Merge branch 'vendor/GCC44'
[dragonfly.git] / contrib / binutils-2.21 / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2 @c 2006, 2007, 2008, 2009  Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options::              Options
21 * ARM Syntax::               Syntax
22 * ARM Floating Point::       Floating Point
23 * ARM Directives::           ARM Machine Directives
24 * ARM Opcodes::              Opcodes
25 * ARM Mapping Symbols::      Mapping Symbols
26 * ARM Unwinding Tutorial::   Unwinding
27 @end menu
28
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
33
34 @table @code
35
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor.  The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor.  The following processor names are
41 recognized: 
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa626te} (Faraday FA626TE processor),
106 @code{fa726te} (Faraday FA726TE processor),
107 @code{arm1136j-s},
108 @code{arm1136jf-s},
109 @code{arm1156t2-s},
110 @code{arm1156t2f-s},
111 @code{arm1176jz-s},
112 @code{arm1176jzf-s},
113 @code{mpcore},
114 @code{mpcorenovfp},
115 @code{cortex-a5},
116 @code{cortex-a8},
117 @code{cortex-a9},
118 @code{cortex-a15},
119 @code{cortex-r4},
120 @code{cortex-r4f},
121 @code{cortex-m4},
122 @code{cortex-m3},
123 @code{cortex-m1},
124 @code{cortex-m0},
125 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
126 @code{i80200} (Intel XScale processor)
127 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
128 and
129 @code{xscale}.  
130 The special name @code{all} may be used to allow the
131 assembler to accept instructions valid for any ARM processor.
132
133 In addition to the basic instruction set, the assembler can be told to 
134 accept various extension mnemonics that extend the processor using the 
135 co-processor instruction space.  For example, @code{-mcpu=arm920+maverick}
136 is equivalent to specifying @code{-mcpu=ep9312}.  
137
138 Multiple extensions may be specified, separated by a @code{+}.  The 
139 extensions should be specified in ascending alphabetical order.
140
141 Some extensions may be restricted to particular architectures; this is 
142 documented in the list of extensions below.
143
144 Extension mnemonics may also be removed from those the assembler accepts.  
145 This is done be prepending @code{no} to the option that adds the extension.  
146 Extensions that are removed should be listed after all extensions which have 
147 been added, again in ascending alphabetical order.  For example, 
148 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
149
150
151 The following extensions are currently supported:
152 @code{idiv}, (Integer Divide Extensions for v7-A architecture),
153 @code{iwmmxt},
154 @code{iwmmxt2},
155 @code{maverick},
156 @code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures),
157 @code{os} (Operating System for v6M architecture),
158 @code{sec} (Security Extensions for v6K and v7-A architectures),
159 @code{virt} (Virtualization Extensions for v7-A architecture, implies 
160 @code{idiv}),
161 and
162 @code{xscale}.
163
164 @cindex @code{-march=} command line option, ARM
165 @item -march=@var{architecture}[+@var{extension}@dots{}]
166 This option specifies the target architecture.  The assembler will issue
167 an error message if an attempt is made to assemble an instruction which
168 will not execute on the target architecture.  The following architecture 
169 names are recognized: 
170 @code{armv1},
171 @code{armv2},
172 @code{armv2a},
173 @code{armv2s},
174 @code{armv3},
175 @code{armv3m},
176 @code{armv4},
177 @code{armv4xm},
178 @code{armv4t},
179 @code{armv4txm},
180 @code{armv5},
181 @code{armv5t},
182 @code{armv5txm},
183 @code{armv5te},
184 @code{armv5texp},
185 @code{armv6},
186 @code{armv6j},
187 @code{armv6k},
188 @code{armv6z},
189 @code{armv6zk},
190 @code{armv6-m},
191 @code{armv6s-m},
192 @code{armv7},
193 @code{armv7-a},
194 @code{armv7-r},
195 @code{armv7-m},
196 @code{armv7e-m},
197 @code{iwmmxt}
198 and
199 @code{xscale}.
200 If both @code{-mcpu} and
201 @code{-march} are specified, the assembler will use
202 the setting for @code{-mcpu}.
203
204 The architecture option can be extended with the same instruction set
205 extension options as the @code{-mcpu} option.
206
207 @cindex @code{-mfpu=} command line option, ARM
208 @item -mfpu=@var{floating-point-format}
209
210 This option specifies the floating point format to assemble for.  The
211 assembler will issue an error message if an attempt is made to assemble
212 an instruction which will not execute on the target floating point unit.  
213 The following format options are recognized:
214 @code{softfpa},
215 @code{fpe},
216 @code{fpe2},
217 @code{fpe3},
218 @code{fpa},
219 @code{fpa10},
220 @code{fpa11},
221 @code{arm7500fe},
222 @code{softvfp},
223 @code{softvfp+vfp},
224 @code{vfp},
225 @code{vfp10},
226 @code{vfp10-r0},
227 @code{vfp9},
228 @code{vfpxd},
229 @code{vfpv2},
230 @code{vfpv3},
231 @code{vfpv3-fp16},
232 @code{vfpv3-d16},
233 @code{vfpv3-d16-fp16},
234 @code{vfpv3xd},
235 @code{vfpv3xd-d16},
236 @code{vfpv4},
237 @code{vfpv4-d16},
238 @code{fpv4-sp-d16},
239 @code{arm1020t},
240 @code{arm1020e},
241 @code{arm1136jf-s},
242 @code{maverick},
243 @code{neon},
244 and
245 @code{neon-vfpv4}.
246
247 In addition to determining which instructions are assembled, this option
248 also affects the way in which the @code{.double} assembler directive behaves
249 when assembling little-endian code.
250
251 The default is dependent on the processor selected.  For Architecture 5 or 
252 later, the default is to assembler for VFP instructions; for earlier 
253 architectures the default is to assemble for FPA instructions.
254
255 @cindex @code{-mthumb} command line option, ARM
256 @item -mthumb
257 This option specifies that the assembler should start assembling Thumb
258 instructions; that is, it should behave as though the file starts with a 
259 @code{.code 16} directive.
260
261 @cindex @code{-mthumb-interwork} command line option, ARM
262 @item -mthumb-interwork
263 This option specifies that the output generated by the assembler should
264 be marked as supporting interworking.
265
266 @cindex @code{-mimplicit-it} command line option, ARM
267 @item -mimplicit-it=never
268 @itemx -mimplicit-it=always
269 @itemx -mimplicit-it=arm
270 @itemx -mimplicit-it=thumb
271 The @code{-mimplicit-it} option controls the behavior of the assembler when
272 conditional instructions are not enclosed in IT blocks.
273 There are four possible behaviors.
274 If @code{never} is specified, such constructs cause a warning in ARM
275 code and an error in Thumb-2 code.
276 If @code{always} is specified, such constructs are accepted in both
277 ARM and Thumb-2 code, where the IT instruction is added implicitly.
278 If @code{arm} is specified, such constructs are accepted in ARM code
279 and cause an error in Thumb-2 code.
280 If @code{thumb} is specified, such constructs cause a warning in ARM
281 code and are accepted in Thumb-2 code.  If you omit this option, the
282 behavior is equivalent to @code{-mimplicit-it=arm}.
283
284 @cindex @code{-mapcs-26} command line option, ARM
285 @cindex @code{-mapcs-32} command line option, ARM
286 @item -mapcs-26
287 @itemx -mapcs-32
288 These options specify that the output generated by the assembler should
289 be marked as supporting the indicated version of the Arm Procedure.
290 Calling Standard.
291
292 @cindex @code{-matpcs} command line option, ARM
293 @item -matpcs
294 This option specifies that the output generated by the assembler should 
295 be marked as supporting the Arm/Thumb Procedure Calling Standard.  If
296 enabled this option will cause the assembler to create an empty
297 debugging section in the object file called .arm.atpcs.  Debuggers can
298 use this to determine the ABI being used by.
299
300 @cindex @code{-mapcs-float} command line option, ARM
301 @item -mapcs-float
302 This indicates the floating point variant of the APCS should be
303 used.  In this variant floating point arguments are passed in FP
304 registers rather than integer registers.
305
306 @cindex @code{-mapcs-reentrant} command line option, ARM
307 @item -mapcs-reentrant
308 This indicates that the reentrant variant of the APCS should be used.
309 This variant supports position independent code.
310
311 @cindex @code{-mfloat-abi=} command line option, ARM
312 @item -mfloat-abi=@var{abi}
313 This option specifies that the output generated by the assembler should be
314 marked as using specified floating point ABI.
315 The following values are recognized:
316 @code{soft},
317 @code{softfp}
318 and
319 @code{hard}.
320
321 @cindex @code{-eabi=} command line option, ARM
322 @item -meabi=@var{ver}
323 This option specifies which EABI version the produced object files should
324 conform to.
325 The following values are recognized:
326 @code{gnu},
327 @code{4}
328 and
329 @code{5}.
330
331 @cindex @code{-EB} command line option, ARM
332 @item -EB
333 This option specifies that the output generated by the assembler should
334 be marked as being encoded for a big-endian processor.
335
336 @cindex @code{-EL} command line option, ARM
337 @item -EL
338 This option specifies that the output generated by the assembler should
339 be marked as being encoded for a little-endian processor.
340
341 @cindex @code{-k} command line option, ARM
342 @cindex PIC code generation for ARM
343 @item -k
344 This option specifies that the output of the assembler should be marked
345 as position-independent code (PIC).
346
347 @cindex @code{--fix-v4bx} command line option, ARM
348 @item --fix-v4bx
349 Allow @code{BX} instructions in ARMv4 code.  This is intended for use with
350 the linker option of the same name.
351
352 @cindex @code{-mwarn-deprecated} command line option, ARM
353 @item -mwarn-deprecated
354 @itemx -mno-warn-deprecated
355 Enable or disable warnings about using deprecated options or
356 features.  The default is to warn.
357
358 @end table
359
360
361 @node ARM Syntax
362 @section Syntax
363 @menu
364 * ARM-Instruction-Set::      Instruction Set
365 * ARM-Chars::                Special Characters
366 * ARM-Regs::                 Register Names
367 * ARM-Relocations::          Relocations
368 * ARM-Neon-Alignment::       NEON Alignment Specifiers
369 @end menu
370
371 @node ARM-Instruction-Set
372 @subsection Instruction Set Syntax
373 Two slightly different syntaxes are support for ARM and THUMB
374 instructions.  The default, @code{divided}, uses the old style where
375 ARM and THUMB instructions had their own, separate syntaxes.  The new,
376 @code{unified} syntax, which can be selected via the @code{.syntax}
377 directive, and has the following main features:
378
379 @table @bullet
380 @item
381 Immediate operands do not require a @code{#} prefix.
382
383 @item
384 The @code{IT} instruction may appear, and if it does it is validated
385 against subsequent conditional affixes.  In ARM mode it does not
386 generate machine code, in THUMB mode it does.
387
388 @item
389 For ARM instructions the conditional affixes always appear at the end
390 of the instruction.  For THUMB instructions conditional affixes can be
391 used, but only inside the scope of an @code{IT} instruction.
392
393 @item
394 All of the instructions new to the V6T2 architecture (and later) are
395 available.  (Only a few such instructions can be written in the
396 @code{divided} syntax).
397
398 @item
399 The @code{.N} and @code{.W} suffixes are recognized and honored.
400
401 @item
402 All instructions set the flags if and only if they have an @code{s}
403 affix.
404 @end table
405
406 @node ARM-Chars
407 @subsection Special Characters
408
409 @cindex line comment character, ARM
410 @cindex ARM line comment character
411 The presence of a @samp{@@} on a line indicates the start of a comment
412 that extends to the end of the current line.  If a @samp{#} appears as
413 the first character of a line, the whole line is treated as a comment.
414
415 @cindex line separator, ARM
416 @cindex statement separator, ARM
417 @cindex ARM line separator
418 The @samp{;} character can be used instead of a newline to separate
419 statements.
420
421 @cindex immediate character, ARM
422 @cindex ARM immediate character
423 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
424
425 @cindex identifiers, ARM
426 @cindex ARM identifiers
427 *TODO* Explain about /data modifier on symbols.
428
429 @node ARM-Regs
430 @subsection Register Names
431
432 @cindex ARM register names
433 @cindex register names, ARM
434 *TODO* Explain about ARM register naming, and the predefined names.
435
436 @node ARM-Neon-Alignment
437 @subsection NEON Alignment Specifiers
438
439 @cindex alignment for NEON instructions
440 Some NEON load/store instructions allow an optional address
441 alignment qualifier.
442 The ARM documentation specifies that this is indicated by
443 @samp{@@ @var{align}}. However GAS already interprets
444 the @samp{@@} character as a "line comment" start,
445 so @samp{: @var{align}} is used instead.  For example:
446
447 @smallexample
448         vld1.8 @{q0@}, [r0, :128]
449 @end smallexample
450
451 @node ARM Floating Point
452 @section Floating Point
453
454 @cindex floating point, ARM (@sc{ieee})
455 @cindex ARM floating point (@sc{ieee})
456 The ARM family uses @sc{ieee} floating-point numbers.
457
458 @node ARM-Relocations
459 @subsection ARM relocation generation
460
461 @cindex data relocations, ARM
462 @cindex ARM data relocations
463 Specific data relocations can be generated by putting the relocation name
464 in parentheses after the symbol name.  For example:
465
466 @smallexample
467         .word foo(TARGET1)
468 @end smallexample
469
470 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
471 @var{foo}.
472 The following relocations are supported:
473 @code{GOT},
474 @code{GOTOFF},
475 @code{TARGET1},
476 @code{TARGET2},
477 @code{SBREL},
478 @code{TLSGD},
479 @code{TLSLDM},
480 @code{TLSLDO},
481 @code{GOTTPOFF},
482 @code{GOT_PREL}
483 and
484 @code{TPOFF}.
485
486 For compatibility with older toolchains the assembler also accepts
487 @code{(PLT)} after branch targets.  This will generate the deprecated
488 @samp{R_ARM_PLT32} relocation.
489
490 @cindex MOVW and MOVT relocations, ARM
491 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
492 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
493 respectively.  For example to load the 32-bit address of foo into r0:
494
495 @smallexample
496         MOVW r0, #:lower16:foo
497         MOVT r0, #:upper16:foo
498 @end smallexample
499
500 @node ARM Directives
501 @section ARM Machine Directives
502
503 @cindex machine directives, ARM
504 @cindex ARM machine directives
505 @table @code
506
507 @c AAAAAAAAAAAAAAAAAAAAAAAAA
508
509 @cindex @code{.2byte} directive, ARM
510 @cindex @code{.4byte} directive, ARM
511 @cindex @code{.8byte} directive, ARM
512 @item .2byte @var{expression} [, @var{expression}]*
513 @itemx .4byte @var{expression} [, @var{expression}]*
514 @itemx .8byte @var{expression} [, @var{expression}]*
515 These directives write 2, 4 or 8 byte values to the output section.
516
517 @cindex @code{.align} directive, ARM
518 @item .align @var{expression} [, @var{expression}]
519 This is the generic @var{.align} directive.  For the ARM however if the
520 first argument is zero (ie no alignment is needed) the assembler will
521 behave as if the argument had been 2 (ie pad to the next four byte
522 boundary).  This is for compatibility with ARM's own assembler.
523
524 @cindex @code{.arch} directive, ARM
525 @item .arch @var{name}
526 Select the target architecture.  Valid values for @var{name} are the same as
527 for the @option{-march} commandline option.
528
529 Specifying @code{.arch} clears any previously selected architecture 
530 extensions.
531
532 @cindex @code{.arch_extension} directive, ARM
533 @item .arch_extension @var{name}
534 Add or remove an architecture extension to the target architecture.  Valid 
535 values for @var{name} are the same as those accepted as architectural 
536 extensions by the @option{-mcpu} commandline option.
537
538 @code{.arch_extension} may be used multiple times to add or remove extensions
539 incrementally to the architecture being compiled for.
540
541 @cindex @code{.arm} directive, ARM
542 @item .arm
543 This performs the same action as @var{.code 32}.
544
545 @anchor{arm_pad}
546 @cindex @code{.pad} directive, ARM
547 @item .pad #@var{count}
548 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
549 A positive value indicates the function prologue allocated stack space by
550 decrementing the stack pointer.
551
552 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
553
554 @cindex @code{.bss} directive, ARM
555 @item .bss
556 This directive switches to the @code{.bss} section.
557
558 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
559
560 @cindex @code{.cantunwind} directive, ARM
561 @item .cantunwind
562 Prevents unwinding through the current function.  No personality routine
563 or exception table data is required or permitted.
564
565 @cindex @code{.code} directive, ARM
566 @item .code @code{[16|32]}
567 This directive selects the instruction set being generated. The value 16
568 selects Thumb, with the value 32 selecting ARM.
569
570 @cindex @code{.cpu} directive, ARM
571 @item .cpu @var{name}
572 Select the target processor.  Valid values for @var{name} are the same as
573 for the @option{-mcpu} commandline option.
574
575 Specifying @code{.cpu} clears any previously selected architecture 
576 extensions.
577
578 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
579
580 @cindex @code{.dn} and @code{.qn} directives, ARM
581 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
582 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
583
584 The @code{dn} and @code{qn} directives are used to create typed
585 and/or indexed register aliases for use in Advanced SIMD Extension
586 (Neon) instructions.  The former should be used to create aliases
587 of double-precision registers, and the latter to create aliases of
588 quad-precision registers.
589
590 If these directives are used to create typed aliases, those aliases can
591 be used in Neon instructions instead of writing types after the mnemonic
592 or after each operand.  For example:
593
594 @smallexample
595         x .dn d2.f32
596         y .dn d3.f32
597         z .dn d4.f32[1]
598         vmul x,y,z
599 @end smallexample
600
601 This is equivalent to writing the following:
602
603 @smallexample
604         vmul.f32 d2,d3,d4[1]
605 @end smallexample
606
607 Aliases created using @code{dn} or @code{qn} can be destroyed using
608 @code{unreq}.
609
610 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
611
612 @cindex @code{.eabi_attribute} directive, ARM
613 @item .eabi_attribute @var{tag}, @var{value}
614 Set the EABI object attribute @var{tag} to @var{value}.
615
616 The @var{tag} is either an attribute number, or one of the following:
617 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
618 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
619 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
620 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
621 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
622 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
623 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
624 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
625 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
626 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
627 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
628 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
629 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
630 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
631 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
632 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
633 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
634 @code{Tag_conformance}, @code{Tag_T2EE_use},
635 @code{Tag_Virtualization_use}
636
637 The @var{value} is either a @code{number}, @code{"string"}, or
638 @code{number, "string"} depending on the tag.
639
640 Note - the following legacy values are also accepted by @var{tag}:
641 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed}, 
642 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
643
644 @cindex @code{.even} directive, ARM
645 @item .even
646 This directive aligns to an even-numbered address.
647
648 @cindex @code{.extend} directive, ARM
649 @cindex @code{.ldouble} directive, ARM
650 @item .extend  @var{expression} [, @var{expression}]*
651 @itemx .ldouble  @var{expression} [, @var{expression}]*
652 These directives write 12byte long double floating-point values to the
653 output section.  These are not compatible with current ARM processors
654 or ABIs.
655
656 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
657
658 @anchor{arm_fnend}
659 @cindex @code{.fnend} directive, ARM
660 @item .fnend
661 Marks the end of a function with an unwind table entry.  The unwind index
662 table entry is created when this directive is processed.
663
664 If no personality routine has been specified then standard personality
665 routine 0 or 1 will be used, depending on the number of unwind opcodes
666 required.
667
668 @anchor{arm_fnstart}
669 @cindex @code{.fnstart} directive, ARM
670 @item .fnstart
671 Marks the start of a function with an unwind table entry.
672
673 @cindex @code{.force_thumb} directive, ARM
674 @item .force_thumb
675 This directive forces the selection of Thumb instructions, even if the
676 target processor does not support those instructions
677
678 @cindex @code{.fpu} directive, ARM
679 @item .fpu @var{name}
680 Select the floating-point unit to assemble for.  Valid values for @var{name}
681 are the same as for the @option{-mfpu} commandline option.
682
683 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
684 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
685
686 @cindex @code{.handlerdata} directive, ARM
687 @item .handlerdata
688 Marks the end of the current function, and the start of the exception table
689 entry for that function.  Anything between this directive and the
690 @code{.fnend} directive will be added to the exception table entry.
691
692 Must be preceded by a @code{.personality} or @code{.personalityindex}
693 directive.
694
695 @c IIIIIIIIIIIIIIIIIIIIIIIIII
696
697 @cindex @code{.inst} directive, ARM
698 @item .inst @var{opcode} [ , @dots{} ]
699 @itemx .inst.n @var{opcode} [ , @dots{} ]
700 @itemx .inst.w @var{opcode} [ , @dots{} ]
701 Generates the instruction corresponding to the numerical value @var{opcode}.
702 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
703 specified explicitly, overriding the normal encoding rules.
704
705 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
706 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
707 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
708
709 @item .ldouble  @var{expression} [, @var{expression}]*
710 See @code{.extend}.
711
712 @cindex @code{.ltorg} directive, ARM
713 @item .ltorg
714 This directive causes the current contents of the literal pool to be
715 dumped into the current section (which is assumed to be the .text
716 section) at the current location (aligned to a word boundary).
717 @code{GAS} maintains a separate literal pool for each section and each
718 sub-section.  The @code{.ltorg} directive will only affect the literal
719 pool of the current section and sub-section.  At the end of assembly
720 all remaining, un-empty literal pools will automatically be dumped.
721
722 Note - older versions of @code{GAS} would dump the current literal
723 pool any time a section change occurred.  This is no longer done, since
724 it prevents accurate control of the placement of literal pools.
725
726 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
727
728 @cindex @code{.movsp} directive, ARM
729 @item .movsp @var{reg} [, #@var{offset}]
730 Tell the unwinder that @var{reg} contains an offset from the current
731 stack pointer.  If @var{offset} is not specified then it is assumed to be
732 zero.
733
734 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
735 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
736
737 @cindex @code{.object_arch} directive, ARM
738 @item .object_arch @var{name}
739 Override the architecture recorded in the EABI object attribute section.
740 Valid values for @var{name} are the same as for the @code{.arch} directive.
741 Typically this is useful when code uses runtime detection of CPU features.
742
743 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
744
745 @cindex @code{.packed} directive, ARM
746 @item .packed  @var{expression} [, @var{expression}]*
747 This directive writes 12-byte packed floating-point values to the
748 output section.  These are not compatible with current ARM processors
749 or ABIs.
750
751 @cindex @code{.pad} directive, ARM
752 @item .pad #@var{count}
753 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
754 A positive value indicates the function prologue allocated stack space by
755 decrementing the stack pointer.
756
757 @cindex @code{.personality} directive, ARM
758 @item .personality @var{name}
759 Sets the personality routine for the current function to @var{name}.
760
761 @cindex @code{.personalityindex} directive, ARM
762 @item .personalityindex @var{index}
763 Sets the personality routine for the current function to the EABI standard
764 routine number @var{index}
765
766 @cindex @code{.pool} directive, ARM
767 @item .pool
768 This is a synonym for .ltorg.
769
770 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
771 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
772
773 @cindex @code{.req} directive, ARM
774 @item @var{name} .req @var{register name}
775 This creates an alias for @var{register name} called @var{name}.  For
776 example:
777
778 @smallexample
779         foo .req r0
780 @end smallexample
781
782 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
783
784 @anchor{arm_save}
785 @cindex @code{.save} directive, ARM
786 @item .save @var{reglist}
787 Generate unwinder annotations to restore the registers in @var{reglist}.
788 The format of @var{reglist} is the same as the corresponding store-multiple
789 instruction.
790
791 @smallexample
792 @exdent @emph{core registers}
793   .save @{r4, r5, r6, lr@}
794   stmfd sp!, @{r4, r5, r6, lr@}
795 @exdent @emph{FPA registers}
796   .save f4, 2
797   sfmfd f4, 2, [sp]!
798 @exdent @emph{VFP registers}
799   .save @{d8, d9, d10@}
800   fstmdx sp!, @{d8, d9, d10@}
801 @exdent @emph{iWMMXt registers}
802   .save @{wr10, wr11@}
803   wstrd wr11, [sp, #-8]!
804   wstrd wr10, [sp, #-8]!
805 or
806   .save wr11
807   wstrd wr11, [sp, #-8]!
808   .save wr10
809   wstrd wr10, [sp, #-8]!
810 @end smallexample
811
812 @anchor{arm_setfp}
813 @cindex @code{.setfp} directive, ARM
814 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
815 Make all unwinder annotations relative to a frame pointer.  Without this
816 the unwinder will use offsets from the stack pointer.
817
818 The syntax of this directive is the same as the @code{add} or @code{mov}
819 instruction used to set the frame pointer.  @var{spreg} must be either
820 @code{sp} or mentioned in a previous @code{.movsp} directive.
821
822 @smallexample
823 .movsp ip
824 mov ip, sp
825 @dots{}
826 .setfp fp, ip, #4
827 add fp, ip, #4
828 @end smallexample
829
830 @cindex @code{.secrel32} directive, ARM
831 @item .secrel32 @var{expression} [, @var{expression}]*
832 This directive emits relocations that evaluate to the section-relative
833 offset of each expression's symbol.  This directive is only supported
834 for PE targets.
835
836 @cindex @code{.syntax} directive, ARM
837 @item .syntax [@code{unified} | @code{divided}]
838 This directive sets the Instruction Set Syntax as described in the
839 @ref{ARM-Instruction-Set} section.
840
841 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
842
843 @cindex @code{.thumb} directive, ARM
844 @item .thumb
845 This performs the same action as @var{.code 16}.
846
847 @cindex @code{.thumb_func} directive, ARM
848 @item .thumb_func
849 This directive specifies that the following symbol is the name of a
850 Thumb encoded function.  This information is necessary in order to allow
851 the assembler and linker to generate correct code for interworking
852 between Arm and Thumb instructions and should be used even if
853 interworking is not going to be performed.  The presence of this
854 directive also implies @code{.thumb}
855
856 This directive is not neccessary when generating EABI objects.  On these
857 targets the encoding is implicit when generating Thumb code.
858
859 @cindex @code{.thumb_set} directive, ARM
860 @item .thumb_set
861 This performs the equivalent of a @code{.set} directive in that it
862 creates a symbol which is an alias for another symbol (possibly not yet
863 defined).  This directive also has the added property in that it marks
864 the aliased symbol as being a thumb function entry point, in the same
865 way that the @code{.thumb_func} directive does.
866
867 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
868
869 @cindex @code{.unreq} directive, ARM
870 @item .unreq @var{alias-name}
871 This undefines a register alias which was previously defined using the
872 @code{req}, @code{dn} or @code{qn} directives.  For example:
873
874 @smallexample
875         foo .req r0
876         .unreq foo
877 @end smallexample
878
879 An error occurs if the name is undefined.  Note - this pseudo op can
880 be used to delete builtin in register name aliases (eg 'r0').  This
881 should only be done if it is really necessary.
882
883 @cindex @code{.unwind_raw} directive, ARM
884 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
885 Insert one of more arbitary unwind opcode bytes, which are known to adjust
886 the stack pointer by @var{offset} bytes.
887
888 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
889 @code{.save @{r0@}}
890
891 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
892
893 @cindex @code{.vsave} directive, ARM
894 @item .vsave @var{vfp-reglist}
895 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
896 using FLDMD.  Also works for VFPv3 registers
897 that are to be restored using VLDM.
898 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
899 instruction.
900
901 @smallexample
902 @exdent @emph{VFP registers}
903   .vsave @{d8, d9, d10@}
904   fstmdd sp!, @{d8, d9, d10@}
905 @exdent @emph{VFPv3 registers}
906   .vsave @{d15, d16, d17@}
907   vstm sp!, @{d15, d16, d17@}
908 @end smallexample
909
910 Since FLDMX and FSTMX are now deprecated, this directive should be
911 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
912
913 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
914 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
915 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
916 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
917
918 @end table
919
920 @node ARM Opcodes
921 @section Opcodes
922
923 @cindex ARM opcodes
924 @cindex opcodes for ARM
925 @code{@value{AS}} implements all the standard ARM opcodes.  It also
926 implements several pseudo opcodes, including several synthetic load
927 instructions. 
928
929 @table @code
930
931 @cindex @code{NOP} pseudo op, ARM
932 @item NOP
933 @smallexample
934   nop
935 @end smallexample
936
937 This pseudo op will always evaluate to a legal ARM instruction that does
938 nothing.  Currently it will evaluate to MOV r0, r0.
939
940 @cindex @code{LDR reg,=<label>} pseudo op, ARM
941 @item LDR 
942 @smallexample
943   ldr <register> , = <expression>
944 @end smallexample
945
946 If expression evaluates to a numeric constant then a MOV or MVN
947 instruction will be used in place of the LDR instruction, if the
948 constant can be generated by either of these instructions.  Otherwise
949 the constant will be placed into the nearest literal pool (if it not
950 already there) and a PC relative LDR instruction will be generated.
951
952 @cindex @code{ADR reg,<label>} pseudo op, ARM
953 @item ADR
954 @smallexample
955   adr <register> <label>
956 @end smallexample
957
958 This instruction will load the address of @var{label} into the indicated
959 register.  The instruction will evaluate to a PC relative ADD or SUB
960 instruction depending upon where the label is located.  If the label is
961 out of range, or if it is not defined in the same file (and section) as
962 the ADR instruction, then an error will be generated.  This instruction
963 will not make use of the literal pool.
964
965 @cindex @code{ADRL reg,<label>} pseudo op, ARM
966 @item ADRL 
967 @smallexample
968   adrl <register> <label>
969 @end smallexample
970
971 This instruction will load the address of @var{label} into the indicated
972 register.  The instruction will evaluate to one or two PC relative ADD
973 or SUB instructions depending upon where the label is located.  If a
974 second instruction is not needed a NOP instruction will be generated in
975 its place, so that this instruction is always 8 bytes long.
976
977 If the label is out of range, or if it is not defined in the same file
978 (and section) as the ADRL instruction, then an error will be generated.
979 This instruction will not make use of the literal pool.
980
981 @end table
982
983 For information on the ARM or Thumb instruction sets, see @cite{ARM
984 Software Development Toolkit Reference Manual}, Advanced RISC Machines
985 Ltd.
986
987 @node ARM Mapping Symbols
988 @section Mapping Symbols
989
990 The ARM ELF specification requires that special symbols be inserted
991 into object files to mark certain features:
992
993 @table @code
994
995 @cindex @code{$a}
996 @item $a
997 At the start of a region of code containing ARM instructions.
998
999 @cindex @code{$t}
1000 @item $t
1001 At the start of a region of code containing THUMB instructions.
1002
1003 @cindex @code{$d}
1004 @item $d
1005 At the start of a region of data.
1006
1007 @end table
1008
1009 The assembler will automatically insert these symbols for you - there
1010 is no need to code them yourself.  Support for tagging symbols ($b,
1011 $f, $p and $m) which is also mentioned in the current ARM ELF
1012 specification is not implemented.  This is because they have been
1013 dropped from the new EABI and so tools cannot rely upon their
1014 presence.
1015
1016 @node ARM Unwinding Tutorial
1017 @section Unwinding
1018
1019 The ABI for the ARM Architecture specifies a standard format for
1020 exception unwind information.  This information is used when an
1021 exception is thrown to determine where control should be transferred.
1022 In particular, the unwind information is used to determine which
1023 function called the function that threw the exception, and which
1024 function called that one, and so forth.  This information is also used
1025 to restore the values of callee-saved registers in the function
1026 catching the exception.
1027
1028 If you are writing functions in assembly code, and those functions
1029 call other functions that throw exceptions, you must use assembly
1030 pseudo ops to ensure that appropriate exception unwind information is
1031 generated.  Otherwise, if one of the functions called by your assembly
1032 code throws an exception, the run-time library will be unable to
1033 unwind the stack through your assembly code and your program will not
1034 behave correctly.
1035
1036 To illustrate the use of these pseudo ops, we will examine the code
1037 that G++ generates for the following C++ input:
1038
1039 @verbatim
1040 void callee (int *);
1041
1042 int 
1043 caller () 
1044 {
1045   int i;
1046   callee (&i);
1047   return i; 
1048 }
1049 @end verbatim
1050
1051 This example does not show how to throw or catch an exception from
1052 assembly code.  That is a much more complex operation and should
1053 always be done in a high-level language, such as C++, that directly
1054 supports exceptions.
1055
1056 The code generated by one particular version of G++ when compiling the
1057 example above is:
1058
1059 @verbatim
1060 _Z6callerv:
1061         .fnstart
1062 .LFB2:
1063         @ Function supports interworking.
1064         @ args = 0, pretend = 0, frame = 8
1065         @ frame_needed = 1, uses_anonymous_args = 0
1066         stmfd   sp!, {fp, lr}
1067         .save {fp, lr}
1068 .LCFI0:
1069         .setfp fp, sp, #4
1070         add     fp, sp, #4
1071 .LCFI1:
1072         .pad #8
1073         sub     sp, sp, #8
1074 .LCFI2:
1075         sub     r3, fp, #8
1076         mov     r0, r3
1077         bl      _Z6calleePi
1078         ldr     r3, [fp, #-8]
1079         mov     r0, r3
1080         sub     sp, fp, #4
1081         ldmfd   sp!, {fp, lr}
1082         bx      lr
1083 .LFE2:
1084         .fnend
1085 @end verbatim
1086
1087 Of course, the sequence of instructions varies based on the options
1088 you pass to GCC and on the version of GCC in use.  The exact
1089 instructions are not important since we are focusing on the pseudo ops
1090 that are used to generate unwind information.
1091
1092 An important assumption made by the unwinder is that the stack frame
1093 does not change during the body of the function.  In particular, since
1094 we assume that the assembly code does not itself throw an exception,
1095 the only point where an exception can be thrown is from a call, such
1096 as the @code{bl} instruction above.  At each call site, the same saved
1097 registers (including @code{lr}, which indicates the return address)
1098 must be located in the same locations relative to the frame pointer.
1099
1100 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1101 op appears immediately before the first instruction of the function
1102 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1103 op appears immediately after the last instruction of the function.
1104 These pseudo ops specify the range of the function.  
1105
1106 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1107 @code{.pad}) matters; their exact locations are irrelevant.  In the
1108 example above, the compiler emits the pseudo ops with particular
1109 instructions.  That makes it easier to understand the code, but it is
1110 not required for correctness.  It would work just as well to emit all
1111 of the pseudo ops other than @code{.fnend} in the same order, but
1112 immediately after @code{.fnstart}.
1113
1114 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1115 indicates registers that have been saved to the stack so that they can
1116 be restored before the function returns.  The argument to the
1117 @code{.save} pseudo op is a list of registers to save.  If a register
1118 is ``callee-saved'' (as specified by the ABI) and is modified by the
1119 function you are writing, then your code must save the value before it
1120 is modified and restore the original value before the function
1121 returns.  If an exception is thrown, the run-time library restores the
1122 values of these registers from their locations on the stack before
1123 returning control to the exception handler.  (Of course, if an
1124 exception is not thrown, the function that contains the @code{.save}
1125 pseudo op restores these registers in the function epilogue, as is
1126 done with the @code{ldmfd} instruction above.)
1127
1128 You do not have to save callee-saved registers at the very beginning
1129 of the function and you do not need to use the @code{.save} pseudo op
1130 immediately following the point at which the registers are saved.
1131 However, if you modify a callee-saved register, you must save it on
1132 the stack before modifying it and before calling any functions which
1133 might throw an exception.  And, you must use the @code{.save} pseudo
1134 op to indicate that you have done so.
1135
1136 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1137 modification of the stack pointer that does not save any registers.
1138 The argument is the number of bytes (in decimal) that are subtracted
1139 from the stack pointer.  (On ARM CPUs, the stack grows downwards, so
1140 subtracting from the stack pointer increases the size of the stack.)
1141
1142 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1143 indicates the register that contains the frame pointer.  The first
1144 argument is the register that is set, which is typically @code{fp}.
1145 The second argument indicates the register from which the frame
1146 pointer takes its value.  The third argument, if present, is the value
1147 (in decimal) added to the register specified by the second argument to
1148 compute the value of the frame pointer.  You should not modify the
1149 frame pointer in the body of the function.
1150
1151 If you do not use a frame pointer, then you should not use the
1152 @code{.setfp} pseudo op.  If you do not use a frame pointer, then you
1153 should avoid modifying the stack pointer outside of the function
1154 prologue.  Otherwise, the run-time library will be unable to find
1155 saved registers when it is unwinding the stack.
1156
1157 The pseudo ops described above are sufficient for writing assembly
1158 code that calls functions which may throw exceptions.  If you need to
1159 know more about the object-file format used to represent unwind
1160 information, you may consult the @cite{Exception Handling ABI for the
1161 ARM Architecture} available from @uref{http://infocenter.arm.com}.