gcc50: Disconnect from buildworld.
[dragonfly.git] / contrib / gcc-5.0 / gcc / gimple-expr.c
1 /* Gimple decl, type, and expression support functions.
2
3    Copyright (C) 2007-2015 Free Software Foundation, Inc.
4    Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "hash-set.h"
27 #include "machmode.h"
28 #include "vec.h"
29 #include "double-int.h"
30 #include "input.h"
31 #include "alias.h"
32 #include "symtab.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "predict.h"
38 #include "hard-reg-set.h"
39 #include "input.h"
40 #include "function.h"
41 #include "basic-block.h"
42 #include "tree-ssa-alias.h"
43 #include "internal-fn.h"
44 #include "tree-eh.h"
45 #include "gimple-expr.h"
46 #include "is-a.h"
47 #include "gimple.h"
48 #include "stringpool.h"
49 #include "gimplify.h"
50 #include "stor-layout.h"
51 #include "demangle.h"
52 #include "gimple-ssa.h"
53
54 /* ----- Type related -----  */
55
56 /* Return true if the conversion from INNER_TYPE to OUTER_TYPE is a
57    useless type conversion, otherwise return false.
58
59    This function implicitly defines the middle-end type system.  With
60    the notion of 'a < b' meaning that useless_type_conversion_p (a, b)
61    holds and 'a > b' meaning that useless_type_conversion_p (b, a) holds,
62    the following invariants shall be fulfilled:
63
64      1) useless_type_conversion_p is transitive.
65         If a < b and b < c then a < c.
66
67      2) useless_type_conversion_p is not symmetric.
68         From a < b does not follow a > b.
69
70      3) Types define the available set of operations applicable to values.
71         A type conversion is useless if the operations for the target type
72         is a subset of the operations for the source type.  For example
73         casts to void* are useless, casts from void* are not (void* can't
74         be dereferenced or offsetted, but copied, hence its set of operations
75         is a strict subset of that of all other data pointer types).  Casts
76         to const T* are useless (can't be written to), casts from const T*
77         to T* are not.  */
78
79 bool
80 useless_type_conversion_p (tree outer_type, tree inner_type)
81 {
82   /* Do the following before stripping toplevel qualifiers.  */
83   if (POINTER_TYPE_P (inner_type)
84       && POINTER_TYPE_P (outer_type))
85     {
86       /* Do not lose casts between pointers to different address spaces.  */
87       if (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
88           != TYPE_ADDR_SPACE (TREE_TYPE (inner_type)))
89         return false;
90     }
91
92   /* From now on qualifiers on value types do not matter.  */
93   inner_type = TYPE_MAIN_VARIANT (inner_type);
94   outer_type = TYPE_MAIN_VARIANT (outer_type);
95
96   if (inner_type == outer_type)
97     return true;
98
99   /* If we know the canonical types, compare them.  */
100   if (TYPE_CANONICAL (inner_type)
101       && TYPE_CANONICAL (inner_type) == TYPE_CANONICAL (outer_type))
102     return true;
103
104   /* Changes in machine mode are never useless conversions unless we
105      deal with aggregate types in which case we defer to later checks.  */
106   if (TYPE_MODE (inner_type) != TYPE_MODE (outer_type)
107       && !AGGREGATE_TYPE_P (inner_type))
108     return false;
109
110   /* If both the inner and outer types are integral types, then the
111      conversion is not necessary if they have the same mode and
112      signedness and precision, and both or neither are boolean.  */
113   if (INTEGRAL_TYPE_P (inner_type)
114       && INTEGRAL_TYPE_P (outer_type))
115     {
116       /* Preserve changes in signedness or precision.  */
117       if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
118           || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
119         return false;
120
121       /* Preserve conversions to/from BOOLEAN_TYPE if types are not
122          of precision one.  */
123       if (((TREE_CODE (inner_type) == BOOLEAN_TYPE)
124            != (TREE_CODE (outer_type) == BOOLEAN_TYPE))
125           && TYPE_PRECISION (outer_type) != 1)
126         return false;
127
128       /* We don't need to preserve changes in the types minimum or
129          maximum value in general as these do not generate code
130          unless the types precisions are different.  */
131       return true;
132     }
133
134   /* Scalar floating point types with the same mode are compatible.  */
135   else if (SCALAR_FLOAT_TYPE_P (inner_type)
136            && SCALAR_FLOAT_TYPE_P (outer_type))
137     return true;
138
139   /* Fixed point types with the same mode are compatible.  */
140   else if (FIXED_POINT_TYPE_P (inner_type)
141            && FIXED_POINT_TYPE_P (outer_type))
142     return true;
143
144   /* We need to take special care recursing to pointed-to types.  */
145   else if (POINTER_TYPE_P (inner_type)
146            && POINTER_TYPE_P (outer_type))
147     {
148       /* Do not lose casts to function pointer types.  */
149       if ((TREE_CODE (TREE_TYPE (outer_type)) == FUNCTION_TYPE
150            || TREE_CODE (TREE_TYPE (outer_type)) == METHOD_TYPE)
151           && !(TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE
152                || TREE_CODE (TREE_TYPE (inner_type)) == METHOD_TYPE))
153         return false;
154
155       /* We do not care for const qualification of the pointed-to types
156          as const qualification has no semantic value to the middle-end.  */
157
158       /* Otherwise pointers/references are equivalent.  */
159       return true;
160     }
161
162   /* Recurse for complex types.  */
163   else if (TREE_CODE (inner_type) == COMPLEX_TYPE
164            && TREE_CODE (outer_type) == COMPLEX_TYPE)
165     return useless_type_conversion_p (TREE_TYPE (outer_type),
166                                       TREE_TYPE (inner_type));
167
168   /* Recurse for vector types with the same number of subparts.  */
169   else if (TREE_CODE (inner_type) == VECTOR_TYPE
170            && TREE_CODE (outer_type) == VECTOR_TYPE
171            && TYPE_PRECISION (inner_type) == TYPE_PRECISION (outer_type))
172     return useless_type_conversion_p (TREE_TYPE (outer_type),
173                                       TREE_TYPE (inner_type));
174
175   else if (TREE_CODE (inner_type) == ARRAY_TYPE
176            && TREE_CODE (outer_type) == ARRAY_TYPE)
177     {
178       /* Preserve string attributes.  */
179       if (TYPE_STRING_FLAG (inner_type) != TYPE_STRING_FLAG (outer_type))
180         return false;
181
182       /* Conversions from array types with unknown extent to
183          array types with known extent are not useless.  */
184       if (!TYPE_DOMAIN (inner_type)
185           && TYPE_DOMAIN (outer_type))
186         return false;
187
188       /* Nor are conversions from array types with non-constant size to
189          array types with constant size or to different size.  */
190       if (TYPE_SIZE (outer_type)
191           && TREE_CODE (TYPE_SIZE (outer_type)) == INTEGER_CST
192           && (!TYPE_SIZE (inner_type)
193               || TREE_CODE (TYPE_SIZE (inner_type)) != INTEGER_CST
194               || !tree_int_cst_equal (TYPE_SIZE (outer_type),
195                                       TYPE_SIZE (inner_type))))
196         return false;
197
198       /* Check conversions between arrays with partially known extents.
199          If the array min/max values are constant they have to match.
200          Otherwise allow conversions to unknown and variable extents.
201          In particular this declares conversions that may change the
202          mode to BLKmode as useless.  */
203       if (TYPE_DOMAIN (inner_type)
204           && TYPE_DOMAIN (outer_type)
205           && TYPE_DOMAIN (inner_type) != TYPE_DOMAIN (outer_type))
206         {
207           tree inner_min = TYPE_MIN_VALUE (TYPE_DOMAIN (inner_type));
208           tree outer_min = TYPE_MIN_VALUE (TYPE_DOMAIN (outer_type));
209           tree inner_max = TYPE_MAX_VALUE (TYPE_DOMAIN (inner_type));
210           tree outer_max = TYPE_MAX_VALUE (TYPE_DOMAIN (outer_type));
211
212           /* After gimplification a variable min/max value carries no
213              additional information compared to a NULL value.  All that
214              matters has been lowered to be part of the IL.  */
215           if (inner_min && TREE_CODE (inner_min) != INTEGER_CST)
216             inner_min = NULL_TREE;
217           if (outer_min && TREE_CODE (outer_min) != INTEGER_CST)
218             outer_min = NULL_TREE;
219           if (inner_max && TREE_CODE (inner_max) != INTEGER_CST)
220             inner_max = NULL_TREE;
221           if (outer_max && TREE_CODE (outer_max) != INTEGER_CST)
222             outer_max = NULL_TREE;
223
224           /* Conversions NULL / variable <- cst are useless, but not
225              the other way around.  */
226           if (outer_min
227               && (!inner_min
228                   || !tree_int_cst_equal (inner_min, outer_min)))
229             return false;
230           if (outer_max
231               && (!inner_max
232                   || !tree_int_cst_equal (inner_max, outer_max)))
233             return false;
234         }
235
236       /* Recurse on the element check.  */
237       return useless_type_conversion_p (TREE_TYPE (outer_type),
238                                         TREE_TYPE (inner_type));
239     }
240
241   else if ((TREE_CODE (inner_type) == FUNCTION_TYPE
242             || TREE_CODE (inner_type) == METHOD_TYPE)
243            && TREE_CODE (inner_type) == TREE_CODE (outer_type))
244     {
245       tree outer_parm, inner_parm;
246
247       /* If the return types are not compatible bail out.  */
248       if (!useless_type_conversion_p (TREE_TYPE (outer_type),
249                                       TREE_TYPE (inner_type)))
250         return false;
251
252       /* Method types should belong to a compatible base class.  */
253       if (TREE_CODE (inner_type) == METHOD_TYPE
254           && !useless_type_conversion_p (TYPE_METHOD_BASETYPE (outer_type),
255                                          TYPE_METHOD_BASETYPE (inner_type)))
256         return false;
257
258       /* A conversion to an unprototyped argument list is ok.  */
259       if (!prototype_p (outer_type))
260         return true;
261
262       /* If the unqualified argument types are compatible the conversion
263          is useless.  */
264       if (TYPE_ARG_TYPES (outer_type) == TYPE_ARG_TYPES (inner_type))
265         return true;
266
267       for (outer_parm = TYPE_ARG_TYPES (outer_type),
268            inner_parm = TYPE_ARG_TYPES (inner_type);
269            outer_parm && inner_parm;
270            outer_parm = TREE_CHAIN (outer_parm),
271            inner_parm = TREE_CHAIN (inner_parm))
272         if (!useless_type_conversion_p
273                (TYPE_MAIN_VARIANT (TREE_VALUE (outer_parm)),
274                 TYPE_MAIN_VARIANT (TREE_VALUE (inner_parm))))
275           return false;
276
277       /* If there is a mismatch in the number of arguments the functions
278          are not compatible.  */
279       if (outer_parm || inner_parm)
280         return false;
281
282       /* Defer to the target if necessary.  */
283       if (TYPE_ATTRIBUTES (inner_type) || TYPE_ATTRIBUTES (outer_type))
284         return comp_type_attributes (outer_type, inner_type) != 0;
285
286       return true;
287     }
288
289   /* For aggregates we rely on TYPE_CANONICAL exclusively and require
290      explicit conversions for types involving to be structurally
291      compared types.  */
292   else if (AGGREGATE_TYPE_P (inner_type)
293            && TREE_CODE (inner_type) == TREE_CODE (outer_type))
294     return false;
295
296   return false;
297 }
298
299
300 /* ----- Decl related -----  */
301
302 /* Set sequence SEQ to be the GIMPLE body for function FN.  */
303
304 void
305 gimple_set_body (tree fndecl, gimple_seq seq)
306 {
307   struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
308   if (fn == NULL)
309     {
310       /* If FNDECL still does not have a function structure associated
311          with it, then it does not make sense for it to receive a
312          GIMPLE body.  */
313       gcc_assert (seq == NULL);
314     }
315   else
316     fn->gimple_body = seq;
317 }
318
319
320 /* Return the body of GIMPLE statements for function FN.  After the
321    CFG pass, the function body doesn't exist anymore because it has
322    been split up into basic blocks.  In this case, it returns
323    NULL.  */
324
325 gimple_seq
326 gimple_body (tree fndecl)
327 {
328   struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
329   return fn ? fn->gimple_body : NULL;
330 }
331
332 /* Return true when FNDECL has Gimple body either in unlowered
333    or CFG form.  */
334 bool
335 gimple_has_body_p (tree fndecl)
336 {
337   struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
338   return (gimple_body (fndecl) || (fn && fn->cfg));
339 }
340
341 /* Return a printable name for symbol DECL.  */
342
343 const char *
344 gimple_decl_printable_name (tree decl, int verbosity)
345 {
346   if (!DECL_NAME (decl))
347     return NULL;
348
349   if (DECL_ASSEMBLER_NAME_SET_P (decl))
350     {
351       const char *str, *mangled_str;
352       int dmgl_opts = DMGL_NO_OPTS;
353
354       if (verbosity >= 2)
355         {
356           dmgl_opts = DMGL_VERBOSE
357                       | DMGL_ANSI
358                       | DMGL_GNU_V3
359                       | DMGL_RET_POSTFIX;
360           if (TREE_CODE (decl) == FUNCTION_DECL)
361             dmgl_opts |= DMGL_PARAMS;
362         }
363
364       mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
365       str = cplus_demangle_v3 (mangled_str, dmgl_opts);
366       return (str) ? str : mangled_str;
367     }
368
369   return IDENTIFIER_POINTER (DECL_NAME (decl));
370 }
371
372
373 /* Create a new VAR_DECL and copy information from VAR to it.  */
374
375 tree
376 copy_var_decl (tree var, tree name, tree type)
377 {
378   tree copy = build_decl (DECL_SOURCE_LOCATION (var), VAR_DECL, name, type);
379
380   TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (var);
381   TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (var);
382   DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (var);
383   DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (var);
384   DECL_IGNORED_P (copy) = DECL_IGNORED_P (var);
385   DECL_CONTEXT (copy) = DECL_CONTEXT (var);
386   TREE_NO_WARNING (copy) = TREE_NO_WARNING (var);
387   TREE_USED (copy) = 1;
388   DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
389   DECL_ATTRIBUTES (copy) = DECL_ATTRIBUTES (var);
390   if (DECL_USER_ALIGN (var))
391     {
392       DECL_ALIGN (copy) = DECL_ALIGN (var);
393       DECL_USER_ALIGN (copy) = 1;
394     }
395
396   return copy;
397 }
398
399 /* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
400    coalescing together, false otherwise.
401
402    This must stay consistent with var_map_base_init in tree-ssa-live.c.  */
403
404 bool
405 gimple_can_coalesce_p (tree name1, tree name2)
406 {
407   /* First check the SSA_NAME's associated DECL.  We only want to
408      coalesce if they have the same DECL or both have no associated DECL.  */
409   tree var1 = SSA_NAME_VAR (name1);
410   tree var2 = SSA_NAME_VAR (name2);
411   var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
412   var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
413   if (var1 != var2)
414     return false;
415
416   /* Now check the types.  If the types are the same, then we should
417      try to coalesce V1 and V2.  */
418   tree t1 = TREE_TYPE (name1);
419   tree t2 = TREE_TYPE (name2);
420   if (t1 == t2)
421     return true;
422
423   /* If the types are not the same, check for a canonical type match.  This
424      (for example) allows coalescing when the types are fundamentally the
425      same, but just have different names. 
426
427      Note pointer types with different address spaces may have the same
428      canonical type.  Those are rejected for coalescing by the
429      types_compatible_p check.  */
430   if (TYPE_CANONICAL (t1)
431       && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)
432       && types_compatible_p (t1, t2))
433     return true;
434
435   return false;
436 }
437
438 /* Strip off a legitimate source ending from the input string NAME of
439    length LEN.  Rather than having to know the names used by all of
440    our front ends, we strip off an ending of a period followed by
441    up to five characters.  (Java uses ".class".)  */
442
443 static inline void
444 remove_suffix (char *name, int len)
445 {
446   int i;
447
448   for (i = 2;  i < 8 && len > i;  i++)
449     {
450       if (name[len - i] == '.')
451         {
452           name[len - i] = '\0';
453           break;
454         }
455     }
456 }
457
458 /* Create a new temporary name with PREFIX.  Return an identifier.  */
459
460 static GTY(()) unsigned int tmp_var_id_num;
461
462 tree
463 create_tmp_var_name (const char *prefix)
464 {
465   char *tmp_name;
466
467   if (prefix)
468     {
469       char *preftmp = ASTRDUP (prefix);
470
471       remove_suffix (preftmp, strlen (preftmp));
472       clean_symbol_name (preftmp);
473
474       prefix = preftmp;
475     }
476
477   ASM_FORMAT_PRIVATE_NAME (tmp_name, prefix ? prefix : "T", tmp_var_id_num++);
478   return get_identifier (tmp_name);
479 }
480
481 /* Create a new temporary variable declaration of type TYPE.
482    Do NOT push it into the current binding.  */
483
484 tree
485 create_tmp_var_raw (tree type, const char *prefix)
486 {
487   tree tmp_var;
488
489   tmp_var = build_decl (input_location,
490                         VAR_DECL, prefix ? create_tmp_var_name (prefix) : NULL,
491                         type);
492
493   /* The variable was declared by the compiler.  */
494   DECL_ARTIFICIAL (tmp_var) = 1;
495   /* And we don't want debug info for it.  */
496   DECL_IGNORED_P (tmp_var) = 1;
497
498   /* Make the variable writable.  */
499   TREE_READONLY (tmp_var) = 0;
500
501   DECL_EXTERNAL (tmp_var) = 0;
502   TREE_STATIC (tmp_var) = 0;
503   TREE_USED (tmp_var) = 1;
504
505   return tmp_var;
506 }
507
508 /* Create a new temporary variable declaration of type TYPE.  DO push the
509    variable into the current binding.  Further, assume that this is called
510    only from gimplification or optimization, at which point the creation of
511    certain types are bugs.  */
512
513 tree
514 create_tmp_var (tree type, const char *prefix)
515 {
516   tree tmp_var;
517
518   /* We don't allow types that are addressable (meaning we can't make copies),
519      or incomplete.  We also used to reject every variable size objects here,
520      but now support those for which a constant upper bound can be obtained.
521      The processing for variable sizes is performed in gimple_add_tmp_var,
522      point at which it really matters and possibly reached via paths not going
523      through this function, e.g. after direct calls to create_tmp_var_raw.  */
524   gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
525
526   tmp_var = create_tmp_var_raw (type, prefix);
527   gimple_add_tmp_var (tmp_var);
528   return tmp_var;
529 }
530
531 /* Create a new temporary variable declaration of type TYPE by calling
532    create_tmp_var and if TYPE is a vector or a complex number, mark the new
533    temporary as gimple register.  */
534
535 tree
536 create_tmp_reg (tree type, const char *prefix)
537 {
538   tree tmp;
539
540   tmp = create_tmp_var (type, prefix);
541   if (TREE_CODE (type) == COMPLEX_TYPE
542       || TREE_CODE (type) == VECTOR_TYPE)
543     DECL_GIMPLE_REG_P (tmp) = 1;
544
545   return tmp;
546 }
547
548 /* Create a new temporary variable declaration of type TYPE by calling
549    create_tmp_var and if TYPE is a vector or a complex number, mark the new
550    temporary as gimple register.  */
551
552 tree
553 create_tmp_reg_fn (struct function *fn, tree type, const char *prefix)
554 {
555   tree tmp;
556
557   tmp = create_tmp_var_raw (type, prefix);
558   gimple_add_tmp_var_fn (fn, tmp);
559   if (TREE_CODE (type) == COMPLEX_TYPE
560       || TREE_CODE (type) == VECTOR_TYPE)
561     DECL_GIMPLE_REG_P (tmp) = 1;
562
563   return tmp;
564 }
565
566
567 /* ----- Expression related -----  */
568
569 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
570    *OP1_P, *OP2_P and *OP3_P respectively.  */
571
572 void
573 extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
574                        tree *op2_p, tree *op3_p)
575 {
576   enum gimple_rhs_class grhs_class;
577
578   *subcode_p = TREE_CODE (expr);
579   grhs_class = get_gimple_rhs_class (*subcode_p);
580
581   if (grhs_class == GIMPLE_TERNARY_RHS)
582     {
583       *op1_p = TREE_OPERAND (expr, 0);
584       *op2_p = TREE_OPERAND (expr, 1);
585       *op3_p = TREE_OPERAND (expr, 2);
586     }
587   else if (grhs_class == GIMPLE_BINARY_RHS)
588     {
589       *op1_p = TREE_OPERAND (expr, 0);
590       *op2_p = TREE_OPERAND (expr, 1);
591       *op3_p = NULL_TREE;
592     }
593   else if (grhs_class == GIMPLE_UNARY_RHS)
594     {
595       *op1_p = TREE_OPERAND (expr, 0);
596       *op2_p = NULL_TREE;
597       *op3_p = NULL_TREE;
598     }
599   else if (grhs_class == GIMPLE_SINGLE_RHS)
600     {
601       *op1_p = expr;
602       *op2_p = NULL_TREE;
603       *op3_p = NULL_TREE;
604     }
605   else
606     gcc_unreachable ();
607 }
608
609 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND.  */
610
611 void
612 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
613                                tree *lhs_p, tree *rhs_p)
614 {
615   gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
616               || TREE_CODE (cond) == TRUTH_NOT_EXPR
617               || is_gimple_min_invariant (cond)
618               || SSA_VAR_P (cond));
619
620   extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
621
622   /* Canonicalize conditionals of the form 'if (!VAL)'.  */
623   if (*code_p == TRUTH_NOT_EXPR)
624     {
625       *code_p = EQ_EXPR;
626       gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
627       *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
628     }
629   /* Canonicalize conditionals of the form 'if (VAL)'  */
630   else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
631     {
632       *code_p = NE_EXPR;
633       gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
634       *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
635     }
636 }
637
638 /*  Return true if T is a valid LHS for a GIMPLE assignment expression.  */
639
640 bool
641 is_gimple_lvalue (tree t)
642 {
643   return (is_gimple_addressable (t)
644           || TREE_CODE (t) == WITH_SIZE_EXPR
645           /* These are complex lvalues, but don't have addresses, so they
646              go here.  */
647           || TREE_CODE (t) == BIT_FIELD_REF);
648 }
649
650 /*  Return true if T is a GIMPLE condition.  */
651
652 bool
653 is_gimple_condexpr (tree t)
654 {
655   return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
656                                 && !tree_could_throw_p (t)
657                                 && is_gimple_val (TREE_OPERAND (t, 0))
658                                 && is_gimple_val (TREE_OPERAND (t, 1))));
659 }
660
661 /* Return true if T is a gimple address.  */
662
663 bool
664 is_gimple_address (const_tree t)
665 {
666   tree op;
667
668   if (TREE_CODE (t) != ADDR_EXPR)
669     return false;
670
671   op = TREE_OPERAND (t, 0);
672   while (handled_component_p (op))
673     {
674       if ((TREE_CODE (op) == ARRAY_REF
675            || TREE_CODE (op) == ARRAY_RANGE_REF)
676           && !is_gimple_val (TREE_OPERAND (op, 1)))
677             return false;
678
679       op = TREE_OPERAND (op, 0);
680     }
681
682   if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
683     return true;
684
685   switch (TREE_CODE (op))
686     {
687     case PARM_DECL:
688     case RESULT_DECL:
689     case LABEL_DECL:
690     case FUNCTION_DECL:
691     case VAR_DECL:
692     case CONST_DECL:
693       return true;
694
695     default:
696       return false;
697     }
698 }
699
700 /* Return true if T is a gimple invariant address.  */
701
702 bool
703 is_gimple_invariant_address (const_tree t)
704 {
705   const_tree op;
706
707   if (TREE_CODE (t) != ADDR_EXPR)
708     return false;
709
710   op = strip_invariant_refs (TREE_OPERAND (t, 0));
711   if (!op)
712     return false;
713
714   if (TREE_CODE (op) == MEM_REF)
715     {
716       const_tree op0 = TREE_OPERAND (op, 0);
717       return (TREE_CODE (op0) == ADDR_EXPR
718               && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
719                   || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
720     }
721
722   return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
723 }
724
725 /* Return true if T is a gimple invariant address at IPA level
726    (so addresses of variables on stack are not allowed).  */
727
728 bool
729 is_gimple_ip_invariant_address (const_tree t)
730 {
731   const_tree op;
732
733   if (TREE_CODE (t) != ADDR_EXPR)
734     return false;
735
736   op = strip_invariant_refs (TREE_OPERAND (t, 0));
737   if (!op)
738     return false;
739
740   if (TREE_CODE (op) == MEM_REF)
741     {
742       const_tree op0 = TREE_OPERAND (op, 0);
743       return (TREE_CODE (op0) == ADDR_EXPR
744               && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
745                   || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0))));
746     }
747
748   return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op);
749 }
750
751 /* Return true if T is a GIMPLE minimal invariant.  It's a restricted
752    form of function invariant.  */
753
754 bool
755 is_gimple_min_invariant (const_tree t)
756 {
757   if (TREE_CODE (t) == ADDR_EXPR)
758     return is_gimple_invariant_address (t);
759
760   return is_gimple_constant (t);
761 }
762
763 /* Return true if T is a GIMPLE interprocedural invariant.  It's a restricted
764    form of gimple minimal invariant.  */
765
766 bool
767 is_gimple_ip_invariant (const_tree t)
768 {
769   if (TREE_CODE (t) == ADDR_EXPR)
770     return is_gimple_ip_invariant_address (t);
771
772   return is_gimple_constant (t);
773 }
774
775 /* Return true if T is a non-aggregate register variable.  */
776
777 bool
778 is_gimple_reg (tree t)
779 {
780   if (virtual_operand_p (t))
781     return false;
782
783   if (TREE_CODE (t) == SSA_NAME)
784     return true;
785
786   if (!is_gimple_variable (t))
787     return false;
788
789   if (!is_gimple_reg_type (TREE_TYPE (t)))
790     return false;
791
792   /* A volatile decl is not acceptable because we can't reuse it as
793      needed.  We need to copy it into a temp first.  */
794   if (TREE_THIS_VOLATILE (t))
795     return false;
796
797   /* We define "registers" as things that can be renamed as needed,
798      which with our infrastructure does not apply to memory.  */
799   if (needs_to_live_in_memory (t))
800     return false;
801
802   /* Hard register variables are an interesting case.  For those that
803      are call-clobbered, we don't know where all the calls are, since
804      we don't (want to) take into account which operations will turn
805      into libcalls at the rtl level.  For those that are call-saved,
806      we don't currently model the fact that calls may in fact change
807      global hard registers, nor do we examine ASM_CLOBBERS at the tree
808      level, and so miss variable changes that might imply.  All around,
809      it seems safest to not do too much optimization with these at the
810      tree level at all.  We'll have to rely on the rtl optimizers to
811      clean this up, as there we've got all the appropriate bits exposed.  */
812   if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
813     return false;
814
815   /* Complex and vector values must have been put into SSA-like form.
816      That is, no assignments to the individual components.  */
817   if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
818       || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
819     return DECL_GIMPLE_REG_P (t);
820
821   return true;
822 }
823
824
825 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant.  */
826
827 bool
828 is_gimple_val (tree t)
829 {
830   /* Make loads from volatiles and memory vars explicit.  */
831   if (is_gimple_variable (t)
832       && is_gimple_reg_type (TREE_TYPE (t))
833       && !is_gimple_reg (t))
834     return false;
835
836   return (is_gimple_variable (t) || is_gimple_min_invariant (t));
837 }
838
839 /* Similarly, but accept hard registers as inputs to asm statements.  */
840
841 bool
842 is_gimple_asm_val (tree t)
843 {
844   if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
845     return true;
846
847   return is_gimple_val (t);
848 }
849
850 /* Return true if T is a GIMPLE minimal lvalue.  */
851
852 bool
853 is_gimple_min_lval (tree t)
854 {
855   if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
856     return false;
857   return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
858 }
859
860 /* Return true if T is a valid function operand of a CALL_EXPR.  */
861
862 bool
863 is_gimple_call_addr (tree t)
864 {
865   return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
866 }
867
868 /* Return true if T is a valid address operand of a MEM_REF.  */
869
870 bool
871 is_gimple_mem_ref_addr (tree t)
872 {
873   return (is_gimple_reg (t)
874           || TREE_CODE (t) == INTEGER_CST
875           || (TREE_CODE (t) == ADDR_EXPR
876               && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
877                   || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
878 }
879
880 /* Mark X addressable.  Unlike the langhook we expect X to be in gimple
881    form and we don't do any syntax checking.  */
882
883 void
884 mark_addressable (tree x)
885 {
886   while (handled_component_p (x))
887     x = TREE_OPERAND (x, 0);
888   if (TREE_CODE (x) == MEM_REF
889       && TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR)
890     x = TREE_OPERAND (TREE_OPERAND (x, 0), 0);
891   if (TREE_CODE (x) != VAR_DECL
892       && TREE_CODE (x) != PARM_DECL
893       && TREE_CODE (x) != RESULT_DECL)
894     return;
895   TREE_ADDRESSABLE (x) = 1;
896
897   /* Also mark the artificial SSA_NAME that points to the partition of X.  */
898   if (TREE_CODE (x) == VAR_DECL
899       && !DECL_EXTERNAL (x)
900       && !TREE_STATIC (x)
901       && cfun->gimple_df != NULL
902       && cfun->gimple_df->decls_to_pointers != NULL)
903     {
904       tree *namep = cfun->gimple_df->decls_to_pointers->get (x);
905       if (namep)
906         TREE_ADDRESSABLE (*namep) = 1;
907     }
908 }
909
910 /* Returns true iff T is a valid RHS for an assignment to a renamed
911    user -- or front-end generated artificial -- variable.  */
912
913 bool
914 is_gimple_reg_rhs (tree t)
915 {
916   return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
917 }
918
919 #include "gt-gimple-expr.h"