kernel - Many fixes for vkernel support, plus a few main kernel fixes
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
63  */
64
65 /*
66  *      Virtual memory mapping module.
67  */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
95
96 #include <sys/thread2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
99
100 /*
101  * Virtual memory maps provide for the mapping, protection, and sharing
102  * of virtual memory objects.  In addition, this module provides for an
103  * efficient virtual copy of memory from one map to another.
104  *
105  * Synchronization is required prior to most operations.
106  *
107  * Maps consist of an ordered doubly-linked list of simple entries.
108  * A hint and a RB tree is used to speed-up lookups.
109  *
110  * Callers looking to modify maps specify start/end addresses which cause
111  * the related map entry to be clipped if necessary, and then later
112  * recombined if the pieces remained compatible.
113  *
114  * Virtual copy operations are performed by copying VM object references
115  * from one map to another, and then marking both regions as copy-on-write.
116  */
117 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
118 static void vmspace_dtor(void *obj, void *privdata);
119 static void vmspace_terminate(struct vmspace *vm, int final);
120
121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
122 static struct objcache *vmspace_cache;
123
124 /*
125  * per-cpu page table cross mappings are initialized in early boot
126  * and might require a considerable number of vm_map_entry structures.
127  */
128 #define MAPENTRYBSP_CACHE       (MAXCPU+1)
129 #define MAPENTRYAP_CACHE        8
130
131 static struct vm_zone mapentzone_store;
132 static vm_zone_t mapentzone;
133 static struct vm_object mapentobj;
134
135 static struct vm_map_entry map_entry_init[MAX_MAPENT];
136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
138
139 static int randomize_mmap;
140 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
141     "Randomize mmap offsets");
142 static int vm_map_relock_enable = 1;
143 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
144            &vm_map_relock_enable, 0, "Randomize mmap offsets");
145
146 static void vmspace_drop_notoken(struct vmspace *vm);
147 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155                 vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157
158 /*
159  * Initialize the vm_map module.  Must be called before any other vm_map
160  * routines.
161  *
162  * Map and entry structures are allocated from the general purpose
163  * memory pool with some exceptions:
164  *
165  *      - The kernel map is allocated statically.
166  *      - Initial kernel map entries are allocated out of a static pool.
167  *      - We must set ZONE_SPECIAL here or the early boot code can get
168  *        stuck if there are >63 cores.
169  *
170  *      These restrictions are necessary since malloc() uses the
171  *      maps and requires map entries.
172  *
173  * Called from the low level boot code only.
174  */
175 void
176 vm_map_startup(void)
177 {
178         mapentzone = &mapentzone_store;
179         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
180                   map_entry_init, MAX_MAPENT);
181         mapentzone_store.zflags |= ZONE_SPECIAL;
182 }
183
184 /*
185  * Called prior to any vmspace allocations.
186  *
187  * Called from the low level boot code only.
188  */
189 void
190 vm_init2(void) 
191 {
192         vmspace_cache = objcache_create_mbacked(M_VMSPACE,
193                                                 sizeof(struct vmspace),
194                                                 0, ncpus * 4,
195                                                 vmspace_ctor, vmspace_dtor,
196                                                 NULL);
197         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
198                 ZONE_USE_RESERVE | ZONE_SPECIAL);
199         pmap_init2();
200         vm_object_init2();
201 }
202
203 /*
204  * objcache support.  We leave the pmap root cached as long as possible
205  * for performance reasons.
206  */
207 static
208 boolean_t
209 vmspace_ctor(void *obj, void *privdata, int ocflags)
210 {
211         struct vmspace *vm = obj;
212
213         bzero(vm, sizeof(*vm));
214         vm->vm_refcnt = VM_REF_DELETED;
215
216         return 1;
217 }
218
219 static
220 void
221 vmspace_dtor(void *obj, void *privdata)
222 {
223         struct vmspace *vm = obj;
224
225         KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
226         pmap_puninit(vmspace_pmap(vm));
227 }
228
229 /*
230  * Red black tree functions
231  *
232  * The caller must hold the related map lock.
233  */
234 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
235 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
236
237 /* a->start is address, and the only field has to be initialized */
238 static int
239 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
240 {
241         if (a->start < b->start)
242                 return(-1);
243         else if (a->start > b->start)
244                 return(1);
245         return(0);
246 }
247
248 /*
249  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
250  * every refcnt.
251  */
252 void
253 vmspace_initrefs(struct vmspace *vm)
254 {
255         vm->vm_refcnt = 1;
256         vm->vm_holdcnt = 0;
257 }
258
259 /*
260  * Allocate a vmspace structure, including a vm_map and pmap.
261  * Initialize numerous fields.  While the initial allocation is zerod,
262  * subsequence reuse from the objcache leaves elements of the structure
263  * intact (particularly the pmap), so portions must be zerod.
264  *
265  * Returns a referenced vmspace.
266  *
267  * No requirements.
268  */
269 struct vmspace *
270 vmspace_alloc(vm_offset_t min, vm_offset_t max)
271 {
272         struct vmspace *vm;
273
274         vm = objcache_get(vmspace_cache, M_WAITOK);
275
276         bzero(&vm->vm_startcopy,
277               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
278         vm_map_init(&vm->vm_map, min, max, NULL);       /* initializes token */
279
280         /*
281          * NOTE: hold to acquires token for safety.
282          *
283          * On return vmspace is referenced (refs=1, hold=1).  That is,
284          * each refcnt also has a holdcnt.  There can be additional holds
285          * (holdcnt) above and beyond the refcnt.  Finalization is handled in
286          * two stages, one on refs 1->0, and the the second on hold 1->0.
287          */
288         KKASSERT(vm->vm_holdcnt == 0);
289         KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
290         vmspace_initrefs(vm);
291         vmspace_hold(vm);
292         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
293         vm->vm_map.pmap = vmspace_pmap(vm);     /* XXX */
294         vm->vm_shm = NULL;
295         vm->vm_flags = 0;
296         cpu_vmspace_alloc(vm);
297         vmspace_drop(vm);
298
299         return (vm);
300 }
301
302 /*
303  * NOTE: Can return 0 if the vmspace is exiting.
304  */
305 int
306 vmspace_getrefs(struct vmspace *vm)
307 {
308         return ((int)(vm->vm_refcnt & ~VM_REF_DELETED));
309 }
310
311 void
312 vmspace_hold(struct vmspace *vm)
313 {
314         atomic_add_int(&vm->vm_holdcnt, 1);
315         lwkt_gettoken(&vm->vm_map.token);
316 }
317
318 void
319 vmspace_drop(struct vmspace *vm)
320 {
321         lwkt_reltoken(&vm->vm_map.token);
322         vmspace_drop_notoken(vm);
323 }
324
325 static void
326 vmspace_drop_notoken(struct vmspace *vm)
327 {
328         if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
329                 if (vm->vm_refcnt & VM_REF_DELETED)
330                         vmspace_terminate(vm, 1);
331         }
332 }
333
334 /*
335  * A vmspace object must not be in a terminated state to be able to obtain
336  * additional refs on it.
337  *
338  * These are official references to the vmspace, the count is used to check
339  * for vmspace sharing.  Foreign accessors should use 'hold' and not 'ref'.
340  *
341  * XXX we need to combine hold & ref together into one 64-bit field to allow
342  * holds to prevent stage-1 termination.
343  */
344 void
345 vmspace_ref(struct vmspace *vm)
346 {
347         uint32_t n;
348
349         n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
350         KKASSERT((n & VM_REF_DELETED) == 0);
351 }
352
353 /*
354  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
355  * termination of the vmspace.  Then, on the final drop of the hold we
356  * will do stage-2 final termination.
357  */
358 void
359 vmspace_rel(struct vmspace *vm)
360 {
361         uint32_t n;
362
363         for (;;) {
364                 n = vm->vm_refcnt;
365                 cpu_ccfence();
366                 KKASSERT((int)n > 0);   /* at least one ref & not deleted */
367
368                 if (n == 1) {
369                         /*
370                          * We must have a hold first to interlock the
371                          * VM_REF_DELETED check that the drop tests.
372                          */
373                         atomic_add_int(&vm->vm_holdcnt, 1);
374                         if (atomic_cmpset_int(&vm->vm_refcnt, n,
375                                               VM_REF_DELETED)) {
376                                 vmspace_terminate(vm, 0);
377                                 vmspace_drop_notoken(vm);
378                                 break;
379                         }
380                         vmspace_drop_notoken(vm);
381                 } else if (atomic_cmpset_int(&vm->vm_refcnt, n, n - 1)) {
382                         break;
383                 } /* else retry */
384         }
385 }
386
387 /*
388  * This is called during exit indicating that the vmspace is no
389  * longer in used by an exiting process, but the process has not yet
390  * been reaped.
391  *
392  * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
393  * to prevent stage-2 until the process is reaped.  Note hte order of
394  * operation, we must hold first.
395  *
396  * No requirements.
397  */
398 void
399 vmspace_relexit(struct vmspace *vm)
400 {
401         atomic_add_int(&vm->vm_holdcnt, 1);
402         vmspace_rel(vm);
403 }
404
405 /*
406  * Called during reap to disconnect the remainder of the vmspace from
407  * the process.  On the hold drop the vmspace termination is finalized.
408  *
409  * No requirements.
410  */
411 void
412 vmspace_exitfree(struct proc *p)
413 {
414         struct vmspace *vm;
415
416         vm = p->p_vmspace;
417         p->p_vmspace = NULL;
418         vmspace_drop_notoken(vm);
419 }
420
421 /*
422  * Called in two cases:
423  *
424  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
425  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
426  *     and holdcnt will still be non-zero.
427  *
428  * (2) When holdcnt becomes 0, called with final == 1.  There should no
429  *     longer be anyone with access to the vmspace.
430  *
431  * VMSPACE_EXIT1 flags the primary deactivation
432  * VMSPACE_EXIT2 flags the last reap
433  */
434 static void
435 vmspace_terminate(struct vmspace *vm, int final)
436 {
437         int count;
438
439         lwkt_gettoken(&vm->vm_map.token);
440         if (final == 0) {
441                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
442                 vm->vm_flags |= VMSPACE_EXIT1;
443
444                 /*
445                  * Get rid of most of the resources.  Leave the kernel pmap
446                  * intact.
447                  *
448                  * If the pmap does not contain wired pages we can bulk-delete
449                  * the pmap as a performance optimization before removing the
450                  * related mappings.
451                  *
452                  * If the pmap contains wired pages we cannot do this
453                  * pre-optimization because currently vm_fault_unwire()
454                  * expects the pmap pages to exist and will not decrement
455                  * p->wire_count if they do not.
456                  */
457                 shmexit(vm);
458                 if (vmspace_pmap(vm)->pm_stats.wired_count) {
459                         vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
460                                       VM_MAX_USER_ADDRESS);
461                         pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
462                                           VM_MAX_USER_ADDRESS);
463                 } else {
464                         pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
465                                           VM_MAX_USER_ADDRESS);
466                         vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
467                                       VM_MAX_USER_ADDRESS);
468                 }
469                 lwkt_reltoken(&vm->vm_map.token);
470         } else {
471                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
472                 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
473
474                 /*
475                  * Get rid of remaining basic resources.
476                  */
477                 vm->vm_flags |= VMSPACE_EXIT2;
478                 shmexit(vm);
479
480                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
481                 vm_map_lock(&vm->vm_map);
482                 cpu_vmspace_free(vm);
483
484                 /*
485                  * Lock the map, to wait out all other references to it.
486                  * Delete all of the mappings and pages they hold, then call
487                  * the pmap module to reclaim anything left.
488                  */
489                 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
490                               vm->vm_map.max_offset, &count);
491                 vm_map_unlock(&vm->vm_map);
492                 vm_map_entry_release(count);
493
494                 pmap_release(vmspace_pmap(vm));
495                 lwkt_reltoken(&vm->vm_map.token);
496                 objcache_put(vmspace_cache, vm);
497         }
498 }
499
500 /*
501  * Swap useage is determined by taking the proportional swap used by
502  * VM objects backing the VM map.  To make up for fractional losses,
503  * if the VM object has any swap use at all the associated map entries
504  * count for at least 1 swap page.
505  *
506  * No requirements.
507  */
508 vm_offset_t
509 vmspace_swap_count(struct vmspace *vm)
510 {
511         vm_map_t map = &vm->vm_map;
512         vm_map_entry_t cur;
513         vm_object_t object;
514         vm_offset_t count = 0;
515         vm_offset_t n;
516
517         vmspace_hold(vm);
518         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
519                 switch(cur->maptype) {
520                 case VM_MAPTYPE_NORMAL:
521                 case VM_MAPTYPE_VPAGETABLE:
522                         if ((object = cur->object.vm_object) == NULL)
523                                 break;
524                         if (object->swblock_count) {
525                                 n = (cur->end - cur->start) / PAGE_SIZE;
526                                 count += object->swblock_count *
527                                     SWAP_META_PAGES * n / object->size + 1;
528                         }
529                         break;
530                 default:
531                         break;
532                 }
533         }
534         vmspace_drop(vm);
535
536         return(count);
537 }
538
539 /*
540  * Calculate the approximate number of anonymous pages in use by
541  * this vmspace.  To make up for fractional losses, we count each
542  * VM object as having at least 1 anonymous page.
543  *
544  * No requirements.
545  */
546 vm_offset_t
547 vmspace_anonymous_count(struct vmspace *vm)
548 {
549         vm_map_t map = &vm->vm_map;
550         vm_map_entry_t cur;
551         vm_object_t object;
552         vm_offset_t count = 0;
553
554         vmspace_hold(vm);
555         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
556                 switch(cur->maptype) {
557                 case VM_MAPTYPE_NORMAL:
558                 case VM_MAPTYPE_VPAGETABLE:
559                         if ((object = cur->object.vm_object) == NULL)
560                                 break;
561                         if (object->type != OBJT_DEFAULT &&
562                             object->type != OBJT_SWAP) {
563                                 break;
564                         }
565                         count += object->resident_page_count;
566                         break;
567                 default:
568                         break;
569                 }
570         }
571         vmspace_drop(vm);
572
573         return(count);
574 }
575
576 /*
577  * Initialize an existing vm_map structure such as that in the vmspace
578  * structure.  The pmap is initialized elsewhere.
579  *
580  * No requirements.
581  */
582 void
583 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
584 {
585         map->header.next = map->header.prev = &map->header;
586         RB_INIT(&map->rb_root);
587         map->nentries = 0;
588         map->size = 0;
589         map->system_map = 0;
590         map->min_offset = min;
591         map->max_offset = max;
592         map->pmap = pmap;
593         map->first_free = &map->header;
594         map->hint = &map->header;
595         map->timestamp = 0;
596         map->flags = 0;
597         lwkt_token_init(&map->token, "vm_map");
598         lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
599 }
600
601 /*
602  * Shadow the vm_map_entry's object.  This typically needs to be done when
603  * a write fault is taken on an entry which had previously been cloned by
604  * fork().  The shared object (which might be NULL) must become private so
605  * we add a shadow layer above it.
606  *
607  * Object allocation for anonymous mappings is defered as long as possible.
608  * When creating a shadow, however, the underlying object must be instantiated
609  * so it can be shared.
610  *
611  * If the map segment is governed by a virtual page table then it is
612  * possible to address offsets beyond the mapped area.  Just allocate
613  * a maximally sized object for this case.
614  *
615  * If addref is non-zero an additional reference is added to the returned
616  * entry.  This mechanic exists because the additional reference might have
617  * to be added atomically and not after return to prevent a premature
618  * collapse.
619  *
620  * The vm_map must be exclusively locked.
621  * No other requirements.
622  */
623 static
624 void
625 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
626 {
627         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
628                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
629                                  0x7FFFFFFF, addref);   /* XXX */
630         } else {
631                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
632                                  atop(entry->end - entry->start), addref);
633         }
634         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
635 }
636
637 /*
638  * Allocate an object for a vm_map_entry.
639  *
640  * Object allocation for anonymous mappings is defered as long as possible.
641  * This function is called when we can defer no longer, generally when a map
642  * entry might be split or forked or takes a page fault.
643  *
644  * If the map segment is governed by a virtual page table then it is
645  * possible to address offsets beyond the mapped area.  Just allocate
646  * a maximally sized object for this case.
647  *
648  * The vm_map must be exclusively locked.
649  * No other requirements.
650  */
651 void 
652 vm_map_entry_allocate_object(vm_map_entry_t entry)
653 {
654         vm_object_t obj;
655
656         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
657                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
658         } else {
659                 obj = vm_object_allocate(OBJT_DEFAULT,
660                                          atop(entry->end - entry->start));
661         }
662         entry->object.vm_object = obj;
663         entry->offset = 0;
664 }
665
666 /*
667  * Set an initial negative count so the first attempt to reserve
668  * space preloads a bunch of vm_map_entry's for this cpu.  Also
669  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
670  * map a new page for vm_map_entry structures.  SMP systems are
671  * particularly sensitive.
672  *
673  * This routine is called in early boot so we cannot just call
674  * vm_map_entry_reserve().
675  *
676  * Called from the low level boot code only (for each cpu)
677  *
678  * WARNING! Take care not to have too-big a static/BSS structure here
679  *          as MAXCPU can be 256+, otherwise the loader's 64MB heap
680  *          can get blown out by the kernel plus the initrd image.
681  */
682 void
683 vm_map_entry_reserve_cpu_init(globaldata_t gd)
684 {
685         vm_map_entry_t entry;
686         int count;
687         int i;
688
689         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
690         if (gd->gd_cpuid == 0) {
691                 entry = &cpu_map_entry_init_bsp[0];
692                 count = MAPENTRYBSP_CACHE;
693         } else {
694                 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
695                 count = MAPENTRYAP_CACHE;
696         }
697         for (i = 0; i < count; ++i, ++entry) {
698                 entry->next = gd->gd_vme_base;
699                 gd->gd_vme_base = entry;
700         }
701 }
702
703 /*
704  * Reserves vm_map_entry structures so code later on can manipulate
705  * map_entry structures within a locked map without blocking trying
706  * to allocate a new vm_map_entry.
707  *
708  * No requirements.
709  */
710 int
711 vm_map_entry_reserve(int count)
712 {
713         struct globaldata *gd = mycpu;
714         vm_map_entry_t entry;
715
716         /*
717          * Make sure we have enough structures in gd_vme_base to handle
718          * the reservation request.
719          *
720          * The critical section protects access to the per-cpu gd.
721          */
722         crit_enter();
723         while (gd->gd_vme_avail < count) {
724                 entry = zalloc(mapentzone);
725                 entry->next = gd->gd_vme_base;
726                 gd->gd_vme_base = entry;
727                 ++gd->gd_vme_avail;
728         }
729         gd->gd_vme_avail -= count;
730         crit_exit();
731
732         return(count);
733 }
734
735 /*
736  * Releases previously reserved vm_map_entry structures that were not
737  * used.  If we have too much junk in our per-cpu cache clean some of
738  * it out.
739  *
740  * No requirements.
741  */
742 void
743 vm_map_entry_release(int count)
744 {
745         struct globaldata *gd = mycpu;
746         vm_map_entry_t entry;
747
748         crit_enter();
749         gd->gd_vme_avail += count;
750         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
751                 entry = gd->gd_vme_base;
752                 KKASSERT(entry != NULL);
753                 gd->gd_vme_base = entry->next;
754                 --gd->gd_vme_avail;
755                 crit_exit();
756                 zfree(mapentzone, entry);
757                 crit_enter();
758         }
759         crit_exit();
760 }
761
762 /*
763  * Reserve map entry structures for use in kernel_map itself.  These
764  * entries have *ALREADY* been reserved on a per-cpu basis when the map
765  * was inited.  This function is used by zalloc() to avoid a recursion
766  * when zalloc() itself needs to allocate additional kernel memory.
767  *
768  * This function works like the normal reserve but does not load the
769  * vm_map_entry cache (because that would result in an infinite
770  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
771  *
772  * Any caller of this function must be sure to renormalize after
773  * potentially eating entries to ensure that the reserve supply
774  * remains intact.
775  *
776  * No requirements.
777  */
778 int
779 vm_map_entry_kreserve(int count)
780 {
781         struct globaldata *gd = mycpu;
782
783         crit_enter();
784         gd->gd_vme_avail -= count;
785         crit_exit();
786         KASSERT(gd->gd_vme_base != NULL,
787                 ("no reserved entries left, gd_vme_avail = %d",
788                 gd->gd_vme_avail));
789         return(count);
790 }
791
792 /*
793  * Release previously reserved map entries for kernel_map.  We do not
794  * attempt to clean up like the normal release function as this would
795  * cause an unnecessary (but probably not fatal) deep procedure call.
796  *
797  * No requirements.
798  */
799 void
800 vm_map_entry_krelease(int count)
801 {
802         struct globaldata *gd = mycpu;
803
804         crit_enter();
805         gd->gd_vme_avail += count;
806         crit_exit();
807 }
808
809 /*
810  * Allocates a VM map entry for insertion.  No entry fields are filled in.
811  *
812  * The entries should have previously been reserved.  The reservation count
813  * is tracked in (*countp).
814  *
815  * No requirements.
816  */
817 static vm_map_entry_t
818 vm_map_entry_create(vm_map_t map, int *countp)
819 {
820         struct globaldata *gd = mycpu;
821         vm_map_entry_t entry;
822
823         KKASSERT(*countp > 0);
824         --*countp;
825         crit_enter();
826         entry = gd->gd_vme_base;
827         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
828         gd->gd_vme_base = entry->next;
829         crit_exit();
830
831         return(entry);
832 }
833
834 /*
835  * Dispose of a vm_map_entry that is no longer being referenced.
836  *
837  * No requirements.
838  */
839 static void
840 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
841 {
842         struct globaldata *gd = mycpu;
843
844         KKASSERT(map->hint != entry);
845         KKASSERT(map->first_free != entry);
846
847         ++*countp;
848         crit_enter();
849         entry->next = gd->gd_vme_base;
850         gd->gd_vme_base = entry;
851         crit_exit();
852 }
853
854
855 /*
856  * Insert/remove entries from maps.
857  *
858  * The related map must be exclusively locked.
859  * The caller must hold map->token
860  * No other requirements.
861  */
862 static __inline void
863 vm_map_entry_link(vm_map_t map,
864                   vm_map_entry_t after_where,
865                   vm_map_entry_t entry)
866 {
867         ASSERT_VM_MAP_LOCKED(map);
868
869         map->nentries++;
870         entry->prev = after_where;
871         entry->next = after_where->next;
872         entry->next->prev = entry;
873         after_where->next = entry;
874         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
875                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
876 }
877
878 static __inline void
879 vm_map_entry_unlink(vm_map_t map,
880                     vm_map_entry_t entry)
881 {
882         vm_map_entry_t prev;
883         vm_map_entry_t next;
884
885         ASSERT_VM_MAP_LOCKED(map);
886
887         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
888                 panic("vm_map_entry_unlink: attempt to mess with "
889                       "locked entry! %p", entry);
890         }
891         prev = entry->prev;
892         next = entry->next;
893         next->prev = prev;
894         prev->next = next;
895         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
896         map->nentries--;
897 }
898
899 /*
900  * Finds the map entry containing (or immediately preceding) the specified
901  * address in the given map.  The entry is returned in (*entry).
902  *
903  * The boolean result indicates whether the address is actually contained
904  * in the map.
905  *
906  * The related map must be locked.
907  * No other requirements.
908  */
909 boolean_t
910 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
911 {
912         vm_map_entry_t tmp;
913         vm_map_entry_t last;
914
915         ASSERT_VM_MAP_LOCKED(map);
916 #if 0
917         /*
918          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
919          * the hint code with the red-black lookup meets with system crashes
920          * and lockups.  We do not yet know why.
921          *
922          * It is possible that the problem is related to the setting
923          * of the hint during map_entry deletion, in the code specified
924          * at the GGG comment later on in this file.
925          *
926          * YYY More likely it's because this function can be called with
927          * a shared lock on the map, resulting in map->hint updates possibly
928          * racing.  Fixed now but untested.
929          */
930         /*
931          * Quickly check the cached hint, there's a good chance of a match.
932          */
933         tmp = map->hint;
934         cpu_ccfence();
935         if (tmp != &map->header) {
936                 if (address >= tmp->start && address < tmp->end) {
937                         *entry = tmp;
938                         return(TRUE);
939                 }
940         }
941 #endif
942
943         /*
944          * Locate the record from the top of the tree.  'last' tracks the
945          * closest prior record and is returned if no match is found, which
946          * in binary tree terms means tracking the most recent right-branch
947          * taken.  If there is no prior record, &map->header is returned.
948          */
949         last = &map->header;
950         tmp = RB_ROOT(&map->rb_root);
951
952         while (tmp) {
953                 if (address >= tmp->start) {
954                         if (address < tmp->end) {
955                                 *entry = tmp;
956                                 map->hint = tmp;
957                                 return(TRUE);
958                         }
959                         last = tmp;
960                         tmp = RB_RIGHT(tmp, rb_entry);
961                 } else {
962                         tmp = RB_LEFT(tmp, rb_entry);
963                 }
964         }
965         *entry = last;
966         return (FALSE);
967 }
968
969 /*
970  * Inserts the given whole VM object into the target map at the specified
971  * address range.  The object's size should match that of the address range.
972  *
973  * The map must be exclusively locked.
974  * The object must be held.
975  * The caller must have reserved sufficient vm_map_entry structures.
976  *
977  * If object is non-NULL, ref count must be bumped by caller prior to
978  * making call to account for the new entry.
979  */
980 int
981 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
982               vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
983               vm_maptype_t maptype, vm_subsys_t id,
984               vm_prot_t prot, vm_prot_t max, int cow)
985 {
986         vm_map_entry_t new_entry;
987         vm_map_entry_t prev_entry;
988         vm_map_entry_t temp_entry;
989         vm_eflags_t protoeflags;
990         int must_drop = 0;
991         vm_object_t object;
992
993         if (maptype == VM_MAPTYPE_UKSMAP)
994                 object = NULL;
995         else
996                 object = map_object;
997
998         ASSERT_VM_MAP_LOCKED(map);
999         if (object)
1000                 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1001
1002         /*
1003          * Check that the start and end points are not bogus.
1004          */
1005         if ((start < map->min_offset) || (end > map->max_offset) ||
1006             (start >= end))
1007                 return (KERN_INVALID_ADDRESS);
1008
1009         /*
1010          * Find the entry prior to the proposed starting address; if it's part
1011          * of an existing entry, this range is bogus.
1012          */
1013         if (vm_map_lookup_entry(map, start, &temp_entry))
1014                 return (KERN_NO_SPACE);
1015
1016         prev_entry = temp_entry;
1017
1018         /*
1019          * Assert that the next entry doesn't overlap the end point.
1020          */
1021
1022         if ((prev_entry->next != &map->header) &&
1023             (prev_entry->next->start < end))
1024                 return (KERN_NO_SPACE);
1025
1026         protoeflags = 0;
1027
1028         if (cow & MAP_COPY_ON_WRITE)
1029                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1030
1031         if (cow & MAP_NOFAULT) {
1032                 protoeflags |= MAP_ENTRY_NOFAULT;
1033
1034                 KASSERT(object == NULL,
1035                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1036         }
1037         if (cow & MAP_DISABLE_SYNCER)
1038                 protoeflags |= MAP_ENTRY_NOSYNC;
1039         if (cow & MAP_DISABLE_COREDUMP)
1040                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1041         if (cow & MAP_IS_STACK)
1042                 protoeflags |= MAP_ENTRY_STACK;
1043         if (cow & MAP_IS_KSTACK)
1044                 protoeflags |= MAP_ENTRY_KSTACK;
1045
1046         lwkt_gettoken(&map->token);
1047
1048         if (object) {
1049                 /*
1050                  * When object is non-NULL, it could be shared with another
1051                  * process.  We have to set or clear OBJ_ONEMAPPING 
1052                  * appropriately.
1053                  *
1054                  * NOTE: This flag is only applicable to DEFAULT and SWAP
1055                  *       objects and will already be clear in other types
1056                  *       of objects, so a shared object lock is ok for
1057                  *       VNODE objects.
1058                  */
1059                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1060                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1061                 }
1062         }
1063         else if ((prev_entry != &map->header) &&
1064                  (prev_entry->eflags == protoeflags) &&
1065                  (prev_entry->end == start) &&
1066                  (prev_entry->wired_count == 0) &&
1067                  (prev_entry->id == id) &&
1068                  prev_entry->maptype == maptype &&
1069                  maptype == VM_MAPTYPE_NORMAL &&
1070                  ((prev_entry->object.vm_object == NULL) ||
1071                   vm_object_coalesce(prev_entry->object.vm_object,
1072                                      OFF_TO_IDX(prev_entry->offset),
1073                                      (vm_size_t)(prev_entry->end - prev_entry->start),
1074                                      (vm_size_t)(end - prev_entry->end)))) {
1075                 /*
1076                  * We were able to extend the object.  Determine if we
1077                  * can extend the previous map entry to include the 
1078                  * new range as well.
1079                  */
1080                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1081                     (prev_entry->protection == prot) &&
1082                     (prev_entry->max_protection == max)) {
1083                         map->size += (end - prev_entry->end);
1084                         prev_entry->end = end;
1085                         vm_map_simplify_entry(map, prev_entry, countp);
1086                         lwkt_reltoken(&map->token);
1087                         return (KERN_SUCCESS);
1088                 }
1089
1090                 /*
1091                  * If we can extend the object but cannot extend the
1092                  * map entry, we have to create a new map entry.  We
1093                  * must bump the ref count on the extended object to
1094                  * account for it.  object may be NULL.
1095                  *
1096                  * XXX if object is NULL should we set offset to 0 here ?
1097                  */
1098                 object = prev_entry->object.vm_object;
1099                 offset = prev_entry->offset +
1100                         (prev_entry->end - prev_entry->start);
1101                 if (object) {
1102                         vm_object_hold(object);
1103                         vm_object_chain_wait(object, 0);
1104                         vm_object_reference_locked(object);
1105                         must_drop = 1;
1106                         map_object = object;
1107                 }
1108         }
1109
1110         /*
1111          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1112          * in things like the buffer map where we manage kva but do not manage
1113          * backing objects.
1114          */
1115
1116         /*
1117          * Create a new entry
1118          */
1119
1120         new_entry = vm_map_entry_create(map, countp);
1121         new_entry->start = start;
1122         new_entry->end = end;
1123         new_entry->id = id;
1124
1125         new_entry->maptype = maptype;
1126         new_entry->eflags = protoeflags;
1127         new_entry->object.map_object = map_object;
1128         new_entry->aux.master_pde = 0;          /* in case size is different */
1129         new_entry->aux.map_aux = map_aux;
1130         new_entry->offset = offset;
1131
1132         new_entry->inheritance = VM_INHERIT_DEFAULT;
1133         new_entry->protection = prot;
1134         new_entry->max_protection = max;
1135         new_entry->wired_count = 0;
1136
1137         /*
1138          * Insert the new entry into the list
1139          */
1140
1141         vm_map_entry_link(map, prev_entry, new_entry);
1142         map->size += new_entry->end - new_entry->start;
1143
1144         /*
1145          * Update the free space hint.  Entries cannot overlap.
1146          * An exact comparison is needed to avoid matching
1147          * against the map->header.
1148          */
1149         if ((map->first_free == prev_entry) &&
1150             (prev_entry->end == new_entry->start)) {
1151                 map->first_free = new_entry;
1152         }
1153
1154 #if 0
1155         /*
1156          * Temporarily removed to avoid MAP_STACK panic, due to
1157          * MAP_STACK being a huge hack.  Will be added back in
1158          * when MAP_STACK (and the user stack mapping) is fixed.
1159          */
1160         /*
1161          * It may be possible to simplify the entry
1162          */
1163         vm_map_simplify_entry(map, new_entry, countp);
1164 #endif
1165
1166         /*
1167          * Try to pre-populate the page table.  Mappings governed by virtual
1168          * page tables cannot be prepopulated without a lot of work, so
1169          * don't try.
1170          */
1171         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1172             maptype != VM_MAPTYPE_VPAGETABLE &&
1173             maptype != VM_MAPTYPE_UKSMAP) {
1174                 int dorelock = 0;
1175                 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1176                         dorelock = 1;
1177                         vm_object_lock_swap();
1178                         vm_object_drop(object);
1179                 }
1180                 pmap_object_init_pt(map->pmap, start, prot,
1181                                     object, OFF_TO_IDX(offset), end - start,
1182                                     cow & MAP_PREFAULT_PARTIAL);
1183                 if (dorelock) {
1184                         vm_object_hold(object);
1185                         vm_object_lock_swap();
1186                 }
1187         }
1188         if (must_drop)
1189                 vm_object_drop(object);
1190
1191         lwkt_reltoken(&map->token);
1192         return (KERN_SUCCESS);
1193 }
1194
1195 /*
1196  * Find sufficient space for `length' bytes in the given map, starting at
1197  * `start'.  Returns 0 on success, 1 on no space.
1198  *
1199  * This function will returned an arbitrarily aligned pointer.  If no
1200  * particular alignment is required you should pass align as 1.  Note that
1201  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1202  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1203  * argument.
1204  *
1205  * 'align' should be a power of 2 but is not required to be.
1206  *
1207  * The map must be exclusively locked.
1208  * No other requirements.
1209  */
1210 int
1211 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1212                  vm_size_t align, int flags, vm_offset_t *addr)
1213 {
1214         vm_map_entry_t entry, next;
1215         vm_offset_t end;
1216         vm_offset_t align_mask;
1217
1218         if (start < map->min_offset)
1219                 start = map->min_offset;
1220         if (start > map->max_offset)
1221                 return (1);
1222
1223         /*
1224          * If the alignment is not a power of 2 we will have to use
1225          * a mod/division, set align_mask to a special value.
1226          */
1227         if ((align | (align - 1)) + 1 != (align << 1))
1228                 align_mask = (vm_offset_t)-1;
1229         else
1230                 align_mask = align - 1;
1231
1232         /*
1233          * Look for the first possible address; if there's already something
1234          * at this address, we have to start after it.
1235          */
1236         if (start == map->min_offset) {
1237                 if ((entry = map->first_free) != &map->header)
1238                         start = entry->end;
1239         } else {
1240                 vm_map_entry_t tmp;
1241
1242                 if (vm_map_lookup_entry(map, start, &tmp))
1243                         start = tmp->end;
1244                 entry = tmp;
1245         }
1246
1247         /*
1248          * Look through the rest of the map, trying to fit a new region in the
1249          * gap between existing regions, or after the very last region.
1250          */
1251         for (;; start = (entry = next)->end) {
1252                 /*
1253                  * Adjust the proposed start by the requested alignment,
1254                  * be sure that we didn't wrap the address.
1255                  */
1256                 if (align_mask == (vm_offset_t)-1)
1257                         end = roundup(start, align);
1258                 else
1259                         end = (start + align_mask) & ~align_mask;
1260                 if (end < start)
1261                         return (1);
1262                 start = end;
1263                 /*
1264                  * Find the end of the proposed new region.  Be sure we didn't
1265                  * go beyond the end of the map, or wrap around the address.
1266                  * Then check to see if this is the last entry or if the 
1267                  * proposed end fits in the gap between this and the next
1268                  * entry.
1269                  */
1270                 end = start + length;
1271                 if (end > map->max_offset || end < start)
1272                         return (1);
1273                 next = entry->next;
1274
1275                 /*
1276                  * If the next entry's start address is beyond the desired
1277                  * end address we may have found a good entry.
1278                  *
1279                  * If the next entry is a stack mapping we do not map into
1280                  * the stack's reserved space.
1281                  *
1282                  * XXX continue to allow mapping into the stack's reserved
1283                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1284                  * mapping, for backwards compatibility.  But the caller
1285                  * really should use MAP_STACK | MAP_TRYFIXED if they
1286                  * want to do that.
1287                  */
1288                 if (next == &map->header)
1289                         break;
1290                 if (next->start >= end) {
1291                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1292                                 break;
1293                         if (flags & MAP_STACK)
1294                                 break;
1295                         if (next->start - next->aux.avail_ssize >= end)
1296                                 break;
1297                 }
1298         }
1299         map->hint = entry;
1300
1301         /*
1302          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1303          * if it fails.  The kernel_map is locked and nothing can steal
1304          * our address space if pmap_growkernel() blocks.
1305          *
1306          * NOTE: This may be unconditionally called for kldload areas on
1307          *       x86_64 because these do not bump kernel_vm_end (which would
1308          *       fill 128G worth of page tables!).  Therefore we must not
1309          *       retry.
1310          */
1311         if (map == &kernel_map) {
1312                 vm_offset_t kstop;
1313
1314                 kstop = round_page(start + length);
1315                 if (kstop > kernel_vm_end)
1316                         pmap_growkernel(start, kstop);
1317         }
1318         *addr = start;
1319         return (0);
1320 }
1321
1322 /*
1323  * vm_map_find finds an unallocated region in the target address map with
1324  * the given length and allocates it.  The search is defined to be first-fit
1325  * from the specified address; the region found is returned in the same
1326  * parameter.
1327  *
1328  * If object is non-NULL, ref count must be bumped by caller
1329  * prior to making call to account for the new entry.
1330  *
1331  * No requirements.  This function will lock the map temporarily.
1332  */
1333 int
1334 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1335             vm_ooffset_t offset, vm_offset_t *addr,
1336             vm_size_t length, vm_size_t align, boolean_t fitit,
1337             vm_maptype_t maptype, vm_subsys_t id,
1338             vm_prot_t prot, vm_prot_t max, int cow)
1339 {
1340         vm_offset_t start;
1341         vm_object_t object;
1342         int result;
1343         int count;
1344
1345         if (maptype == VM_MAPTYPE_UKSMAP)
1346                 object = NULL;
1347         else
1348                 object = map_object;
1349
1350         start = *addr;
1351
1352         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1353         vm_map_lock(map);
1354         if (object)
1355                 vm_object_hold_shared(object);
1356         if (fitit) {
1357                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1358                         if (object)
1359                                 vm_object_drop(object);
1360                         vm_map_unlock(map);
1361                         vm_map_entry_release(count);
1362                         return (KERN_NO_SPACE);
1363                 }
1364                 start = *addr;
1365         }
1366         result = vm_map_insert(map, &count, map_object, map_aux,
1367                                offset, start, start + length,
1368                                maptype, id, prot, max, cow);
1369         if (object)
1370                 vm_object_drop(object);
1371         vm_map_unlock(map);
1372         vm_map_entry_release(count);
1373
1374         return (result);
1375 }
1376
1377 /*
1378  * Simplify the given map entry by merging with either neighbor.  This
1379  * routine also has the ability to merge with both neighbors.
1380  *
1381  * This routine guarentees that the passed entry remains valid (though
1382  * possibly extended).  When merging, this routine may delete one or
1383  * both neighbors.  No action is taken on entries which have their
1384  * in-transition flag set.
1385  *
1386  * The map must be exclusively locked.
1387  */
1388 void
1389 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1390 {
1391         vm_map_entry_t next, prev;
1392         vm_size_t prevsize, esize;
1393
1394         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1395                 ++mycpu->gd_cnt.v_intrans_coll;
1396                 return;
1397         }
1398
1399         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1400                 return;
1401         if (entry->maptype == VM_MAPTYPE_UKSMAP)
1402                 return;
1403
1404         prev = entry->prev;
1405         if (prev != &map->header) {
1406                 prevsize = prev->end - prev->start;
1407                 if ( (prev->end == entry->start) &&
1408                      (prev->maptype == entry->maptype) &&
1409                      (prev->object.vm_object == entry->object.vm_object) &&
1410                      (!prev->object.vm_object ||
1411                         (prev->offset + prevsize == entry->offset)) &&
1412                      (prev->eflags == entry->eflags) &&
1413                      (prev->protection == entry->protection) &&
1414                      (prev->max_protection == entry->max_protection) &&
1415                      (prev->inheritance == entry->inheritance) &&
1416                      (prev->id == entry->id) &&
1417                      (prev->wired_count == entry->wired_count)) {
1418                         if (map->first_free == prev)
1419                                 map->first_free = entry;
1420                         if (map->hint == prev)
1421                                 map->hint = entry;
1422                         vm_map_entry_unlink(map, prev);
1423                         entry->start = prev->start;
1424                         entry->offset = prev->offset;
1425                         if (prev->object.vm_object)
1426                                 vm_object_deallocate(prev->object.vm_object);
1427                         vm_map_entry_dispose(map, prev, countp);
1428                 }
1429         }
1430
1431         next = entry->next;
1432         if (next != &map->header) {
1433                 esize = entry->end - entry->start;
1434                 if ((entry->end == next->start) &&
1435                     (next->maptype == entry->maptype) &&
1436                     (next->object.vm_object == entry->object.vm_object) &&
1437                      (!entry->object.vm_object ||
1438                         (entry->offset + esize == next->offset)) &&
1439                     (next->eflags == entry->eflags) &&
1440                     (next->protection == entry->protection) &&
1441                     (next->max_protection == entry->max_protection) &&
1442                     (next->inheritance == entry->inheritance) &&
1443                     (next->id == entry->id) &&
1444                     (next->wired_count == entry->wired_count)) {
1445                         if (map->first_free == next)
1446                                 map->first_free = entry;
1447                         if (map->hint == next)
1448                                 map->hint = entry;
1449                         vm_map_entry_unlink(map, next);
1450                         entry->end = next->end;
1451                         if (next->object.vm_object)
1452                                 vm_object_deallocate(next->object.vm_object);
1453                         vm_map_entry_dispose(map, next, countp);
1454                 }
1455         }
1456 }
1457
1458 /*
1459  * Asserts that the given entry begins at or after the specified address.
1460  * If necessary, it splits the entry into two.
1461  */
1462 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1463 {                                                                       \
1464         if (startaddr > entry->start)                                   \
1465                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1466 }
1467
1468 /*
1469  * This routine is called only when it is known that the entry must be split.
1470  *
1471  * The map must be exclusively locked.
1472  */
1473 static void
1474 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1475                    int *countp)
1476 {
1477         vm_map_entry_t new_entry;
1478
1479         /*
1480          * Split off the front portion -- note that we must insert the new
1481          * entry BEFORE this one, so that this entry has the specified
1482          * starting address.
1483          */
1484
1485         vm_map_simplify_entry(map, entry, countp);
1486
1487         /*
1488          * If there is no object backing this entry, we might as well create
1489          * one now.  If we defer it, an object can get created after the map
1490          * is clipped, and individual objects will be created for the split-up
1491          * map.  This is a bit of a hack, but is also about the best place to
1492          * put this improvement.
1493          */
1494         if (entry->object.vm_object == NULL && !map->system_map) {
1495                 vm_map_entry_allocate_object(entry);
1496         }
1497
1498         new_entry = vm_map_entry_create(map, countp);
1499         *new_entry = *entry;
1500
1501         new_entry->end = start;
1502         entry->offset += (start - entry->start);
1503         entry->start = start;
1504
1505         vm_map_entry_link(map, entry->prev, new_entry);
1506
1507         switch(entry->maptype) {
1508         case VM_MAPTYPE_NORMAL:
1509         case VM_MAPTYPE_VPAGETABLE:
1510                 if (new_entry->object.vm_object) {
1511                         vm_object_hold(new_entry->object.vm_object);
1512                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1513                         vm_object_reference_locked(new_entry->object.vm_object);
1514                         vm_object_drop(new_entry->object.vm_object);
1515                 }
1516                 break;
1517         default:
1518                 break;
1519         }
1520 }
1521
1522 /*
1523  * Asserts that the given entry ends at or before the specified address.
1524  * If necessary, it splits the entry into two.
1525  *
1526  * The map must be exclusively locked.
1527  */
1528 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1529 {                                                               \
1530         if (endaddr < entry->end)                               \
1531                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1532 }
1533
1534 /*
1535  * This routine is called only when it is known that the entry must be split.
1536  *
1537  * The map must be exclusively locked.
1538  */
1539 static void
1540 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1541                  int *countp)
1542 {
1543         vm_map_entry_t new_entry;
1544
1545         /*
1546          * If there is no object backing this entry, we might as well create
1547          * one now.  If we defer it, an object can get created after the map
1548          * is clipped, and individual objects will be created for the split-up
1549          * map.  This is a bit of a hack, but is also about the best place to
1550          * put this improvement.
1551          */
1552
1553         if (entry->object.vm_object == NULL && !map->system_map) {
1554                 vm_map_entry_allocate_object(entry);
1555         }
1556
1557         /*
1558          * Create a new entry and insert it AFTER the specified entry
1559          */
1560
1561         new_entry = vm_map_entry_create(map, countp);
1562         *new_entry = *entry;
1563
1564         new_entry->start = entry->end = end;
1565         new_entry->offset += (end - entry->start);
1566
1567         vm_map_entry_link(map, entry, new_entry);
1568
1569         switch(entry->maptype) {
1570         case VM_MAPTYPE_NORMAL:
1571         case VM_MAPTYPE_VPAGETABLE:
1572                 if (new_entry->object.vm_object) {
1573                         vm_object_hold(new_entry->object.vm_object);
1574                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1575                         vm_object_reference_locked(new_entry->object.vm_object);
1576                         vm_object_drop(new_entry->object.vm_object);
1577                 }
1578                 break;
1579         default:
1580                 break;
1581         }
1582 }
1583
1584 /*
1585  * Asserts that the starting and ending region addresses fall within the
1586  * valid range for the map.
1587  */
1588 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1589 {                                               \
1590         if (start < vm_map_min(map))            \
1591                 start = vm_map_min(map);        \
1592         if (end > vm_map_max(map))              \
1593                 end = vm_map_max(map);          \
1594         if (start > end)                        \
1595                 start = end;                    \
1596 }
1597
1598 /*
1599  * Used to block when an in-transition collison occurs.  The map
1600  * is unlocked for the sleep and relocked before the return.
1601  */
1602 void
1603 vm_map_transition_wait(vm_map_t map)
1604 {
1605         tsleep_interlock(map, 0);
1606         vm_map_unlock(map);
1607         tsleep(map, PINTERLOCKED, "vment", 0);
1608         vm_map_lock(map);
1609 }
1610
1611 /*
1612  * When we do blocking operations with the map lock held it is
1613  * possible that a clip might have occured on our in-transit entry,
1614  * requiring an adjustment to the entry in our loop.  These macros
1615  * help the pageable and clip_range code deal with the case.  The
1616  * conditional costs virtually nothing if no clipping has occured.
1617  */
1618
1619 #define CLIP_CHECK_BACK(entry, save_start)              \
1620     do {                                                \
1621             while (entry->start != save_start) {        \
1622                     entry = entry->prev;                \
1623                     KASSERT(entry != &map->header, ("bad entry clip")); \
1624             }                                           \
1625     } while(0)
1626
1627 #define CLIP_CHECK_FWD(entry, save_end)                 \
1628     do {                                                \
1629             while (entry->end != save_end) {            \
1630                     entry = entry->next;                \
1631                     KASSERT(entry != &map->header, ("bad entry clip")); \
1632             }                                           \
1633     } while(0)
1634
1635
1636 /*
1637  * Clip the specified range and return the base entry.  The
1638  * range may cover several entries starting at the returned base
1639  * and the first and last entry in the covering sequence will be
1640  * properly clipped to the requested start and end address.
1641  *
1642  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1643  * flag.
1644  *
1645  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1646  * covered by the requested range.
1647  *
1648  * The map must be exclusively locked on entry and will remain locked
1649  * on return. If no range exists or the range contains holes and you
1650  * specified that no holes were allowed, NULL will be returned.  This
1651  * routine may temporarily unlock the map in order avoid a deadlock when
1652  * sleeping.
1653  */
1654 static
1655 vm_map_entry_t
1656 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1657                   int *countp, int flags)
1658 {
1659         vm_map_entry_t start_entry;
1660         vm_map_entry_t entry;
1661
1662         /*
1663          * Locate the entry and effect initial clipping.  The in-transition
1664          * case does not occur very often so do not try to optimize it.
1665          */
1666 again:
1667         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1668                 return (NULL);
1669         entry = start_entry;
1670         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1671                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1672                 ++mycpu->gd_cnt.v_intrans_coll;
1673                 ++mycpu->gd_cnt.v_intrans_wait;
1674                 vm_map_transition_wait(map);
1675                 /*
1676                  * entry and/or start_entry may have been clipped while
1677                  * we slept, or may have gone away entirely.  We have
1678                  * to restart from the lookup.
1679                  */
1680                 goto again;
1681         }
1682
1683         /*
1684          * Since we hold an exclusive map lock we do not have to restart
1685          * after clipping, even though clipping may block in zalloc.
1686          */
1687         vm_map_clip_start(map, entry, start, countp);
1688         vm_map_clip_end(map, entry, end, countp);
1689         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1690
1691         /*
1692          * Scan entries covered by the range.  When working on the next
1693          * entry a restart need only re-loop on the current entry which
1694          * we have already locked, since 'next' may have changed.  Also,
1695          * even though entry is safe, it may have been clipped so we
1696          * have to iterate forwards through the clip after sleeping.
1697          */
1698         while (entry->next != &map->header && entry->next->start < end) {
1699                 vm_map_entry_t next = entry->next;
1700
1701                 if (flags & MAP_CLIP_NO_HOLES) {
1702                         if (next->start > entry->end) {
1703                                 vm_map_unclip_range(map, start_entry,
1704                                         start, entry->end, countp, flags);
1705                                 return(NULL);
1706                         }
1707                 }
1708
1709                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1710                         vm_offset_t save_end = entry->end;
1711                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1712                         ++mycpu->gd_cnt.v_intrans_coll;
1713                         ++mycpu->gd_cnt.v_intrans_wait;
1714                         vm_map_transition_wait(map);
1715
1716                         /*
1717                          * clips might have occured while we blocked.
1718                          */
1719                         CLIP_CHECK_FWD(entry, save_end);
1720                         CLIP_CHECK_BACK(start_entry, start);
1721                         continue;
1722                 }
1723                 /*
1724                  * No restart necessary even though clip_end may block, we
1725                  * are holding the map lock.
1726                  */
1727                 vm_map_clip_end(map, next, end, countp);
1728                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1729                 entry = next;
1730         }
1731         if (flags & MAP_CLIP_NO_HOLES) {
1732                 if (entry->end != end) {
1733                         vm_map_unclip_range(map, start_entry,
1734                                 start, entry->end, countp, flags);
1735                         return(NULL);
1736                 }
1737         }
1738         return(start_entry);
1739 }
1740
1741 /*
1742  * Undo the effect of vm_map_clip_range().  You should pass the same
1743  * flags and the same range that you passed to vm_map_clip_range().
1744  * This code will clear the in-transition flag on the entries and
1745  * wake up anyone waiting.  This code will also simplify the sequence
1746  * and attempt to merge it with entries before and after the sequence.
1747  *
1748  * The map must be locked on entry and will remain locked on return.
1749  *
1750  * Note that you should also pass the start_entry returned by
1751  * vm_map_clip_range().  However, if you block between the two calls
1752  * with the map unlocked please be aware that the start_entry may
1753  * have been clipped and you may need to scan it backwards to find
1754  * the entry corresponding with the original start address.  You are
1755  * responsible for this, vm_map_unclip_range() expects the correct
1756  * start_entry to be passed to it and will KASSERT otherwise.
1757  */
1758 static
1759 void
1760 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1761                     vm_offset_t start, vm_offset_t end,
1762                     int *countp, int flags)
1763 {
1764         vm_map_entry_t entry;
1765
1766         entry = start_entry;
1767
1768         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1769         while (entry != &map->header && entry->start < end) {
1770                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1771                         ("in-transition flag not set during unclip on: %p",
1772                         entry));
1773                 KASSERT(entry->end <= end,
1774                         ("unclip_range: tail wasn't clipped"));
1775                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1776                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1777                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1778                         wakeup(map);
1779                 }
1780                 entry = entry->next;
1781         }
1782
1783         /*
1784          * Simplification does not block so there is no restart case.
1785          */
1786         entry = start_entry;
1787         while (entry != &map->header && entry->start < end) {
1788                 vm_map_simplify_entry(map, entry, countp);
1789                 entry = entry->next;
1790         }
1791 }
1792
1793 /*
1794  * Mark the given range as handled by a subordinate map.
1795  *
1796  * This range must have been created with vm_map_find(), and no other
1797  * operations may have been performed on this range prior to calling
1798  * vm_map_submap().
1799  *
1800  * Submappings cannot be removed.
1801  *
1802  * No requirements.
1803  */
1804 int
1805 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1806 {
1807         vm_map_entry_t entry;
1808         int result = KERN_INVALID_ARGUMENT;
1809         int count;
1810
1811         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1812         vm_map_lock(map);
1813
1814         VM_MAP_RANGE_CHECK(map, start, end);
1815
1816         if (vm_map_lookup_entry(map, start, &entry)) {
1817                 vm_map_clip_start(map, entry, start, &count);
1818         } else {
1819                 entry = entry->next;
1820         }
1821
1822         vm_map_clip_end(map, entry, end, &count);
1823
1824         if ((entry->start == start) && (entry->end == end) &&
1825             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1826             (entry->object.vm_object == NULL)) {
1827                 entry->object.sub_map = submap;
1828                 entry->maptype = VM_MAPTYPE_SUBMAP;
1829                 result = KERN_SUCCESS;
1830         }
1831         vm_map_unlock(map);
1832         vm_map_entry_release(count);
1833
1834         return (result);
1835 }
1836
1837 /*
1838  * Sets the protection of the specified address region in the target map. 
1839  * If "set_max" is specified, the maximum protection is to be set;
1840  * otherwise, only the current protection is affected.
1841  *
1842  * The protection is not applicable to submaps, but is applicable to normal
1843  * maps and maps governed by virtual page tables.  For example, when operating
1844  * on a virtual page table our protection basically controls how COW occurs
1845  * on the backing object, whereas the virtual page table abstraction itself
1846  * is an abstraction for userland.
1847  *
1848  * No requirements.
1849  */
1850 int
1851 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1852                vm_prot_t new_prot, boolean_t set_max)
1853 {
1854         vm_map_entry_t current;
1855         vm_map_entry_t entry;
1856         int count;
1857
1858         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1859         vm_map_lock(map);
1860
1861         VM_MAP_RANGE_CHECK(map, start, end);
1862
1863         if (vm_map_lookup_entry(map, start, &entry)) {
1864                 vm_map_clip_start(map, entry, start, &count);
1865         } else {
1866                 entry = entry->next;
1867         }
1868
1869         /*
1870          * Make a first pass to check for protection violations.
1871          */
1872         current = entry;
1873         while ((current != &map->header) && (current->start < end)) {
1874                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1875                         vm_map_unlock(map);
1876                         vm_map_entry_release(count);
1877                         return (KERN_INVALID_ARGUMENT);
1878                 }
1879                 if ((new_prot & current->max_protection) != new_prot) {
1880                         vm_map_unlock(map);
1881                         vm_map_entry_release(count);
1882                         return (KERN_PROTECTION_FAILURE);
1883                 }
1884                 current = current->next;
1885         }
1886
1887         /*
1888          * Go back and fix up protections. [Note that clipping is not
1889          * necessary the second time.]
1890          */
1891         current = entry;
1892
1893         while ((current != &map->header) && (current->start < end)) {
1894                 vm_prot_t old_prot;
1895
1896                 vm_map_clip_end(map, current, end, &count);
1897
1898                 old_prot = current->protection;
1899                 if (set_max) {
1900                         current->max_protection = new_prot;
1901                         current->protection = new_prot & old_prot;
1902                 } else {
1903                         current->protection = new_prot;
1904                 }
1905
1906                 /*
1907                  * Update physical map if necessary. Worry about copy-on-write
1908                  * here -- CHECK THIS XXX
1909                  */
1910
1911                 if (current->protection != old_prot) {
1912 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1913                                                         VM_PROT_ALL)
1914
1915                         pmap_protect(map->pmap, current->start,
1916                             current->end,
1917                             current->protection & MASK(current));
1918 #undef  MASK
1919                 }
1920
1921                 vm_map_simplify_entry(map, current, &count);
1922
1923                 current = current->next;
1924         }
1925
1926         vm_map_unlock(map);
1927         vm_map_entry_release(count);
1928         return (KERN_SUCCESS);
1929 }
1930
1931 /*
1932  * This routine traverses a processes map handling the madvise
1933  * system call.  Advisories are classified as either those effecting
1934  * the vm_map_entry structure, or those effecting the underlying
1935  * objects.
1936  *
1937  * The <value> argument is used for extended madvise calls.
1938  *
1939  * No requirements.
1940  */
1941 int
1942 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1943                int behav, off_t value)
1944 {
1945         vm_map_entry_t current, entry;
1946         int modify_map = 0;
1947         int error = 0;
1948         int count;
1949
1950         /*
1951          * Some madvise calls directly modify the vm_map_entry, in which case
1952          * we need to use an exclusive lock on the map and we need to perform 
1953          * various clipping operations.  Otherwise we only need a read-lock
1954          * on the map.
1955          */
1956         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1957
1958         switch(behav) {
1959         case MADV_NORMAL:
1960         case MADV_SEQUENTIAL:
1961         case MADV_RANDOM:
1962         case MADV_NOSYNC:
1963         case MADV_AUTOSYNC:
1964         case MADV_NOCORE:
1965         case MADV_CORE:
1966         case MADV_SETMAP:
1967                 modify_map = 1;
1968                 vm_map_lock(map);
1969                 break;
1970         case MADV_INVAL:
1971         case MADV_WILLNEED:
1972         case MADV_DONTNEED:
1973         case MADV_FREE:
1974                 vm_map_lock_read(map);
1975                 break;
1976         default:
1977                 vm_map_entry_release(count);
1978                 return (EINVAL);
1979         }
1980
1981         /*
1982          * Locate starting entry and clip if necessary.
1983          */
1984
1985         VM_MAP_RANGE_CHECK(map, start, end);
1986
1987         if (vm_map_lookup_entry(map, start, &entry)) {
1988                 if (modify_map)
1989                         vm_map_clip_start(map, entry, start, &count);
1990         } else {
1991                 entry = entry->next;
1992         }
1993
1994         if (modify_map) {
1995                 /*
1996                  * madvise behaviors that are implemented in the vm_map_entry.
1997                  *
1998                  * We clip the vm_map_entry so that behavioral changes are
1999                  * limited to the specified address range.
2000                  */
2001                 for (current = entry;
2002                      (current != &map->header) && (current->start < end);
2003                      current = current->next
2004                 ) {
2005                         if (current->maptype == VM_MAPTYPE_SUBMAP)
2006                                 continue;
2007
2008                         vm_map_clip_end(map, current, end, &count);
2009
2010                         switch (behav) {
2011                         case MADV_NORMAL:
2012                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2013                                 break;
2014                         case MADV_SEQUENTIAL:
2015                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2016                                 break;
2017                         case MADV_RANDOM:
2018                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2019                                 break;
2020                         case MADV_NOSYNC:
2021                                 current->eflags |= MAP_ENTRY_NOSYNC;
2022                                 break;
2023                         case MADV_AUTOSYNC:
2024                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2025                                 break;
2026                         case MADV_NOCORE:
2027                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2028                                 break;
2029                         case MADV_CORE:
2030                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2031                                 break;
2032                         case MADV_SETMAP:
2033                                 /*
2034                                  * Set the page directory page for a map
2035                                  * governed by a virtual page table.  Mark
2036                                  * the entry as being governed by a virtual
2037                                  * page table if it is not.
2038                                  *
2039                                  * XXX the page directory page is stored
2040                                  * in the avail_ssize field if the map_entry.
2041                                  *
2042                                  * XXX the map simplification code does not
2043                                  * compare this field so weird things may
2044                                  * happen if you do not apply this function
2045                                  * to the entire mapping governed by the
2046                                  * virtual page table.
2047                                  */
2048                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2049                                         error = EINVAL;
2050                                         break;
2051                                 }
2052                                 current->aux.master_pde = value;
2053                                 pmap_remove(map->pmap,
2054                                             current->start, current->end);
2055                                 break;
2056                         case MADV_INVAL:
2057                                 /*
2058                                  * Invalidate the related pmap entries, used
2059                                  * to flush portions of the real kernel's
2060                                  * pmap when the caller has removed or
2061                                  * modified existing mappings in a virtual
2062                                  * page table.
2063                                  *
2064                                  * (exclusive locked map version)
2065                                  */
2066                                 pmap_remove(map->pmap,
2067                                             current->start, current->end);
2068                                 break;
2069                         default:
2070                                 error = EINVAL;
2071                                 break;
2072                         }
2073                         vm_map_simplify_entry(map, current, &count);
2074                 }
2075                 vm_map_unlock(map);
2076         } else {
2077                 vm_pindex_t pindex;
2078                 vm_pindex_t delta;
2079
2080                 /*
2081                  * madvise behaviors that are implemented in the underlying
2082                  * vm_object.
2083                  *
2084                  * Since we don't clip the vm_map_entry, we have to clip
2085                  * the vm_object pindex and count.
2086                  *
2087                  * NOTE!  These functions are only supported on normal maps,
2088                  *        except MADV_INVAL which is also supported on
2089                  *        virtual page tables.
2090                  */
2091                 for (current = entry;
2092                      (current != &map->header) && (current->start < end);
2093                      current = current->next
2094                 ) {
2095                         vm_offset_t useStart;
2096
2097                         if (current->maptype != VM_MAPTYPE_NORMAL &&
2098                             (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2099                              behav != MADV_INVAL)) {
2100                                 continue;
2101                         }
2102
2103                         pindex = OFF_TO_IDX(current->offset);
2104                         delta = atop(current->end - current->start);
2105                         useStart = current->start;
2106
2107                         if (current->start < start) {
2108                                 pindex += atop(start - current->start);
2109                                 delta -= atop(start - current->start);
2110                                 useStart = start;
2111                         }
2112                         if (current->end > end)
2113                                 delta -= atop(current->end - end);
2114
2115                         if ((vm_spindex_t)delta <= 0)
2116                                 continue;
2117
2118                         if (behav == MADV_INVAL) {
2119                                 /*
2120                                  * Invalidate the related pmap entries, used
2121                                  * to flush portions of the real kernel's
2122                                  * pmap when the caller has removed or
2123                                  * modified existing mappings in a virtual
2124                                  * page table.
2125                                  *
2126                                  * (shared locked map version)
2127                                  */
2128                                 KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2129                                             useStart + ptoa(delta) <=
2130                                             VM_MAX_USER_ADDRESS,
2131                                          ("Bad range %016jx-%016jx (%016jx)",
2132                                          useStart, useStart + ptoa(delta),
2133                                          delta));
2134                                 pmap_remove(map->pmap,
2135                                             useStart,
2136                                             useStart + ptoa(delta));
2137                         } else {
2138                                 vm_object_madvise(current->object.vm_object,
2139                                                   pindex, delta, behav);
2140                         }
2141
2142                         /*
2143                          * Try to populate the page table.  Mappings governed
2144                          * by virtual page tables cannot be pre-populated
2145                          * without a lot of work so don't try.
2146                          */
2147                         if (behav == MADV_WILLNEED &&
2148                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
2149                                 pmap_object_init_pt(
2150                                     map->pmap, 
2151                                     useStart,
2152                                     current->protection,
2153                                     current->object.vm_object,
2154                                     pindex, 
2155                                     (count << PAGE_SHIFT),
2156                                     MAP_PREFAULT_MADVISE
2157                                 );
2158                         }
2159                 }
2160                 vm_map_unlock_read(map);
2161         }
2162         vm_map_entry_release(count);
2163         return(error);
2164 }       
2165
2166
2167 /*
2168  * Sets the inheritance of the specified address range in the target map.
2169  * Inheritance affects how the map will be shared with child maps at the
2170  * time of vm_map_fork.
2171  */
2172 int
2173 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2174                vm_inherit_t new_inheritance)
2175 {
2176         vm_map_entry_t entry;
2177         vm_map_entry_t temp_entry;
2178         int count;
2179
2180         switch (new_inheritance) {
2181         case VM_INHERIT_NONE:
2182         case VM_INHERIT_COPY:
2183         case VM_INHERIT_SHARE:
2184                 break;
2185         default:
2186                 return (KERN_INVALID_ARGUMENT);
2187         }
2188
2189         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2190         vm_map_lock(map);
2191
2192         VM_MAP_RANGE_CHECK(map, start, end);
2193
2194         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2195                 entry = temp_entry;
2196                 vm_map_clip_start(map, entry, start, &count);
2197         } else
2198                 entry = temp_entry->next;
2199
2200         while ((entry != &map->header) && (entry->start < end)) {
2201                 vm_map_clip_end(map, entry, end, &count);
2202
2203                 entry->inheritance = new_inheritance;
2204
2205                 vm_map_simplify_entry(map, entry, &count);
2206
2207                 entry = entry->next;
2208         }
2209         vm_map_unlock(map);
2210         vm_map_entry_release(count);
2211         return (KERN_SUCCESS);
2212 }
2213
2214 /*
2215  * Implement the semantics of mlock
2216  */
2217 int
2218 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2219               boolean_t new_pageable)
2220 {
2221         vm_map_entry_t entry;
2222         vm_map_entry_t start_entry;
2223         vm_offset_t end;
2224         int rv = KERN_SUCCESS;
2225         int count;
2226
2227         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2228         vm_map_lock(map);
2229         VM_MAP_RANGE_CHECK(map, start, real_end);
2230         end = real_end;
2231
2232         start_entry = vm_map_clip_range(map, start, end, &count,
2233                                         MAP_CLIP_NO_HOLES);
2234         if (start_entry == NULL) {
2235                 vm_map_unlock(map);
2236                 vm_map_entry_release(count);
2237                 return (KERN_INVALID_ADDRESS);
2238         }
2239
2240         if (new_pageable == 0) {
2241                 entry = start_entry;
2242                 while ((entry != &map->header) && (entry->start < end)) {
2243                         vm_offset_t save_start;
2244                         vm_offset_t save_end;
2245
2246                         /*
2247                          * Already user wired or hard wired (trivial cases)
2248                          */
2249                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2250                                 entry = entry->next;
2251                                 continue;
2252                         }
2253                         if (entry->wired_count != 0) {
2254                                 entry->wired_count++;
2255                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2256                                 entry = entry->next;
2257                                 continue;
2258                         }
2259
2260                         /*
2261                          * A new wiring requires instantiation of appropriate
2262                          * management structures and the faulting in of the
2263                          * page.
2264                          */
2265                         if (entry->maptype == VM_MAPTYPE_NORMAL ||
2266                             entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2267                                 int copyflag = entry->eflags &
2268                                                MAP_ENTRY_NEEDS_COPY;
2269                                 if (copyflag && ((entry->protection &
2270                                                   VM_PROT_WRITE) != 0)) {
2271                                         vm_map_entry_shadow(entry, 0);
2272                                 } else if (entry->object.vm_object == NULL &&
2273                                            !map->system_map) {
2274                                         vm_map_entry_allocate_object(entry);
2275                                 }
2276                         }
2277                         entry->wired_count++;
2278                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2279
2280                         /*
2281                          * Now fault in the area.  Note that vm_fault_wire()
2282                          * may release the map lock temporarily, it will be
2283                          * relocked on return.  The in-transition
2284                          * flag protects the entries. 
2285                          */
2286                         save_start = entry->start;
2287                         save_end = entry->end;
2288                         rv = vm_fault_wire(map, entry, TRUE, 0);
2289                         if (rv) {
2290                                 CLIP_CHECK_BACK(entry, save_start);
2291                                 for (;;) {
2292                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2293                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2294                                         entry->wired_count = 0;
2295                                         if (entry->end == save_end)
2296                                                 break;
2297                                         entry = entry->next;
2298                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2299                                 }
2300                                 end = save_start;       /* unwire the rest */
2301                                 break;
2302                         }
2303                         /*
2304                          * note that even though the entry might have been
2305                          * clipped, the USER_WIRED flag we set prevents
2306                          * duplication so we do not have to do a 
2307                          * clip check.
2308                          */
2309                         entry = entry->next;
2310                 }
2311
2312                 /*
2313                  * If we failed fall through to the unwiring section to
2314                  * unwire what we had wired so far.  'end' has already
2315                  * been adjusted.
2316                  */
2317                 if (rv)
2318                         new_pageable = 1;
2319
2320                 /*
2321                  * start_entry might have been clipped if we unlocked the
2322                  * map and blocked.  No matter how clipped it has gotten
2323                  * there should be a fragment that is on our start boundary.
2324                  */
2325                 CLIP_CHECK_BACK(start_entry, start);
2326         }
2327
2328         /*
2329          * Deal with the unwiring case.
2330          */
2331         if (new_pageable) {
2332                 /*
2333                  * This is the unwiring case.  We must first ensure that the
2334                  * range to be unwired is really wired down.  We know there
2335                  * are no holes.
2336                  */
2337                 entry = start_entry;
2338                 while ((entry != &map->header) && (entry->start < end)) {
2339                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2340                                 rv = KERN_INVALID_ARGUMENT;
2341                                 goto done;
2342                         }
2343                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2344                         entry = entry->next;
2345                 }
2346
2347                 /*
2348                  * Now decrement the wiring count for each region. If a region
2349                  * becomes completely unwired, unwire its physical pages and
2350                  * mappings.
2351                  */
2352                 /*
2353                  * The map entries are processed in a loop, checking to
2354                  * make sure the entry is wired and asserting it has a wired
2355                  * count. However, another loop was inserted more-or-less in
2356                  * the middle of the unwiring path. This loop picks up the
2357                  * "entry" loop variable from the first loop without first
2358                  * setting it to start_entry. Naturally, the secound loop
2359                  * is never entered and the pages backing the entries are
2360                  * never unwired. This can lead to a leak of wired pages.
2361                  */
2362                 entry = start_entry;
2363                 while ((entry != &map->header) && (entry->start < end)) {
2364                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2365                                 ("expected USER_WIRED on entry %p", entry));
2366                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2367                         entry->wired_count--;
2368                         if (entry->wired_count == 0)
2369                                 vm_fault_unwire(map, entry);
2370                         entry = entry->next;
2371                 }
2372         }
2373 done:
2374         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2375                 MAP_CLIP_NO_HOLES);
2376         map->timestamp++;
2377         vm_map_unlock(map);
2378         vm_map_entry_release(count);
2379         return (rv);
2380 }
2381
2382 /*
2383  * Sets the pageability of the specified address range in the target map.
2384  * Regions specified as not pageable require locked-down physical
2385  * memory and physical page maps.
2386  *
2387  * The map must not be locked, but a reference must remain to the map
2388  * throughout the call.
2389  *
2390  * This function may be called via the zalloc path and must properly
2391  * reserve map entries for kernel_map.
2392  *
2393  * No requirements.
2394  */
2395 int
2396 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2397 {
2398         vm_map_entry_t entry;
2399         vm_map_entry_t start_entry;
2400         vm_offset_t end;
2401         int rv = KERN_SUCCESS;
2402         int count;
2403
2404         if (kmflags & KM_KRESERVE)
2405                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2406         else
2407                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2408         vm_map_lock(map);
2409         VM_MAP_RANGE_CHECK(map, start, real_end);
2410         end = real_end;
2411
2412         start_entry = vm_map_clip_range(map, start, end, &count,
2413                                         MAP_CLIP_NO_HOLES);
2414         if (start_entry == NULL) {
2415                 vm_map_unlock(map);
2416                 rv = KERN_INVALID_ADDRESS;
2417                 goto failure;
2418         }
2419         if ((kmflags & KM_PAGEABLE) == 0) {
2420                 /*
2421                  * Wiring.  
2422                  *
2423                  * 1.  Holding the write lock, we create any shadow or zero-fill
2424                  * objects that need to be created. Then we clip each map
2425                  * entry to the region to be wired and increment its wiring
2426                  * count.  We create objects before clipping the map entries
2427                  * to avoid object proliferation.
2428                  *
2429                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2430                  * fault in the pages for any newly wired area (wired_count is
2431                  * 1).
2432                  *
2433                  * Downgrading to a read lock for vm_fault_wire avoids a 
2434                  * possible deadlock with another process that may have faulted
2435                  * on one of the pages to be wired (it would mark the page busy,
2436                  * blocking us, then in turn block on the map lock that we
2437                  * hold).  Because of problems in the recursive lock package,
2438                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2439                  * any actions that require the write lock must be done
2440                  * beforehand.  Because we keep the read lock on the map, the
2441                  * copy-on-write status of the entries we modify here cannot
2442                  * change.
2443                  */
2444                 entry = start_entry;
2445                 while ((entry != &map->header) && (entry->start < end)) {
2446                         /*
2447                          * Trivial case if the entry is already wired
2448                          */
2449                         if (entry->wired_count) {
2450                                 entry->wired_count++;
2451                                 entry = entry->next;
2452                                 continue;
2453                         }
2454
2455                         /*
2456                          * The entry is being newly wired, we have to setup
2457                          * appropriate management structures.  A shadow 
2458                          * object is required for a copy-on-write region,
2459                          * or a normal object for a zero-fill region.  We
2460                          * do not have to do this for entries that point to sub
2461                          * maps because we won't hold the lock on the sub map.
2462                          */
2463                         if (entry->maptype == VM_MAPTYPE_NORMAL ||
2464                             entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2465                                 int copyflag = entry->eflags &
2466                                                MAP_ENTRY_NEEDS_COPY;
2467                                 if (copyflag && ((entry->protection &
2468                                                   VM_PROT_WRITE) != 0)) {
2469                                         vm_map_entry_shadow(entry, 0);
2470                                 } else if (entry->object.vm_object == NULL &&
2471                                            !map->system_map) {
2472                                         vm_map_entry_allocate_object(entry);
2473                                 }
2474                         }
2475
2476                         entry->wired_count++;
2477                         entry = entry->next;
2478                 }
2479
2480                 /*
2481                  * Pass 2.
2482                  */
2483
2484                 /*
2485                  * HACK HACK HACK HACK
2486                  *
2487                  * vm_fault_wire() temporarily unlocks the map to avoid
2488                  * deadlocks.  The in-transition flag from vm_map_clip_range
2489                  * call should protect us from changes while the map is
2490                  * unlocked.  T
2491                  *
2492                  * NOTE: Previously this comment stated that clipping might
2493                  *       still occur while the entry is unlocked, but from
2494                  *       what I can tell it actually cannot.
2495                  *
2496                  *       It is unclear whether the CLIP_CHECK_*() calls
2497                  *       are still needed but we keep them in anyway.
2498                  *
2499                  * HACK HACK HACK HACK
2500                  */
2501
2502                 entry = start_entry;
2503                 while (entry != &map->header && entry->start < end) {
2504                         /*
2505                          * If vm_fault_wire fails for any page we need to undo
2506                          * what has been done.  We decrement the wiring count
2507                          * for those pages which have not yet been wired (now)
2508                          * and unwire those that have (later).
2509                          */
2510                         vm_offset_t save_start = entry->start;
2511                         vm_offset_t save_end = entry->end;
2512
2513                         if (entry->wired_count == 1)
2514                                 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2515                         if (rv) {
2516                                 CLIP_CHECK_BACK(entry, save_start);
2517                                 for (;;) {
2518                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2519                                         entry->wired_count = 0;
2520                                         if (entry->end == save_end)
2521                                                 break;
2522                                         entry = entry->next;
2523                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2524                                 }
2525                                 end = save_start;
2526                                 break;
2527                         }
2528                         CLIP_CHECK_FWD(entry, save_end);
2529                         entry = entry->next;
2530                 }
2531
2532                 /*
2533                  * If a failure occured undo everything by falling through
2534                  * to the unwiring code.  'end' has already been adjusted
2535                  * appropriately.
2536                  */
2537                 if (rv)
2538                         kmflags |= KM_PAGEABLE;
2539
2540                 /*
2541                  * start_entry is still IN_TRANSITION but may have been 
2542                  * clipped since vm_fault_wire() unlocks and relocks the
2543                  * map.  No matter how clipped it has gotten there should
2544                  * be a fragment that is on our start boundary.
2545                  */
2546                 CLIP_CHECK_BACK(start_entry, start);
2547         }
2548
2549         if (kmflags & KM_PAGEABLE) {
2550                 /*
2551                  * This is the unwiring case.  We must first ensure that the
2552                  * range to be unwired is really wired down.  We know there
2553                  * are no holes.
2554                  */
2555                 entry = start_entry;
2556                 while ((entry != &map->header) && (entry->start < end)) {
2557                         if (entry->wired_count == 0) {
2558                                 rv = KERN_INVALID_ARGUMENT;
2559                                 goto done;
2560                         }
2561                         entry = entry->next;
2562                 }
2563
2564                 /*
2565                  * Now decrement the wiring count for each region. If a region
2566                  * becomes completely unwired, unwire its physical pages and
2567                  * mappings.
2568                  */
2569                 entry = start_entry;
2570                 while ((entry != &map->header) && (entry->start < end)) {
2571                         entry->wired_count--;
2572                         if (entry->wired_count == 0)
2573                                 vm_fault_unwire(map, entry);
2574                         entry = entry->next;
2575                 }
2576         }
2577 done:
2578         vm_map_unclip_range(map, start_entry, start, real_end,
2579                             &count, MAP_CLIP_NO_HOLES);
2580         map->timestamp++;
2581         vm_map_unlock(map);
2582 failure:
2583         if (kmflags & KM_KRESERVE)
2584                 vm_map_entry_krelease(count);
2585         else
2586                 vm_map_entry_release(count);
2587         return (rv);
2588 }
2589
2590 /*
2591  * Mark a newly allocated address range as wired but do not fault in
2592  * the pages.  The caller is expected to load the pages into the object.
2593  *
2594  * The map must be locked on entry and will remain locked on return.
2595  * No other requirements.
2596  */
2597 void
2598 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2599                        int *countp)
2600 {
2601         vm_map_entry_t scan;
2602         vm_map_entry_t entry;
2603
2604         entry = vm_map_clip_range(map, addr, addr + size,
2605                                   countp, MAP_CLIP_NO_HOLES);
2606         for (scan = entry;
2607              scan != &map->header && scan->start < addr + size;
2608              scan = scan->next) {
2609             KKASSERT(scan->wired_count == 0);
2610             scan->wired_count = 1;
2611         }
2612         vm_map_unclip_range(map, entry, addr, addr + size,
2613                             countp, MAP_CLIP_NO_HOLES);
2614 }
2615
2616 /*
2617  * Push any dirty cached pages in the address range to their pager.
2618  * If syncio is TRUE, dirty pages are written synchronously.
2619  * If invalidate is TRUE, any cached pages are freed as well.
2620  *
2621  * This routine is called by sys_msync()
2622  *
2623  * Returns an error if any part of the specified range is not mapped.
2624  *
2625  * No requirements.
2626  */
2627 int
2628 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2629              boolean_t syncio, boolean_t invalidate)
2630 {
2631         vm_map_entry_t current;
2632         vm_map_entry_t entry;
2633         vm_size_t size;
2634         vm_object_t object;
2635         vm_object_t tobj;
2636         vm_ooffset_t offset;
2637
2638         vm_map_lock_read(map);
2639         VM_MAP_RANGE_CHECK(map, start, end);
2640         if (!vm_map_lookup_entry(map, start, &entry)) {
2641                 vm_map_unlock_read(map);
2642                 return (KERN_INVALID_ADDRESS);
2643         }
2644         lwkt_gettoken(&map->token);
2645
2646         /*
2647          * Make a first pass to check for holes.
2648          */
2649         for (current = entry; current->start < end; current = current->next) {
2650                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2651                         lwkt_reltoken(&map->token);
2652                         vm_map_unlock_read(map);
2653                         return (KERN_INVALID_ARGUMENT);
2654                 }
2655                 if (end > current->end &&
2656                     (current->next == &map->header ||
2657                         current->end != current->next->start)) {
2658                         lwkt_reltoken(&map->token);
2659                         vm_map_unlock_read(map);
2660                         return (KERN_INVALID_ADDRESS);
2661                 }
2662         }
2663
2664         if (invalidate)
2665                 pmap_remove(vm_map_pmap(map), start, end);
2666
2667         /*
2668          * Make a second pass, cleaning/uncaching pages from the indicated
2669          * objects as we go.
2670          */
2671         for (current = entry; current->start < end; current = current->next) {
2672                 offset = current->offset + (start - current->start);
2673                 size = (end <= current->end ? end : current->end) - start;
2674
2675                 switch(current->maptype) {
2676                 case VM_MAPTYPE_SUBMAP:
2677                 {
2678                         vm_map_t smap;
2679                         vm_map_entry_t tentry;
2680                         vm_size_t tsize;
2681
2682                         smap = current->object.sub_map;
2683                         vm_map_lock_read(smap);
2684                         vm_map_lookup_entry(smap, offset, &tentry);
2685                         tsize = tentry->end - offset;
2686                         if (tsize < size)
2687                                 size = tsize;
2688                         object = tentry->object.vm_object;
2689                         offset = tentry->offset + (offset - tentry->start);
2690                         vm_map_unlock_read(smap);
2691                         break;
2692                 }
2693                 case VM_MAPTYPE_NORMAL:
2694                 case VM_MAPTYPE_VPAGETABLE:
2695                         object = current->object.vm_object;
2696                         break;
2697                 default:
2698                         object = NULL;
2699                         break;
2700                 }
2701
2702                 if (object)
2703                         vm_object_hold(object);
2704
2705                 /*
2706                  * Note that there is absolutely no sense in writing out
2707                  * anonymous objects, so we track down the vnode object
2708                  * to write out.
2709                  * We invalidate (remove) all pages from the address space
2710                  * anyway, for semantic correctness.
2711                  *
2712                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2713                  * may start out with a NULL object.
2714                  */
2715                 while (object && (tobj = object->backing_object) != NULL) {
2716                         vm_object_hold(tobj);
2717                         if (tobj == object->backing_object) {
2718                                 vm_object_lock_swap();
2719                                 offset += object->backing_object_offset;
2720                                 vm_object_drop(object);
2721                                 object = tobj;
2722                                 if (object->size < OFF_TO_IDX(offset + size))
2723                                         size = IDX_TO_OFF(object->size) -
2724                                                offset;
2725                                 break;
2726                         }
2727                         vm_object_drop(tobj);
2728                 }
2729                 if (object && (object->type == OBJT_VNODE) && 
2730                     (current->protection & VM_PROT_WRITE) &&
2731                     (object->flags & OBJ_NOMSYNC) == 0) {
2732                         /*
2733                          * Flush pages if writing is allowed, invalidate them
2734                          * if invalidation requested.  Pages undergoing I/O
2735                          * will be ignored by vm_object_page_remove().
2736                          *
2737                          * We cannot lock the vnode and then wait for paging
2738                          * to complete without deadlocking against vm_fault.
2739                          * Instead we simply call vm_object_page_remove() and
2740                          * allow it to block internally on a page-by-page 
2741                          * basis when it encounters pages undergoing async 
2742                          * I/O.
2743                          */
2744                         int flags;
2745
2746                         /* no chain wait needed for vnode objects */
2747                         vm_object_reference_locked(object);
2748                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2749                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2750                         flags |= invalidate ? OBJPC_INVAL : 0;
2751
2752                         /*
2753                          * When operating on a virtual page table just
2754                          * flush the whole object.  XXX we probably ought
2755                          * to 
2756                          */
2757                         switch(current->maptype) {
2758                         case VM_MAPTYPE_NORMAL:
2759                                 vm_object_page_clean(object,
2760                                     OFF_TO_IDX(offset),
2761                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2762                                     flags);
2763                                 break;
2764                         case VM_MAPTYPE_VPAGETABLE:
2765                                 vm_object_page_clean(object, 0, 0, flags);
2766                                 break;
2767                         }
2768                         vn_unlock(((struct vnode *)object->handle));
2769                         vm_object_deallocate_locked(object);
2770                 }
2771                 if (object && invalidate &&
2772                    ((object->type == OBJT_VNODE) ||
2773                     (object->type == OBJT_DEVICE) ||
2774                     (object->type == OBJT_MGTDEVICE))) {
2775                         int clean_only = 
2776                                 ((object->type == OBJT_DEVICE) ||
2777                                 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2778                         /* no chain wait needed for vnode/device objects */
2779                         vm_object_reference_locked(object);
2780                         switch(current->maptype) {
2781                         case VM_MAPTYPE_NORMAL:
2782                                 vm_object_page_remove(object,
2783                                     OFF_TO_IDX(offset),
2784                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2785                                     clean_only);
2786                                 break;
2787                         case VM_MAPTYPE_VPAGETABLE:
2788                                 vm_object_page_remove(object, 0, 0, clean_only);
2789                                 break;
2790                         }
2791                         vm_object_deallocate_locked(object);
2792                 }
2793                 start += size;
2794                 if (object)
2795                         vm_object_drop(object);
2796         }
2797
2798         lwkt_reltoken(&map->token);
2799         vm_map_unlock_read(map);
2800
2801         return (KERN_SUCCESS);
2802 }
2803
2804 /*
2805  * Make the region specified by this entry pageable.
2806  *
2807  * The vm_map must be exclusively locked.
2808  */
2809 static void 
2810 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2811 {
2812         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2813         entry->wired_count = 0;
2814         vm_fault_unwire(map, entry);
2815 }
2816
2817 /*
2818  * Deallocate the given entry from the target map.
2819  *
2820  * The vm_map must be exclusively locked.
2821  */
2822 static void
2823 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2824 {
2825         vm_map_entry_unlink(map, entry);
2826         map->size -= entry->end - entry->start;
2827
2828         switch(entry->maptype) {
2829         case VM_MAPTYPE_NORMAL:
2830         case VM_MAPTYPE_VPAGETABLE:
2831         case VM_MAPTYPE_SUBMAP:
2832                 vm_object_deallocate(entry->object.vm_object);
2833                 break;
2834         case VM_MAPTYPE_UKSMAP:
2835                 /* XXX TODO */
2836                 break;
2837         default:
2838                 break;
2839         }
2840
2841         vm_map_entry_dispose(map, entry, countp);
2842 }
2843
2844 /*
2845  * Deallocates the given address range from the target map.
2846  *
2847  * The vm_map must be exclusively locked.
2848  */
2849 int
2850 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2851 {
2852         vm_object_t object;
2853         vm_map_entry_t entry;
2854         vm_map_entry_t first_entry;
2855
2856         ASSERT_VM_MAP_LOCKED(map);
2857         lwkt_gettoken(&map->token);
2858 again:
2859         /*
2860          * Find the start of the region, and clip it.  Set entry to point
2861          * at the first record containing the requested address or, if no
2862          * such record exists, the next record with a greater address.  The
2863          * loop will run from this point until a record beyond the termination
2864          * address is encountered.
2865          *
2866          * map->hint must be adjusted to not point to anything we delete,
2867          * so set it to the entry prior to the one being deleted.
2868          *
2869          * GGG see other GGG comment.
2870          */
2871         if (vm_map_lookup_entry(map, start, &first_entry)) {
2872                 entry = first_entry;
2873                 vm_map_clip_start(map, entry, start, countp);
2874                 map->hint = entry->prev;        /* possible problem XXX */
2875         } else {
2876                 map->hint = first_entry;        /* possible problem XXX */
2877                 entry = first_entry->next;
2878         }
2879
2880         /*
2881          * If a hole opens up prior to the current first_free then
2882          * adjust first_free.  As with map->hint, map->first_free
2883          * cannot be left set to anything we might delete.
2884          */
2885         if (entry == &map->header) {
2886                 map->first_free = &map->header;
2887         } else if (map->first_free->start >= start) {
2888                 map->first_free = entry->prev;
2889         }
2890
2891         /*
2892          * Step through all entries in this region
2893          */
2894         while ((entry != &map->header) && (entry->start < end)) {
2895                 vm_map_entry_t next;
2896                 vm_offset_t s, e;
2897                 vm_pindex_t offidxstart, offidxend, count;
2898
2899                 /*
2900                  * If we hit an in-transition entry we have to sleep and
2901                  * retry.  It's easier (and not really slower) to just retry
2902                  * since this case occurs so rarely and the hint is already
2903                  * pointing at the right place.  We have to reset the
2904                  * start offset so as not to accidently delete an entry
2905                  * another process just created in vacated space.
2906                  */
2907                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2908                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2909                         start = entry->start;
2910                         ++mycpu->gd_cnt.v_intrans_coll;
2911                         ++mycpu->gd_cnt.v_intrans_wait;
2912                         vm_map_transition_wait(map);
2913                         goto again;
2914                 }
2915                 vm_map_clip_end(map, entry, end, countp);
2916
2917                 s = entry->start;
2918                 e = entry->end;
2919                 next = entry->next;
2920
2921                 offidxstart = OFF_TO_IDX(entry->offset);
2922                 count = OFF_TO_IDX(e - s);
2923
2924                 switch(entry->maptype) {
2925                 case VM_MAPTYPE_NORMAL:
2926                 case VM_MAPTYPE_VPAGETABLE:
2927                 case VM_MAPTYPE_SUBMAP:
2928                         object = entry->object.vm_object;
2929                         break;
2930                 default:
2931                         object = NULL;
2932                         break;
2933                 }
2934
2935                 /*
2936                  * Unwire before removing addresses from the pmap; otherwise,
2937                  * unwiring will put the entries back in the pmap.
2938                  */
2939                 if (entry->wired_count != 0)
2940                         vm_map_entry_unwire(map, entry);
2941
2942                 offidxend = offidxstart + count;
2943
2944                 if (object == &kernel_object) {
2945                         vm_object_hold(object);
2946                         vm_object_page_remove(object, offidxstart,
2947                                               offidxend, FALSE);
2948                         vm_object_drop(object);
2949                 } else if (object && object->type != OBJT_DEFAULT &&
2950                            object->type != OBJT_SWAP) {
2951                         /*
2952                          * vnode object routines cannot be chain-locked,
2953                          * but since we aren't removing pages from the
2954                          * object here we can use a shared hold.
2955                          */
2956                         vm_object_hold_shared(object);
2957                         pmap_remove(map->pmap, s, e);
2958                         vm_object_drop(object);
2959                 } else if (object) {
2960                         vm_object_hold(object);
2961                         vm_object_chain_acquire(object, 0);
2962                         pmap_remove(map->pmap, s, e);
2963
2964                         if (object != NULL &&
2965                             object->ref_count != 1 &&
2966                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2967                              OBJ_ONEMAPPING &&
2968                             (object->type == OBJT_DEFAULT ||
2969                              object->type == OBJT_SWAP)) {
2970                                 vm_object_collapse(object, NULL);
2971                                 vm_object_page_remove(object, offidxstart,
2972                                                       offidxend, FALSE);
2973                                 if (object->type == OBJT_SWAP) {
2974                                         swap_pager_freespace(object,
2975                                                              offidxstart,
2976                                                              count);
2977                                 }
2978                                 if (offidxend >= object->size &&
2979                                     offidxstart < object->size) {
2980                                         object->size = offidxstart;
2981                                 }
2982                         }
2983                         vm_object_chain_release(object);
2984                         vm_object_drop(object);
2985                 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
2986                         pmap_remove(map->pmap, s, e);
2987                 }
2988
2989                 /*
2990                  * Delete the entry (which may delete the object) only after
2991                  * removing all pmap entries pointing to its pages.
2992                  * (Otherwise, its page frames may be reallocated, and any
2993                  * modify bits will be set in the wrong object!)
2994                  */
2995                 vm_map_entry_delete(map, entry, countp);
2996                 entry = next;
2997         }
2998         lwkt_reltoken(&map->token);
2999         return (KERN_SUCCESS);
3000 }
3001
3002 /*
3003  * Remove the given address range from the target map.
3004  * This is the exported form of vm_map_delete.
3005  *
3006  * No requirements.
3007  */
3008 int
3009 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3010 {
3011         int result;
3012         int count;
3013
3014         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3015         vm_map_lock(map);
3016         VM_MAP_RANGE_CHECK(map, start, end);
3017         result = vm_map_delete(map, start, end, &count);
3018         vm_map_unlock(map);
3019         vm_map_entry_release(count);
3020
3021         return (result);
3022 }
3023
3024 /*
3025  * Assert that the target map allows the specified privilege on the
3026  * entire address region given.  The entire region must be allocated.
3027  *
3028  * The caller must specify whether the vm_map is already locked or not.
3029  */
3030 boolean_t
3031 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3032                         vm_prot_t protection, boolean_t have_lock)
3033 {
3034         vm_map_entry_t entry;
3035         vm_map_entry_t tmp_entry;
3036         boolean_t result;
3037
3038         if (have_lock == FALSE)
3039                 vm_map_lock_read(map);
3040
3041         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3042                 if (have_lock == FALSE)
3043                         vm_map_unlock_read(map);
3044                 return (FALSE);
3045         }
3046         entry = tmp_entry;
3047
3048         result = TRUE;
3049         while (start < end) {
3050                 if (entry == &map->header) {
3051                         result = FALSE;
3052                         break;
3053                 }
3054                 /*
3055                  * No holes allowed!
3056                  */
3057
3058                 if (start < entry->start) {
3059                         result = FALSE;
3060                         break;
3061                 }
3062                 /*
3063                  * Check protection associated with entry.
3064                  */
3065
3066                 if ((entry->protection & protection) != protection) {
3067                         result = FALSE;
3068                         break;
3069                 }
3070                 /* go to next entry */
3071
3072                 start = entry->end;
3073                 entry = entry->next;
3074         }
3075         if (have_lock == FALSE)
3076                 vm_map_unlock_read(map);
3077         return (result);
3078 }
3079
3080 /*
3081  * If appropriate this function shadows the original object with a new object
3082  * and moves the VM pages from the original object to the new object.
3083  * The original object will also be collapsed, if possible.
3084  *
3085  * We can only do this for normal memory objects with a single mapping, and
3086  * it only makes sense to do it if there are 2 or more refs on the original
3087  * object.  i.e. typically a memory object that has been extended into
3088  * multiple vm_map_entry's with non-overlapping ranges.
3089  *
3090  * This makes it easier to remove unused pages and keeps object inheritance
3091  * from being a negative impact on memory usage.
3092  *
3093  * On return the (possibly new) entry->object.vm_object will have an
3094  * additional ref on it for the caller to dispose of (usually by cloning
3095  * the vm_map_entry).  The additional ref had to be done in this routine
3096  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3097  * cleared.
3098  *
3099  * The vm_map must be locked and its token held.
3100  */
3101 static void
3102 vm_map_split(vm_map_entry_t entry)
3103 {
3104         /* OPTIMIZED */
3105         vm_object_t oobject, nobject, bobject;
3106         vm_offset_t s, e;
3107         vm_page_t m;
3108         vm_pindex_t offidxstart, offidxend, idx;
3109         vm_size_t size;
3110         vm_ooffset_t offset;
3111         int useshadowlist;
3112
3113         /*
3114          * Optimize away object locks for vnode objects.  Important exit/exec
3115          * critical path.
3116          *
3117          * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3118          * anyway.
3119          */
3120         oobject = entry->object.vm_object;
3121         if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3122                 vm_object_reference_quick(oobject);
3123                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3124                 return;
3125         }
3126
3127         /*
3128          * Setup.  Chain lock the original object throughout the entire
3129          * routine to prevent new page faults from occuring.
3130          *
3131          * XXX can madvise WILLNEED interfere with us too?
3132          */
3133         vm_object_hold(oobject);
3134         vm_object_chain_acquire(oobject, 0);
3135
3136         /*
3137          * Original object cannot be split?  Might have also changed state.
3138          */
3139         if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3140                                         oobject->type != OBJT_SWAP)) {
3141                 vm_object_chain_release(oobject);
3142                 vm_object_reference_locked(oobject);
3143                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3144                 vm_object_drop(oobject);
3145                 return;
3146         }
3147
3148         /*
3149          * Collapse original object with its backing store as an
3150          * optimization to reduce chain lengths when possible.
3151          *
3152          * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3153          * for oobject, so there's no point collapsing it.
3154          *
3155          * Then re-check whether the object can be split.
3156          */
3157         vm_object_collapse(oobject, NULL);
3158
3159         if (oobject->ref_count <= 1 ||
3160             (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3161             (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3162                 vm_object_chain_release(oobject);
3163                 vm_object_reference_locked(oobject);
3164                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3165                 vm_object_drop(oobject);
3166                 return;
3167         }
3168
3169         /*
3170          * Acquire the chain lock on the backing object.
3171          *
3172          * Give bobject an additional ref count for when it will be shadowed
3173          * by nobject.
3174          */
3175         useshadowlist = 0;
3176         if ((bobject = oobject->backing_object) != NULL) {
3177                 if (bobject->type != OBJT_VNODE) {
3178                         useshadowlist = 1;
3179                         vm_object_hold(bobject);
3180                         vm_object_chain_wait(bobject, 0);
3181                         /* ref for shadowing below */
3182                         vm_object_reference_locked(bobject);
3183                         vm_object_chain_acquire(bobject, 0);
3184                         KKASSERT(bobject->backing_object == bobject);
3185                         KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3186                 } else {
3187                         /*
3188                          * vnodes are not placed on the shadow list but
3189                          * they still get another ref for the backing_object
3190                          * reference.
3191                          */
3192                         vm_object_reference_quick(bobject);
3193                 }
3194         }
3195
3196         /*
3197          * Calculate the object page range and allocate the new object.
3198          */
3199         offset = entry->offset;
3200         s = entry->start;
3201         e = entry->end;
3202
3203         offidxstart = OFF_TO_IDX(offset);
3204         offidxend = offidxstart + OFF_TO_IDX(e - s);
3205         size = offidxend - offidxstart;
3206
3207         switch(oobject->type) {
3208         case OBJT_DEFAULT:
3209                 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3210                                               VM_PROT_ALL, 0);
3211                 break;
3212         case OBJT_SWAP:
3213                 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3214                                            VM_PROT_ALL, 0);
3215                 break;
3216         default:
3217                 /* not reached */
3218                 nobject = NULL;
3219                 KKASSERT(0);
3220         }
3221
3222         if (nobject == NULL) {
3223                 if (bobject) {
3224                         if (useshadowlist) {
3225                                 vm_object_chain_release(bobject);
3226                                 vm_object_deallocate(bobject);
3227                                 vm_object_drop(bobject);
3228                         } else {
3229                                 vm_object_deallocate(bobject);
3230                         }
3231                 }
3232                 vm_object_chain_release(oobject);
3233                 vm_object_reference_locked(oobject);
3234                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3235                 vm_object_drop(oobject);
3236                 return;
3237         }
3238
3239         /*
3240          * The new object will replace entry->object.vm_object so it needs
3241          * a second reference (the caller expects an additional ref).
3242          */
3243         vm_object_hold(nobject);
3244         vm_object_reference_locked(nobject);
3245         vm_object_chain_acquire(nobject, 0);
3246
3247         /*
3248          * nobject shadows bobject (oobject already shadows bobject).
3249          *
3250          * Adding an object to bobject's shadow list requires refing bobject
3251          * which we did above in the useshadowlist case.
3252          */
3253         if (bobject) {
3254                 nobject->backing_object_offset =
3255                     oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3256                 nobject->backing_object = bobject;
3257                 if (useshadowlist) {
3258                         bobject->shadow_count++;
3259                         atomic_add_int(&bobject->generation, 1);
3260                         LIST_INSERT_HEAD(&bobject->shadow_head,
3261                                          nobject, shadow_list);
3262                         vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3263                         vm_object_chain_release(bobject);
3264                         vm_object_drop(bobject);
3265                         vm_object_set_flag(nobject, OBJ_ONSHADOW);
3266                 }
3267         }
3268
3269         /*
3270          * Move the VM pages from oobject to nobject
3271          */
3272         for (idx = 0; idx < size; idx++) {
3273                 vm_page_t m;
3274
3275                 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3276                                              TRUE, "vmpg");
3277                 if (m == NULL)
3278                         continue;
3279
3280                 /*
3281                  * We must wait for pending I/O to complete before we can
3282                  * rename the page.
3283                  *
3284                  * We do not have to VM_PROT_NONE the page as mappings should
3285                  * not be changed by this operation.
3286                  *
3287                  * NOTE: The act of renaming a page updates chaingen for both
3288                  *       objects.
3289                  */
3290                 vm_page_rename(m, nobject, idx);
3291                 /* page automatically made dirty by rename and cache handled */
3292                 /* page remains busy */
3293         }
3294
3295         if (oobject->type == OBJT_SWAP) {
3296                 vm_object_pip_add(oobject, 1);
3297                 /*
3298                  * copy oobject pages into nobject and destroy unneeded
3299                  * pages in shadow object.
3300                  */
3301                 swap_pager_copy(oobject, nobject, offidxstart, 0);
3302                 vm_object_pip_wakeup(oobject);
3303         }
3304
3305         /*
3306          * Wakeup the pages we played with.  No spl protection is needed
3307          * for a simple wakeup.
3308          */
3309         for (idx = 0; idx < size; idx++) {
3310                 m = vm_page_lookup(nobject, idx);
3311                 if (m) {
3312                         KKASSERT(m->flags & PG_BUSY);
3313                         vm_page_wakeup(m);
3314                 }
3315         }
3316         entry->object.vm_object = nobject;
3317         entry->offset = 0LL;
3318
3319         /*
3320          * Cleanup
3321          *
3322          * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3323          *       related pages were moved and are no longer applicable to the
3324          *       original object.
3325          *
3326          * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3327          *       replaced by nobject).
3328          */
3329         vm_object_chain_release(nobject);
3330         vm_object_drop(nobject);
3331         if (bobject && useshadowlist) {
3332                 vm_object_chain_release(bobject);
3333                 vm_object_drop(bobject);
3334         }
3335         vm_object_chain_release(oobject);
3336         /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3337         vm_object_deallocate_locked(oobject);
3338         vm_object_drop(oobject);
3339 }
3340
3341 /*
3342  * Copies the contents of the source entry to the destination
3343  * entry.  The entries *must* be aligned properly.
3344  *
3345  * The vm_maps must be exclusively locked.
3346  * The vm_map's token must be held.
3347  *
3348  * Because the maps are locked no faults can be in progress during the
3349  * operation.
3350  */
3351 static void
3352 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3353                   vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3354 {
3355         vm_object_t src_object;
3356
3357         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3358             dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3359                 return;
3360         if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3361             src_entry->maptype == VM_MAPTYPE_UKSMAP)
3362                 return;
3363
3364         if (src_entry->wired_count == 0) {
3365                 /*
3366                  * If the source entry is marked needs_copy, it is already
3367                  * write-protected.
3368                  */
3369                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3370                         pmap_protect(src_map->pmap,
3371                             src_entry->start,
3372                             src_entry->end,
3373                             src_entry->protection & ~VM_PROT_WRITE);
3374                 }
3375
3376                 /*
3377                  * Make a copy of the object.
3378                  *
3379                  * The object must be locked prior to checking the object type
3380                  * and for the call to vm_object_collapse() and vm_map_split().
3381                  * We cannot use *_hold() here because the split code will
3382                  * probably try to destroy the object.  The lock is a pool
3383                  * token and doesn't care.
3384                  *
3385                  * We must bump src_map->timestamp when setting
3386                  * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3387                  * to retry, otherwise the concurrent fault might improperly
3388                  * install a RW pte when its supposed to be a RO(COW) pte.
3389                  * This race can occur because a vnode-backed fault may have
3390                  * to temporarily release the map lock.
3391                  */
3392                 if (src_entry->object.vm_object != NULL) {
3393                         vm_map_split(src_entry);
3394                         src_object = src_entry->object.vm_object;
3395                         dst_entry->object.vm_object = src_object;
3396                         src_entry->eflags |= (MAP_ENTRY_COW |
3397                                               MAP_ENTRY_NEEDS_COPY);
3398                         dst_entry->eflags |= (MAP_ENTRY_COW |
3399                                               MAP_ENTRY_NEEDS_COPY);
3400                         dst_entry->offset = src_entry->offset;
3401                         ++src_map->timestamp;
3402                 } else {
3403                         dst_entry->object.vm_object = NULL;
3404                         dst_entry->offset = 0;
3405                 }
3406
3407                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3408                     dst_entry->end - dst_entry->start, src_entry->start);
3409         } else {
3410                 /*
3411                  * Of course, wired down pages can't be set copy-on-write.
3412                  * Cause wired pages to be copied into the new map by
3413                  * simulating faults (the new pages are pageable)
3414                  */
3415                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3416         }
3417 }
3418
3419 /*
3420  * vmspace_fork:
3421  * Create a new process vmspace structure and vm_map
3422  * based on those of an existing process.  The new map
3423  * is based on the old map, according to the inheritance
3424  * values on the regions in that map.
3425  *
3426  * The source map must not be locked.
3427  * No requirements.
3428  */
3429 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3430                           vm_map_entry_t old_entry, int *countp);
3431 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3432                           vm_map_entry_t old_entry, int *countp);
3433
3434 struct vmspace *
3435 vmspace_fork(struct vmspace *vm1)
3436 {
3437         struct vmspace *vm2;
3438         vm_map_t old_map = &vm1->vm_map;
3439         vm_map_t new_map;
3440         vm_map_entry_t old_entry;
3441         int count;
3442
3443         lwkt_gettoken(&vm1->vm_map.token);
3444         vm_map_lock(old_map);
3445
3446         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3447         lwkt_gettoken(&vm2->vm_map.token);
3448         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3449             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3450         new_map = &vm2->vm_map; /* XXX */
3451         new_map->timestamp = 1;
3452
3453         vm_map_lock(new_map);
3454
3455         count = 0;
3456         old_entry = old_map->header.next;
3457         while (old_entry != &old_map->header) {
3458                 ++count;
3459                 old_entry = old_entry->next;
3460         }
3461
3462         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3463
3464         old_entry = old_map->header.next;
3465         while (old_entry != &old_map->header) {
3466                 switch(old_entry->maptype) {
3467                 case VM_MAPTYPE_SUBMAP:
3468                         panic("vm_map_fork: encountered a submap");
3469                         break;
3470                 case VM_MAPTYPE_UKSMAP:
3471                         vmspace_fork_uksmap_entry(old_map, new_map,
3472                                                   old_entry, &count);
3473                         break;
3474                 case VM_MAPTYPE_NORMAL:
3475                 case VM_MAPTYPE_VPAGETABLE:
3476                         vmspace_fork_normal_entry(old_map, new_map,
3477                                                   old_entry, &count);
3478                         break;
3479                 }
3480                 old_entry = old_entry->next;
3481         }
3482
3483         new_map->size = old_map->size;
3484         vm_map_unlock(old_map);
3485         vm_map_unlock(new_map);
3486         vm_map_entry_release(count);
3487
3488         lwkt_reltoken(&vm2->vm_map.token);
3489         lwkt_reltoken(&vm1->vm_map.token);
3490
3491         return (vm2);
3492 }
3493
3494 static
3495 void
3496 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3497                           vm_map_entry_t old_entry, int *countp)
3498 {
3499         vm_map_entry_t new_entry;
3500         vm_object_t object;
3501
3502         switch (old_entry->inheritance) {
3503         case VM_INHERIT_NONE:
3504                 break;
3505         case VM_INHERIT_SHARE:
3506                 /*
3507                  * Clone the entry, creating the shared object if
3508                  * necessary.
3509                  */
3510                 if (old_entry->object.vm_object == NULL)
3511                         vm_map_entry_allocate_object(old_entry);
3512
3513                 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3514                         /*
3515                          * Shadow a map_entry which needs a copy,
3516                          * replacing its object with a new object
3517                          * that points to the old one.  Ask the
3518                          * shadow code to automatically add an
3519                          * additional ref.  We can't do it afterwords
3520                          * because we might race a collapse.  The call
3521                          * to vm_map_entry_shadow() will also clear
3522                          * OBJ_ONEMAPPING.
3523                          */
3524                         vm_map_entry_shadow(old_entry, 1);
3525                 } else if (old_entry->object.vm_object) {
3526                         /*
3527                          * We will make a shared copy of the object,
3528                          * and must clear OBJ_ONEMAPPING.
3529                          *
3530                          * Optimize vnode objects.  OBJ_ONEMAPPING
3531                          * is non-applicable but clear it anyway,
3532                          * and its terminal so we don'th ave to deal
3533                          * with chains.  Reduces SMP conflicts.
3534                          *
3535                          * XXX assert that object.vm_object != NULL
3536                          *     since we allocate it above.
3537                          */
3538                         object = old_entry->object.vm_object;
3539                         if (object->type == OBJT_VNODE) {
3540                                 vm_object_reference_quick(object);
3541                                 vm_object_clear_flag(object,
3542                                                      OBJ_ONEMAPPING);
3543                         } else {
3544                                 vm_object_hold(object);
3545                                 vm_object_chain_wait(object, 0);
3546                                 vm_object_reference_locked(object);
3547                                 vm_object_clear_flag(object,
3548                                                      OBJ_ONEMAPPING);
3549                                 vm_object_drop(object);
3550                         }
3551                 }
3552
3553                 /*
3554                  * Clone the entry.  We've already bumped the ref on
3555                  * any vm_object.
3556                  */
3557                 new_entry = vm_map_entry_create(new_map, countp);
3558                 *new_entry = *old_entry;
3559                 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3560                 new_entry->wired_count = 0;
3561
3562                 /*
3563                  * Insert the entry into the new map -- we know we're
3564                  * inserting at the end of the new map.
3565                  */
3566
3567                 vm_map_entry_link(new_map, new_map->header.prev,
3568                                   new_entry);
3569
3570                 /*
3571                  * Update the physical map
3572                  */
3573                 pmap_copy(new_map->pmap, old_map->pmap,
3574                           new_entry->start,
3575                           (old_entry->end - old_entry->start),
3576                           old_entry->start);
3577                 break;
3578         case VM_INHERIT_COPY:
3579                 /*
3580                  * Clone the entry and link into the map.
3581                  */
3582                 new_entry = vm_map_entry_create(new_map, countp);
3583                 *new_entry = *old_entry;
3584                 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3585                 new_entry->wired_count = 0;
3586                 new_entry->object.vm_object = NULL;
3587                 vm_map_entry_link(new_map, new_map->header.prev,
3588                                   new_entry);
3589                 vm_map_copy_entry(old_map, new_map, old_entry,
3590                                   new_entry);
3591                 break;
3592         }
3593 }
3594
3595 /*
3596  * When forking user-kernel shared maps, the map might change in the
3597  * child so do not try to copy the underlying pmap entries.
3598  */
3599 static
3600 void
3601 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3602                           vm_map_entry_t old_entry, int *countp)
3603 {
3604         vm_map_entry_t new_entry;
3605
3606         new_entry = vm_map_entry_create(new_map, countp);
3607         *new_entry = *old_entry;
3608         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3609         new_entry->wired_count = 0;
3610         vm_map_entry_link(new_map, new_map->header.prev,
3611                           new_entry);
3612 }
3613
3614 /*
3615  * Create an auto-grow stack entry
3616  *
3617  * No requirements.
3618  */
3619 int
3620 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3621               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3622 {
3623         vm_map_entry_t  prev_entry;
3624         vm_map_entry_t  new_stack_entry;
3625         vm_size_t       init_ssize;
3626         int             rv;
3627         int             count;
3628         vm_offset_t     tmpaddr;
3629
3630         cow |= MAP_IS_STACK;
3631
3632         if (max_ssize < sgrowsiz)
3633                 init_ssize = max_ssize;
3634         else
3635                 init_ssize = sgrowsiz;
3636
3637         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3638         vm_map_lock(map);
3639
3640         /*
3641          * Find space for the mapping
3642          */
3643         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3644                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3645                                      flags, &tmpaddr)) {
3646                         vm_map_unlock(map);
3647                         vm_map_entry_release(count);
3648                         return (KERN_NO_SPACE);
3649                 }
3650                 addrbos = tmpaddr;
3651         }
3652
3653         /* If addr is already mapped, no go */
3654         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3655                 vm_map_unlock(map);
3656                 vm_map_entry_release(count);
3657                 return (KERN_NO_SPACE);
3658         }
3659
3660 #if 0
3661         /* XXX already handled by kern_mmap() */
3662         /* If we would blow our VMEM resource limit, no go */
3663         if (map->size + init_ssize >
3664             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3665                 vm_map_unlock(map);
3666                 vm_map_entry_release(count);
3667                 return (KERN_NO_SPACE);
3668         }
3669 #endif
3670
3671         /*
3672          * If we can't accomodate max_ssize in the current mapping,
3673          * no go.  However, we need to be aware that subsequent user
3674          * mappings might map into the space we have reserved for
3675          * stack, and currently this space is not protected.  
3676          * 
3677          * Hopefully we will at least detect this condition 
3678          * when we try to grow the stack.
3679          */
3680         if ((prev_entry->next != &map->header) &&
3681             (prev_entry->next->start < addrbos + max_ssize)) {
3682                 vm_map_unlock(map);
3683                 vm_map_entry_release(count);
3684                 return (KERN_NO_SPACE);
3685         }
3686
3687         /*
3688          * We initially map a stack of only init_ssize.  We will
3689          * grow as needed later.  Since this is to be a grow 
3690          * down stack, we map at the top of the range.
3691          *
3692          * Note: we would normally expect prot and max to be
3693          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3694          * eliminate these as input parameters, and just
3695          * pass these values here in the insert call.
3696          */
3697         rv = vm_map_insert(map, &count, NULL, NULL,
3698                            0, addrbos + max_ssize - init_ssize,
3699                            addrbos + max_ssize,
3700                            VM_MAPTYPE_NORMAL,
3701                            VM_SUBSYS_STACK, prot, max, cow);
3702
3703         /* Now set the avail_ssize amount */
3704         if (rv == KERN_SUCCESS) {
3705                 if (prev_entry != &map->header)
3706                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3707                 new_stack_entry = prev_entry->next;
3708                 if (new_stack_entry->end   != addrbos + max_ssize ||
3709                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3710                         panic ("Bad entry start/end for new stack entry");
3711                 else 
3712                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3713         }
3714
3715         vm_map_unlock(map);
3716         vm_map_entry_release(count);
3717         return (rv);
3718 }
3719
3720 /*
3721  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3722  * desired address is already mapped, or if we successfully grow
3723  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3724  * stack range (this is strange, but preserves compatibility with
3725  * the grow function in vm_machdep.c).
3726  *
3727  * No requirements.
3728  */
3729 int
3730 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3731 {
3732         vm_map_entry_t prev_entry;
3733         vm_map_entry_t stack_entry;
3734         vm_map_entry_t new_stack_entry;
3735         struct vmspace *vm;
3736         struct lwp *lp;
3737         struct proc *p;
3738         vm_offset_t    end;
3739         int grow_amount;
3740         int rv = KERN_SUCCESS;
3741         int is_procstack;
3742         int use_read_lock = 1;
3743         int count;
3744
3745         /*
3746          * Find the vm
3747          */
3748         lp = curthread->td_lwp;
3749         p = curthread->td_proc;
3750         KKASSERT(lp != NULL);
3751         vm = lp->lwp_vmspace;
3752         KKASSERT(map == &vm->vm_map);
3753
3754         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3755 Retry:
3756         if (use_read_lock)
3757                 vm_map_lock_read(map);
3758         else
3759                 vm_map_lock(map);
3760
3761         /* If addr is already in the entry range, no need to grow.*/
3762         if (vm_map_lookup_entry(map, addr, &prev_entry))
3763                 goto done;
3764
3765         if ((stack_entry = prev_entry->next) == &map->header)
3766                 goto done;
3767         if (prev_entry == &map->header) 
3768                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3769         else
3770                 end = prev_entry->end;
3771
3772         /*
3773          * This next test mimics the old grow function in vm_machdep.c.
3774          * It really doesn't quite make sense, but we do it anyway
3775          * for compatibility.
3776          *
3777          * If not growable stack, return success.  This signals the
3778          * caller to proceed as he would normally with normal vm.
3779          */
3780         if (stack_entry->aux.avail_ssize < 1 ||
3781             addr >= stack_entry->start ||
3782             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3783                 goto done;
3784         } 
3785         
3786         /* Find the minimum grow amount */
3787         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3788         if (grow_amount > stack_entry->aux.avail_ssize) {
3789                 rv = KERN_NO_SPACE;
3790                 goto done;
3791         }
3792
3793         /*
3794          * If there is no longer enough space between the entries
3795          * nogo, and adjust the available space.  Note: this 
3796          * should only happen if the user has mapped into the
3797          * stack area after the stack was created, and is
3798          * probably an error.
3799          *
3800          * This also effectively destroys any guard page the user
3801          * might have intended by limiting the stack size.
3802          */
3803         if (grow_amount > stack_entry->start - end) {
3804                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3805                         /* lost lock */
3806                         use_read_lock = 0;
3807                         goto Retry;
3808                 }
3809                 use_read_lock = 0;
3810                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3811                 rv = KERN_NO_SPACE;
3812                 goto done;
3813         }
3814
3815         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3816
3817         /* If this is the main process stack, see if we're over the 
3818          * stack limit.
3819          */
3820         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3821                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3822                 rv = KERN_NO_SPACE;
3823                 goto done;
3824         }
3825
3826         /* Round up the grow amount modulo SGROWSIZ */
3827         grow_amount = roundup (grow_amount, sgrowsiz);
3828         if (grow_amount > stack_entry->aux.avail_ssize) {
3829                 grow_amount = stack_entry->aux.avail_ssize;
3830         }
3831         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3832                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3833                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3834                               ctob(vm->vm_ssize);
3835         }
3836
3837         /* If we would blow our VMEM resource limit, no go */
3838         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3839                 rv = KERN_NO_SPACE;
3840                 goto done;
3841         }
3842
3843         if (use_read_lock && vm_map_lock_upgrade(map)) {
3844                 /* lost lock */
3845                 use_read_lock = 0;
3846                 goto Retry;
3847         }
3848         use_read_lock = 0;
3849
3850         /* Get the preliminary new entry start value */
3851         addr = stack_entry->start - grow_amount;
3852
3853         /* If this puts us into the previous entry, cut back our growth
3854          * to the available space.  Also, see the note above.
3855          */
3856         if (addr < end) {
3857                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3858                 addr = end;
3859         }
3860
3861         rv = vm_map_insert(map, &count, NULL, NULL,
3862                            0, addr, stack_entry->start,
3863                            VM_MAPTYPE_NORMAL,
3864                            VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
3865
3866         /* Adjust the available stack space by the amount we grew. */
3867         if (rv == KERN_SUCCESS) {
3868                 if (prev_entry != &map->header)
3869                         vm_map_clip_end(map, prev_entry, addr, &count);
3870                 new_stack_entry = prev_entry->next;
3871                 if (new_stack_entry->end   != stack_entry->start  ||
3872                     new_stack_entry->start != addr)
3873                         panic ("Bad stack grow start/end in new stack entry");
3874                 else {
3875                         new_stack_entry->aux.avail_ssize =
3876                                 stack_entry->aux.avail_ssize -
3877                                 (new_stack_entry->end - new_stack_entry->start);
3878                         if (is_procstack)
3879                                 vm->vm_ssize += btoc(new_stack_entry->end -
3880                                                      new_stack_entry->start);
3881                 }
3882
3883                 if (map->flags & MAP_WIREFUTURE)
3884                         vm_map_unwire(map, new_stack_entry->start,
3885                                       new_stack_entry->end, FALSE);
3886         }
3887
3888 done:
3889         if (use_read_lock)
3890                 vm_map_unlock_read(map);
3891         else
3892                 vm_map_unlock(map);
3893         vm_map_entry_release(count);
3894         return (rv);
3895 }
3896
3897 /*
3898  * Unshare the specified VM space for exec.  If other processes are
3899  * mapped to it, then create a new one.  The new vmspace is null.
3900  *
3901  * No requirements.
3902  */
3903 void
3904 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3905 {
3906         struct vmspace *oldvmspace = p->p_vmspace;
3907         struct vmspace *newvmspace;
3908         vm_map_t map = &p->p_vmspace->vm_map;
3909
3910         /*
3911          * If we are execing a resident vmspace we fork it, otherwise
3912          * we create a new vmspace.  Note that exitingcnt is not
3913          * copied to the new vmspace.
3914          */
3915         lwkt_gettoken(&oldvmspace->vm_map.token);
3916         if (vmcopy)  {
3917                 newvmspace = vmspace_fork(vmcopy);
3918                 lwkt_gettoken(&newvmspace->vm_map.token);
3919         } else {
3920                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3921                 lwkt_gettoken(&newvmspace->vm_map.token);
3922                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3923                       (caddr_t)&oldvmspace->vm_endcopy -
3924                        (caddr_t)&oldvmspace->vm_startcopy);
3925         }
3926
3927         /*
3928          * Finish initializing the vmspace before assigning it
3929          * to the process.  The vmspace will become the current vmspace
3930          * if p == curproc.
3931          */
3932         pmap_pinit2(vmspace_pmap(newvmspace));
3933         pmap_replacevm(p, newvmspace, 0);
3934         lwkt_reltoken(&newvmspace->vm_map.token);
3935         lwkt_reltoken(&oldvmspace->vm_map.token);
3936         vmspace_rel(oldvmspace);
3937 }
3938
3939 /*
3940  * Unshare the specified VM space for forcing COW.  This
3941  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3942  */
3943 void
3944 vmspace_unshare(struct proc *p) 
3945 {
3946         struct vmspace *oldvmspace = p->p_vmspace;
3947         struct vmspace *newvmspace;
3948
3949         lwkt_gettoken(&oldvmspace->vm_map.token);
3950         if (vmspace_getrefs(oldvmspace) == 1) {
3951                 lwkt_reltoken(&oldvmspace->vm_map.token);
3952                 return;
3953         }
3954         newvmspace = vmspace_fork(oldvmspace);
3955         lwkt_gettoken(&newvmspace->vm_map.token);
3956         pmap_pinit2(vmspace_pmap(newvmspace));
3957         pmap_replacevm(p, newvmspace, 0);
3958         lwkt_reltoken(&newvmspace->vm_map.token);
3959         lwkt_reltoken(&oldvmspace->vm_map.token);
3960         vmspace_rel(oldvmspace);
3961 }
3962
3963 /*
3964  * vm_map_hint: return the beginning of the best area suitable for
3965  * creating a new mapping with "prot" protection.
3966  *
3967  * No requirements.
3968  */
3969 vm_offset_t
3970 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3971 {
3972         struct vmspace *vms = p->p_vmspace;
3973
3974         if (!randomize_mmap || addr != 0) {
3975                 /*
3976                  * Set a reasonable start point for the hint if it was
3977                  * not specified or if it falls within the heap space.
3978                  * Hinted mmap()s do not allocate out of the heap space.
3979                  */
3980                 if (addr == 0 ||
3981                     (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3982                      addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3983                         addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3984                 }
3985
3986                 return addr;
3987         }
3988         addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3989         addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3990
3991         return (round_page(addr));
3992 }
3993
3994 /*
3995  * Finds the VM object, offset, and protection for a given virtual address
3996  * in the specified map, assuming a page fault of the type specified.
3997  *
3998  * Leaves the map in question locked for read; return values are guaranteed
3999  * until a vm_map_lookup_done call is performed.  Note that the map argument
4000  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4001  *
4002  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4003  * that fast.
4004  *
4005  * If a lookup is requested with "write protection" specified, the map may
4006  * be changed to perform virtual copying operations, although the data
4007  * referenced will remain the same.
4008  *
4009  * No requirements.
4010  */
4011 int
4012 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4013               vm_offset_t vaddr,
4014               vm_prot_t fault_typea,
4015               vm_map_entry_t *out_entry,        /* OUT */
4016               vm_object_t *object,              /* OUT */
4017               vm_pindex_t *pindex,              /* OUT */
4018               vm_prot_t *out_prot,              /* OUT */
4019               boolean_t *wired)                 /* OUT */
4020 {
4021         vm_map_entry_t entry;
4022         vm_map_t map = *var_map;
4023         vm_prot_t prot;
4024         vm_prot_t fault_type = fault_typea;
4025         int use_read_lock = 1;
4026         int rv = KERN_SUCCESS;
4027
4028 RetryLookup:
4029         if (use_read_lock)
4030                 vm_map_lock_read(map);
4031         else
4032                 vm_map_lock(map);
4033
4034         /*
4035          * If the map has an interesting hint, try it before calling full
4036          * blown lookup routine.
4037          */
4038         entry = map->hint;
4039         cpu_ccfence();
4040         *out_entry = entry;
4041         *object = NULL;
4042
4043         if ((entry == &map->header) ||
4044             (vaddr < entry->start) || (vaddr >= entry->end)) {
4045                 vm_map_entry_t tmp_entry;
4046
4047                 /*
4048                  * Entry was either not a valid hint, or the vaddr was not
4049                  * contained in the entry, so do a full lookup.
4050                  */
4051                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4052                         rv = KERN_INVALID_ADDRESS;
4053                         goto done;
4054                 }
4055
4056                 entry = tmp_entry;
4057                 *out_entry = entry;
4058         }
4059         
4060         /*
4061          * Handle submaps.
4062          */
4063         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4064                 vm_map_t old_map = map;
4065
4066                 *var_map = map = entry->object.sub_map;
4067                 if (use_read_lock)
4068                         vm_map_unlock_read(old_map);
4069                 else
4070                         vm_map_unlock(old_map);
4071                 use_read_lock = 1;
4072                 goto RetryLookup;
4073         }
4074
4075         /*
4076          * Check whether this task is allowed to have this page.
4077          * Note the special case for MAP_ENTRY_COW pages with an override.
4078          * This is to implement a forced COW for debuggers.
4079          */
4080         if (fault_type & VM_PROT_OVERRIDE_WRITE)
4081                 prot = entry->max_protection;
4082         else
4083                 prot = entry->protection;
4084
4085         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4086         if ((fault_type & prot) != fault_type) {
4087                 rv = KERN_PROTECTION_FAILURE;
4088                 goto done;
4089         }
4090
4091         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4092             (entry->eflags & MAP_ENTRY_COW) &&
4093             (fault_type & VM_PROT_WRITE) &&
4094             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4095                 rv = KERN_PROTECTION_FAILURE;
4096                 goto done;
4097         }
4098
4099         /*
4100          * If this page is not pageable, we have to get it for all possible
4101          * accesses.
4102          */
4103         *wired = (entry->wired_count != 0);
4104         if (*wired)
4105                 prot = fault_type = entry->protection;
4106
4107         /*
4108          * Virtual page tables may need to update the accessed (A) bit
4109          * in a page table entry.  Upgrade the fault to a write fault for
4110          * that case if the map will support it.  If the map does not support
4111          * it the page table entry simply will not be updated.
4112          */
4113         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4114                 if (prot & VM_PROT_WRITE)
4115                         fault_type |= VM_PROT_WRITE;
4116         }
4117
4118         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4119             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4120                 if ((prot & VM_PROT_WRITE) == 0)
4121                         fault_type |= VM_PROT_WRITE;
4122         }
4123
4124         /*
4125          * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4126          */
4127         if (entry->maptype != VM_MAPTYPE_NORMAL &&
4128             entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4129                 *object = NULL;
4130                 goto skip;
4131         }
4132
4133         /*
4134          * If the entry was copy-on-write, we either ...
4135          */
4136         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4137                 /*
4138                  * If we want to write the page, we may as well handle that
4139                  * now since we've got the map locked.
4140                  *
4141                  * If we don't need to write the page, we just demote the
4142                  * permissions allowed.
4143                  */
4144
4145                 if (fault_type & VM_PROT_WRITE) {
4146                         /*
4147                          * Not allowed if TDF_NOFAULT is set as the shadowing
4148                          * operation can deadlock against the faulting
4149                          * function due to the copy-on-write.
4150                          */
4151                         if (curthread->td_flags & TDF_NOFAULT) {
4152                                 rv = KERN_FAILURE_NOFAULT;
4153                                 goto done;
4154                         }
4155
4156                         /*
4157                          * Make a new object, and place it in the object
4158                          * chain.  Note that no new references have appeared
4159                          * -- one just moved from the map to the new
4160                          * object.
4161                          */
4162
4163                         if (use_read_lock && vm_map_lock_upgrade(map)) {
4164                                 /* lost lock */
4165                                 use_read_lock = 0;
4166                                 goto RetryLookup;
4167                         }
4168                         use_read_lock = 0;
4169
4170                         vm_map_entry_shadow(entry, 0);
4171                 } else {
4172                         /*
4173                          * We're attempting to read a copy-on-write page --
4174                          * don't allow writes.
4175                          */
4176
4177                         prot &= ~VM_PROT_WRITE;
4178                 }
4179         }
4180
4181         /*
4182          * Create an object if necessary.
4183          */
4184         if (entry->object.vm_object == NULL && !map->system_map) {
4185                 if (use_read_lock && vm_map_lock_upgrade(map))  {
4186                         /* lost lock */
4187                         use_read_lock = 0;
4188                         goto RetryLookup;
4189                 }
4190                 use_read_lock = 0;
4191                 vm_map_entry_allocate_object(entry);
4192         }
4193
4194         /*
4195          * Return the object/offset from this entry.  If the entry was
4196          * copy-on-write or empty, it has been fixed up.
4197          */
4198         *object = entry->object.vm_object;
4199
4200 skip:
4201         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4202
4203         /*
4204          * Return whether this is the only map sharing this data.  On
4205          * success we return with a read lock held on the map.  On failure
4206          * we return with the map unlocked.
4207          */
4208         *out_prot = prot;
4209 done:
4210         if (rv == KERN_SUCCESS) {
4211                 if (use_read_lock == 0)
4212                         vm_map_lock_downgrade(map);
4213         } else if (use_read_lock) {
4214                 vm_map_unlock_read(map);
4215         } else {
4216                 vm_map_unlock(map);
4217         }
4218         return (rv);
4219 }
4220
4221 /*
4222  * Releases locks acquired by a vm_map_lookup()
4223  * (according to the handle returned by that lookup).
4224  *
4225  * No other requirements.
4226  */
4227 void
4228 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4229 {
4230         /*
4231          * Unlock the main-level map
4232          */
4233         vm_map_unlock_read(map);
4234         if (count)
4235                 vm_map_entry_release(count);
4236 }
4237
4238 #include "opt_ddb.h"
4239 #ifdef DDB
4240 #include <sys/kernel.h>
4241
4242 #include <ddb/ddb.h>
4243
4244 /*
4245  * Debugging only
4246  */
4247 DB_SHOW_COMMAND(map, vm_map_print)
4248 {
4249         static int nlines;
4250         /* XXX convert args. */
4251         vm_map_t map = (vm_map_t)addr;
4252         boolean_t full = have_addr;
4253
4254         vm_map_entry_t entry;
4255
4256         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4257             (void *)map,
4258             (void *)map->pmap, map->nentries, map->timestamp);
4259         nlines++;
4260
4261         if (!full && db_indent)
4262                 return;
4263
4264         db_indent += 2;
4265         for (entry = map->header.next; entry != &map->header;
4266             entry = entry->next) {
4267                 db_iprintf("map entry %p: start=%p, end=%p\n",
4268                     (void *)entry, (void *)entry->start, (void *)entry->end);
4269                 nlines++;
4270                 {
4271                         static char *inheritance_name[4] =
4272                         {"share", "copy", "none", "donate_copy"};
4273
4274                         db_iprintf(" prot=%x/%x/%s",
4275                             entry->protection,
4276                             entry->max_protection,
4277                             inheritance_name[(int)(unsigned char)
4278                                                 entry->inheritance]);
4279                         if (entry->wired_count != 0)
4280                                 db_printf(", wired");
4281                 }
4282                 switch(entry->maptype) {
4283                 case VM_MAPTYPE_SUBMAP:
4284                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4285                         db_printf(", share=%p, offset=0x%lx\n",
4286                             (void *)entry->object.sub_map,
4287                             (long)entry->offset);
4288                         nlines++;
4289                         if ((entry->prev == &map->header) ||
4290                             (entry->prev->object.sub_map !=
4291                                 entry->object.sub_map)) {
4292                                 db_indent += 2;
4293                                 vm_map_print((db_expr_t)(intptr_t)
4294                                              entry->object.sub_map,
4295                                              full, 0, NULL);
4296                                 db_indent -= 2;
4297                         }
4298                         break;
4299                 case VM_MAPTYPE_NORMAL:
4300                 case VM_MAPTYPE_VPAGETABLE:
4301                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4302                         db_printf(", object=%p, offset=0x%lx",
4303                             (void *)entry->object.vm_object,
4304                             (long)entry->offset);
4305                         if (entry->eflags & MAP_ENTRY_COW)
4306                                 db_printf(", copy (%s)",
4307                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4308                         db_printf("\n");
4309                         nlines++;
4310
4311                         if ((entry->prev == &map->header) ||
4312                             (entry->prev->object.vm_object !=
4313                                 entry->object.vm_object)) {
4314                                 db_indent += 2;
4315                                 vm_object_print((db_expr_t)(intptr_t)
4316                                                 entry->object.vm_object,
4317                                                 full, 0, NULL);
4318                                 nlines += 4;
4319                                 db_indent -= 2;
4320                         }
4321                         break;
4322                 case VM_MAPTYPE_UKSMAP:
4323                         db_printf(", uksmap=%p, offset=0x%lx",
4324                             (void *)entry->object.uksmap,
4325                             (long)entry->offset);
4326                         if (entry->eflags & MAP_ENTRY_COW)
4327                                 db_printf(", copy (%s)",
4328                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4329                         db_printf("\n");
4330                         nlines++;
4331                         break;
4332                 default:
4333                         break;
4334                 }
4335         }
4336         db_indent -= 2;
4337         if (db_indent == 0)
4338                 nlines = 0;
4339 }
4340
4341 /*
4342  * Debugging only
4343  */
4344 DB_SHOW_COMMAND(procvm, procvm)
4345 {
4346         struct proc *p;
4347
4348         if (have_addr) {
4349                 p = (struct proc *) addr;
4350         } else {
4351                 p = curproc;
4352         }
4353
4354         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4355             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4356             (void *)vmspace_pmap(p->p_vmspace));
4357
4358         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4359 }
4360
4361 #endif /* DDB */