Convert almost all of the remaining manual traversals of the allproc
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.23 2006/05/25 07:36:37 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389         vm_object_t object;
390         int pageout_status[count];
391         int numpagedout = 0;
392         int i;
393
394         /*
395          * Initiate I/O.  Bump the vm_page_t->busy counter and
396          * mark the pages read-only.
397          *
398          * We do not have to fixup the clean/dirty bits here... we can
399          * allow the pager to do it after the I/O completes.
400          */
401
402         for (i = 0; i < count; i++) {
403                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404                 vm_page_io_start(mc[i]);
405                 vm_page_protect(mc[i], VM_PROT_READ);
406         }
407
408         object = mc[0]->object;
409         vm_object_pip_add(object, count);
410
411         vm_pager_put_pages(object, mc, count,
412             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413             pageout_status);
414
415         for (i = 0; i < count; i++) {
416                 vm_page_t mt = mc[i];
417
418                 switch (pageout_status[i]) {
419                 case VM_PAGER_OK:
420                         numpagedout++;
421                         break;
422                 case VM_PAGER_PEND:
423                         numpagedout++;
424                         break;
425                 case VM_PAGER_BAD:
426                         /*
427                          * Page outside of range of object. Right now we
428                          * essentially lose the changes by pretending it
429                          * worked.
430                          */
431                         pmap_clear_modify(mt);
432                         vm_page_undirty(mt);
433                         break;
434                 case VM_PAGER_ERROR:
435                 case VM_PAGER_FAIL:
436                         /*
437                          * If page couldn't be paged out, then reactivate the
438                          * page so it doesn't clog the inactive list.  (We
439                          * will try paging out it again later).
440                          */
441                         vm_page_activate(mt);
442                         break;
443                 case VM_PAGER_AGAIN:
444                         break;
445                 }
446
447                 /*
448                  * If the operation is still going, leave the page busy to
449                  * block all other accesses. Also, leave the paging in
450                  * progress indicator set so that we don't attempt an object
451                  * collapse.
452                  */
453                 if (pageout_status[i] != VM_PAGER_PEND) {
454                         vm_object_pip_wakeup(object);
455                         vm_page_io_finish(mt);
456                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457                                 vm_page_protect(mt, VM_PROT_READ);
458                 }
459         }
460         return numpagedout;
461 }
462
463 #if !defined(NO_SWAPPING)
464 /*
465  *      vm_pageout_object_deactivate_pages
466  *
467  *      deactivate enough pages to satisfy the inactive target
468  *      requirements or if vm_page_proc_limit is set, then
469  *      deactivate all of the pages in the object and its
470  *      backing_objects.
471  *
472  *      The object and map must be locked.
473  */
474 static void
475 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
476         vm_pindex_t desired, int map_remove_only)
477 {
478         vm_page_t p, next;
479         int rcount;
480         int remove_mode;
481
482         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
483                 return;
484
485         while (object) {
486                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
487                         return;
488                 if (object->paging_in_progress)
489                         return;
490
491                 remove_mode = map_remove_only;
492                 if (object->shadow_count > 1)
493                         remove_mode = 1;
494
495                 /*
496                  * scan the objects entire memory queue.  spl protection is
497                  * required to avoid an interrupt unbusy/free race against
498                  * our busy check.
499                  */
500                 crit_enter();
501                 rcount = object->resident_page_count;
502                 p = TAILQ_FIRST(&object->memq);
503
504                 while (p && (rcount-- > 0)) {
505                         int actcount;
506                         if (pmap_resident_count(vm_map_pmap(map)) <= desired) {
507                                 crit_exit();
508                                 return;
509                         }
510                         next = TAILQ_NEXT(p, listq);
511                         mycpu->gd_cnt.v_pdpages++;
512                         if (p->wire_count != 0 ||
513                             p->hold_count != 0 ||
514                             p->busy != 0 ||
515                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
516                             !pmap_page_exists_quick(vm_map_pmap(map), p)) {
517                                 p = next;
518                                 continue;
519                         }
520
521                         actcount = pmap_ts_referenced(p);
522                         if (actcount) {
523                                 vm_page_flag_set(p, PG_REFERENCED);
524                         } else if (p->flags & PG_REFERENCED) {
525                                 actcount = 1;
526                         }
527
528                         if ((p->queue != PQ_ACTIVE) &&
529                                 (p->flags & PG_REFERENCED)) {
530                                 vm_page_activate(p);
531                                 p->act_count += actcount;
532                                 vm_page_flag_clear(p, PG_REFERENCED);
533                         } else if (p->queue == PQ_ACTIVE) {
534                                 if ((p->flags & PG_REFERENCED) == 0) {
535                                         p->act_count -= min(p->act_count, ACT_DECLINE);
536                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
537                                                 vm_page_protect(p, VM_PROT_NONE);
538                                                 vm_page_deactivate(p);
539                                         } else {
540                                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
541                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
542                                         }
543                                 } else {
544                                         vm_page_activate(p);
545                                         vm_page_flag_clear(p, PG_REFERENCED);
546                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
547                                                 p->act_count += ACT_ADVANCE;
548                                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
549                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550                                 }
551                         } else if (p->queue == PQ_INACTIVE) {
552                                 vm_page_protect(p, VM_PROT_NONE);
553                         }
554                         p = next;
555                 }
556                 crit_exit();
557                 object = object->backing_object;
558         }
559 }
560
561 /*
562  * deactivate some number of pages in a map, try to do it fairly, but
563  * that is really hard to do.
564  */
565 static void
566 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
567 {
568         vm_map_entry_t tmpe;
569         vm_object_t obj, bigobj;
570         int nothingwired;
571
572         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
573                 return;
574         }
575
576         bigobj = NULL;
577         nothingwired = TRUE;
578
579         /*
580          * first, search out the biggest object, and try to free pages from
581          * that.
582          */
583         tmpe = map->header.next;
584         while (tmpe != &map->header) {
585                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
586                         obj = tmpe->object.vm_object;
587                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
588                                 ((bigobj == NULL) ||
589                                  (bigobj->resident_page_count < obj->resident_page_count))) {
590                                 bigobj = obj;
591                         }
592                 }
593                 if (tmpe->wired_count > 0)
594                         nothingwired = FALSE;
595                 tmpe = tmpe->next;
596         }
597
598         if (bigobj)
599                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
600
601         /*
602          * Next, hunt around for other pages to deactivate.  We actually
603          * do this search sort of wrong -- .text first is not the best idea.
604          */
605         tmpe = map->header.next;
606         while (tmpe != &map->header) {
607                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
608                         break;
609                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
610                         obj = tmpe->object.vm_object;
611                         if (obj)
612                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
613                 }
614                 tmpe = tmpe->next;
615         };
616
617         /*
618          * Remove all mappings if a process is swapped out, this will free page
619          * table pages.
620          */
621         if (desired == 0 && nothingwired)
622                 pmap_remove(vm_map_pmap(map),
623                         VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
624         vm_map_unlock(map);
625 }
626 #endif
627
628 /*
629  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
630  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
631  * which we know can be trivially freed.
632  */
633
634 void
635 vm_pageout_page_free(vm_page_t m) {
636         vm_object_t object = m->object;
637         int type = object->type;
638
639         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
640                 vm_object_reference(object);
641         vm_page_busy(m);
642         vm_page_protect(m, VM_PROT_NONE);
643         vm_page_free(m);
644         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
645                 vm_object_deallocate(object);
646 }
647
648 /*
649  *      vm_pageout_scan does the dirty work for the pageout daemon.
650  */
651
652 struct vm_pageout_scan_info {
653         struct proc *bigproc;
654         vm_offset_t bigsize;
655 };
656
657 static int vm_pageout_scan_callback(struct proc *p, void *data);
658
659 static void
660 vm_pageout_scan(int pass)
661 {
662         struct vm_pageout_scan_info info;
663         vm_page_t m, next;
664         struct vm_page marker;
665         int page_shortage, maxscan, pcount;
666         int addl_page_shortage, addl_page_shortage_init;
667         vm_object_t object;
668         int actcount;
669         int vnodes_skipped = 0;
670         int maxlaunder;
671
672         /*
673          * Do whatever cleanup that the pmap code can.
674          */
675         pmap_collect();
676
677         addl_page_shortage_init = vm_pageout_deficit;
678         vm_pageout_deficit = 0;
679
680         /*
681          * Calculate the number of pages we want to either free or move
682          * to the cache.
683          */
684         page_shortage = vm_paging_target() + addl_page_shortage_init;
685
686         /*
687          * Initialize our marker
688          */
689         bzero(&marker, sizeof(marker));
690         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
691         marker.queue = PQ_INACTIVE;
692         marker.wire_count = 1;
693
694         /*
695          * Start scanning the inactive queue for pages we can move to the
696          * cache or free.  The scan will stop when the target is reached or
697          * we have scanned the entire inactive queue.  Note that m->act_count
698          * is not used to form decisions for the inactive queue, only for the
699          * active queue.
700          *
701          * maxlaunder limits the number of dirty pages we flush per scan.
702          * For most systems a smaller value (16 or 32) is more robust under
703          * extreme memory and disk pressure because any unnecessary writes
704          * to disk can result in extreme performance degredation.  However,
705          * systems with excessive dirty pages (especially when MAP_NOSYNC is
706          * used) will die horribly with limited laundering.  If the pageout
707          * daemon cannot clean enough pages in the first pass, we let it go
708          * all out in succeeding passes.
709          */
710         if ((maxlaunder = vm_max_launder) <= 1)
711                 maxlaunder = 1;
712         if (pass)
713                 maxlaunder = 10000;
714
715         /*
716          * We will generally be in a critical section throughout the 
717          * scan, but we can release it temporarily when we are sitting on a
718          * non-busy page without fear.  this is required to prevent an
719          * interrupt from unbusying or freeing a page prior to our busy
720          * check, leaving us on the wrong queue or checking the wrong
721          * page.
722          */
723         crit_enter();
724 rescan0:
725         addl_page_shortage = addl_page_shortage_init;
726         maxscan = vmstats.v_inactive_count;
727         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
728              m != NULL && maxscan-- > 0 && page_shortage > 0;
729              m = next
730          ) {
731                 mycpu->gd_cnt.v_pdpages++;
732
733                 /*
734                  * Give interrupts a chance
735                  */
736                 crit_exit();
737                 crit_enter();
738
739                 /*
740                  * It's easier for some of the conditions below to just loop
741                  * and catch queue changes here rather then check everywhere
742                  * else.
743                  */
744                 if (m->queue != PQ_INACTIVE)
745                         goto rescan0;
746                 next = TAILQ_NEXT(m, pageq);
747
748                 /*
749                  * skip marker pages
750                  */
751                 if (m->flags & PG_MARKER)
752                         continue;
753
754                 /*
755                  * A held page may be undergoing I/O, so skip it.
756                  */
757                 if (m->hold_count) {
758                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
759                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
760                         addl_page_shortage++;
761                         continue;
762                 }
763
764                 /*
765                  * Dont mess with busy pages, keep in the front of the
766                  * queue, most likely are being paged out.
767                  */
768                 if (m->busy || (m->flags & PG_BUSY)) {
769                         addl_page_shortage++;
770                         continue;
771                 }
772
773                 if (m->object->ref_count == 0) {
774                         /*
775                          * If the object is not being used, we ignore previous 
776                          * references.
777                          */
778                         vm_page_flag_clear(m, PG_REFERENCED);
779                         pmap_clear_reference(m);
780
781                 } else if (((m->flags & PG_REFERENCED) == 0) &&
782                             (actcount = pmap_ts_referenced(m))) {
783                         /*
784                          * Otherwise, if the page has been referenced while 
785                          * in the inactive queue, we bump the "activation
786                          * count" upwards, making it less likely that the
787                          * page will be added back to the inactive queue
788                          * prematurely again.  Here we check the page tables
789                          * (or emulated bits, if any), given the upper level
790                          * VM system not knowing anything about existing 
791                          * references.
792                          */
793                         vm_page_activate(m);
794                         m->act_count += (actcount + ACT_ADVANCE);
795                         continue;
796                 }
797
798                 /*
799                  * If the upper level VM system knows about any page 
800                  * references, we activate the page.  We also set the 
801                  * "activation count" higher than normal so that we will less 
802                  * likely place pages back onto the inactive queue again.
803                  */
804                 if ((m->flags & PG_REFERENCED) != 0) {
805                         vm_page_flag_clear(m, PG_REFERENCED);
806                         actcount = pmap_ts_referenced(m);
807                         vm_page_activate(m);
808                         m->act_count += (actcount + ACT_ADVANCE + 1);
809                         continue;
810                 }
811
812                 /*
813                  * If the upper level VM system doesn't know anything about 
814                  * the page being dirty, we have to check for it again.  As 
815                  * far as the VM code knows, any partially dirty pages are 
816                  * fully dirty.
817                  *
818                  * Pages marked PG_WRITEABLE may be mapped into the user
819                  * address space of a process running on another cpu.  A
820                  * user process (without holding the MP lock) running on
821                  * another cpu may be able to touch the page while we are
822                  * trying to remove it.  To prevent this from occuring we
823                  * must call pmap_remove_all() or otherwise make the page
824                  * read-only.  If the race occured pmap_remove_all() is
825                  * responsible for setting m->dirty.
826                  */
827                 if (m->dirty == 0) {
828                         vm_page_test_dirty(m);
829 #if 0
830                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
831                                 pmap_remove_all(m);
832 #endif
833                 } else {
834                         vm_page_dirty(m);
835                 }
836
837                 if (m->valid == 0) {
838                         /*
839                          * Invalid pages can be easily freed
840                          */
841                         vm_pageout_page_free(m);
842                         mycpu->gd_cnt.v_dfree++;
843                         --page_shortage;
844                 } else if (m->dirty == 0) {
845                         /*
846                          * Clean pages can be placed onto the cache queue.
847                          * This effectively frees them.
848                          */
849                         vm_page_cache(m);
850                         --page_shortage;
851                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
852                         /*
853                          * Dirty pages need to be paged out, but flushing
854                          * a page is extremely expensive verses freeing
855                          * a clean page.  Rather then artificially limiting
856                          * the number of pages we can flush, we instead give
857                          * dirty pages extra priority on the inactive queue
858                          * by forcing them to be cycled through the queue
859                          * twice before being flushed, after which the 
860                          * (now clean) page will cycle through once more
861                          * before being freed.  This significantly extends
862                          * the thrash point for a heavily loaded machine.
863                          */
864                         vm_page_flag_set(m, PG_WINATCFLS);
865                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
866                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
867                 } else if (maxlaunder > 0) {
868                         /*
869                          * We always want to try to flush some dirty pages if
870                          * we encounter them, to keep the system stable.
871                          * Normally this number is small, but under extreme
872                          * pressure where there are insufficient clean pages
873                          * on the inactive queue, we may have to go all out.
874                          */
875                         int swap_pageouts_ok;
876                         struct vnode *vp = NULL;
877
878                         object = m->object;
879
880                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
881                                 swap_pageouts_ok = 1;
882                         } else {
883                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
884                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
885                                 vm_page_count_min());
886                                                                                 
887                         }
888
889                         /*
890                          * We don't bother paging objects that are "dead".  
891                          * Those objects are in a "rundown" state.
892                          */
893                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
894                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
895                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
896                                 continue;
897                         }
898
899                         /*
900                          * The object is already known NOT to be dead.   It
901                          * is possible for the vget() to block the whole
902                          * pageout daemon, but the new low-memory handling
903                          * code should prevent it.
904                          *
905                          * The previous code skipped locked vnodes and, worse,
906                          * reordered pages in the queue.  This results in
907                          * completely non-deterministic operation because,
908                          * quite often, a vm_fault has initiated an I/O and
909                          * is holding a locked vnode at just the point where
910                          * the pageout daemon is woken up.
911                          *
912                          * We can't wait forever for the vnode lock, we might
913                          * deadlock due to a vn_read() getting stuck in
914                          * vm_wait while holding this vnode.  We skip the 
915                          * vnode if we can't get it in a reasonable amount
916                          * of time.
917                          */
918
919                         if (object->type == OBJT_VNODE) {
920                                 vp = object->handle;
921
922                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
923                                         ++pageout_lock_miss;
924                                         if (object->flags & OBJ_MIGHTBEDIRTY)
925                                                     vnodes_skipped++;
926                                         continue;
927                                 }
928
929                                 /*
930                                  * The page might have been moved to another
931                                  * queue during potential blocking in vget()
932                                  * above.  The page might have been freed and
933                                  * reused for another vnode.  The object might
934                                  * have been reused for another vnode.
935                                  */
936                                 if (m->queue != PQ_INACTIVE ||
937                                     m->object != object ||
938                                     object->handle != vp) {
939                                         if (object->flags & OBJ_MIGHTBEDIRTY)
940                                                 vnodes_skipped++;
941                                         vput(vp);
942                                         continue;
943                                 }
944         
945                                 /*
946                                  * The page may have been busied during the
947                                  * blocking in vput();  We don't move the
948                                  * page back onto the end of the queue so that
949                                  * statistics are more correct if we don't.
950                                  */
951                                 if (m->busy || (m->flags & PG_BUSY)) {
952                                         vput(vp);
953                                         continue;
954                                 }
955
956                                 /*
957                                  * If the page has become held it might
958                                  * be undergoing I/O, so skip it
959                                  */
960                                 if (m->hold_count) {
961                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
962                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
963                                         if (object->flags & OBJ_MIGHTBEDIRTY)
964                                                 vnodes_skipped++;
965                                         vput(vp);
966                                         continue;
967                                 }
968                         }
969
970                         /*
971                          * If a page is dirty, then it is either being washed
972                          * (but not yet cleaned) or it is still in the
973                          * laundry.  If it is still in the laundry, then we
974                          * start the cleaning operation. 
975                          *
976                          * This operation may cluster, invalidating the 'next'
977                          * pointer.  To prevent an inordinate number of
978                          * restarts we use our marker to remember our place.
979                          *
980                          * decrement page_shortage on success to account for
981                          * the (future) cleaned page.  Otherwise we could wind
982                          * up laundering or cleaning too many pages.
983                          */
984                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
985                         if (vm_pageout_clean(m) != 0) {
986                                 --page_shortage;
987                                 --maxlaunder;
988                         } 
989                         next = TAILQ_NEXT(&marker, pageq);
990                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
991                         if (vp != NULL)
992                                 vput(vp);
993                 }
994         }
995
996         /*
997          * Compute the number of pages we want to try to move from the
998          * active queue to the inactive queue.
999          */
1000         page_shortage = vm_paging_target() +
1001             vmstats.v_inactive_target - vmstats.v_inactive_count;
1002         page_shortage += addl_page_shortage;
1003
1004         /*
1005          * Scan the active queue for things we can deactivate. We nominally
1006          * track the per-page activity counter and use it to locate 
1007          * deactivation candidates.
1008          *
1009          * NOTE: we are still in a critical section.
1010          */
1011         pcount = vmstats.v_active_count;
1012         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1013
1014         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1015                 /*
1016                  * Give interrupts a chance.
1017                  */
1018                 crit_exit();
1019                 crit_enter();
1020
1021                 /*
1022                  * If the page was ripped out from under us, just stop.
1023                  */
1024                 if (m->queue != PQ_ACTIVE)
1025                         break;
1026                 next = TAILQ_NEXT(m, pageq);
1027
1028                 /*
1029                  * Don't deactivate pages that are busy.
1030                  */
1031                 if ((m->busy != 0) ||
1032                     (m->flags & PG_BUSY) ||
1033                     (m->hold_count != 0)) {
1034                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1035                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1036                         m = next;
1037                         continue;
1038                 }
1039
1040                 /*
1041                  * The count for pagedaemon pages is done after checking the
1042                  * page for eligibility...
1043                  */
1044                 mycpu->gd_cnt.v_pdpages++;
1045
1046                 /*
1047                  * Check to see "how much" the page has been used.
1048                  */
1049                 actcount = 0;
1050                 if (m->object->ref_count != 0) {
1051                         if (m->flags & PG_REFERENCED) {
1052                                 actcount += 1;
1053                         }
1054                         actcount += pmap_ts_referenced(m);
1055                         if (actcount) {
1056                                 m->act_count += ACT_ADVANCE + actcount;
1057                                 if (m->act_count > ACT_MAX)
1058                                         m->act_count = ACT_MAX;
1059                         }
1060                 }
1061
1062                 /*
1063                  * Since we have "tested" this bit, we need to clear it now.
1064                  */
1065                 vm_page_flag_clear(m, PG_REFERENCED);
1066
1067                 /*
1068                  * Only if an object is currently being used, do we use the
1069                  * page activation count stats.
1070                  */
1071                 if (actcount && (m->object->ref_count != 0)) {
1072                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1073                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1074                 } else {
1075                         m->act_count -= min(m->act_count, ACT_DECLINE);
1076                         if (vm_pageout_algorithm ||
1077                             m->object->ref_count == 0 ||
1078                             m->act_count < pass) {
1079                                 page_shortage--;
1080                                 if (m->object->ref_count == 0) {
1081                                         vm_page_protect(m, VM_PROT_NONE);
1082                                         if (m->dirty == 0)
1083                                                 vm_page_cache(m);
1084                                         else
1085                                                 vm_page_deactivate(m);
1086                                 } else {
1087                                         vm_page_deactivate(m);
1088                                 }
1089                         } else {
1090                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1091                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1092                         }
1093                 }
1094                 m = next;
1095         }
1096
1097         /*
1098          * We try to maintain some *really* free pages, this allows interrupt
1099          * code to be guaranteed space.  Since both cache and free queues 
1100          * are considered basically 'free', moving pages from cache to free
1101          * does not effect other calculations.
1102          *
1103          * NOTE: we are still in a critical section.
1104          */
1105
1106         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1107                 static int cache_rover = 0;
1108                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1109                 if (!m)
1110                         break;
1111                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1112                     m->busy || 
1113                     m->hold_count || 
1114                     m->wire_count) {
1115 #ifdef INVARIANTS
1116                         printf("Warning: busy page %p found in cache\n", m);
1117 #endif
1118                         vm_page_deactivate(m);
1119                         continue;
1120                 }
1121                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1122                 vm_pageout_page_free(m);
1123                 mycpu->gd_cnt.v_dfree++;
1124         }
1125
1126         crit_exit();
1127
1128 #if !defined(NO_SWAPPING)
1129         /*
1130          * Idle process swapout -- run once per second.
1131          */
1132         if (vm_swap_idle_enabled) {
1133                 static long lsec;
1134                 if (time_second != lsec) {
1135                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1136                         vm_req_vmdaemon();
1137                         lsec = time_second;
1138                 }
1139         }
1140 #endif
1141                 
1142         /*
1143          * If we didn't get enough free pages, and we have skipped a vnode
1144          * in a writeable object, wakeup the sync daemon.  And kick swapout
1145          * if we did not get enough free pages.
1146          */
1147         if (vm_paging_target() > 0) {
1148                 if (vnodes_skipped && vm_page_count_min())
1149                         speedup_syncer();
1150 #if !defined(NO_SWAPPING)
1151                 if (vm_swap_enabled && vm_page_count_target()) {
1152                         vm_req_vmdaemon();
1153                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1154                 }
1155 #endif
1156         }
1157
1158         /*
1159          * If we are out of swap and were not able to reach our paging
1160          * target, kill the largest process.
1161          */
1162         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1163             (swap_pager_full && vm_paging_target() > 0)) {
1164 #if 0
1165         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1166 #endif
1167                 info.bigproc = NULL;
1168                 info.bigsize = 0;
1169                 allproc_scan(vm_pageout_scan_callback, &info);
1170                 if (info.bigproc != NULL) {
1171                         killproc(info.bigproc, "out of swap space");
1172                         info.bigproc->p_nice = PRIO_MIN;
1173                         info.bigproc->p_usched->resetpriority(&info.bigproc->p_lwp);
1174                         wakeup(&vmstats.v_free_count);
1175                         PRELE(info.bigproc);
1176                 }
1177         }
1178 }
1179
1180 static int
1181 vm_pageout_scan_callback(struct proc *p, void *data)
1182 {
1183         struct vm_pageout_scan_info *info = data;
1184         vm_offset_t size;
1185
1186         /*
1187          * if this is a system process, skip it
1188          */
1189         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1190             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1191                 return (0);
1192         }
1193
1194         /*
1195          * if the process is in a non-running type state,
1196          * don't touch it.
1197          */
1198         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1199                 return (0);
1200         }
1201
1202         /*
1203          * get the process size
1204          */
1205         size = vmspace_resident_count(p->p_vmspace) +
1206                 vmspace_swap_count(p->p_vmspace);
1207
1208         /*
1209          * If the this process is bigger than the biggest one
1210          * remember it.
1211          */
1212         if (size > info->bigsize) {
1213                 if (info->bigproc)
1214                         PRELE(info->bigproc);
1215                 PHOLD(p);
1216                 info->bigproc = p;
1217                 info->bigsize = size;
1218         }
1219         return(0);
1220 }
1221
1222 /*
1223  * This routine tries to maintain the pseudo LRU active queue,
1224  * so that during long periods of time where there is no paging,
1225  * that some statistic accumulation still occurs.  This code
1226  * helps the situation where paging just starts to occur.
1227  */
1228 static void
1229 vm_pageout_page_stats(void)
1230 {
1231         vm_page_t m,next;
1232         int pcount,tpcount;             /* Number of pages to check */
1233         static int fullintervalcount = 0;
1234         int page_shortage;
1235
1236         page_shortage = 
1237             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1238             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1239
1240         if (page_shortage <= 0)
1241                 return;
1242
1243         crit_enter();
1244
1245         pcount = vmstats.v_active_count;
1246         fullintervalcount += vm_pageout_stats_interval;
1247         if (fullintervalcount < vm_pageout_full_stats_interval) {
1248                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1249                 if (pcount > tpcount)
1250                         pcount = tpcount;
1251         } else {
1252                 fullintervalcount = 0;
1253         }
1254
1255         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1256         while ((m != NULL) && (pcount-- > 0)) {
1257                 int actcount;
1258
1259                 if (m->queue != PQ_ACTIVE) {
1260                         break;
1261                 }
1262
1263                 next = TAILQ_NEXT(m, pageq);
1264                 /*
1265                  * Don't deactivate pages that are busy.
1266                  */
1267                 if ((m->busy != 0) ||
1268                     (m->flags & PG_BUSY) ||
1269                     (m->hold_count != 0)) {
1270                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1271                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1272                         m = next;
1273                         continue;
1274                 }
1275
1276                 actcount = 0;
1277                 if (m->flags & PG_REFERENCED) {
1278                         vm_page_flag_clear(m, PG_REFERENCED);
1279                         actcount += 1;
1280                 }
1281
1282                 actcount += pmap_ts_referenced(m);
1283                 if (actcount) {
1284                         m->act_count += ACT_ADVANCE + actcount;
1285                         if (m->act_count > ACT_MAX)
1286                                 m->act_count = ACT_MAX;
1287                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1288                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1289                 } else {
1290                         if (m->act_count == 0) {
1291                                 /*
1292                                  * We turn off page access, so that we have
1293                                  * more accurate RSS stats.  We don't do this
1294                                  * in the normal page deactivation when the
1295                                  * system is loaded VM wise, because the
1296                                  * cost of the large number of page protect
1297                                  * operations would be higher than the value
1298                                  * of doing the operation.
1299                                  */
1300                                 vm_page_protect(m, VM_PROT_NONE);
1301                                 vm_page_deactivate(m);
1302                         } else {
1303                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1304                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1305                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1306                         }
1307                 }
1308
1309                 m = next;
1310         }
1311         crit_exit();
1312 }
1313
1314 static int
1315 vm_pageout_free_page_calc(vm_size_t count)
1316 {
1317         if (count < vmstats.v_page_count)
1318                  return 0;
1319         /*
1320          * free_reserved needs to include enough for the largest swap pager
1321          * structures plus enough for any pv_entry structs when paging.
1322          */
1323         if (vmstats.v_page_count > 1024)
1324                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1325         else
1326                 vmstats.v_free_min = 4;
1327         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1328                 vmstats.v_interrupt_free_min;
1329         vmstats.v_free_reserved = vm_pageout_page_count +
1330                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1331         vmstats.v_free_severe = vmstats.v_free_min / 2;
1332         vmstats.v_free_min += vmstats.v_free_reserved;
1333         vmstats.v_free_severe += vmstats.v_free_reserved;
1334         return 1;
1335 }
1336
1337
1338 /*
1339  *      vm_pageout is the high level pageout daemon.
1340  */
1341 static void
1342 vm_pageout(void)
1343 {
1344         int pass;
1345
1346         /*
1347          * Initialize some paging parameters.
1348          */
1349
1350         vmstats.v_interrupt_free_min = 2;
1351         if (vmstats.v_page_count < 2000)
1352                 vm_pageout_page_count = 8;
1353
1354         vm_pageout_free_page_calc(vmstats.v_page_count);
1355         /*
1356          * v_free_target and v_cache_min control pageout hysteresis.  Note
1357          * that these are more a measure of the VM cache queue hysteresis
1358          * then the VM free queue.  Specifically, v_free_target is the
1359          * high water mark (free+cache pages).
1360          *
1361          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1362          * low water mark, while v_free_min is the stop.  v_cache_min must
1363          * be big enough to handle memory needs while the pageout daemon
1364          * is signalled and run to free more pages.
1365          */
1366         if (vmstats.v_free_count > 6144)
1367                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1368         else
1369                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1370
1371         if (vmstats.v_free_count > 2048) {
1372                 vmstats.v_cache_min = vmstats.v_free_target;
1373                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1374                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1375         } else {
1376                 vmstats.v_cache_min = 0;
1377                 vmstats.v_cache_max = 0;
1378                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1379         }
1380         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1381                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1382
1383         /* XXX does not really belong here */
1384         if (vm_page_max_wired == 0)
1385                 vm_page_max_wired = vmstats.v_free_count / 3;
1386
1387         if (vm_pageout_stats_max == 0)
1388                 vm_pageout_stats_max = vmstats.v_free_target;
1389
1390         /*
1391          * Set interval in seconds for stats scan.
1392          */
1393         if (vm_pageout_stats_interval == 0)
1394                 vm_pageout_stats_interval = 5;
1395         if (vm_pageout_full_stats_interval == 0)
1396                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1397         
1398
1399         /*
1400          * Set maximum free per pass
1401          */
1402         if (vm_pageout_stats_free_max == 0)
1403                 vm_pageout_stats_free_max = 5;
1404
1405         swap_pager_swap_init();
1406         pass = 0;
1407         /*
1408          * The pageout daemon is never done, so loop forever.
1409          */
1410         while (TRUE) {
1411                 int error;
1412
1413                 /*
1414                  * If we have enough free memory, wakeup waiters.  Do
1415                  * not clear vm_pages_needed until we reach our target,
1416                  * otherwise we may be woken up over and over again and
1417                  * waste a lot of cpu.
1418                  */
1419                 crit_enter();
1420                 if (vm_pages_needed && !vm_page_count_min()) {
1421                         if (vm_paging_needed() <= 0)
1422                                 vm_pages_needed = 0;
1423                         wakeup(&vmstats.v_free_count);
1424                 }
1425                 if (vm_pages_needed) {
1426                         /*
1427                          * Still not done, take a second pass without waiting
1428                          * (unlimited dirty cleaning), otherwise sleep a bit
1429                          * and try again.
1430                          */
1431                         ++pass;
1432                         if (pass > 1)
1433                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1434                 } else {
1435                         /*
1436                          * Good enough, sleep & handle stats.  Prime the pass
1437                          * for the next run.
1438                          */
1439                         if (pass > 1)
1440                                 pass = 1;
1441                         else
1442                                 pass = 0;
1443                         error = tsleep(&vm_pages_needed,
1444                                 0, "psleep", vm_pageout_stats_interval * hz);
1445                         if (error && !vm_pages_needed) {
1446                                 crit_exit();
1447                                 pass = 0;
1448                                 vm_pageout_page_stats();
1449                                 continue;
1450                         }
1451                 }
1452
1453                 if (vm_pages_needed)
1454                         mycpu->gd_cnt.v_pdwakeups++;
1455                 crit_exit();
1456                 vm_pageout_scan(pass);
1457                 vm_pageout_deficit = 0;
1458         }
1459 }
1460
1461 void
1462 pagedaemon_wakeup(void)
1463 {
1464         if (!vm_pages_needed && curthread != pagethread) {
1465                 vm_pages_needed++;
1466                 wakeup(&vm_pages_needed);
1467         }
1468 }
1469
1470 #if !defined(NO_SWAPPING)
1471 static void
1472 vm_req_vmdaemon(void)
1473 {
1474         static int lastrun = 0;
1475
1476         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1477                 wakeup(&vm_daemon_needed);
1478                 lastrun = ticks;
1479         }
1480 }
1481
1482 static int vm_daemon_callback(struct proc *p, void *data __unused);
1483
1484 static void
1485 vm_daemon(void)
1486 {
1487         while (TRUE) {
1488                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1489                 if (vm_pageout_req_swapout) {
1490                         swapout_procs(vm_pageout_req_swapout);
1491                         vm_pageout_req_swapout = 0;
1492                 }
1493                 /*
1494                  * scan the processes for exceeding their rlimits or if
1495                  * process is swapped out -- deactivate pages
1496                  */
1497                 allproc_scan(vm_daemon_callback, NULL);
1498         }
1499 }
1500
1501 static int
1502 vm_daemon_callback(struct proc *p, void *data __unused)
1503 {
1504         vm_pindex_t limit, size;
1505
1506         /*
1507          * if this is a system process or if we have already
1508          * looked at this process, skip it.
1509          */
1510         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1511                 return (0);
1512
1513         /*
1514          * if the process is in a non-running type state,
1515          * don't touch it.
1516          */
1517         if (p->p_stat != SRUN && p->p_stat != SSLEEP)
1518                 return (0);
1519
1520         /*
1521          * get a limit
1522          */
1523         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1524                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1525
1526         /*
1527          * let processes that are swapped out really be
1528          * swapped out.  Set the limit to nothing to get as
1529          * many pages out to swap as possible.
1530          */
1531         if (p->p_flag & P_SWAPPEDOUT)
1532                 limit = 0;
1533
1534         size = vmspace_resident_count(p->p_vmspace);
1535         if (limit >= 0 && size >= limit) {
1536                 vm_pageout_map_deactivate_pages(
1537                     &p->p_vmspace->vm_map, limit);
1538         }
1539         return (0);
1540 }
1541
1542 #endif