bge: Add delays after enable RX/TX MAC
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_ifpoll.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
120
121 #define BGE_RESET_SHUTDOWN      0
122 #define BGE_RESET_START         1
123 #define BGE_RESET_SUSPEND       2
124
125 static const struct bge_type {
126         uint16_t                bge_vid;
127         uint16_t                bge_did;
128         char                    *bge_name;
129 } bge_devs[] = {
130         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131                 "3COM 3C996 Gigabit Ethernet" },
132
133         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134                 "Alteon BCM5700 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136                 "Alteon BCM5701 Gigabit Ethernet" },
137
138         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139                 "Altima AC1000 Gigabit Ethernet" },
140         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141                 "Altima AC1002 Gigabit Ethernet" },
142         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143                 "Altima AC9100 Gigabit Ethernet" },
144
145         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146                 "Apple BCM5701 Gigabit Ethernet" },
147
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149                 "Broadcom BCM5700 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151                 "Broadcom BCM5701 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153                 "Broadcom BCM5702 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155                 "Broadcom BCM5702X Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157                 "Broadcom BCM5702 Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159                 "Broadcom BCM5703 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161                 "Broadcom BCM5703X Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163                 "Broadcom BCM5703 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171                 "Broadcom BCM5705 Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173                 "Broadcom BCM5705F Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175                 "Broadcom BCM5705K Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177                 "Broadcom BCM5705M Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179                 "Broadcom BCM5705M Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181                 "Broadcom BCM5714C Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183                 "Broadcom BCM5714S Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185                 "Broadcom BCM5715 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187                 "Broadcom BCM5715S Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189                 "Broadcom BCM5720 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191                 "Broadcom BCM5721 Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193                 "Broadcom BCM5722 Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195                 "Broadcom BCM5723 Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197                 "Broadcom BCM5750 Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199                 "Broadcom BCM5750M Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201                 "Broadcom BCM5751 Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203                 "Broadcom BCM5751F Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205                 "Broadcom BCM5751M Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207                 "Broadcom BCM5752 Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209                 "Broadcom BCM5752M Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211                 "Broadcom BCM5753 Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213                 "Broadcom BCM5753F Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215                 "Broadcom BCM5753M Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217                 "Broadcom BCM5754 Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219                 "Broadcom BCM5754M Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221                 "Broadcom BCM5755 Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223                 "Broadcom BCM5755M Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225                 "Broadcom BCM5756 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227                 "Broadcom BCM5761 Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229                 "Broadcom BCM5761E Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231                 "Broadcom BCM5761S Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233                 "Broadcom BCM5761SE Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235                 "Broadcom BCM5764 Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237                 "Broadcom BCM5780 Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239                 "Broadcom BCM5780S Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241                 "Broadcom BCM5781 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243                 "Broadcom BCM5782 Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245                 "Broadcom BCM5784 Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247                 "Broadcom BCM5785F Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249                 "Broadcom BCM5785G Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251                 "Broadcom BCM5786 Gigabit Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253                 "Broadcom BCM5787 Gigabit Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255                 "Broadcom BCM5787F Gigabit Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257                 "Broadcom BCM5787M Gigabit Ethernet" },
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259                 "Broadcom BCM5788 Gigabit Ethernet" },
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261                 "Broadcom BCM5789 Gigabit Ethernet" },
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263                 "Broadcom BCM5901 Fast Ethernet" },
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265                 "Broadcom BCM5901A2 Fast Ethernet" },
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267                 "Broadcom BCM5903M Fast Ethernet" },
268         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269                 "Broadcom BCM5906 Fast Ethernet"},
270         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271                 "Broadcom BCM5906M Fast Ethernet"},
272         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273                 "Broadcom BCM57760 Gigabit Ethernet"},
274         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275                 "Broadcom BCM57780 Gigabit Ethernet"},
276         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277                 "Broadcom BCM57788 Gigabit Ethernet"},
278         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279                 "Broadcom BCM57790 Gigabit Ethernet"},
280         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281                 "SysKonnect Gigabit Ethernet" },
282
283         { 0, 0, NULL }
284 };
285
286 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
293
294 #define BGE_IS_CRIPPLED(sc)             \
295         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296
297 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298
299 static int      bge_probe(device_t);
300 static int      bge_attach(device_t);
301 static int      bge_detach(device_t);
302 static void     bge_txeof(struct bge_softc *, uint16_t);
303 static void     bge_rxeof(struct bge_softc *, uint16_t, int);
304
305 static void     bge_tick(void *);
306 static void     bge_stats_update(struct bge_softc *);
307 static void     bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309                 bge_defrag_shortdma(struct mbuf *);
310 static int      bge_encap(struct bge_softc *, struct mbuf **,
311                     uint32_t *, int *);
312 static void     bge_xmit(struct bge_softc *, uint32_t);
313 static int      bge_setup_tso(struct bge_softc *, struct mbuf **,
314                     uint16_t *, uint16_t *);
315
316 #ifdef IFPOLL_ENABLE
317 static void     bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void     bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void     bge_intr_crippled(void *);
321 static void     bge_intr_legacy(void *);
322 static void     bge_msi(void *);
323 static void     bge_msi_oneshot(void *);
324 static void     bge_intr(struct bge_softc *);
325 static void     bge_enable_intr(struct bge_softc *);
326 static void     bge_disable_intr(struct bge_softc *);
327 static void     bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void     bge_init(void *);
330 static void     bge_stop(struct bge_softc *);
331 static void     bge_watchdog(struct ifnet *);
332 static void     bge_shutdown(device_t);
333 static int      bge_suspend(device_t);
334 static int      bge_resume(device_t);
335 static int      bge_ifmedia_upd(struct ifnet *);
336 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337
338 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340
341 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343
344 static void     bge_setmulti(struct bge_softc *);
345 static void     bge_setpromisc(struct bge_softc *);
346 static void     bge_enable_msi(struct bge_softc *sc);
347
348 static int      bge_alloc_jumbo_mem(struct bge_softc *);
349 static void     bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351                 *bge_jalloc(struct bge_softc *);
352 static void     bge_jfree(void *);
353 static void     bge_jref(void *);
354 static int      bge_newbuf_std(struct bge_softc *, int, int);
355 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int      bge_init_rx_ring_std(struct bge_softc *);
359 static void     bge_free_rx_ring_std(struct bge_softc *);
360 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void     bge_free_tx_ring(struct bge_softc *);
363 static int      bge_init_tx_ring(struct bge_softc *);
364
365 static int      bge_chipinit(struct bge_softc *);
366 static int      bge_blockinit(struct bge_softc *);
367 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368
369 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void     bge_writembx(struct bge_softc *, int, int);
377
378 static int      bge_miibus_readreg(device_t, int, int);
379 static int      bge_miibus_writereg(device_t, int, int, int);
380 static void     bge_miibus_statchg(device_t);
381 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void     bge_link_poll(struct bge_softc *);
386
387 static void     bge_reset(struct bge_softc *);
388
389 static int      bge_dma_alloc(struct bge_softc *);
390 static void     bge_dma_free(struct bge_softc *);
391 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392                                     bus_dma_tag_t *, bus_dmamap_t *,
393                                     void **, bus_addr_t *);
394 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395
396 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
400
401 static void     bge_coal_change(struct bge_softc *);
402 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411                     int, int, uint32_t);
412
413 static void     bge_sig_post_reset(struct bge_softc *, int);
414 static void     bge_sig_legacy(struct bge_softc *, int);
415 static void     bge_sig_pre_reset(struct bge_softc *, int);
416 static void     bge_stop_fw(struct bge_softc *);
417 static void     bge_asf_driver_up(struct bge_softc *);
418
419 /*
420  * Set following tunable to 1 for some IBM blade servers with the DNLK
421  * switch module. Auto negotiation is broken for those configurations.
422  */
423 static int      bge_fake_autoneg = 0;
424 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
425
426 static int      bge_msi_enable = 1;
427 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
428
429 static int      bge_allow_asf = 1;
430 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
431
432 #if !defined(KTR_IF_BGE)
433 #define KTR_IF_BGE      KTR_ALL
434 #endif
435 KTR_INFO_MASTER(if_bge);
436 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
437 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
438 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
439 #define logif(name)     KTR_LOG(if_bge_ ## name)
440
441 static device_method_t bge_methods[] = {
442         /* Device interface */
443         DEVMETHOD(device_probe,         bge_probe),
444         DEVMETHOD(device_attach,        bge_attach),
445         DEVMETHOD(device_detach,        bge_detach),
446         DEVMETHOD(device_shutdown,      bge_shutdown),
447         DEVMETHOD(device_suspend,       bge_suspend),
448         DEVMETHOD(device_resume,        bge_resume),
449
450         /* bus interface */
451         DEVMETHOD(bus_print_child,      bus_generic_print_child),
452         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
453
454         /* MII interface */
455         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
456         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
457         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
458
459         DEVMETHOD_END
460 };
461
462 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
463 static devclass_t bge_devclass;
464
465 DECLARE_DUMMY_MODULE(if_bge);
466 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
467 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
468
469 static uint32_t
470 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
471 {
472         device_t dev = sc->bge_dev;
473         uint32_t val;
474
475         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
476             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
477                 return 0;
478
479         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
480         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
481         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
482         return (val);
483 }
484
485 static void
486 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
487 {
488         device_t dev = sc->bge_dev;
489
490         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
491             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
492                 return;
493
494         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
495         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
496         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
497 }
498
499 #ifdef notdef
500 static uint32_t
501 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
502 {
503         device_t dev = sc->bge_dev;
504
505         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
506         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
507 }
508 #endif
509
510 static void
511 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
512 {
513         device_t dev = sc->bge_dev;
514
515         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
516         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
517 }
518
519 static void
520 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
521 {
522         CSR_WRITE_4(sc, off, val);
523 }
524
525 static void
526 bge_writembx(struct bge_softc *sc, int off, int val)
527 {
528         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
529                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
530
531         CSR_WRITE_4(sc, off, val);
532         if (sc->bge_mbox_reorder)
533                 CSR_READ_4(sc, off);
534 }
535
536 static uint8_t
537 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
538 {
539         uint32_t access, byte = 0;
540         int i;
541
542         /* Lock. */
543         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
544         for (i = 0; i < 8000; i++) {
545                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
546                         break;
547                 DELAY(20);
548         }
549         if (i == 8000)
550                 return (1);
551
552         /* Enable access. */
553         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
554         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
555
556         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
557         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
558         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
559                 DELAY(10);
560                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
561                         DELAY(10);
562                         break;
563                 }
564         }
565
566         if (i == BGE_TIMEOUT * 10) {
567                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
568                 return (1);
569         }
570
571         /* Get result. */
572         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
573
574         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
575
576         /* Disable access. */
577         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
578
579         /* Unlock. */
580         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
581         CSR_READ_4(sc, BGE_NVRAM_SWARB);
582
583         return (0);
584 }
585
586 /*
587  * Read a sequence of bytes from NVRAM.
588  */
589 static int
590 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
591 {
592         int err = 0, i;
593         uint8_t byte = 0;
594
595         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
596                 return (1);
597
598         for (i = 0; i < cnt; i++) {
599                 err = bge_nvram_getbyte(sc, off + i, &byte);
600                 if (err)
601                         break;
602                 *(dest + i) = byte;
603         }
604
605         return (err ? 1 : 0);
606 }
607
608 /*
609  * Read a byte of data stored in the EEPROM at address 'addr.' The
610  * BCM570x supports both the traditional bitbang interface and an
611  * auto access interface for reading the EEPROM. We use the auto
612  * access method.
613  */
614 static uint8_t
615 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
616 {
617         int i;
618         uint32_t byte = 0;
619
620         /*
621          * Enable use of auto EEPROM access so we can avoid
622          * having to use the bitbang method.
623          */
624         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
625
626         /* Reset the EEPROM, load the clock period. */
627         CSR_WRITE_4(sc, BGE_EE_ADDR,
628             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
629         DELAY(20);
630
631         /* Issue the read EEPROM command. */
632         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
633
634         /* Wait for completion */
635         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
636                 DELAY(10);
637                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
638                         break;
639         }
640
641         if (i == BGE_TIMEOUT) {
642                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
643                 return(1);
644         }
645
646         /* Get result. */
647         byte = CSR_READ_4(sc, BGE_EE_DATA);
648
649         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
650
651         return(0);
652 }
653
654 /*
655  * Read a sequence of bytes from the EEPROM.
656  */
657 static int
658 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
659 {
660         size_t i;
661         int err;
662         uint8_t byte;
663
664         for (byte = 0, err = 0, i = 0; i < len; i++) {
665                 err = bge_eeprom_getbyte(sc, off + i, &byte);
666                 if (err)
667                         break;
668                 *(dest + i) = byte;
669         }
670
671         return(err ? 1 : 0);
672 }
673
674 static int
675 bge_miibus_readreg(device_t dev, int phy, int reg)
676 {
677         struct bge_softc *sc = device_get_softc(dev);
678         uint32_t val;
679         int i;
680
681         KASSERT(phy == sc->bge_phyno,
682             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
683
684         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
685         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
686                 CSR_WRITE_4(sc, BGE_MI_MODE,
687                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
688                 DELAY(80);
689         }
690
691         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
692             BGE_MIPHY(phy) | BGE_MIREG(reg));
693
694         /* Poll for the PHY register access to complete. */
695         for (i = 0; i < BGE_TIMEOUT; i++) {
696                 DELAY(10);
697                 val = CSR_READ_4(sc, BGE_MI_COMM);
698                 if ((val & BGE_MICOMM_BUSY) == 0) {
699                         DELAY(5);
700                         val = CSR_READ_4(sc, BGE_MI_COMM);
701                         break;
702                 }
703         }
704         if (i == BGE_TIMEOUT) {
705                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
706                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
707                 val = 0;
708         }
709
710         /* Restore the autopoll bit if necessary. */
711         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
712                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
713                 DELAY(80);
714         }
715
716         if (val & BGE_MICOMM_READFAIL)
717                 return 0;
718
719         return (val & 0xFFFF);
720 }
721
722 static int
723 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
724 {
725         struct bge_softc *sc = device_get_softc(dev);
726         int i;
727
728         KASSERT(phy == sc->bge_phyno,
729             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
730
731         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
732             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
733                return 0;
734
735         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
736         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
737                 CSR_WRITE_4(sc, BGE_MI_MODE,
738                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
739                 DELAY(80);
740         }
741
742         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
743             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
744
745         for (i = 0; i < BGE_TIMEOUT; i++) {
746                 DELAY(10);
747                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
748                         DELAY(5);
749                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
750                         break;
751                 }
752         }
753         if (i == BGE_TIMEOUT) {
754                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
755                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
756         }
757
758         /* Restore the autopoll bit if necessary. */
759         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
760                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
761                 DELAY(80);
762         }
763
764         return 0;
765 }
766
767 static void
768 bge_miibus_statchg(device_t dev)
769 {
770         struct bge_softc *sc;
771         struct mii_data *mii;
772         uint32_t mac_mode;
773
774         sc = device_get_softc(dev);
775         if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
776                 return;
777
778         mii = device_get_softc(sc->bge_miibus);
779
780         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
781             (IFM_ACTIVE | IFM_AVALID)) {
782                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
783                 case IFM_10_T:
784                 case IFM_100_TX:
785                         sc->bge_link = 1;
786                         break;
787                 case IFM_1000_T:
788                 case IFM_1000_SX:
789                 case IFM_2500_SX:
790                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
791                                 sc->bge_link = 1;
792                         else
793                                 sc->bge_link = 0;
794                         break;
795                 default:
796                         sc->bge_link = 0;
797                         break;
798                 }
799         } else {
800                 sc->bge_link = 0;
801         }
802         if (sc->bge_link == 0)
803                 return;
804
805         /*
806          * APE firmware touches these registers to keep the MAC
807          * connected to the outside world.  Try to keep the
808          * accesses atomic.
809          */
810
811         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
812             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
813
814         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
815             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
816                 mac_mode |= BGE_PORTMODE_GMII;
817         else
818                 mac_mode |= BGE_PORTMODE_MII;
819
820         if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
821                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
822
823         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
824         DELAY(40);
825 }
826
827 /*
828  * Memory management for jumbo frames.
829  */
830 static int
831 bge_alloc_jumbo_mem(struct bge_softc *sc)
832 {
833         struct ifnet *ifp = &sc->arpcom.ac_if;
834         struct bge_jslot *entry;
835         uint8_t *ptr;
836         bus_addr_t paddr;
837         int i, error;
838
839         /*
840          * Create tag for jumbo mbufs.
841          * This is really a bit of a kludge. We allocate a special
842          * jumbo buffer pool which (thanks to the way our DMA
843          * memory allocation works) will consist of contiguous
844          * pages. This means that even though a jumbo buffer might
845          * be larger than a page size, we don't really need to
846          * map it into more than one DMA segment. However, the
847          * default mbuf tag will result in multi-segment mappings,
848          * so we have to create a special jumbo mbuf tag that
849          * lets us get away with mapping the jumbo buffers as
850          * a single segment. I think eventually the driver should
851          * be changed so that it uses ordinary mbufs and cluster
852          * buffers, i.e. jumbo frames can span multiple DMA
853          * descriptors. But that's a project for another day.
854          */
855
856         /*
857          * Create DMA stuffs for jumbo RX ring.
858          */
859         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
860                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
861                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
862                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
863                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
864         if (error) {
865                 if_printf(ifp, "could not create jumbo RX ring\n");
866                 return error;
867         }
868
869         /*
870          * Create DMA stuffs for jumbo buffer block.
871          */
872         error = bge_dma_block_alloc(sc, BGE_JMEM,
873                                     &sc->bge_cdata.bge_jumbo_tag,
874                                     &sc->bge_cdata.bge_jumbo_map,
875                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
876                                     &paddr);
877         if (error) {
878                 if_printf(ifp, "could not create jumbo buffer\n");
879                 return error;
880         }
881
882         SLIST_INIT(&sc->bge_jfree_listhead);
883
884         /*
885          * Now divide it up into 9K pieces and save the addresses
886          * in an array. Note that we play an evil trick here by using
887          * the first few bytes in the buffer to hold the the address
888          * of the softc structure for this interface. This is because
889          * bge_jfree() needs it, but it is called by the mbuf management
890          * code which will not pass it to us explicitly.
891          */
892         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
893                 entry = &sc->bge_cdata.bge_jslots[i];
894                 entry->bge_sc = sc;
895                 entry->bge_buf = ptr;
896                 entry->bge_paddr = paddr;
897                 entry->bge_inuse = 0;
898                 entry->bge_slot = i;
899                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
900
901                 ptr += BGE_JLEN;
902                 paddr += BGE_JLEN;
903         }
904         return 0;
905 }
906
907 static void
908 bge_free_jumbo_mem(struct bge_softc *sc)
909 {
910         /* Destroy jumbo RX ring. */
911         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
912                            sc->bge_cdata.bge_rx_jumbo_ring_map,
913                            sc->bge_ldata.bge_rx_jumbo_ring);
914
915         /* Destroy jumbo buffer block. */
916         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
917                            sc->bge_cdata.bge_jumbo_map,
918                            sc->bge_ldata.bge_jumbo_buf);
919 }
920
921 /*
922  * Allocate a jumbo buffer.
923  */
924 static struct bge_jslot *
925 bge_jalloc(struct bge_softc *sc)
926 {
927         struct bge_jslot *entry;
928
929         lwkt_serialize_enter(&sc->bge_jslot_serializer);
930         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
931         if (entry) {
932                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
933                 entry->bge_inuse = 1;
934         } else {
935                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
936         }
937         lwkt_serialize_exit(&sc->bge_jslot_serializer);
938         return(entry);
939 }
940
941 /*
942  * Adjust usage count on a jumbo buffer.
943  */
944 static void
945 bge_jref(void *arg)
946 {
947         struct bge_jslot *entry = (struct bge_jslot *)arg;
948         struct bge_softc *sc = entry->bge_sc;
949
950         if (sc == NULL)
951                 panic("bge_jref: can't find softc pointer!");
952
953         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
954                 panic("bge_jref: asked to reference buffer "
955                     "that we don't manage!");
956         } else if (entry->bge_inuse == 0) {
957                 panic("bge_jref: buffer already free!");
958         } else {
959                 atomic_add_int(&entry->bge_inuse, 1);
960         }
961 }
962
963 /*
964  * Release a jumbo buffer.
965  */
966 static void
967 bge_jfree(void *arg)
968 {
969         struct bge_jslot *entry = (struct bge_jslot *)arg;
970         struct bge_softc *sc = entry->bge_sc;
971
972         if (sc == NULL)
973                 panic("bge_jfree: can't find softc pointer!");
974
975         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
976                 panic("bge_jfree: asked to free buffer that we don't manage!");
977         } else if (entry->bge_inuse == 0) {
978                 panic("bge_jfree: buffer already free!");
979         } else {
980                 /*
981                  * Possible MP race to 0, use the serializer.  The atomic insn
982                  * is still needed for races against bge_jref().
983                  */
984                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
985                 atomic_subtract_int(&entry->bge_inuse, 1);
986                 if (entry->bge_inuse == 0) {
987                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
988                                           entry, jslot_link);
989                 }
990                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
991         }
992 }
993
994
995 /*
996  * Intialize a standard receive ring descriptor.
997  */
998 static int
999 bge_newbuf_std(struct bge_softc *sc, int i, int init)
1000 {
1001         struct mbuf *m_new = NULL;
1002         bus_dma_segment_t seg;
1003         bus_dmamap_t map;
1004         int error, nsegs;
1005
1006         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1007         if (m_new == NULL)
1008                 return ENOBUFS;
1009         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1010
1011         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1012                 m_adj(m_new, ETHER_ALIGN);
1013
1014         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1015                         sc->bge_cdata.bge_rx_tmpmap, m_new,
1016                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1017         if (error) {
1018                 m_freem(m_new);
1019                 return error;
1020         }
1021
1022         if (!init) {
1023                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1024                                 sc->bge_cdata.bge_rx_std_dmamap[i],
1025                                 BUS_DMASYNC_POSTREAD);
1026                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1027                         sc->bge_cdata.bge_rx_std_dmamap[i]);
1028         }
1029
1030         map = sc->bge_cdata.bge_rx_tmpmap;
1031         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1032         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1033
1034         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1035         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1036
1037         bge_setup_rxdesc_std(sc, i);
1038         return 0;
1039 }
1040
1041 static void
1042 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1043 {
1044         struct bge_rxchain *rc;
1045         struct bge_rx_bd *r;
1046
1047         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1048         r = &sc->bge_ldata.bge_rx_std_ring[i];
1049
1050         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1051         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1052         r->bge_len = rc->bge_mbuf->m_len;
1053         r->bge_idx = i;
1054         r->bge_flags = BGE_RXBDFLAG_END;
1055 }
1056
1057 /*
1058  * Initialize a jumbo receive ring descriptor. This allocates
1059  * a jumbo buffer from the pool managed internally by the driver.
1060  */
1061 static int
1062 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1063 {
1064         struct mbuf *m_new = NULL;
1065         struct bge_jslot *buf;
1066         bus_addr_t paddr;
1067
1068         /* Allocate the mbuf. */
1069         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1070         if (m_new == NULL)
1071                 return ENOBUFS;
1072
1073         /* Allocate the jumbo buffer */
1074         buf = bge_jalloc(sc);
1075         if (buf == NULL) {
1076                 m_freem(m_new);
1077                 return ENOBUFS;
1078         }
1079
1080         /* Attach the buffer to the mbuf. */
1081         m_new->m_ext.ext_arg = buf;
1082         m_new->m_ext.ext_buf = buf->bge_buf;
1083         m_new->m_ext.ext_free = bge_jfree;
1084         m_new->m_ext.ext_ref = bge_jref;
1085         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1086
1087         m_new->m_flags |= M_EXT;
1088
1089         m_new->m_data = m_new->m_ext.ext_buf;
1090         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1091
1092         paddr = buf->bge_paddr;
1093         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1094                 m_adj(m_new, ETHER_ALIGN);
1095                 paddr += ETHER_ALIGN;
1096         }
1097
1098         /* Save necessary information */
1099         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1100         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1101
1102         /* Set up the descriptor. */
1103         bge_setup_rxdesc_jumbo(sc, i);
1104         return 0;
1105 }
1106
1107 static void
1108 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1109 {
1110         struct bge_rx_bd *r;
1111         struct bge_rxchain *rc;
1112
1113         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1114         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1115
1116         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1117         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1118         r->bge_len = rc->bge_mbuf->m_len;
1119         r->bge_idx = i;
1120         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1121 }
1122
1123 static int
1124 bge_init_rx_ring_std(struct bge_softc *sc)
1125 {
1126         int i, error;
1127
1128         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1129                 error = bge_newbuf_std(sc, i, 1);
1130                 if (error)
1131                         return error;
1132         }
1133
1134         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1135         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1136
1137         return(0);
1138 }
1139
1140 static void
1141 bge_free_rx_ring_std(struct bge_softc *sc)
1142 {
1143         int i;
1144
1145         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1146                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1147
1148                 if (rc->bge_mbuf != NULL) {
1149                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1150                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1151                         m_freem(rc->bge_mbuf);
1152                         rc->bge_mbuf = NULL;
1153                 }
1154                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1155                     sizeof(struct bge_rx_bd));
1156         }
1157 }
1158
1159 static int
1160 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1161 {
1162         struct bge_rcb *rcb;
1163         int i, error;
1164
1165         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1166                 error = bge_newbuf_jumbo(sc, i, 1);
1167                 if (error)
1168                         return error;
1169         }
1170
1171         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1172
1173         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1174         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1175         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1176
1177         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1178
1179         return(0);
1180 }
1181
1182 static void
1183 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1184 {
1185         int i;
1186
1187         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1188                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1189
1190                 if (rc->bge_mbuf != NULL) {
1191                         m_freem(rc->bge_mbuf);
1192                         rc->bge_mbuf = NULL;
1193                 }
1194                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1195                     sizeof(struct bge_rx_bd));
1196         }
1197 }
1198
1199 static void
1200 bge_free_tx_ring(struct bge_softc *sc)
1201 {
1202         int i;
1203
1204         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1205                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1206                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1207                                           sc->bge_cdata.bge_tx_dmamap[i]);
1208                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1209                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1210                 }
1211                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1212                     sizeof(struct bge_tx_bd));
1213         }
1214 }
1215
1216 static int
1217 bge_init_tx_ring(struct bge_softc *sc)
1218 {
1219         sc->bge_txcnt = 0;
1220         sc->bge_tx_saved_considx = 0;
1221         sc->bge_tx_prodidx = 0;
1222
1223         /* Initialize transmit producer index for host-memory send ring. */
1224         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1225
1226         /* 5700 b2 errata */
1227         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1228                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1229
1230         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1231         /* 5700 b2 errata */
1232         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1233                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1234
1235         return(0);
1236 }
1237
1238 static void
1239 bge_setmulti(struct bge_softc *sc)
1240 {
1241         struct ifnet *ifp;
1242         struct ifmultiaddr *ifma;
1243         uint32_t hashes[4] = { 0, 0, 0, 0 };
1244         int h, i;
1245
1246         ifp = &sc->arpcom.ac_if;
1247
1248         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1249                 for (i = 0; i < 4; i++)
1250                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1251                 return;
1252         }
1253
1254         /* First, zot all the existing filters. */
1255         for (i = 0; i < 4; i++)
1256                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1257
1258         /* Now program new ones. */
1259         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1260                 if (ifma->ifma_addr->sa_family != AF_LINK)
1261                         continue;
1262                 h = ether_crc32_le(
1263                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1264                     ETHER_ADDR_LEN) & 0x7f;
1265                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1266         }
1267
1268         for (i = 0; i < 4; i++)
1269                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1270 }
1271
1272 /*
1273  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1274  * self-test results.
1275  */
1276 static int
1277 bge_chipinit(struct bge_softc *sc)
1278 {
1279         int i;
1280         uint32_t dma_rw_ctl, mode_ctl;
1281         uint16_t val;
1282
1283         /* Set endian type before we access any non-PCI registers. */
1284         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1285             BGE_INIT | sc->bge_pci_miscctl, 4);
1286
1287         /* Clear the MAC control register */
1288         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1289         DELAY(40);
1290
1291         /*
1292          * Clear the MAC statistics block in the NIC's
1293          * internal memory.
1294          */
1295         for (i = BGE_STATS_BLOCK;
1296             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1297                 BGE_MEMWIN_WRITE(sc, i, 0);
1298
1299         for (i = BGE_STATUS_BLOCK;
1300             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1301                 BGE_MEMWIN_WRITE(sc, i, 0);
1302
1303         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1304                 /*
1305                  * Fix data corruption caused by non-qword write with WB.
1306                  * Fix master abort in PCI mode.
1307                  * Fix PCI latency timer.
1308                  */
1309                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1310                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1311                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1312         }
1313
1314         /* Set up the PCI DMA control register. */
1315         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1316         if (sc->bge_flags & BGE_FLAG_PCIE) {
1317                 /* PCI-E bus */
1318                 /* DMA read watermark not used on PCI-E */
1319                 dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1320         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1321                 /* PCI-X bus */
1322                 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1323                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1324                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1325                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1326                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1327                         dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1328                             (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1329                         dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1330                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1331                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1332                         uint32_t rd_wat = 0x7;
1333                         uint32_t clkctl;
1334
1335                         clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1336                         if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1337                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1338                                 dma_rw_ctl |=
1339                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1340                         } else if (clkctl == 0x6 || clkctl == 0x7) {
1341                                 dma_rw_ctl |=
1342                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1343                         }
1344                         if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1345                                 rd_wat = 0x4;
1346
1347                         dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1348                             (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1349                         dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1350                 } else {
1351                         dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1352                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1353                         dma_rw_ctl |= 0xf;
1354                 }
1355         } else {
1356                 /* Conventional PCI bus */
1357                 dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1358                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1359                 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1360                     sc->bge_asicrev != BGE_ASICREV_BCM5750)
1361                         dma_rw_ctl |= 0xf;
1362         }
1363
1364         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1365             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1366                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1367         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1368             sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1369                 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1370                     BGE_PCIDMARWCTL_ASRT_ALL_BE;
1371         }
1372         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1373
1374         /*
1375          * Set up general mode register.
1376          */
1377         mode_ctl = BGE_DMA_SWAP_OPTIONS|
1378             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1379             BGE_MODECTL_TX_NO_PHDR_CSUM;
1380
1381         /*
1382          * BCM5701 B5 have a bug causing data corruption when using
1383          * 64-bit DMA reads, which can be terminated early and then
1384          * completed later as 32-bit accesses, in combination with
1385          * certain bridges.
1386          */
1387         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1388             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1389                 mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1390
1391         /*
1392          * Tell the firmware the driver is running
1393          */
1394         if (sc->bge_asf_mode & ASF_STACKUP)
1395                 mode_ctl |= BGE_MODECTL_STACKUP;
1396
1397         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1398
1399         /*
1400          * Disable memory write invalidate.  Apparently it is not supported
1401          * properly by these devices.  Also ensure that INTx isn't disabled,
1402          * as these chips need it even when using MSI.
1403          */
1404         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1405             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1406
1407         /* Set the timer prescaler (always 66Mhz) */
1408         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1409
1410         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1411                 DELAY(40);      /* XXX */
1412
1413                 /* Put PHY into ready state */
1414                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1415                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1416                 DELAY(40);
1417         }
1418
1419         return(0);
1420 }
1421
1422 static int
1423 bge_blockinit(struct bge_softc *sc)
1424 {
1425         struct bge_rcb *rcb;
1426         bus_size_t vrcb;
1427         bge_hostaddr taddr;
1428         uint32_t val;
1429         int i, limit;
1430
1431         /*
1432          * Initialize the memory window pointer register so that
1433          * we can access the first 32K of internal NIC RAM. This will
1434          * allow us to set up the TX send ring RCBs and the RX return
1435          * ring RCBs, plus other things which live in NIC memory.
1436          */
1437         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1438
1439         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1440
1441         if (!BGE_IS_5705_PLUS(sc)) {
1442                 /* Configure mbuf memory pool */
1443                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1444                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1445                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1446                 else
1447                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1448
1449                 /* Configure DMA resource pool */
1450                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1451                     BGE_DMA_DESCRIPTORS);
1452                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1453         }
1454
1455         /* Configure mbuf pool watermarks */
1456         if (!BGE_IS_5705_PLUS(sc)) {
1457                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1458                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1459                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1460         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1461                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1462                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1463                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1464         } else {
1465                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1466                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1467                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1468         }
1469
1470         /* Configure DMA resource watermarks */
1471         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1472         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1473
1474         /* Enable buffer manager */
1475         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1476             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1477
1478         /* Poll for buffer manager start indication */
1479         for (i = 0; i < BGE_TIMEOUT; i++) {
1480                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1481                         break;
1482                 DELAY(10);
1483         }
1484
1485         if (i == BGE_TIMEOUT) {
1486                 if_printf(&sc->arpcom.ac_if,
1487                           "buffer manager failed to start\n");
1488                 return(ENXIO);
1489         }
1490
1491         /* Enable flow-through queues */
1492         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1493         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1494
1495         /* Wait until queue initialization is complete */
1496         for (i = 0; i < BGE_TIMEOUT; i++) {
1497                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1498                         break;
1499                 DELAY(10);
1500         }
1501
1502         if (i == BGE_TIMEOUT) {
1503                 if_printf(&sc->arpcom.ac_if,
1504                           "flow-through queue init failed\n");
1505                 return(ENXIO);
1506         }
1507
1508         /*
1509          * Summary of rings supported by the controller:
1510          *
1511          * Standard Receive Producer Ring
1512          * - This ring is used to feed receive buffers for "standard"
1513          *   sized frames (typically 1536 bytes) to the controller.
1514          *
1515          * Jumbo Receive Producer Ring
1516          * - This ring is used to feed receive buffers for jumbo sized
1517          *   frames (i.e. anything bigger than the "standard" frames)
1518          *   to the controller.
1519          *
1520          * Mini Receive Producer Ring
1521          * - This ring is used to feed receive buffers for "mini"
1522          *   sized frames to the controller.
1523          * - This feature required external memory for the controller
1524          *   but was never used in a production system.  Should always
1525          *   be disabled.
1526          *
1527          * Receive Return Ring
1528          * - After the controller has placed an incoming frame into a
1529          *   receive buffer that buffer is moved into a receive return
1530          *   ring.  The driver is then responsible to passing the
1531          *   buffer up to the stack.  Many versions of the controller
1532          *   support multiple RR rings.
1533          *
1534          * Send Ring
1535          * - This ring is used for outgoing frames.  Many versions of
1536          *   the controller support multiple send rings.
1537          */
1538
1539         /* Initialize the standard receive producer ring control block. */
1540         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1541         rcb->bge_hostaddr.bge_addr_lo =
1542             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1543         rcb->bge_hostaddr.bge_addr_hi =
1544             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1545         if (BGE_IS_5705_PLUS(sc)) {
1546                 /*
1547                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1548                  * Bits 15-2 : Reserved (should be 0)
1549                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1550                  * Bit 0     : Reserved
1551                  */
1552                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1553         } else {
1554                 /*
1555                  * Ring size is always XXX entries
1556                  * Bits 31-16: Maximum RX frame size
1557                  * Bits 15-2 : Reserved (should be 0)
1558                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1559                  * Bit 0     : Reserved
1560                  */
1561                 rcb->bge_maxlen_flags =
1562                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1563         }
1564         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1565         /* Write the standard receive producer ring control block. */
1566         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1567         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1568         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1569         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1570         /* Reset the standard receive producer ring producer index. */
1571         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1572
1573         /*
1574          * Initialize the jumbo RX producer ring control
1575          * block.  We set the 'ring disabled' bit in the
1576          * flags field until we're actually ready to start
1577          * using this ring (i.e. once we set the MTU
1578          * high enough to require it).
1579          */
1580         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1581                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1582                 /* Get the jumbo receive producer ring RCB parameters. */
1583                 rcb->bge_hostaddr.bge_addr_lo =
1584                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1585                 rcb->bge_hostaddr.bge_addr_hi =
1586                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1587                 rcb->bge_maxlen_flags =
1588                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1589                     BGE_RCB_FLAG_RING_DISABLED);
1590                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1591                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1592                     rcb->bge_hostaddr.bge_addr_hi);
1593                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1594                     rcb->bge_hostaddr.bge_addr_lo);
1595                 /* Program the jumbo receive producer ring RCB parameters. */
1596                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1597                     rcb->bge_maxlen_flags);
1598                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1599                 /* Reset the jumbo receive producer ring producer index. */
1600                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1601         }
1602
1603         /* Disable the mini receive producer ring RCB. */
1604         if (BGE_IS_5700_FAMILY(sc)) {
1605                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1606                 rcb->bge_maxlen_flags =
1607                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1608                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1609                     rcb->bge_maxlen_flags);
1610                 /* Reset the mini receive producer ring producer index. */
1611                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1612         }
1613
1614         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1615         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1616             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1617              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1618              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1619                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1620                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1621         }
1622
1623         /*
1624          * The BD ring replenish thresholds control how often the
1625          * hardware fetches new BD's from the producer rings in host
1626          * memory.  Setting the value too low on a busy system can
1627          * starve the hardware and recue the throughpout.
1628          *
1629          * Set the BD ring replentish thresholds. The recommended
1630          * values are 1/8th the number of descriptors allocated to
1631          * each ring.
1632          */
1633         if (BGE_IS_5705_PLUS(sc))
1634                 val = 8;
1635         else
1636                 val = BGE_STD_RX_RING_CNT / 8;
1637         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1638         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1639                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1640                     BGE_JUMBO_RX_RING_CNT/8);
1641         }
1642
1643         /*
1644          * Disable all send rings by setting the 'ring disabled' bit
1645          * in the flags field of all the TX send ring control blocks,
1646          * located in NIC memory.
1647          */
1648         if (!BGE_IS_5705_PLUS(sc)) {
1649                 /* 5700 to 5704 had 16 send rings. */
1650                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1651         } else {
1652                 limit = 1;
1653         }
1654         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1655         for (i = 0; i < limit; i++) {
1656                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1657                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1658                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1659                 vrcb += sizeof(struct bge_rcb);
1660         }
1661
1662         /* Configure send ring RCB 0 (we use only the first ring) */
1663         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1664         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1665         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1666         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1667         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1668             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1669         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1670             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1671
1672         /*
1673          * Disable all receive return rings by setting the
1674          * 'ring diabled' bit in the flags field of all the receive
1675          * return ring control blocks, located in NIC memory.
1676          */
1677         if (!BGE_IS_5705_PLUS(sc))
1678                 limit = BGE_RX_RINGS_MAX;
1679         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1680                 limit = 4;
1681         else
1682                 limit = 1;
1683         /* Disable all receive return rings. */
1684         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1685         for (i = 0; i < limit; i++) {
1686                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1687                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1688                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1689                     BGE_RCB_FLAG_RING_DISABLED);
1690                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1691                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1692                     (i * (sizeof(uint64_t))), 0);
1693                 vrcb += sizeof(struct bge_rcb);
1694         }
1695
1696         /*
1697          * Set up receive return ring 0.  Note that the NIC address
1698          * for RX return rings is 0x0.  The return rings live entirely
1699          * within the host, so the nicaddr field in the RCB isn't used.
1700          */
1701         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1702         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1703         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1704         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1705         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1706         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1707             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1708
1709         /* Set random backoff seed for TX */
1710         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1711             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1712             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1713             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1714             BGE_TX_BACKOFF_SEED_MASK);
1715
1716         /* Set inter-packet gap */
1717         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1718
1719         /*
1720          * Specify which ring to use for packets that don't match
1721          * any RX rules.
1722          */
1723         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1724
1725         /*
1726          * Configure number of RX lists. One interrupt distribution
1727          * list, sixteen active lists, one bad frames class.
1728          */
1729         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1730
1731         /* Inialize RX list placement stats mask. */
1732         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1733         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1734
1735         /* Disable host coalescing until we get it set up */
1736         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1737
1738         /* Poll to make sure it's shut down. */
1739         for (i = 0; i < BGE_TIMEOUT; i++) {
1740                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1741                         break;
1742                 DELAY(10);
1743         }
1744
1745         if (i == BGE_TIMEOUT) {
1746                 if_printf(&sc->arpcom.ac_if,
1747                           "host coalescing engine failed to idle\n");
1748                 return(ENXIO);
1749         }
1750
1751         /* Set up host coalescing defaults */
1752         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1753         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1754         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1755         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1756         if (!BGE_IS_5705_PLUS(sc)) {
1757                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1758                     sc->bge_rx_coal_ticks_int);
1759                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1760                     sc->bge_tx_coal_ticks_int);
1761         }
1762         /*
1763          * NOTE:
1764          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1765          * have following two registers; obviously it is wrong.
1766          */
1767         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1768         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1769
1770         /* Set up address of statistics block */
1771         if (!BGE_IS_5705_PLUS(sc)) {
1772                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1773                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1774                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1775                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1776
1777                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1778                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1779                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1780         }
1781
1782         /* Set up address of status block */
1783         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1784         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1785             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1786         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1787             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1788
1789         /*
1790          * Set up status block partail update size.
1791          *
1792          * Because only single TX ring, RX produce ring and Rx return ring
1793          * are used, ask device to update only minimum part of status block
1794          * except for BCM5700 AX/BX, whose status block partial update size
1795          * can't be configured.
1796          */
1797         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1798             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1799                 /* XXX Actually reserved on BCM5700 AX/BX */
1800                 val = BGE_STATBLKSZ_FULL;
1801         } else {
1802                 val = BGE_STATBLKSZ_32BYTE;
1803         }
1804 #if 0
1805         /*
1806          * Does not seem to have visible effect in both
1807          * bulk data (1472B UDP datagram) and tiny data
1808          * (18B UDP datagram) TX tests.
1809          */
1810         if (!BGE_IS_CRIPPLED(sc))
1811                 val |= BGE_HCCMODE_CLRTICK_TX;
1812 #endif
1813
1814         /* Turn on host coalescing state machine */
1815         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1816
1817         /* Turn on RX BD completion state machine and enable attentions */
1818         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1819             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1820
1821         /* Turn on RX list placement state machine */
1822         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1823
1824         /* Turn on RX list selector state machine. */
1825         if (!BGE_IS_5705_PLUS(sc))
1826                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1827
1828         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1829             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1830             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1831             BGE_MACMODE_FRMHDR_DMA_ENB;
1832
1833         if (sc->bge_flags & BGE_FLAG_TBI)
1834                 val |= BGE_PORTMODE_TBI;
1835         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1836                 val |= BGE_PORTMODE_GMII;
1837         else
1838                 val |= BGE_PORTMODE_MII;
1839
1840         /* Turn on DMA, clear stats */
1841         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1842         DELAY(40);
1843
1844         /* Set misc. local control, enable interrupts on attentions */
1845         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1846
1847 #ifdef notdef
1848         /* Assert GPIO pins for PHY reset */
1849         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1850             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1851         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1852             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1853 #endif
1854
1855         /* Turn on DMA completion state machine */
1856         if (!BGE_IS_5705_PLUS(sc))
1857                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1858
1859         /* Turn on write DMA state machine */
1860         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1861         if (BGE_IS_5755_PLUS(sc)) {
1862                 /* Enable host coalescing bug fix. */
1863                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1864         }
1865         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1866                 /* Request larger DMA burst size to get better performance. */
1867                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1868         }
1869         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1870         DELAY(40);
1871
1872         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1873             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1874             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1875             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1876                 /*
1877                  * Enable fix for read DMA FIFO overruns.
1878                  * The fix is to limit the number of RX BDs
1879                  * the hardware would fetch at a fime.
1880                  */
1881                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1882                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1883                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1884         }
1885
1886         /* Turn on read DMA state machine */
1887         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1888         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1889             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1890             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1891                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1892                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1893                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1894         if (sc->bge_flags & BGE_FLAG_PCIE)
1895                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1896         if (sc->bge_flags & BGE_FLAG_TSO)
1897                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1898         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1899         DELAY(40);
1900
1901         /* Turn on RX data completion state machine */
1902         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1903
1904         /* Turn on RX BD initiator state machine */
1905         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1906
1907         /* Turn on RX data and RX BD initiator state machine */
1908         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1909
1910         /* Turn on Mbuf cluster free state machine */
1911         if (!BGE_IS_5705_PLUS(sc))
1912                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1913
1914         /* Turn on send BD completion state machine */
1915         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1916
1917         /* Turn on send data completion state machine */
1918         val = BGE_SDCMODE_ENABLE;
1919         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1920                 val |= BGE_SDCMODE_CDELAY; 
1921         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1922
1923         /* Turn on send data initiator state machine */
1924         if (sc->bge_flags & BGE_FLAG_TSO)
1925                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1926                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1927         else
1928                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1929
1930         /* Turn on send BD initiator state machine */
1931         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1932
1933         /* Turn on send BD selector state machine */
1934         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1935
1936         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1937         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1938             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1939
1940         /* ack/clear link change events */
1941         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1942             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1943             BGE_MACSTAT_LINK_CHANGED);
1944         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1945
1946         /*
1947          * Enable attention when the link has changed state for
1948          * devices that use auto polling.
1949          */
1950         if (sc->bge_flags & BGE_FLAG_TBI) {
1951                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1952         } else {
1953                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1954                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1955                         DELAY(80);
1956                 }
1957                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1958                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1959                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1960                             BGE_EVTENB_MI_INTERRUPT);
1961                 }
1962         }
1963
1964         /*
1965          * Clear any pending link state attention.
1966          * Otherwise some link state change events may be lost until attention
1967          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1968          * It's not necessary on newer BCM chips - perhaps enabling link
1969          * state change attentions implies clearing pending attention.
1970          */
1971         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1972             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1973             BGE_MACSTAT_LINK_CHANGED);
1974
1975         /* Enable link state change attentions. */
1976         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1977
1978         return(0);
1979 }
1980
1981 /*
1982  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1983  * against our list and return its name if we find a match. Note
1984  * that since the Broadcom controller contains VPD support, we
1985  * can get the device name string from the controller itself instead
1986  * of the compiled-in string. This is a little slow, but it guarantees
1987  * we'll always announce the right product name.
1988  */
1989 static int
1990 bge_probe(device_t dev)
1991 {
1992         const struct bge_type *t;
1993         uint16_t product, vendor;
1994
1995         product = pci_get_device(dev);
1996         vendor = pci_get_vendor(dev);
1997
1998         for (t = bge_devs; t->bge_name != NULL; t++) {
1999                 if (vendor == t->bge_vid && product == t->bge_did)
2000                         break;
2001         }
2002         if (t->bge_name == NULL)
2003                 return(ENXIO);
2004
2005         device_set_desc(dev, t->bge_name);
2006         return(0);
2007 }
2008
2009 static int
2010 bge_attach(device_t dev)
2011 {
2012         struct ifnet *ifp;
2013         struct bge_softc *sc;
2014         uint32_t hwcfg = 0, misccfg;
2015         int error = 0, rid, capmask;
2016         uint8_t ether_addr[ETHER_ADDR_LEN];
2017         uint16_t product, vendor;
2018         driver_intr_t *intr_func;
2019         uintptr_t mii_priv = 0;
2020         u_int intr_flags;
2021         int msi_enable;
2022
2023         sc = device_get_softc(dev);
2024         sc->bge_dev = dev;
2025         callout_init_mp(&sc->bge_stat_timer);
2026         lwkt_serialize_init(&sc->bge_jslot_serializer);
2027
2028         product = pci_get_device(dev);
2029         vendor = pci_get_vendor(dev);
2030
2031 #ifndef BURN_BRIDGES
2032         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2033                 uint32_t irq, mem;
2034
2035                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
2036                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2037
2038                 device_printf(dev, "chip is in D%d power mode "
2039                     "-- setting to D0\n", pci_get_powerstate(dev));
2040
2041                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2042
2043                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
2044                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2045         }
2046 #endif  /* !BURN_BRIDGE */
2047
2048         /*
2049          * Map control/status registers.
2050          */
2051         pci_enable_busmaster(dev);
2052
2053         rid = BGE_PCI_BAR0;
2054         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2055             RF_ACTIVE);
2056
2057         if (sc->bge_res == NULL) {
2058                 device_printf(dev, "couldn't map memory\n");
2059                 return ENXIO;
2060         }
2061
2062         sc->bge_btag = rman_get_bustag(sc->bge_res);
2063         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2064
2065         /* Save various chip information */
2066         sc->bge_chipid =
2067             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2068             BGE_PCIMISCCTL_ASICREV_SHIFT;
2069         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2070                 /* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2071                 sc->bge_flags |= BGE_FLAG_CPMU;
2072                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2073         }
2074         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2075         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2076
2077         /* Save chipset family. */
2078         switch (sc->bge_asicrev) {
2079         case BGE_ASICREV_BCM5755:
2080         case BGE_ASICREV_BCM5761:
2081         case BGE_ASICREV_BCM5784:
2082         case BGE_ASICREV_BCM5785:
2083         case BGE_ASICREV_BCM5787:
2084         case BGE_ASICREV_BCM57780:
2085             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2086                 BGE_FLAG_5705_PLUS;
2087             break;
2088
2089         case BGE_ASICREV_BCM5700:
2090         case BGE_ASICREV_BCM5701:
2091         case BGE_ASICREV_BCM5703:
2092         case BGE_ASICREV_BCM5704:
2093                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2094                 break;
2095
2096         case BGE_ASICREV_BCM5714_A0:
2097         case BGE_ASICREV_BCM5780:
2098         case BGE_ASICREV_BCM5714:
2099                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2100                 /* Fall through */
2101
2102         case BGE_ASICREV_BCM5750:
2103         case BGE_ASICREV_BCM5752:
2104         case BGE_ASICREV_BCM5906:
2105                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2106                 /* Fall through */
2107
2108         case BGE_ASICREV_BCM5705:
2109                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2110                 break;
2111         }
2112
2113         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2114                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2115
2116         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2117                 sc->bge_flags |= BGE_FLAG_APE;
2118
2119         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2120         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2121             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2122              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2123                 sc->bge_flags |= BGE_FLAG_5788;
2124
2125         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2126         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2127                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2128
2129         /*
2130          * Increase STD RX ring prod index by at most 8 for BCM5750,
2131          * BCM5752 and BCM5755 to workaround hardware errata.
2132          */
2133         if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2134             sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2135             sc->bge_asicrev == BGE_ASICREV_BCM5755)
2136                 sc->bge_rx_wreg = 8;
2137
2138         /*
2139          * Check if this is a PCI-X or PCI Express device.
2140          */
2141         if (BGE_IS_5705_PLUS(sc)) {
2142                 if (pci_is_pcie(dev)) {
2143                         sc->bge_flags |= BGE_FLAG_PCIE;
2144                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2145                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2146                 }
2147         } else {
2148                 /*
2149                  * Check if the device is in PCI-X Mode.
2150                  * (This bit is not valid on PCI Express controllers.)
2151                  */
2152                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2153                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2154                         sc->bge_flags |= BGE_FLAG_PCIX;
2155                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2156                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2157                             "mbox_reorder", 0);
2158                 }
2159         }
2160         device_printf(dev, "CHIP ID 0x%08x; "
2161                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2162                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2163                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2164                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2165                         "PCI-E" : "PCI"));
2166
2167         /*
2168          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2169          * not actually a MAC controller bug but an issue with the embedded
2170          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2171          */
2172         if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2173             (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2174                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2175
2176         /*
2177          * When using the BCM5701 in PCI-X mode, data corruption has
2178          * been observed in the first few bytes of some received packets.
2179          * Aligning the packet buffer in memory eliminates the corruption.
2180          * Unfortunately, this misaligns the packet payloads.  On platforms
2181          * which do not support unaligned accesses, we will realign the
2182          * payloads by copying the received packets.
2183          */
2184         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2185             (sc->bge_flags & BGE_FLAG_PCIX))
2186                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2187
2188         if (!BGE_IS_CRIPPLED(sc)) {
2189                 if (device_getenv_int(dev, "status_tag", 1)) {
2190                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2191                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2192                         if (bootverbose)
2193                                 device_printf(dev, "enable status tag\n");
2194                 }
2195         }
2196
2197         if (BGE_IS_5755_PLUS(sc)) {
2198                 /*
2199                  * BCM5754 and BCM5787 shares the same ASIC id so
2200                  * explicit device id check is required.
2201                  * Due to unknown reason TSO does not work on BCM5755M.
2202                  */
2203                 if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2204                     product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2205                     product != PCI_PRODUCT_BROADCOM_BCM5755M)
2206                         sc->bge_flags |= BGE_FLAG_TSO;
2207         }
2208
2209         /*
2210          * Set various PHY quirk flags.
2211          */
2212
2213         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2214              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2215             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2216                 mii_priv |= BRGPHY_FLAG_NO_3LED;
2217
2218         capmask = MII_CAPMASK_DEFAULT;
2219         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2220              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2221             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2222              vendor == PCI_VENDOR_BROADCOM &&
2223              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2224               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2225               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2226             (vendor == PCI_VENDOR_BROADCOM &&
2227              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2228               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2229               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2230             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2231             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2232                 /* 10/100 only */
2233                 capmask &= ~BMSR_EXTSTAT;
2234         }
2235
2236         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2237         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2238             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2239              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2240               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2241             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2242                 mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2243
2244         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2245             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2246                 mii_priv |= BRGPHY_FLAG_CRC_BUG;
2247
2248         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2249             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2250                 mii_priv |= BRGPHY_FLAG_ADC_BUG;
2251
2252         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2253                 mii_priv |= BRGPHY_FLAG_5704_A0;
2254
2255         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2256                 mii_priv |= BRGPHY_FLAG_5906;
2257
2258         if (BGE_IS_5705_PLUS(sc) &&
2259             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2260             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2261             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2262             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2263             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2264                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2265                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2266                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2267                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2268                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2269                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2270                                 mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2271                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2272                                 mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2273                 } else {
2274                         mii_priv |= BRGPHY_FLAG_BER_BUG;
2275                 }
2276         }
2277
2278         /*
2279          * Allocate interrupt
2280          */
2281         msi_enable = bge_msi_enable;
2282         if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2283                 /* If "tagged status" is disabled, don't enable MSI */
2284                 msi_enable = 0;
2285         } else if (msi_enable) {
2286                 msi_enable = 0; /* Disable by default */
2287                 if (BGE_IS_575X_PLUS(sc)) {
2288                         msi_enable = 1;
2289                         /* XXX we filter all 5714 chips */
2290                         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2291                             (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2292                              (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2293                               sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2294                                 msi_enable = 0;
2295                         else if (BGE_IS_5755_PLUS(sc) ||
2296                             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2297                                 sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2298                 }
2299         }
2300         if (msi_enable) {
2301                 if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2302                         device_printf(dev, "no MSI capability\n");
2303                         msi_enable = 0;
2304                 }
2305         }
2306
2307         sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2308             &intr_flags);
2309
2310         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2311             intr_flags);
2312         if (sc->bge_irq == NULL) {
2313                 device_printf(dev, "couldn't map interrupt\n");
2314                 error = ENXIO;
2315                 goto fail;
2316         }
2317
2318         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2319                 bge_enable_msi(sc);
2320         else
2321                 sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2322
2323         /* Initialize if_name earlier, so if_printf could be used */
2324         ifp = &sc->arpcom.ac_if;
2325         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2326
2327         sc->bge_asf_mode = 0;
2328         /* No ASF if APE present. */
2329         if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2330                 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2331                     BGE_SRAM_DATA_SIG_MAGIC)) {
2332                         if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2333                             BGE_HWCFG_ASF) {
2334                                 sc->bge_asf_mode |= ASF_ENABLE;
2335                                 sc->bge_asf_mode |= ASF_STACKUP;
2336                                 if (BGE_IS_575X_PLUS(sc))
2337                                         sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2338                         }
2339                 }
2340         }
2341
2342         /*
2343          * Try to reset the chip.
2344          */
2345         bge_stop_fw(sc);
2346         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2347         bge_reset(sc);
2348         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2349         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2350
2351         if (bge_chipinit(sc)) {
2352                 device_printf(dev, "chip initialization failed\n");
2353                 error = ENXIO;
2354                 goto fail;
2355         }
2356
2357         /*
2358          * Get station address
2359          */
2360         error = bge_get_eaddr(sc, ether_addr);
2361         if (error) {
2362                 device_printf(dev, "failed to read station address\n");
2363                 goto fail;
2364         }
2365
2366         /* 5705/5750 limits RX return ring to 512 entries. */
2367         if (BGE_IS_5705_PLUS(sc))
2368                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2369         else
2370                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2371
2372         error = bge_dma_alloc(sc);
2373         if (error)
2374                 goto fail;
2375
2376         /* Set default tuneable values. */
2377         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2378         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2379         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2380         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2381         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2382         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2383                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2384                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2385                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2386                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2387         } else {
2388                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2389                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2390                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2391                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2392         }
2393         sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2394
2395         /* Set up TX spare and reserved descriptor count */
2396         if (sc->bge_flags & BGE_FLAG_TSO) {
2397                 sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2398                 sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2399         } else {
2400                 sc->bge_txspare = BGE_NSEG_SPARE;
2401                 sc->bge_txrsvd = BGE_NSEG_RSVD;
2402         }
2403
2404         /* Set up ifnet structure */
2405         ifp->if_softc = sc;
2406         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2407         ifp->if_ioctl = bge_ioctl;
2408         ifp->if_start = bge_start;
2409 #ifdef IFPOLL_ENABLE
2410         ifp->if_npoll = bge_npoll;
2411 #endif
2412         ifp->if_watchdog = bge_watchdog;
2413         ifp->if_init = bge_init;
2414         ifp->if_mtu = ETHERMTU;
2415         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2416         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2417         ifq_set_ready(&ifp->if_snd);
2418
2419         /*
2420          * 5700 B0 chips do not support checksumming correctly due
2421          * to hardware bugs.
2422          */
2423         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2424                 ifp->if_capabilities |= IFCAP_HWCSUM;
2425                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
2426         }
2427         if (sc->bge_flags & BGE_FLAG_TSO) {
2428                 ifp->if_capabilities |= IFCAP_TSO;
2429                 ifp->if_hwassist |= CSUM_TSO;
2430         }
2431         ifp->if_capenable = ifp->if_capabilities;
2432
2433         /*
2434          * Figure out what sort of media we have by checking the
2435          * hardware config word in the first 32k of NIC internal memory,
2436          * or fall back to examining the EEPROM if necessary.
2437          * Note: on some BCM5700 cards, this value appears to be unset.
2438          * If that's the case, we have to rely on identifying the NIC
2439          * by its PCI subsystem ID, as we do below for the SysKonnect
2440          * SK-9D41.
2441          */
2442         if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2443                 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2444         } else {
2445                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2446                                     sizeof(hwcfg))) {
2447                         device_printf(dev, "failed to read EEPROM\n");
2448                         error = ENXIO;
2449                         goto fail;
2450                 }
2451                 hwcfg = ntohl(hwcfg);
2452         }
2453
2454         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2455         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2456             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2457                 if (BGE_IS_5714_FAMILY(sc))
2458                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2459                 else
2460                         sc->bge_flags |= BGE_FLAG_TBI;
2461         }
2462
2463         /* Setup MI MODE */
2464         if (sc->bge_flags & BGE_FLAG_CPMU)
2465                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2466         else
2467                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2468         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2469                 /* Enable auto polling for BCM570[0-5]. */
2470                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2471         }
2472
2473         /* Setup link status update stuffs */
2474         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2475             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2476                 sc->bge_link_upd = bge_bcm5700_link_upd;
2477                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2478         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2479                 sc->bge_link_upd = bge_tbi_link_upd;
2480                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2481         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2482                 sc->bge_link_upd = bge_autopoll_link_upd;
2483                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2484         } else {
2485                 sc->bge_link_upd = bge_copper_link_upd;
2486                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2487         }
2488
2489         /*
2490          * Broadcom's own driver always assumes the internal
2491          * PHY is at GMII address 1.  On some chips, the PHY responds
2492          * to accesses at all addresses, which could cause us to
2493          * bogusly attach the PHY 32 times at probe type.  Always
2494          * restricting the lookup to address 1 is simpler than
2495          * trying to figure out which chips revisions should be
2496          * special-cased.
2497          */
2498         sc->bge_phyno = 1;
2499
2500         if (sc->bge_flags & BGE_FLAG_TBI) {
2501                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2502                     bge_ifmedia_upd, bge_ifmedia_sts);
2503                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2504                 ifmedia_add(&sc->bge_ifmedia,
2505                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2506                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2507                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2508                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2509         } else {
2510                 struct mii_probe_args mii_args;
2511                 int tries;
2512
2513                 /*
2514                  * Do transceiver setup and tell the firmware the
2515                  * driver is down so we can try to get access the
2516                  * probe if ASF is running.  Retry a couple of times
2517                  * if we get a conflict with the ASF firmware accessing
2518                  * the PHY.
2519                  */
2520                 tries = 0;
2521                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2522 again:
2523                 bge_asf_driver_up(sc);
2524
2525                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2526                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2527                 mii_args.mii_capmask = capmask;
2528                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2529                 mii_args.mii_priv = mii_priv;
2530
2531                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2532                 if (error) {
2533                         if (tries++ < 4) {
2534                                 device_printf(sc->bge_dev, "Probe MII again\n");
2535                                 bge_miibus_writereg(sc->bge_dev,
2536                                     sc->bge_phyno, MII_BMCR, BMCR_RESET);
2537                                 goto again;
2538                         }
2539                         device_printf(dev, "MII without any PHY!\n");
2540                         goto fail;
2541                 }
2542
2543                 /*
2544                  * Now tell the firmware we are going up after probing the PHY
2545                  */
2546                 if (sc->bge_asf_mode & ASF_STACKUP)
2547                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2548         }
2549
2550         /*
2551          * Create sysctl nodes.
2552          */
2553         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2554         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2555                                               SYSCTL_STATIC_CHILDREN(_hw),
2556                                               OID_AUTO,
2557                                               device_get_nameunit(dev),
2558                                               CTLFLAG_RD, 0, "");
2559         if (sc->bge_sysctl_tree == NULL) {
2560                 device_printf(dev, "can't add sysctl node\n");
2561                 error = ENXIO;
2562                 goto fail;
2563         }
2564
2565         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2566                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2567                         OID_AUTO, "rx_coal_ticks",
2568                         CTLTYPE_INT | CTLFLAG_RW,
2569                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2570                         "Receive coalescing ticks (usec).");
2571         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2572                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2573                         OID_AUTO, "tx_coal_ticks",
2574                         CTLTYPE_INT | CTLFLAG_RW,
2575                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2576                         "Transmit coalescing ticks (usec).");
2577         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2578                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2579                         OID_AUTO, "rx_coal_bds",
2580                         CTLTYPE_INT | CTLFLAG_RW,
2581                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2582                         "Receive max coalesced BD count.");
2583         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2584                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2585                         OID_AUTO, "tx_coal_bds",
2586                         CTLTYPE_INT | CTLFLAG_RW,
2587                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2588                         "Transmit max coalesced BD count.");
2589
2590         SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2591                        SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2592                        OID_AUTO, "tx_wreg", CTLFLAG_RW,
2593                        &sc->bge_tx_wreg, 0,
2594                        "# of segments before writing to hardware register");
2595
2596         if (sc->bge_flags & BGE_FLAG_PCIE) {
2597                 /*
2598                  * A common design characteristic for many Broadcom
2599                  * client controllers is that they only support a
2600                  * single outstanding DMA read operation on the PCIe
2601                  * bus. This means that it will take twice as long to
2602                  * fetch a TX frame that is split into header and
2603                  * payload buffers as it does to fetch a single,
2604                  * contiguous TX frame (2 reads vs. 1 read). For these
2605                  * controllers, coalescing buffers to reduce the number
2606                  * of memory reads is effective way to get maximum
2607                  * performance(about 940Mbps).  Without collapsing TX
2608                  * buffers the maximum TCP bulk transfer performance
2609                  * is about 850Mbps. However forcing coalescing mbufs
2610                  * consumes a lot of CPU cycles, so leave it off by
2611                  * default.
2612                  */
2613                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2614                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2615                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2616                                &sc->bge_force_defrag, 0,
2617                                "Force defragment on TX path");
2618         }
2619         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2620                 if (!BGE_IS_5705_PLUS(sc)) {
2621                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2622                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2623                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2624                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2625                             "Receive coalescing ticks "
2626                             "during interrupt (usec).");
2627                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2628                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2629                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2630                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2631                             "Transmit coalescing ticks "
2632                             "during interrupt (usec).");
2633                 }
2634                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2635                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2636                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2637                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2638                     "Receive max coalesced BD count during interrupt.");
2639                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2640                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2641                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2642                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2643                     "Transmit max coalesced BD count during interrupt.");
2644         }
2645
2646         /*
2647          * Call MI attach routine.
2648          */
2649         ether_ifattach(ifp, ether_addr, NULL);
2650
2651         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2652
2653 #ifdef IFPOLL_ENABLE
2654         /* Polling setup */
2655         ifpoll_compat_setup(&sc->bge_npoll,
2656             &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2657             ifp->if_serializer);
2658 #endif
2659
2660         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2661                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2662                         intr_func = bge_msi_oneshot;
2663                         if (bootverbose)
2664                                 device_printf(dev, "oneshot MSI\n");
2665                 } else {
2666                         intr_func = bge_msi;
2667                 }
2668         } else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2669                 intr_func = bge_intr_legacy;
2670         } else {
2671                 intr_func = bge_intr_crippled;
2672         }
2673         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2674             &sc->bge_intrhand, ifp->if_serializer);
2675         if (error) {
2676                 ether_ifdetach(ifp);
2677                 device_printf(dev, "couldn't set up irq\n");
2678                 goto fail;
2679         }
2680
2681         return(0);
2682 fail:
2683         bge_detach(dev);
2684         return(error);
2685 }
2686
2687 static int
2688 bge_detach(device_t dev)
2689 {
2690         struct bge_softc *sc = device_get_softc(dev);
2691
2692         if (device_is_attached(dev)) {
2693                 struct ifnet *ifp = &sc->arpcom.ac_if;
2694
2695                 lwkt_serialize_enter(ifp->if_serializer);
2696                 bge_stop(sc);
2697                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2698                 lwkt_serialize_exit(ifp->if_serializer);
2699
2700                 ether_ifdetach(ifp);
2701         }
2702
2703         if (sc->bge_flags & BGE_FLAG_TBI)
2704                 ifmedia_removeall(&sc->bge_ifmedia);
2705         if (sc->bge_miibus)
2706                 device_delete_child(dev, sc->bge_miibus);
2707         bus_generic_detach(dev);
2708
2709         if (sc->bge_irq != NULL) {
2710                 bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2711                     sc->bge_irq);
2712         }
2713         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2714                 pci_release_msi(dev);
2715
2716         if (sc->bge_res != NULL) {
2717                 bus_release_resource(dev, SYS_RES_MEMORY,
2718                     BGE_PCI_BAR0, sc->bge_res);
2719         }
2720
2721         if (sc->bge_sysctl_tree != NULL)
2722                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2723
2724         bge_dma_free(sc);
2725
2726         return 0;
2727 }
2728
2729 static void
2730 bge_reset(struct bge_softc *sc)
2731 {
2732         device_t dev;
2733         uint32_t cachesize, command, pcistate, reset;
2734         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2735         int i, val = 0;
2736
2737         dev = sc->bge_dev;
2738
2739         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2740             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2741                 if (sc->bge_flags & BGE_FLAG_PCIE)
2742                         write_op = bge_writemem_direct;
2743                 else
2744                         write_op = bge_writemem_ind;
2745         } else {
2746                 write_op = bge_writereg_ind;
2747         }
2748
2749         /* Save some important PCI state. */
2750         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2751         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2752         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2753
2754         pci_write_config(dev, BGE_PCI_MISC_CTL,
2755             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2756             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2757             sc->bge_pci_miscctl, 4);
2758
2759         /* Disable fastboot on controllers that support it. */
2760         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2761             BGE_IS_5755_PLUS(sc)) {
2762                 if (bootverbose)
2763                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2764                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2765         }
2766
2767         /*
2768          * Write the magic number to SRAM at offset 0xB50.
2769          * When firmware finishes its initialization it will
2770          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2771          */
2772         bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2773
2774         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2775
2776         /* XXX: Broadcom Linux driver. */
2777         if (sc->bge_flags & BGE_FLAG_PCIE) {
2778                 /* Force PCI-E 1.0a mode */
2779                 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2780                     CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2781                     (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2782                      BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2783                         CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2784                             BGE_PCIE_PHY_TSTCTL_PSCRAM);
2785                 }
2786                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2787                         /* Prevent PCIE link training during global reset */
2788                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2789                         reset |= (1<<29);
2790                 }
2791         }
2792
2793         /* 
2794          * Set GPHY Power Down Override to leave GPHY
2795          * powered up in D0 uninitialized.
2796          */
2797         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2798                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2799
2800         /* Issue global reset */
2801         write_op(sc, BGE_MISC_CFG, reset);
2802
2803         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2804                 uint32_t status, ctrl;
2805
2806                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2807                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2808                     status | BGE_VCPU_STATUS_DRV_RESET);
2809                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2810                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2811                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2812         }
2813
2814         DELAY(1000);
2815
2816         /* XXX: Broadcom Linux driver. */
2817         if (sc->bge_flags & BGE_FLAG_PCIE) {
2818                 uint16_t devctl;
2819
2820                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2821                         uint32_t v;
2822
2823                         DELAY(500000); /* wait for link training to complete */
2824                         v = pci_read_config(dev, 0xc4, 4);
2825                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2826                 }
2827
2828                 devctl = pci_read_config(dev,
2829                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2830
2831                 /* Disable no snoop and disable relaxed ordering. */
2832                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2833
2834                 /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2835                 if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2836                         devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2837                         devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2838                 }
2839
2840                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2841                     devctl, 2);
2842
2843                 /* Clear error status. */
2844                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2845                     PCIEM_DEVSTS_CORR_ERR |
2846                     PCIEM_DEVSTS_NFATAL_ERR |
2847                     PCIEM_DEVSTS_FATAL_ERR |
2848                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2849         }
2850
2851         /* Reset some of the PCI state that got zapped by reset */
2852         pci_write_config(dev, BGE_PCI_MISC_CTL,
2853             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2854             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2855             sc->bge_pci_miscctl, 4);
2856         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2857         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2858         write_op(sc, BGE_MISC_CFG, (65 << 1));
2859
2860         /*
2861          * Disable PCI-X relaxed ordering to ensure status block update
2862          * comes first then packet buffer DMA. Otherwise driver may
2863          * read stale status block.
2864          */
2865         if (sc->bge_flags & BGE_FLAG_PCIX) {
2866                 uint16_t devctl;
2867
2868                 devctl = pci_read_config(dev,
2869                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2870                 devctl &= ~PCIXM_COMMAND_ERO;
2871                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2872                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2873                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2874                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2875                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2876                             PCIXM_COMMAND_MAX_READ);
2877                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2878                 }
2879                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2880                     devctl, 2);
2881         }
2882
2883         /*
2884          * Enable memory arbiter and re-enable MSI if necessary.
2885          */
2886         if (BGE_IS_5714_FAMILY(sc)) {
2887                 uint32_t val;
2888
2889                 if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2890                         /*
2891                          * Resetting BCM5714 family will clear MSI
2892                          * enable bit; restore it after resetting.
2893                          */
2894                         PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2895                             PCIM_MSICTRL_MSI_ENABLE, 2);
2896                         BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2897                 }
2898                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2899                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2900         } else {
2901                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2902         }
2903
2904         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2905                 for (i = 0; i < BGE_TIMEOUT; i++) {
2906                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2907                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2908                                 break;
2909                         DELAY(100);
2910                 }
2911                 if (i == BGE_TIMEOUT) {
2912                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2913                         return;
2914                 }
2915         } else {
2916                 /*
2917                  * Poll until we see the 1's complement of the magic number.
2918                  * This indicates that the firmware initialization
2919                  * is complete.
2920                  */
2921                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2922                         val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2923                         if (val == ~BGE_SRAM_FW_MB_MAGIC)
2924                                 break;
2925                         DELAY(10);
2926                 }
2927                 if (i == BGE_FIRMWARE_TIMEOUT) {
2928                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2929                                   "timed out, found 0x%08x\n", val);
2930                 }
2931         }
2932
2933         /*
2934          * XXX Wait for the value of the PCISTATE register to
2935          * return to its original pre-reset state. This is a
2936          * fairly good indicator of reset completion. If we don't
2937          * wait for the reset to fully complete, trying to read
2938          * from the device's non-PCI registers may yield garbage
2939          * results.
2940          */
2941         for (i = 0; i < BGE_TIMEOUT; i++) {
2942                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2943                         break;
2944                 DELAY(10);
2945         }
2946
2947         /* Fix up byte swapping */
2948         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2949             BGE_MODECTL_BYTESWAP_DATA);
2950
2951         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2952         DELAY(40);
2953
2954         /*
2955          * The 5704 in TBI mode apparently needs some special
2956          * adjustment to insure the SERDES drive level is set
2957          * to 1.2V.
2958          */
2959         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2960             (sc->bge_flags & BGE_FLAG_TBI)) {
2961                 uint32_t serdescfg;
2962
2963                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2964                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2965                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2966         }
2967
2968         /* XXX: Broadcom Linux driver. */
2969         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2970             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2971             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2972                 uint32_t v;
2973
2974                 /* Enable Data FIFO protection. */
2975                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2976                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2977         }
2978
2979         DELAY(10000);
2980 }
2981
2982 /*
2983  * Frame reception handling. This is called if there's a frame
2984  * on the receive return list.
2985  *
2986  * Note: we have to be able to handle two possibilities here:
2987  * 1) the frame is from the jumbo recieve ring
2988  * 2) the frame is from the standard receive ring
2989  */
2990
2991 static void
2992 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
2993 {
2994         struct ifnet *ifp;
2995         int stdcnt = 0, jumbocnt = 0;
2996
2997         ifp = &sc->arpcom.ac_if;
2998
2999         while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
3000                 struct bge_rx_bd        *cur_rx;
3001                 uint32_t                rxidx;
3002                 struct mbuf             *m = NULL;
3003                 uint16_t                vlan_tag = 0;
3004                 int                     have_tag = 0;
3005
3006                 --count;
3007
3008                 cur_rx =
3009             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3010
3011                 rxidx = cur_rx->bge_idx;
3012                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3013                 logif(rx_pkt);
3014
3015                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3016                         have_tag = 1;
3017                         vlan_tag = cur_rx->bge_vlan_tag;
3018                 }
3019
3020                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3021                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3022                         jumbocnt++;
3023
3024                         if (rxidx != sc->bge_jumbo) {
3025                                 IFNET_STAT_INC(ifp, ierrors, 1);
3026                                 if_printf(ifp, "sw jumbo index(%d) "
3027                                     "and hw jumbo index(%d) mismatch, drop!\n",
3028                                     sc->bge_jumbo, rxidx);
3029                                 bge_setup_rxdesc_jumbo(sc, rxidx);
3030                                 continue;
3031                         }
3032
3033                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3034                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3035                                 IFNET_STAT_INC(ifp, ierrors, 1);
3036                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3037                                 continue;
3038                         }
3039                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3040                                 IFNET_STAT_INC(ifp, ierrors, 1);
3041                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3042                                 continue;
3043                         }
3044                 } else {
3045                         int discard = 0;
3046
3047                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3048                         stdcnt++;
3049
3050                         if (rxidx != sc->bge_std) {
3051                                 IFNET_STAT_INC(ifp, ierrors, 1);
3052                                 if_printf(ifp, "sw std index(%d) "
3053                                     "and hw std index(%d) mismatch, drop!\n",
3054                                     sc->bge_std, rxidx);
3055                                 bge_setup_rxdesc_std(sc, rxidx);
3056                                 discard = 1;
3057                                 goto refresh_rx;
3058                         }
3059
3060                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3061                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3062                                 IFNET_STAT_INC(ifp, ierrors, 1);
3063                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3064                                 discard = 1;
3065                                 goto refresh_rx;
3066                         }
3067                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3068                                 IFNET_STAT_INC(ifp, ierrors, 1);
3069                                 bge_setup_rxdesc_std(sc, sc->bge_std);
3070                                 discard = 1;
3071                         }
3072 refresh_rx:
3073                         if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3074                                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3075                                     sc->bge_std);
3076                                 stdcnt = 0;
3077                         }
3078                         if (discard)
3079                                 continue;
3080                 }
3081
3082                 IFNET_STAT_INC(ifp, ipackets, 1);
3083 #if !defined(__i386__) && !defined(__x86_64__)
3084                 /*
3085                  * The x86 allows unaligned accesses, but for other
3086                  * platforms we must make sure the payload is aligned.
3087                  */
3088                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3089                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3090                             cur_rx->bge_len);
3091                         m->m_data += ETHER_ALIGN;
3092                 }
3093 #endif
3094                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3095                 m->m_pkthdr.rcvif = ifp;
3096
3097                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3098                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3099                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3100                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3101                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3102                         }
3103                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3104                             m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3105                                 m->m_pkthdr.csum_data =
3106                                         cur_rx->bge_tcp_udp_csum;
3107                                 m->m_pkthdr.csum_flags |=
3108                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3109                         }
3110                 }
3111
3112                 /*
3113                  * If we received a packet with a vlan tag, pass it
3114                  * to vlan_input() instead of ether_input().
3115                  */
3116                 if (have_tag) {
3117                         m->m_flags |= M_VLANTAG;
3118                         m->m_pkthdr.ether_vlantag = vlan_tag;
3119                 }
3120                 ifp->if_input(ifp, m);
3121         }
3122
3123         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3124         if (stdcnt)
3125                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3126         if (jumbocnt)
3127                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3128 }
3129
3130 static void
3131 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3132 {
3133         struct ifnet *ifp;
3134
3135         ifp = &sc->arpcom.ac_if;
3136
3137         /*
3138          * Go through our tx ring and free mbufs for those
3139          * frames that have been sent.
3140          */
3141         while (sc->bge_tx_saved_considx != tx_cons) {
3142                 uint32_t idx = 0;
3143
3144                 idx = sc->bge_tx_saved_considx;
3145                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3146                         IFNET_STAT_INC(ifp, opackets, 1);
3147                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3148                             sc->bge_cdata.bge_tx_dmamap[idx]);
3149                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3150                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3151                 }
3152                 sc->bge_txcnt--;
3153                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3154                 logif(tx_pkt);
3155         }
3156
3157         if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3158             (sc->bge_txrsvd + sc->bge_txspare))
3159                 ifq_clr_oactive(&ifp->if_snd);
3160
3161         if (sc->bge_txcnt == 0)
3162                 ifp->if_timer = 0;
3163
3164         if (!ifq_is_empty(&ifp->if_snd))
3165                 if_devstart(ifp);
3166 }
3167
3168 #ifdef IFPOLL_ENABLE
3169
3170 static void
3171 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3172 {
3173         struct bge_softc *sc = ifp->if_softc;
3174         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3175         uint16_t rx_prod, tx_cons;
3176
3177         ASSERT_SERIALIZED(ifp->if_serializer);
3178
3179         if (sc->bge_npoll.ifpc_stcount-- == 0) {
3180                 sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3181                 /*
3182                  * Process link state changes.
3183                  */
3184                 bge_link_poll(sc);
3185         }
3186
3187         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3188                 sc->bge_status_tag = sblk->bge_status_tag;
3189                 /*
3190                  * Use a load fence to ensure that status_tag
3191                  * is saved  before rx_prod and tx_cons.
3192                  */
3193                 cpu_lfence();
3194         }
3195
3196         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3197         if (sc->bge_rx_saved_considx != rx_prod)
3198                 bge_rxeof(sc, rx_prod, cycles);
3199
3200         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3201         if (sc->bge_tx_saved_considx != tx_cons)
3202                 bge_txeof(sc, tx_cons);
3203
3204         if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3205                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3206
3207         if (sc->bge_coal_chg)
3208                 bge_coal_change(sc);
3209 }
3210
3211 static void
3212 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3213 {
3214         struct bge_softc *sc = ifp->if_softc;
3215
3216         ASSERT_SERIALIZED(ifp->if_serializer);
3217
3218         if (info != NULL) {
3219                 int cpuid = sc->bge_npoll.ifpc_cpuid;
3220
3221                 info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3222                 info->ifpi_rx[cpuid].arg = NULL;
3223                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3224
3225                 if (ifp->if_flags & IFF_RUNNING)
3226                         bge_disable_intr(sc);
3227                 ifq_set_cpuid(&ifp->if_snd, cpuid);
3228         } else {
3229                 if (ifp->if_flags & IFF_RUNNING)
3230                         bge_enable_intr(sc);
3231                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3232         }
3233 }
3234
3235 #endif  /* IFPOLL_ENABLE */
3236
3237 static void
3238 bge_intr_crippled(void *xsc)
3239 {
3240         struct bge_softc *sc = xsc;
3241         struct ifnet *ifp = &sc->arpcom.ac_if;
3242
3243         logif(intr);
3244
3245         /*
3246          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3247          * disable interrupts by writing nonzero like we used to, since with
3248          * our current organization this just gives complications and
3249          * pessimizations for re-enabling interrupts.  We used to have races
3250          * instead of the necessary complications.  Disabling interrupts
3251          * would just reduce the chance of a status update while we are
3252          * running (by switching to the interrupt-mode coalescence
3253          * parameters), but this chance is already very low so it is more
3254          * efficient to get another interrupt than prevent it.
3255          *
3256          * We do the ack first to ensure another interrupt if there is a
3257          * status update after the ack.  We don't check for the status
3258          * changing later because it is more efficient to get another
3259          * interrupt than prevent it, not quite as above (not checking is
3260          * a smaller optimization than not toggling the interrupt enable,
3261          * since checking doesn't involve PCI accesses and toggling require
3262          * the status check).  So toggling would probably be a pessimization
3263          * even with MSI.  It would only be needed for using a task queue.
3264          */
3265         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3266
3267         /*
3268          * Process link state changes.
3269          */
3270         bge_link_poll(sc);
3271
3272         if (ifp->if_flags & IFF_RUNNING) {
3273                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3274                 uint16_t rx_prod, tx_cons;
3275
3276                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3277                 if (sc->bge_rx_saved_considx != rx_prod)
3278                         bge_rxeof(sc, rx_prod, -1);
3279
3280                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3281                 if (sc->bge_tx_saved_considx != tx_cons)
3282                         bge_txeof(sc, tx_cons);
3283         }
3284
3285         if (sc->bge_coal_chg)
3286                 bge_coal_change(sc);
3287 }
3288
3289 static void
3290 bge_intr_legacy(void *xsc)
3291 {
3292         struct bge_softc *sc = xsc;
3293         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3294
3295         if (sc->bge_status_tag == sblk->bge_status_tag) {
3296                 uint32_t val;
3297
3298                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3299                 if (val & BGE_PCISTAT_INTR_NOTACT)
3300                         return;
3301         }
3302
3303         /*
3304          * NOTE:
3305          * Interrupt will have to be disabled if tagged status
3306          * is used, else interrupt will always be asserted on
3307          * certain chips (at least on BCM5750 AX/BX).
3308          */
3309         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3310
3311         bge_intr(sc);
3312 }
3313
3314 static void
3315 bge_msi(void *xsc)
3316 {
3317         struct bge_softc *sc = xsc;
3318
3319         /* Disable interrupt first */
3320         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3321         bge_intr(sc);
3322 }
3323
3324 static void
3325 bge_msi_oneshot(void *xsc)
3326 {
3327         bge_intr(xsc);
3328 }
3329
3330 static void
3331 bge_intr(struct bge_softc *sc)
3332 {
3333         struct ifnet *ifp = &sc->arpcom.ac_if;
3334         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3335         uint16_t rx_prod, tx_cons;
3336         uint32_t status;
3337
3338         sc->bge_status_tag = sblk->bge_status_tag;
3339         /*
3340          * Use a load fence to ensure that status_tag is saved 
3341          * before rx_prod, tx_cons and status.
3342          */
3343         cpu_lfence();
3344
3345         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3346         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3347         status = sblk->bge_status;
3348
3349         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3350                 bge_link_poll(sc);
3351
3352         if (ifp->if_flags & IFF_RUNNING) {
3353                 if (sc->bge_rx_saved_considx != rx_prod)
3354                         bge_rxeof(sc, rx_prod, -1);
3355
3356                 if (sc->bge_tx_saved_considx != tx_cons)
3357                         bge_txeof(sc, tx_cons);
3358         }
3359
3360         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3361
3362         if (sc->bge_coal_chg)
3363                 bge_coal_change(sc);
3364 }
3365
3366 static void
3367 bge_tick(void *xsc)
3368 {
3369         struct bge_softc *sc = xsc;
3370         struct ifnet *ifp = &sc->arpcom.ac_if;
3371
3372         lwkt_serialize_enter(ifp->if_serializer);
3373
3374         if (BGE_IS_5705_PLUS(sc))
3375                 bge_stats_update_regs(sc);
3376         else
3377                 bge_stats_update(sc);
3378
3379         if (sc->bge_flags & BGE_FLAG_TBI) {
3380                 /*
3381                  * Since in TBI mode auto-polling can't be used we should poll
3382                  * link status manually. Here we register pending link event
3383                  * and trigger interrupt.
3384                  */
3385                 sc->bge_link_evt++;
3386                 if (BGE_IS_CRIPPLED(sc))
3387                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3388                 else
3389                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3390         } else if (!sc->bge_link) {
3391                 mii_tick(device_get_softc(sc->bge_miibus));
3392         }
3393
3394         bge_asf_driver_up(sc);
3395
3396         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3397
3398         lwkt_serialize_exit(ifp->if_serializer);
3399 }
3400
3401 static void
3402 bge_stats_update_regs(struct bge_softc *sc)
3403 {
3404         struct ifnet *ifp = &sc->arpcom.ac_if;
3405         struct bge_mac_stats_regs stats;
3406         uint32_t *s;
3407         int i;
3408
3409         s = (uint32_t *)&stats;
3410         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3411                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3412                 s++;
3413         }
3414
3415         IFNET_STAT_SET(ifp, collisions,
3416            (stats.dot3StatsSingleCollisionFrames +
3417            stats.dot3StatsMultipleCollisionFrames +
3418            stats.dot3StatsExcessiveCollisions +
3419            stats.dot3StatsLateCollisions));
3420 }
3421
3422 static void
3423 bge_stats_update(struct bge_softc *sc)
3424 {
3425         struct ifnet *ifp = &sc->arpcom.ac_if;
3426         bus_size_t stats;
3427
3428         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3429
3430 #define READ_STAT(sc, stats, stat)      \
3431         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3432
3433         IFNET_STAT_SET(ifp, collisions,
3434            (READ_STAT(sc, stats,
3435                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3436             READ_STAT(sc, stats,
3437                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3438             READ_STAT(sc, stats,
3439                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3440             READ_STAT(sc, stats,
3441                 txstats.dot3StatsLateCollisions.bge_addr_lo)));
3442
3443 #undef READ_STAT
3444
3445 #ifdef notdef
3446         IFNET_STAT_SET(ifp, collisions,
3447            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3448            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3449            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3450            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3451 #endif
3452 }
3453
3454 /*
3455  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3456  * pointers to descriptors.
3457  */
3458 static int
3459 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3460     int *segs_used)
3461 {
3462         struct bge_tx_bd *d = NULL, *last_d;
3463         uint16_t csum_flags = 0, mss = 0;
3464         bus_dma_segment_t segs[BGE_NSEG_NEW];
3465         bus_dmamap_t map;
3466         int error, maxsegs, nsegs, idx, i;
3467         struct mbuf *m_head = *m_head0, *m_new;
3468
3469         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3470                 error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3471                 if (error)
3472                         return ENOBUFS;
3473                 m_head = *m_head0;
3474         } else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3475                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3476                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3477                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3478                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3479                 if (m_head->m_flags & M_LASTFRAG)
3480                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3481                 else if (m_head->m_flags & M_FRAG)
3482                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3483         }
3484
3485         idx = *txidx;
3486         map = sc->bge_cdata.bge_tx_dmamap[idx];
3487
3488         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3489         KASSERT(maxsegs >= sc->bge_txspare,
3490                 ("not enough segments %d", maxsegs));
3491
3492         if (maxsegs > BGE_NSEG_NEW)
3493                 maxsegs = BGE_NSEG_NEW;
3494
3495         /*
3496          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3497          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3498          * but when such padded frames employ the bge IP/TCP checksum
3499          * offload, the hardware checksum assist gives incorrect results
3500          * (possibly from incorporating its own padding into the UDP/TCP
3501          * checksum; who knows).  If we pad such runts with zeros, the
3502          * onboard checksum comes out correct.
3503          */
3504         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3505             m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3506                 error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3507                 if (error)
3508                         goto back;
3509         }
3510
3511         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3512                 m_new = bge_defrag_shortdma(m_head);
3513                 if (m_new == NULL) {
3514                         error = ENOBUFS;
3515                         goto back;
3516                 }
3517                 *m_head0 = m_head = m_new;
3518         }
3519         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3520             sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3521             m_head->m_next != NULL) {
3522                 /*
3523                  * Forcefully defragment mbuf chain to overcome hardware
3524                  * limitation which only support a single outstanding
3525                  * DMA read operation.  If it fails, keep moving on using
3526                  * the original mbuf chain.
3527                  */
3528                 m_new = m_defrag(m_head, MB_DONTWAIT);
3529                 if (m_new != NULL)
3530                         *m_head0 = m_head = m_new;
3531         }
3532
3533         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3534                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3535         if (error)
3536                 goto back;
3537         *segs_used += nsegs;
3538
3539         m_head = *m_head0;
3540         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3541
3542         for (i = 0; ; i++) {
3543                 d = &sc->bge_ldata.bge_tx_ring[idx];
3544
3545                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3546                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3547                 d->bge_len = segs[i].ds_len;
3548                 d->bge_flags = csum_flags;
3549                 d->bge_mss = mss;
3550
3551                 if (i == nsegs - 1)
3552                         break;
3553                 BGE_INC(idx, BGE_TX_RING_CNT);
3554         }
3555         last_d = d;
3556
3557         /* Set vlan tag to the first segment of the packet. */
3558         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3559         if (m_head->m_flags & M_VLANTAG) {
3560                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3561                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3562         } else {
3563                 d->bge_vlan_tag = 0;
3564         }
3565
3566         /* Mark the last segment as end of packet... */
3567         last_d->bge_flags |= BGE_TXBDFLAG_END;
3568
3569         /*
3570          * Insure that the map for this transmission is placed at
3571          * the array index of the last descriptor in this chain.
3572          */
3573         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3574         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3575         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3576         sc->bge_txcnt += nsegs;
3577
3578         BGE_INC(idx, BGE_TX_RING_CNT);
3579         *txidx = idx;
3580 back:
3581         if (error) {
3582                 m_freem(*m_head0);
3583                 *m_head0 = NULL;
3584         }
3585         return error;
3586 }
3587
3588 static void
3589 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3590 {
3591         /* Transmit */
3592         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3593         /* 5700 b2 errata */
3594         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3595                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3596 }
3597
3598 /*
3599  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3600  * to the mbuf data regions directly in the transmit descriptors.
3601  */
3602 static void
3603 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3604 {
3605         struct bge_softc *sc = ifp->if_softc;
3606         struct mbuf *m_head = NULL;
3607         uint32_t prodidx;
3608         int nsegs = 0;
3609
3610         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3611
3612         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3613                 return;
3614
3615         prodidx = sc->bge_tx_prodidx;
3616
3617         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3618                 m_head = ifq_dequeue(&ifp->if_snd);
3619                 if (m_head == NULL)
3620                         break;
3621
3622                 /*
3623                  * XXX
3624                  * The code inside the if() block is never reached since we
3625                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3626                  * requests to checksum TCP/UDP in a fragmented packet.
3627                  * 
3628                  * XXX
3629                  * safety overkill.  If this is a fragmented packet chain
3630                  * with delayed TCP/UDP checksums, then only encapsulate
3631                  * it if we have enough descriptors to handle the entire
3632                  * chain at once.
3633                  * (paranoia -- may not actually be needed)
3634                  */
3635                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3636                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3637                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3638                             m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3639                                 ifq_set_oactive(&ifp->if_snd);
3640                                 ifq_prepend(&ifp->if_snd, m_head);
3641                                 break;
3642                         }
3643                 }
3644
3645                 /*
3646                  * Sanity check: avoid coming within bge_txrsvd
3647                  * descriptors of the end of the ring.  Also make
3648                  * sure there are bge_txspare descriptors for
3649                  * jumbo buffers' defragmentation.
3650                  */
3651                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3652                     (sc->bge_txrsvd + sc->bge_txspare)) {
3653                         ifq_set_oactive(&ifp->if_snd);
3654                         ifq_prepend(&ifp->if_snd, m_head);
3655                         break;
3656                 }
3657
3658                 /*
3659                  * Pack the data into the transmit ring. If we
3660                  * don't have room, set the OACTIVE flag and wait
3661                  * for the NIC to drain the ring.
3662                  */
3663                 if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3664                         ifq_set_oactive(&ifp->if_snd);
3665                         IFNET_STAT_INC(ifp, oerrors, 1);
3666                         break;
3667                 }
3668
3669                 if (nsegs >= sc->bge_tx_wreg) {
3670                         bge_xmit(sc, prodidx);
3671                         nsegs = 0;
3672                 }
3673
3674                 ETHER_BPF_MTAP(ifp, m_head);
3675
3676                 /*
3677                  * Set a timeout in case the chip goes out to lunch.
3678                  */
3679                 ifp->if_timer = 5;
3680         }
3681
3682         if (nsegs > 0)
3683                 bge_xmit(sc, prodidx);
3684         sc->bge_tx_prodidx = prodidx;
3685 }
3686
3687 static void
3688 bge_init(void *xsc)
3689 {
3690         struct bge_softc *sc = xsc;
3691         struct ifnet *ifp = &sc->arpcom.ac_if;
3692         uint16_t *m;
3693         uint32_t mode;
3694
3695         ASSERT_SERIALIZED(ifp->if_serializer);
3696
3697         /* Cancel pending I/O and flush buffers. */
3698         bge_stop(sc);
3699
3700         bge_stop_fw(sc);
3701         bge_sig_pre_reset(sc, BGE_RESET_START);
3702         bge_reset(sc);
3703         bge_sig_legacy(sc, BGE_RESET_START);
3704         bge_sig_post_reset(sc, BGE_RESET_START);
3705
3706         bge_chipinit(sc);
3707
3708         /*
3709          * Init the various state machines, ring
3710          * control blocks and firmware.
3711          */
3712         if (bge_blockinit(sc)) {
3713                 if_printf(ifp, "initialization failure\n");
3714                 bge_stop(sc);
3715                 return;
3716         }
3717
3718         /* Specify MTU. */
3719         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3720             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3721
3722         /* Load our MAC address. */
3723         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3724         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3725         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3726
3727         /* Enable or disable promiscuous mode as needed. */
3728         bge_setpromisc(sc);
3729
3730         /* Program multicast filter. */
3731         bge_setmulti(sc);
3732
3733         /* Init RX ring. */
3734         if (bge_init_rx_ring_std(sc)) {
3735                 if_printf(ifp, "RX ring initialization failed\n");
3736                 bge_stop(sc);
3737                 return;
3738         }
3739
3740         /*
3741          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3742          * memory to insure that the chip has in fact read the first
3743          * entry of the ring.
3744          */
3745         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3746                 uint32_t                v, i;
3747                 for (i = 0; i < 10; i++) {
3748                         DELAY(20);
3749                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3750                         if (v == (MCLBYTES - ETHER_ALIGN))
3751                                 break;
3752                 }
3753                 if (i == 10)
3754                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3755         }
3756
3757         /* Init jumbo RX ring. */
3758         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3759                 if (bge_init_rx_ring_jumbo(sc)) {
3760                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3761                         bge_stop(sc);
3762                         return;
3763                 }
3764         }
3765
3766         /* Init our RX return ring index */
3767         sc->bge_rx_saved_considx = 0;
3768
3769         /* Init TX ring. */
3770         bge_init_tx_ring(sc);
3771
3772         /* Enable TX MAC state machine lockup fix. */
3773         mode = CSR_READ_4(sc, BGE_TX_MODE);
3774         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3775                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3776         /* Turn on transmitter */
3777         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3778         DELAY(100);
3779
3780         /* Turn on receiver */
3781         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3782         DELAY(10);
3783
3784         /*
3785          * Set the number of good frames to receive after RX MBUF
3786          * Low Watermark has been reached.  After the RX MAC receives
3787          * this number of frames, it will drop subsequent incoming
3788          * frames until the MBUF High Watermark is reached.
3789          */
3790         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3791
3792         if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3793                 if (bootverbose) {
3794                         if_printf(ifp, "MSI_MODE: %#x\n",
3795                             CSR_READ_4(sc, BGE_MSI_MODE));
3796                 }
3797
3798                 /*
3799                  * XXX
3800                  * Linux driver turns it on for all chips supporting MSI?!
3801                  */
3802                 if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3803                         /*
3804                          * XXX
3805                          * According to 5722-PG101-R,
3806                          * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3807                          * BCM5906.
3808                          */
3809                         BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3810                             BGE_PCIE_TRANSACT_ONESHOT_MSI);
3811                 }
3812         }
3813
3814         /* Tell firmware we're alive. */
3815         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3816
3817         /* Enable host interrupts if polling(4) is not enabled. */
3818         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3819 #ifdef IFPOLL_ENABLE
3820         if (ifp->if_flags & IFF_NPOLLING)
3821                 bge_disable_intr(sc);
3822         else
3823 #endif
3824         bge_enable_intr(sc);
3825
3826         ifp->if_flags |= IFF_RUNNING;
3827         ifq_clr_oactive(&ifp->if_snd);
3828
3829         bge_ifmedia_upd(ifp);
3830
3831         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3832 }
3833
3834 /*
3835  * Set media options.
3836  */
3837 static int
3838 bge_ifmedia_upd(struct ifnet *ifp)
3839 {
3840         struct bge_softc *sc = ifp->if_softc;
3841
3842         /* If this is a 1000baseX NIC, enable the TBI port. */
3843         if (sc->bge_flags & BGE_FLAG_TBI) {
3844                 struct ifmedia *ifm = &sc->bge_ifmedia;
3845
3846                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3847                         return(EINVAL);
3848
3849                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3850                 case IFM_AUTO:
3851                         /*
3852                          * The BCM5704 ASIC appears to have a special
3853                          * mechanism for programming the autoneg
3854                          * advertisement registers in TBI mode.
3855                          */
3856                         if (!bge_fake_autoneg &&
3857                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3858                                 uint32_t sgdig;
3859
3860                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3861                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3862                                 sgdig |= BGE_SGDIGCFG_AUTO |
3863                                          BGE_SGDIGCFG_PAUSE_CAP |
3864                                          BGE_SGDIGCFG_ASYM_PAUSE;
3865                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3866                                             sgdig | BGE_SGDIGCFG_SEND);
3867                                 DELAY(5);
3868                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3869                         }
3870                         break;
3871                 case IFM_1000_SX:
3872                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3873                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3874                                     BGE_MACMODE_HALF_DUPLEX);
3875                         } else {
3876                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3877                                     BGE_MACMODE_HALF_DUPLEX);
3878                         }
3879                         DELAY(40);
3880                         break;
3881                 default:
3882                         return(EINVAL);
3883                 }
3884         } else {
3885                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3886
3887                 sc->bge_link_evt++;
3888                 sc->bge_link = 0;
3889                 if (mii->mii_instance) {
3890                         struct mii_softc *miisc;
3891
3892                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3893                                 mii_phy_reset(miisc);
3894                 }
3895                 mii_mediachg(mii);
3896
3897                 /*
3898                  * Force an interrupt so that we will call bge_link_upd
3899                  * if needed and clear any pending link state attention.
3900                  * Without this we are not getting any further interrupts
3901                  * for link state changes and thus will not UP the link and
3902                  * not be able to send in bge_start.  The only way to get
3903                  * things working was to receive a packet and get an RX
3904                  * intr.
3905                  *
3906                  * bge_tick should help for fiber cards and we might not
3907                  * need to do this here if BGE_FLAG_TBI is set but as
3908                  * we poll for fiber anyway it should not harm.
3909                  */
3910                 if (BGE_IS_CRIPPLED(sc))
3911                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3912                 else
3913                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3914         }
3915         return(0);
3916 }
3917
3918 /*
3919  * Report current media status.
3920  */
3921 static void
3922 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3923 {
3924         struct bge_softc *sc = ifp->if_softc;
3925
3926         if ((ifp->if_flags & IFF_RUNNING) == 0)
3927                 return;
3928
3929         if (sc->bge_flags & BGE_FLAG_TBI) {
3930                 ifmr->ifm_status = IFM_AVALID;
3931                 ifmr->ifm_active = IFM_ETHER;
3932                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3933                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3934                         ifmr->ifm_status |= IFM_ACTIVE;
3935                 } else {
3936                         ifmr->ifm_active |= IFM_NONE;
3937                         return;
3938                 }
3939
3940                 ifmr->ifm_active |= IFM_1000_SX;
3941                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3942                         ifmr->ifm_active |= IFM_HDX;    
3943                 else
3944                         ifmr->ifm_active |= IFM_FDX;
3945         } else {
3946                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3947
3948                 mii_pollstat(mii);
3949                 ifmr->ifm_active = mii->mii_media_active;
3950                 ifmr->ifm_status = mii->mii_media_status;
3951         }
3952 }
3953
3954 static int
3955 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3956 {
3957         struct bge_softc *sc = ifp->if_softc;
3958         struct ifreq *ifr = (struct ifreq *)data;
3959         int mask, error = 0;
3960
3961         ASSERT_SERIALIZED(ifp->if_serializer);
3962
3963         switch (command) {
3964         case SIOCSIFMTU:
3965                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3966                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3967                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3968                         error = EINVAL;
3969                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3970                         ifp->if_mtu = ifr->ifr_mtu;
3971                         if (ifp->if_flags & IFF_RUNNING)
3972                                 bge_init(sc);
3973                 }
3974                 break;
3975         case SIOCSIFFLAGS:
3976                 if (ifp->if_flags & IFF_UP) {
3977                         if (ifp->if_flags & IFF_RUNNING) {
3978                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3979
3980                                 /*
3981                                  * If only the state of the PROMISC flag
3982                                  * changed, then just use the 'set promisc
3983                                  * mode' command instead of reinitializing
3984                                  * the entire NIC. Doing a full re-init
3985                                  * means reloading the firmware and waiting
3986                                  * for it to start up, which may take a
3987                                  * second or two.  Similarly for ALLMULTI.
3988                                  */
3989                                 if (mask & IFF_PROMISC)
3990                                         bge_setpromisc(sc);
3991                                 if (mask & IFF_ALLMULTI)
3992                                         bge_setmulti(sc);
3993                         } else {
3994                                 bge_init(sc);
3995                         }
3996                 } else if (ifp->if_flags & IFF_RUNNING) {
3997                         bge_stop(sc);
3998                 }
3999                 sc->bge_if_flags = ifp->if_flags;
4000                 break;
4001         case SIOCADDMULTI:
4002         case SIOCDELMULTI:
4003                 if (ifp->if_flags & IFF_RUNNING)
4004                         bge_setmulti(sc);
4005                 break;
4006         case SIOCSIFMEDIA:
4007         case SIOCGIFMEDIA:
4008                 if (sc->bge_flags & BGE_FLAG_TBI) {
4009                         error = ifmedia_ioctl(ifp, ifr,
4010                             &sc->bge_ifmedia, command);
4011                 } else {
4012                         struct mii_data *mii;
4013
4014                         mii = device_get_softc(sc->bge_miibus);
4015                         error = ifmedia_ioctl(ifp, ifr,
4016                                               &mii->mii_media, command);
4017                 }
4018                 break;
4019         case SIOCSIFCAP:
4020                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4021                 if (mask & IFCAP_HWCSUM) {
4022                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4023                         if (ifp->if_capenable & IFCAP_TXCSUM)
4024                                 ifp->if_hwassist |= BGE_CSUM_FEATURES;
4025                         else
4026                                 ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4027                 }
4028                 if (mask & IFCAP_TSO) {
4029                         ifp->if_capenable ^= IFCAP_TSO;
4030                         if (ifp->if_capenable & IFCAP_TSO)
4031                                 ifp->if_hwassist |= CSUM_TSO;
4032                         else
4033                                 ifp->if_hwassist &= ~CSUM_TSO;
4034                 }
4035                 break;
4036         default:
4037                 error = ether_ioctl(ifp, command, data);
4038                 break;
4039         }
4040         return error;
4041 }
4042
4043 static void
4044 bge_watchdog(struct ifnet *ifp)
4045 {
4046         struct bge_softc *sc = ifp->if_softc;
4047
4048         if_printf(ifp, "watchdog timeout -- resetting\n");
4049
4050         bge_init(sc);
4051
4052         IFNET_STAT_INC(ifp, oerrors, 1);
4053
4054         if (!ifq_is_empty(&ifp->if_snd))
4055                 if_devstart(ifp);
4056 }
4057
4058 /*
4059  * Stop the adapter and free any mbufs allocated to the
4060  * RX and TX lists.
4061  */
4062 static void
4063 bge_stop(struct bge_softc *sc)
4064 {
4065         struct ifnet *ifp = &sc->arpcom.ac_if;
4066
4067         ASSERT_SERIALIZED(ifp->if_serializer);
4068
4069         callout_stop(&sc->bge_stat_timer);
4070
4071         /* Disable host interrupts. */
4072         bge_disable_intr(sc);
4073
4074         /*
4075          * Tell firmware we're shutting down.
4076          */
4077         bge_stop_fw(sc);
4078         bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4079
4080         /*
4081          * Disable all of the receiver blocks
4082          */
4083         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4084         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4085         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4086         if (BGE_IS_5700_FAMILY(sc))
4087                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4088         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4089         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4090         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4091
4092         /*
4093          * Disable all of the transmit blocks
4094          */
4095         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4096         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4097         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4098         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4099         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4100         if (BGE_IS_5700_FAMILY(sc))
4101                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4102         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4103
4104         /*
4105          * Shut down all of the memory managers and related
4106          * state machines.
4107          */
4108         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4109         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4110         if (BGE_IS_5700_FAMILY(sc))
4111                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4112         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4113         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4114         if (!BGE_IS_5705_PLUS(sc)) {
4115                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4116                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4117         }
4118
4119         bge_reset(sc);
4120         bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4121         bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4122
4123         /*
4124          * Keep the ASF firmware running if up.
4125          */
4126         if (sc->bge_asf_mode & ASF_STACKUP)
4127                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4128         else
4129                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4130
4131         /* Free the RX lists. */
4132         bge_free_rx_ring_std(sc);
4133
4134         /* Free jumbo RX list. */
4135         if (BGE_IS_JUMBO_CAPABLE(sc))
4136                 bge_free_rx_ring_jumbo(sc);
4137
4138         /* Free TX buffers. */
4139         bge_free_tx_ring(sc);
4140
4141         sc->bge_status_tag = 0;
4142         sc->bge_link = 0;
4143         sc->bge_coal_chg = 0;
4144
4145         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4146
4147         ifp->if_flags &= ~IFF_RUNNING;
4148         ifq_clr_oactive(&ifp->if_snd);
4149         ifp->if_timer = 0;
4150 }
4151
4152 /*
4153  * Stop all chip I/O so that the kernel's probe routines don't
4154  * get confused by errant DMAs when rebooting.
4155  */
4156 static void
4157 bge_shutdown(device_t dev)
4158 {
4159         struct bge_softc *sc = device_get_softc(dev);
4160         struct ifnet *ifp = &sc->arpcom.ac_if;
4161
4162         lwkt_serialize_enter(ifp->if_serializer);
4163         bge_stop(sc);
4164         lwkt_serialize_exit(ifp->if_serializer);
4165 }
4166
4167 static int
4168 bge_suspend(device_t dev)
4169 {
4170         struct bge_softc *sc = device_get_softc(dev);
4171         struct ifnet *ifp = &sc->arpcom.ac_if;
4172
4173         lwkt_serialize_enter(ifp->if_serializer);
4174         bge_stop(sc);
4175         lwkt_serialize_exit(ifp->if_serializer);
4176
4177         return 0;
4178 }
4179
4180 static int
4181 bge_resume(device_t dev)
4182 {
4183         struct bge_softc *sc = device_get_softc(dev);
4184         struct ifnet *ifp = &sc->arpcom.ac_if;
4185
4186         lwkt_serialize_enter(ifp->if_serializer);
4187
4188         if (ifp->if_flags & IFF_UP) {
4189                 bge_init(sc);
4190
4191                 if (!ifq_is_empty(&ifp->if_snd))
4192                         if_devstart(ifp);
4193         }
4194
4195         lwkt_serialize_exit(ifp->if_serializer);
4196
4197         return 0;
4198 }
4199
4200 static void
4201 bge_setpromisc(struct bge_softc *sc)
4202 {
4203         struct ifnet *ifp = &sc->arpcom.ac_if;
4204
4205         if (ifp->if_flags & IFF_PROMISC)
4206                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4207         else
4208                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4209 }
4210
4211 static void
4212 bge_dma_free(struct bge_softc *sc)
4213 {
4214         int i;
4215
4216         /* Destroy RX mbuf DMA stuffs. */
4217         if (sc->bge_cdata.bge_rx_mtag != NULL) {
4218                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4219                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4220                             sc->bge_cdata.bge_rx_std_dmamap[i]);
4221                 }
4222                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4223                                    sc->bge_cdata.bge_rx_tmpmap);
4224                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4225         }
4226
4227         /* Destroy TX mbuf DMA stuffs. */
4228         if (sc->bge_cdata.bge_tx_mtag != NULL) {
4229                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
4230                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4231                             sc->bge_cdata.bge_tx_dmamap[i]);
4232                 }
4233                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4234         }
4235
4236         /* Destroy standard RX ring */
4237         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4238                            sc->bge_cdata.bge_rx_std_ring_map,
4239                            sc->bge_ldata.bge_rx_std_ring);
4240
4241         if (BGE_IS_JUMBO_CAPABLE(sc))
4242                 bge_free_jumbo_mem(sc);
4243
4244         /* Destroy RX return ring */
4245         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4246                            sc->bge_cdata.bge_rx_return_ring_map,
4247                            sc->bge_ldata.bge_rx_return_ring);
4248
4249         /* Destroy TX ring */
4250         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4251                            sc->bge_cdata.bge_tx_ring_map,
4252                            sc->bge_ldata.bge_tx_ring);
4253
4254         /* Destroy status block */
4255         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4256                            sc->bge_cdata.bge_status_map,
4257                            sc->bge_ldata.bge_status_block);
4258
4259         /* Destroy statistics block */
4260         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4261                            sc->bge_cdata.bge_stats_map,
4262                            sc->bge_ldata.bge_stats);
4263
4264         /* Destroy the parent tag */
4265         if (sc->bge_cdata.bge_parent_tag != NULL)
4266                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4267 }
4268
4269 static int
4270 bge_dma_alloc(struct bge_softc *sc)
4271 {
4272         struct ifnet *ifp = &sc->arpcom.ac_if;
4273         int i, error;
4274         bus_addr_t lowaddr;
4275         bus_size_t txmaxsz;
4276
4277         lowaddr = BUS_SPACE_MAXADDR;
4278         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4279                 lowaddr = BGE_DMA_MAXADDR_40BIT;
4280
4281         /*
4282          * Allocate the parent bus DMA tag appropriate for PCI.
4283          *
4284          * All of the NetExtreme/NetLink controllers have 4GB boundary
4285          * DMA bug.
4286          * Whenever an address crosses a multiple of the 4GB boundary
4287          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4288          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4289          * state machine will lockup and cause the device to hang.
4290          */
4291         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4292                                    lowaddr, BUS_SPACE_MAXADDR,
4293                                    NULL, NULL,
4294                                    BUS_SPACE_MAXSIZE_32BIT, 0,
4295                                    BUS_SPACE_MAXSIZE_32BIT,
4296                                    0, &sc->bge_cdata.bge_parent_tag);
4297         if (error) {
4298                 if_printf(ifp, "could not allocate parent dma tag\n");
4299                 return error;
4300         }
4301
4302         /*
4303          * Create DMA tag and maps for RX mbufs.
4304          */
4305         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4306                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4307                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4308                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4309                                    &sc->bge_cdata.bge_rx_mtag);
4310         if (error) {
4311                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4312                 return error;
4313         }
4314
4315         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4316                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4317         if (error) {
4318                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4319                 sc->bge_cdata.bge_rx_mtag = NULL;
4320                 return error;
4321         }
4322
4323         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4324                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4325                                           BUS_DMA_WAITOK,
4326                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
4327                 if (error) {
4328                         int j;
4329
4330                         for (j = 0; j < i; ++j) {
4331                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4332                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
4333                         }
4334                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4335                         sc->bge_cdata.bge_rx_mtag = NULL;
4336
4337                         if_printf(ifp, "could not create DMA map for RX\n");
4338                         return error;
4339                 }
4340         }
4341
4342         /*
4343          * Create DMA tag and maps for TX mbufs.
4344          */
4345         if (sc->bge_flags & BGE_FLAG_TSO)
4346                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4347         else
4348                 txmaxsz = BGE_JUMBO_FRAMELEN;
4349         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4350                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4351                                    NULL, NULL,
4352                                    txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4353                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4354                                    BUS_DMA_ONEBPAGE,
4355                                    &sc->bge_cdata.bge_tx_mtag);
4356         if (error) {
4357                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4358                 return error;
4359         }
4360
4361         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4362                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4363                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4364                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4365                 if (error) {
4366                         int j;
4367
4368                         for (j = 0; j < i; ++j) {
4369                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4370                                         sc->bge_cdata.bge_tx_dmamap[j]);
4371                         }
4372                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4373                         sc->bge_cdata.bge_tx_mtag = NULL;
4374
4375                         if_printf(ifp, "could not create DMA map for TX\n");
4376                         return error;
4377                 }
4378         }
4379
4380         /*
4381          * Create DMA stuffs for standard RX ring.
4382          */
4383         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4384                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4385                                     &sc->bge_cdata.bge_rx_std_ring_map,
4386                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4387                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4388         if (error) {
4389                 if_printf(ifp, "could not create std RX ring\n");
4390                 return error;
4391         }
4392
4393         /*
4394          * Create jumbo buffer pool.
4395          */
4396         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4397                 error = bge_alloc_jumbo_mem(sc);
4398                 if (error) {
4399                         if_printf(ifp, "could not create jumbo buffer pool\n");
4400                         return error;
4401                 }
4402         }
4403
4404         /*
4405          * Create DMA stuffs for RX return ring.
4406          */
4407         error = bge_dma_block_alloc(sc,
4408             BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4409             &sc->bge_cdata.bge_rx_return_ring_tag,
4410             &sc->bge_cdata.bge_rx_return_ring_map,
4411             (void *)&sc->bge_ldata.bge_rx_return_ring,
4412             &sc->bge_ldata.bge_rx_return_ring_paddr);
4413         if (error) {
4414                 if_printf(ifp, "could not create RX ret ring\n");
4415                 return error;
4416         }
4417
4418         /*
4419          * Create DMA stuffs for TX ring.
4420          */
4421         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4422                                     &sc->bge_cdata.bge_tx_ring_tag,
4423                                     &sc->bge_cdata.bge_tx_ring_map,
4424                                     (void *)&sc->bge_ldata.bge_tx_ring,
4425                                     &sc->bge_ldata.bge_tx_ring_paddr);
4426         if (error) {
4427                 if_printf(ifp, "could not create TX ring\n");
4428                 return error;
4429         }
4430
4431         /*
4432          * Create DMA stuffs for status block.
4433          */
4434         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4435                                     &sc->bge_cdata.bge_status_tag,
4436                                     &sc->bge_cdata.bge_status_map,
4437                                     (void *)&sc->bge_ldata.bge_status_block,
4438                                     &sc->bge_ldata.bge_status_block_paddr);
4439         if (error) {
4440                 if_printf(ifp, "could not create status block\n");
4441                 return error;
4442         }
4443
4444         /*
4445          * Create DMA stuffs for statistics block.
4446          */
4447         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4448                                     &sc->bge_cdata.bge_stats_tag,
4449                                     &sc->bge_cdata.bge_stats_map,
4450                                     (void *)&sc->bge_ldata.bge_stats,
4451                                     &sc->bge_ldata.bge_stats_paddr);
4452         if (error) {
4453                 if_printf(ifp, "could not create stats block\n");
4454                 return error;
4455         }
4456         return 0;
4457 }
4458
4459 static int
4460 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4461                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4462 {
4463         bus_dmamem_t dmem;
4464         int error;
4465
4466         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4467                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4468                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4469         if (error)
4470                 return error;
4471
4472         *tag = dmem.dmem_tag;
4473         *map = dmem.dmem_map;
4474         *addr = dmem.dmem_addr;
4475         *paddr = dmem.dmem_busaddr;
4476
4477         return 0;
4478 }
4479
4480 static void
4481 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4482 {
4483         if (tag != NULL) {
4484                 bus_dmamap_unload(tag, map);
4485                 bus_dmamem_free(tag, addr, map);
4486                 bus_dma_tag_destroy(tag);
4487         }
4488 }
4489
4490 /*
4491  * Grrr. The link status word in the status block does
4492  * not work correctly on the BCM5700 rev AX and BX chips,
4493  * according to all available information. Hence, we have
4494  * to enable MII interrupts in order to properly obtain
4495  * async link changes. Unfortunately, this also means that
4496  * we have to read the MAC status register to detect link
4497  * changes, thereby adding an additional register access to
4498  * the interrupt handler.
4499  *
4500  * XXX: perhaps link state detection procedure used for
4501  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4502  */
4503 static void
4504 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4505 {
4506         struct ifnet *ifp = &sc->arpcom.ac_if;
4507         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4508
4509         mii_pollstat(mii);
4510
4511         if (!sc->bge_link &&
4512             (mii->mii_media_status & IFM_ACTIVE) &&
4513             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4514                 sc->bge_link++;
4515                 if (bootverbose)
4516                         if_printf(ifp, "link UP\n");
4517         } else if (sc->bge_link &&
4518             (!(mii->mii_media_status & IFM_ACTIVE) ||
4519             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4520                 sc->bge_link = 0;
4521                 if (bootverbose)
4522                         if_printf(ifp, "link DOWN\n");
4523         }
4524
4525         /* Clear the interrupt. */
4526         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4527         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4528         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4529 }
4530
4531 static void
4532 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4533 {
4534         struct ifnet *ifp = &sc->arpcom.ac_if;
4535
4536 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4537
4538         /*
4539          * Sometimes PCS encoding errors are detected in
4540          * TBI mode (on fiber NICs), and for some reason
4541          * the chip will signal them as link changes.
4542          * If we get a link change event, but the 'PCS
4543          * encoding error' bit in the MAC status register
4544          * is set, don't bother doing a link check.
4545          * This avoids spurious "gigabit link up" messages
4546          * that sometimes appear on fiber NICs during
4547          * periods of heavy traffic.
4548          */
4549         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4550                 if (!sc->bge_link) {
4551                         sc->bge_link++;
4552                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4553                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4554                                     BGE_MACMODE_TBI_SEND_CFGS);
4555                                 DELAY(40);
4556                         }
4557                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4558
4559                         if (bootverbose)
4560                                 if_printf(ifp, "link UP\n");
4561
4562                         ifp->if_link_state = LINK_STATE_UP;
4563                         if_link_state_change(ifp);
4564                 }
4565         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4566                 if (sc->bge_link) {
4567                         sc->bge_link = 0;
4568
4569                         if (bootverbose)
4570                                 if_printf(ifp, "link DOWN\n");
4571
4572                         ifp->if_link_state = LINK_STATE_DOWN;
4573                         if_link_state_change(ifp);
4574                 }
4575         }
4576
4577 #undef PCS_ENCODE_ERR
4578
4579         /* Clear the attention. */
4580         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4581             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4582             BGE_MACSTAT_LINK_CHANGED);
4583 }
4584
4585 static void
4586 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4587 {
4588         struct ifnet *ifp = &sc->arpcom.ac_if;
4589         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4590
4591         mii_pollstat(mii);
4592         bge_miibus_statchg(sc->bge_dev);
4593
4594         if (bootverbose) {
4595                 if (sc->bge_link)
4596                         if_printf(ifp, "link UP\n");
4597                 else
4598                         if_printf(ifp, "link DOWN\n");
4599         }
4600
4601         /* Clear the attention. */
4602         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4603             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4604             BGE_MACSTAT_LINK_CHANGED);
4605 }
4606
4607 static void
4608 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4609 {
4610         struct ifnet *ifp = &sc->arpcom.ac_if;
4611         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4612
4613         mii_pollstat(mii);
4614
4615         if (!sc->bge_link &&
4616             (mii->mii_media_status & IFM_ACTIVE) &&
4617             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4618                 sc->bge_link++;
4619                 if (bootverbose)
4620                         if_printf(ifp, "link UP\n");
4621         } else if (sc->bge_link &&
4622             (!(mii->mii_media_status & IFM_ACTIVE) ||
4623             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4624                 sc->bge_link = 0;
4625                 if (bootverbose)
4626                         if_printf(ifp, "link DOWN\n");
4627         }
4628
4629         /* Clear the attention. */
4630         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4631             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4632             BGE_MACSTAT_LINK_CHANGED);
4633 }
4634
4635 static int
4636 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4637 {
4638         struct bge_softc *sc = arg1;
4639
4640         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4641             &sc->bge_rx_coal_ticks,
4642             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4643             BGE_RX_COAL_TICKS_CHG);
4644 }
4645
4646 static int
4647 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4648 {
4649         struct bge_softc *sc = arg1;
4650
4651         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4652             &sc->bge_tx_coal_ticks,
4653             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4654             BGE_TX_COAL_TICKS_CHG);
4655 }
4656
4657 static int
4658 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4659 {
4660         struct bge_softc *sc = arg1;
4661
4662         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4663             &sc->bge_rx_coal_bds,
4664             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4665             BGE_RX_COAL_BDS_CHG);
4666 }
4667
4668 static int
4669 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4670 {
4671         struct bge_softc *sc = arg1;
4672
4673         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4674             &sc->bge_tx_coal_bds,
4675             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4676             BGE_TX_COAL_BDS_CHG);
4677 }
4678
4679 static int
4680 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4681 {
4682         struct bge_softc *sc = arg1;
4683
4684         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4685             &sc->bge_rx_coal_ticks_int,
4686             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4687             BGE_RX_COAL_TICKS_INT_CHG);
4688 }
4689
4690 static int
4691 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4692 {
4693         struct bge_softc *sc = arg1;
4694
4695         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4696             &sc->bge_tx_coal_ticks_int,
4697             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4698             BGE_TX_COAL_TICKS_INT_CHG);
4699 }
4700
4701 static int
4702 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4703 {
4704         struct bge_softc *sc = arg1;
4705
4706         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4707             &sc->bge_rx_coal_bds_int,
4708             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4709             BGE_RX_COAL_BDS_INT_CHG);
4710 }
4711
4712 static int
4713 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4714 {
4715         struct bge_softc *sc = arg1;
4716
4717         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4718             &sc->bge_tx_coal_bds_int,
4719             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4720             BGE_TX_COAL_BDS_INT_CHG);
4721 }
4722
4723 static int
4724 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4725     int coal_min, int coal_max, uint32_t coal_chg_mask)
4726 {
4727         struct bge_softc *sc = arg1;
4728         struct ifnet *ifp = &sc->arpcom.ac_if;
4729         int error = 0, v;
4730
4731         lwkt_serialize_enter(ifp->if_serializer);
4732
4733         v = *coal;
4734         error = sysctl_handle_int(oidp, &v, 0, req);
4735         if (!error && req->newptr != NULL) {
4736                 if (v < coal_min || v > coal_max) {
4737                         error = EINVAL;
4738                 } else {
4739                         *coal = v;
4740                         sc->bge_coal_chg |= coal_chg_mask;
4741                 }
4742         }
4743
4744         lwkt_serialize_exit(ifp->if_serializer);
4745         return error;
4746 }
4747
4748 static void
4749 bge_coal_change(struct bge_softc *sc)
4750 {
4751         struct ifnet *ifp = &sc->arpcom.ac_if;
4752
4753         ASSERT_SERIALIZED(ifp->if_serializer);
4754
4755         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4756                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4757                             sc->bge_rx_coal_ticks);
4758                 DELAY(10);
4759                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4760
4761                 if (bootverbose) {
4762                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4763                                   sc->bge_rx_coal_ticks);
4764                 }
4765         }
4766
4767         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4768                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4769                             sc->bge_tx_coal_ticks);
4770                 DELAY(10);
4771                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4772
4773                 if (bootverbose) {
4774                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4775                                   sc->bge_tx_coal_ticks);
4776                 }
4777         }
4778
4779         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4780                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4781                             sc->bge_rx_coal_bds);
4782                 DELAY(10);
4783                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4784
4785                 if (bootverbose) {
4786                         if_printf(ifp, "rx_coal_bds -> %u\n",
4787                                   sc->bge_rx_coal_bds);
4788                 }
4789         }
4790
4791         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4792                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4793                             sc->bge_tx_coal_bds);
4794                 DELAY(10);
4795                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4796
4797                 if (bootverbose) {
4798                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4799                                   sc->bge_tx_coal_bds);
4800                 }
4801         }
4802
4803         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4804                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4805                     sc->bge_rx_coal_ticks_int);
4806                 DELAY(10);
4807                 CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4808
4809                 if (bootverbose) {
4810                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4811                             sc->bge_rx_coal_ticks_int);
4812                 }
4813         }
4814
4815         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4816                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4817                     sc->bge_tx_coal_ticks_int);
4818                 DELAY(10);
4819                 CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4820
4821                 if (bootverbose) {
4822                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4823                             sc->bge_tx_coal_ticks_int);
4824                 }
4825         }
4826
4827         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4828                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4829                     sc->bge_rx_coal_bds_int);
4830                 DELAY(10);
4831                 CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4832
4833                 if (bootverbose) {
4834                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4835                             sc->bge_rx_coal_bds_int);
4836                 }
4837         }
4838
4839         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4840                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4841                     sc->bge_tx_coal_bds_int);
4842                 DELAY(10);
4843                 CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4844
4845                 if (bootverbose) {
4846                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4847                             sc->bge_tx_coal_bds_int);
4848                 }
4849         }
4850
4851         sc->bge_coal_chg = 0;
4852 }
4853
4854 static void
4855 bge_enable_intr(struct bge_softc *sc)
4856 {
4857         struct ifnet *ifp = &sc->arpcom.ac_if;
4858
4859         lwkt_serialize_handler_enable(ifp->if_serializer);
4860
4861         /*
4862          * Enable interrupt.
4863          */
4864         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4865         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4866                 /* XXX Linux driver */
4867                 bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4868         }
4869
4870         /*
4871          * Unmask the interrupt when we stop polling.
4872          */
4873         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4874             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4875
4876         /*
4877          * Trigger another interrupt, since above writing
4878          * to interrupt mailbox0 may acknowledge pending
4879          * interrupt.
4880          */
4881         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4882 }
4883
4884 static void
4885 bge_disable_intr(struct bge_softc *sc)
4886 {
4887         struct ifnet *ifp = &sc->arpcom.ac_if;
4888
4889         /*
4890          * Mask the interrupt when we start polling.
4891          */
4892         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4893             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4894
4895         /*
4896          * Acknowledge possible asserted interrupt.
4897          */
4898         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4899
4900         sc->bge_npoll.ifpc_stcount = 0;
4901
4902         lwkt_serialize_handler_disable(ifp->if_serializer);
4903 }
4904
4905 static int
4906 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4907 {
4908         uint32_t mac_addr;
4909         int ret = 1;
4910
4911         mac_addr = bge_readmem_ind(sc, 0x0c14);
4912         if ((mac_addr >> 16) == 0x484b) {
4913                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4914                 ether_addr[1] = (uint8_t)mac_addr;
4915                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4916                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4917                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4918                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4919                 ether_addr[5] = (uint8_t)mac_addr;
4920                 ret = 0;
4921         }
4922         return ret;
4923 }
4924
4925 static int
4926 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4927 {
4928         int mac_offset = BGE_EE_MAC_OFFSET;
4929
4930         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4931                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4932
4933         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4934 }
4935
4936 static int
4937 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4938 {
4939         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4940                 return 1;
4941
4942         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4943                                ETHER_ADDR_LEN);
4944 }
4945
4946 static int
4947 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4948 {
4949         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4950                 /* NOTE: Order is critical */
4951                 bge_get_eaddr_mem,
4952                 bge_get_eaddr_nvram,
4953                 bge_get_eaddr_eeprom,
4954                 NULL
4955         };
4956         const bge_eaddr_fcn_t *func;
4957
4958         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4959                 if ((*func)(sc, eaddr) == 0)
4960                         break;
4961         }
4962         return (*func == NULL ? ENXIO : 0);
4963 }
4964
4965 /*
4966  * NOTE: 'm' is not freed upon failure
4967  */
4968 struct mbuf *
4969 bge_defrag_shortdma(struct mbuf *m)
4970 {
4971         struct mbuf *n;
4972         int found;
4973
4974         /*
4975          * If device receive two back-to-back send BDs with less than
4976          * or equal to 8 total bytes then the device may hang.  The two
4977          * back-to-back send BDs must in the same frame for this failure
4978          * to occur.  Scan mbuf chains and see whether two back-to-back
4979          * send BDs are there.  If this is the case, allocate new mbuf
4980          * and copy the frame to workaround the silicon bug.
4981          */
4982         for (n = m, found = 0; n != NULL; n = n->m_next) {
4983                 if (n->m_len < 8) {
4984                         found++;
4985                         if (found > 1)
4986                                 break;
4987                         continue;
4988                 }
4989                 found = 0;
4990         }
4991
4992         if (found > 1)
4993                 n = m_defrag(m, MB_DONTWAIT);
4994         else
4995                 n = m;
4996         return n;
4997 }
4998
4999 static void
5000 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5001 {
5002         int i;
5003
5004         BGE_CLRBIT(sc, reg, bit);
5005         for (i = 0; i < BGE_TIMEOUT; i++) {
5006                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5007                         return;
5008                 DELAY(100);
5009         }
5010 }
5011
5012 static void
5013 bge_link_poll(struct bge_softc *sc)
5014 {
5015         uint32_t status;
5016
5017         status = CSR_READ_4(sc, BGE_MAC_STS);
5018         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5019                 sc->bge_link_evt = 0;
5020                 sc->bge_link_upd(sc, status);
5021         }
5022 }
5023
5024 static void
5025 bge_enable_msi(struct bge_softc *sc)
5026 {
5027         uint32_t msi_mode;
5028
5029         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5030         msi_mode |= BGE_MSIMODE_ENABLE;
5031         if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5032                 /*
5033                  * According to all of the datasheets that are publicly
5034                  * available, bit 5 of the MSI_MODE is defined to be
5035                  * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5036                  * which "oneshot MSI" is enabled.  However, it is always
5037                  * safe to clear it here.
5038                  */
5039                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5040         }
5041         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5042 }
5043
5044 static int
5045 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5046     uint16_t *mss0, uint16_t *flags0)
5047 {
5048         struct mbuf *m;
5049         struct ip *ip;
5050         struct tcphdr *th;
5051         int thoff, iphlen, hoff, hlen;
5052         uint16_t flags, mss;
5053
5054         m = *mp;
5055         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5056
5057         hoff = m->m_pkthdr.csum_lhlen;
5058         iphlen = m->m_pkthdr.csum_iphlen;
5059         thoff = m->m_pkthdr.csum_thlen;
5060
5061         KASSERT(hoff > 0, ("invalid ether header len"));
5062         KASSERT(iphlen > 0, ("invalid ip header len"));
5063         KASSERT(thoff > 0, ("invalid tcp header len"));
5064
5065         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5066                 m = m_pullup(m, hoff + iphlen + thoff);
5067                 if (m == NULL) {
5068                         *mp = NULL;
5069                         return ENOBUFS;
5070                 }
5071                 *mp = m;
5072         }
5073         ip = mtodoff(m, struct ip *, hoff);
5074         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5075
5076         mss = m->m_pkthdr.tso_segsz;
5077         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5078
5079         ip->ip_len = htons(mss + iphlen + thoff);
5080         th->th_sum = 0;
5081
5082         hlen = (iphlen + thoff) >> 2;
5083         mss |= (hlen << 11);
5084
5085         *mss0 = mss;
5086         *flags0 = flags;
5087
5088         return 0;
5089 }
5090
5091 static void
5092 bge_stop_fw(struct bge_softc *sc)
5093 {
5094         int i;
5095
5096         if (sc->bge_asf_mode) {
5097                 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5098                 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5099                     CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5100
5101                 for (i = 0; i < 100; i++ ) {
5102                         if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5103                             BGE_RX_CPU_DRV_EVENT))
5104                                 break;
5105                         DELAY(10);
5106                 }
5107         }
5108 }
5109
5110 static void
5111 bge_sig_pre_reset(struct bge_softc *sc, int type)
5112 {
5113         /*
5114          * Some chips don't like this so only do this if ASF is enabled
5115          */
5116         if (sc->bge_asf_mode)
5117                 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5118
5119         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5120                 switch (type) {
5121                 case BGE_RESET_START:
5122                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5123                             BGE_FW_DRV_STATE_START);
5124                         break;
5125                 case BGE_RESET_SHUTDOWN:
5126                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5127                             BGE_FW_DRV_STATE_UNLOAD);
5128                         break;
5129                 case BGE_RESET_SUSPEND:
5130                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5131                             BGE_FW_DRV_STATE_SUSPEND);
5132                         break;
5133                 }
5134         }
5135
5136 #ifdef notyet
5137         if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5138                 bge_ape_driver_state_change(sc, type);
5139 #endif
5140 }
5141
5142 static void
5143 bge_sig_legacy(struct bge_softc *sc, int type)
5144 {
5145         if (sc->bge_asf_mode) {
5146                 switch (type) {
5147                 case BGE_RESET_START:
5148                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5149                             BGE_FW_DRV_STATE_START);
5150                         break;
5151                 case BGE_RESET_SHUTDOWN:
5152                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5153                             BGE_FW_DRV_STATE_UNLOAD);
5154                         break;
5155                 }
5156         }
5157 }
5158
5159 static void
5160 bge_sig_post_reset(struct bge_softc *sc, int type)
5161 {
5162         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5163                 switch (type) {
5164                 case BGE_RESET_START:
5165                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5166                             BGE_FW_DRV_STATE_START_DONE);
5167                         /* START DONE */
5168                         break;
5169                 case BGE_RESET_SHUTDOWN:
5170                         bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5171                             BGE_FW_DRV_STATE_UNLOAD_DONE);
5172                         break;
5173                 }
5174         }
5175 #ifdef notyet
5176         if (type == BGE_RESET_SHUTDOWN)
5177                 bge_ape_driver_state_change(sc, type);
5178 #endif
5179 }
5180
5181 static void
5182 bge_asf_driver_up(struct bge_softc *sc)
5183 {
5184         if (sc->bge_asf_mode & ASF_STACKUP) {
5185                 /* Send ASF heartbeat aprox. every 2s */
5186                 if (sc->bge_asf_count)
5187                         sc->bge_asf_count --;
5188                 else {
5189                         sc->bge_asf_count = 2;
5190                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5191                             BGE_FW_CMD_DRV_ALIVE);
5192                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5193                         bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5194                             BGE_FW_HB_TIMEOUT_SEC);
5195                         CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5196                             CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5197                             BGE_RX_CPU_DRV_EVENT);
5198                 }
5199         }
5200 }