: this code is harmless on little-endian machines.
172  */
173 static void byteReverse(unsigned char *buf, unsigned longs)
174 {
175     u32 t;
176     do {
177         t = (u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
178             ((unsigned) buf[1] << 8 | buf[0]);
179         *(u32 *) buf = t;
180         buf += 4;
181     } while (--longs);
182 }
183 #endif
184
185 /*
186  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
187  * initialization constants.
188  */
189 void MD5Init(struct MD5Context *ctx)
190 {
191     ctx->buf[0] = 0x67452301;
192     ctx->buf[1] = 0xefcdab89;
193     ctx->buf[2] = 0x98badcfe;
194     ctx->buf[3] = 0x10325476;
195
196     ctx->bits[0] = 0;
197     ctx->bits[1] = 0;
198 }
199
200 /*
201  * Update context to reflect the concatenation of another buffer full
202  * of bytes.
203  */
204 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
205 {
206     u32 t;
207
208     /* Update bitcount */
209
210     t = ctx->bits[0];
211     if ((ctx->bits[0] = t + ((u32) len << 3)) < t)
212         ctx->bits[1]++;         /* Carry from low to high */
213     ctx->bits[1] += len >> 29;
214
215     t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
216
217     /* Handle any leading odd-sized chunks */
218
219     if (t) {
220         unsigned char *p = (unsigned char *) ctx->in + t;
221
222         t = 64 - t;
223         if (len < t) {
224             os_memcpy(p, buf, len);
225             return;
226         }
227         os_memcpy(p, buf, t);
228         byteReverse(ctx->in, 16);
229         MD5Transform(ctx->buf, (u32 *) ctx->in);
230         buf += t;
231         len -= t;
232     }
233     /* Process data in 64-byte chunks */
234
235     while (len >= 64) {
236         os_memcpy(ctx->in, buf, 64);
237         byteReverse(ctx->in, 16);
238         MD5Transform(ctx->buf, (u32 *) ctx->in);
239         buf += 64;
240         len -= 64;
241     }
242
243     /* Handle any remaining bytes of data. */
244
245     os_memcpy(ctx->in, buf, len);
246 }
247
248 /*
249  * Final wrapup - pad to 64-byte boundary with the bit pattern
250  * 1 0* (64-bit count of bits processed, MSB-first)
251  */
252 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
253 {
254     unsigned count;
255     unsigned char *p;
256
257     /* Compute number of bytes mod 64 */
258     count = (ctx->bits[0] >> 3) & 0x3F;
259
260     /* Set the first char of padding to 0x80.  This is safe since there is
261        always at least one byte free */
262     p = ctx->in + count;
263     *p++ = 0x80;
264
265     /* Bytes of padding needed to make 64 bytes */
266     count = 64 - 1 - count;
267
268     /* Pad out to 56 mod 64 */
269     if (count < 8) {
270         /* Two lots of padding:  Pad the first block to 64 bytes */
271         os_memset(p, 0, count);
272         byteReverse(ctx->in, 16);
273         MD5Transform(ctx->buf, (u32 *) ctx->in);
274
275         /* Now fill the next block with 56 bytes */
276         os_memset(ctx->in, 0, 56);
277     } else {
278         /* Pad block to 56 bytes */
279         os_memset(p, 0, count - 8);
280     }
281     byteReverse(ctx->in, 14);
282
283     /* Append length in bits and transform */
284     ((u32 *) ctx->in)[14] = ctx->bits[0];
285     ((u32 *) ctx->in)[15] = ctx->bits[1];
286
287     MD5Transform(ctx->buf, (u32 *) ctx->in);
288     byteReverse((unsigned char *) ctx->buf, 4);
289     os_memcpy(digest, ctx->buf, 16);
290     os_memset(ctx, 0, sizeof(*ctx));    /* In case it's sensitive */
291 }
292
293 /* The four core functions - F1 is optimized somewhat */
294
295 /* #define F1(x, y, z) (x & y | ~x & z) */
296 #define F1(x, y, z) (z ^ (x & (y ^ z)))
297 #define F2(x, y, z) F1(z, x, y)
298 #define F3(x, y, z) (x ^ y ^ z)
299 #define F4(x, y, z) (y ^ (x | ~z))
300
301 /* This is the central step in the MD5 algorithm. */
302 #define MD5STEP(f, w, x, y, z, data, s) \
303         ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
304
305 /*
306  * The core of the MD5 algorithm, this alters an existing MD5 hash to
307  * reflect the addition of 16 longwords of new data.  MD5Update blocks
308  * the data and converts bytes into longwords for this routine.
309  */
310 static void MD5Transform(u32 buf[4], u32 const in[16])
311 {
312     register u32 a, b, c, d;
313
314     a = buf[0];
315     b = buf[1];
316     c = buf[2];
317     d = buf[3];
318
319     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
320     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
321     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
322     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
323     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
324     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
325     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
326     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
327     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
328     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
329     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
330     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
331     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
332     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
333     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
334     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
335
336     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
337     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
338     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
339     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
340     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
341     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
342     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
343     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
344     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
345     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
346     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
347     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
348     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
349     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
350     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
351     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
352
353     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
354     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
355     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
356     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
357     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
358     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
359     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
360     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
361     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
362     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
363     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
364     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
365     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
366     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
367     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
368     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
369
370     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
371     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
372     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
373     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
374     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
375     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
376     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
377     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
378     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
379     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
380     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
381     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
382     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
383     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
384     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
385     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
386
387     buf[0] += a;
388     buf[1] += b;
389     buf[2] += c;
390     buf[3] += d;
391 }
392 /* ===== end - public domain MD5 implementation ===== */
393
394 #endif /* INTERNAL_MD5 */