hammer2 - Add missing bzero() (2)
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2013 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain and hammer2_chain_core structures.
38  *
39  * Chains represent the filesystem media topology in-memory.  Any given
40  * chain can represent an inode, indirect block, data, or other types
41  * of blocks.
42  *
43  * This module provides APIs for direct and indirect block searches,
44  * iterations, recursions, creation, deletion, replication, and snapshot
45  * views (used by the flush and snapshot code).
46  *
47  * Generally speaking any modification made to a chain must propagate all
48  * the way back to the volume header, issuing copy-on-write updates to the
49  * blockref tables all the way up.  Any chain except the volume header itself
50  * can be flushed to disk at any time, in any order.  None of it matters
51  * until we get to the point where we want to synchronize the volume header
52  * (see the flush code).
53  *
54  * The chain structure supports snapshot views in time, which are primarily
55  * used until the related data and meta-data is flushed to allow the
56  * filesystem to make snapshots without requiring it to first flush,
57  * and to allow the filesystem flush and modify the filesystem concurrently
58  * with minimal or no stalls.
59  */
60 #include <sys/cdefs.h>
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/lock.h>
65 #include <sys/kern_syscall.h>
66 #include <sys/uuid.h>
67
68 #include "hammer2.h"
69
70 static int hammer2_indirect_optimize;   /* XXX SYSCTL */
71
72 static hammer2_chain_t *hammer2_chain_create_indirect(
73                 hammer2_trans_t *trans, hammer2_chain_t *parent,
74                 hammer2_key_t key, int keybits, int for_type, int *errorp);
75 static void adjreadcounter(hammer2_blockref_t *bref, size_t bytes);
76
77 /*
78  * We use a red-black tree to guarantee safe lookups under shared locks.
79  *
80  * Chains can be overloaded onto the same index, creating a different
81  * view of a blockref table based on a transaction id.  The RBTREE
82  * deconflicts the view by sub-sorting on delete_tid.
83  *
84  * NOTE: Any 'current' chain which is not yet deleted will have a
85  *       delete_tid of HAMMER2_MAX_TID (0xFFF....FFFLLU).
86  */
87 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
88
89 int
90 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
91 {
92         if (chain1->index < chain2->index)
93                 return(-1);
94         if (chain1->index > chain2->index)
95                 return(1);
96         if (chain1->delete_tid < chain2->delete_tid)
97                 return(-1);
98         if (chain1->delete_tid > chain2->delete_tid)
99                 return(1);
100         return(0);
101 }
102
103 static __inline
104 int
105 hammer2_isclusterable(hammer2_chain_t *chain)
106 {
107         if (hammer2_cluster_enable) {
108                 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
109                     chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
110                     chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
111                         return(1);
112                 }
113         }
114         return(0);
115 }
116
117 /*
118  * Recursively set the SUBMODIFIED flag up to the root starting at chain's
119  * parent.  SUBMODIFIED is not set in chain itself.
120  *
121  * This function only operates on current-time transactions and is not
122  * used during flushes.  Instead, the flush code manages the flag itself.
123  */
124 void
125 hammer2_chain_setsubmod(hammer2_trans_t *trans, hammer2_chain_t *chain)
126 {
127         hammer2_chain_core_t *above;
128
129         if (trans->flags & HAMMER2_TRANS_ISFLUSH)
130                 return;
131         while ((above = chain->above) != NULL) {
132                 spin_lock(&above->cst.spin);
133                 chain = above->first_parent;
134                 while (hammer2_chain_refactor_test(chain, 1))
135                         chain = chain->next_parent;
136                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_SUBMODIFIED);
137                 spin_unlock(&above->cst.spin);
138         }
139 }
140
141 /*
142  * Allocate a new disconnected chain element representing the specified
143  * bref.  chain->refs is set to 1 and the passed bref is copied to
144  * chain->bref.  chain->bytes is derived from the bref.
145  *
146  * chain->core is NOT allocated and the media data and bp pointers are left
147  * NULL.  The caller must call chain_core_alloc() to allocate or associate
148  * a core with the chain.
149  *
150  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
151  */
152 hammer2_chain_t *
153 hammer2_chain_alloc(hammer2_mount_t *hmp, hammer2_trans_t *trans,
154                     hammer2_blockref_t *bref)
155 {
156         hammer2_chain_t *chain;
157         u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
158
159         /*
160          * Construct the appropriate system structure.
161          */
162         switch(bref->type) {
163         case HAMMER2_BREF_TYPE_INODE:
164         case HAMMER2_BREF_TYPE_INDIRECT:
165         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
166         case HAMMER2_BREF_TYPE_DATA:
167         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
168                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
169                 break;
170         case HAMMER2_BREF_TYPE_VOLUME:
171         case HAMMER2_BREF_TYPE_FREEMAP:
172                 chain = NULL;
173                 panic("hammer2_chain_alloc volume type illegal for op");
174         default:
175                 chain = NULL;
176                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
177                       bref->type);
178         }
179
180         chain->hmp = hmp;
181         chain->bref = *bref;
182         chain->index = -1;              /* not yet assigned */
183         chain->bytes = bytes;
184         chain->refs = 1;
185         chain->flags = HAMMER2_CHAIN_ALLOCATED;
186         chain->delete_tid = HAMMER2_MAX_TID;
187         if (trans)
188                 chain->modify_tid = trans->sync_tid;
189
190         return (chain);
191 }
192
193 /*
194  * Associate an existing core with the chain or allocate a new core.
195  *
196  * The core is not locked.  No additional refs on the chain are made.
197  */
198 void
199 hammer2_chain_core_alloc(hammer2_chain_t *chain, hammer2_chain_core_t *core)
200 {
201         hammer2_chain_t **scanp;
202
203         KKASSERT(chain->core == NULL);
204         KKASSERT(chain->next_parent == NULL);
205
206         if (core == NULL) {
207                 core = kmalloc(sizeof(*core), chain->hmp->mchain,
208                                M_WAITOK | M_ZERO);
209                 RB_INIT(&core->rbtree);
210                 core->sharecnt = 1;
211                 chain->core = core;
212                 ccms_cst_init(&core->cst, chain);
213                 core->first_parent = chain;
214         } else {
215                 atomic_add_int(&core->sharecnt, 1);
216                 chain->core = core;
217                 spin_lock(&core->cst.spin);
218                 if (core->first_parent == NULL) {
219                         core->first_parent = chain;
220                 } else {
221                         scanp = &core->first_parent;
222                         while (*scanp)
223                                 scanp = &(*scanp)->next_parent;
224                         *scanp = chain;
225                         hammer2_chain_ref(chain);       /* next_parent link */
226                 }
227                 spin_unlock(&core->cst.spin);
228         }
229 }
230
231 /*
232  * Add a reference to a chain element, preventing its destruction.
233  */
234 void
235 hammer2_chain_ref(hammer2_chain_t *chain)
236 {
237         atomic_add_int(&chain->refs, 1);
238 }
239
240 /*
241  * Drop the caller's reference to the chain.  When the ref count drops to
242  * zero this function will disassociate the chain from its parent and
243  * deallocate it, then recursely drop the parent using the implied ref
244  * from the chain's chain->parent.
245  *
246  * WARNING! Just because we are able to deallocate a chain doesn't mean
247  *          that chain->core->rbtree is empty.  There can still be a sharecnt
248  *          on chain->core and RBTREE entries that refer to different parents.
249  */
250 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
251
252 void
253 hammer2_chain_drop(hammer2_chain_t *chain)
254 {
255         u_int refs;
256         u_int need = 0;
257
258 #if 1
259         if (chain->flags & HAMMER2_CHAIN_MOVED)
260                 ++need;
261         if (chain->flags & HAMMER2_CHAIN_MODIFIED)
262                 ++need;
263         KKASSERT(chain->refs > need);
264 #endif
265
266         while (chain) {
267                 refs = chain->refs;
268                 cpu_ccfence();
269                 KKASSERT(refs > 0);
270
271                 if (refs == 1) {
272                         chain = hammer2_chain_lastdrop(chain);
273                 } else {
274                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
275                                 break;
276                         /* retry the same chain */
277                 }
278         }
279 }
280
281 /*
282  * Safe handling of the 1->0 transition on chain.  Returns a chain for
283  * recursive drop or NULL, possibly returning the same chain of the atomic
284  * op fails.
285  *
286  * The cst spinlock is allowed nest child-to-parent (not parent-to-child).
287  */
288 static
289 hammer2_chain_t *
290 hammer2_chain_lastdrop(hammer2_chain_t *chain)
291 {
292         hammer2_mount_t *hmp;
293         hammer2_chain_core_t *above;
294         hammer2_chain_core_t *core;
295         hammer2_chain_t *rdrop1;
296         hammer2_chain_t *rdrop2;
297
298         /*
299          * Spinlock the core and check to see if it is empty.  If it is
300          * not empty we leave chain intact with refs == 0.
301          */
302         if ((core = chain->core) != NULL) {
303                 spin_lock(&core->cst.spin);
304                 if (RB_ROOT(&core->rbtree)) {
305                         if (atomic_cmpset_int(&chain->refs, 1, 0)) {
306                                 /* 1->0 transition successful */
307                                 spin_unlock(&core->cst.spin);
308                                 return(NULL);
309                         } else {
310                                 /* 1->0 transition failed, retry */
311                                 spin_unlock(&core->cst.spin);
312                                 return(chain);
313                         }
314                 }
315         }
316
317         hmp = chain->hmp;
318         rdrop1 = NULL;
319         rdrop2 = NULL;
320
321         /*
322          * Spinlock the parent and try to drop the last ref.  On success
323          * remove chain from its parent.
324          */
325         if ((above = chain->above) != NULL) {
326                 spin_lock(&above->cst.spin);
327                 if (!atomic_cmpset_int(&chain->refs, 1, 0)) {
328                         /* 1->0 transition failed */
329                         spin_unlock(&above->cst.spin);
330                         if (core)
331                                 spin_unlock(&core->cst.spin);
332                         return(chain);
333                         /* stop */
334                 }
335
336                 /*
337                  * 1->0 transition successful
338                  */
339                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
340                 RB_REMOVE(hammer2_chain_tree, &above->rbtree, chain);
341                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
342                 chain->above = NULL;
343
344                 /*
345                  * Calculate a chain to return for a recursive drop.
346                  *
347                  * XXX this needs help, we have a potential deep-recursion
348                  * problem which we try to address but sometimes we wind up
349                  * with two elements that have to be dropped.
350                  *
351                  * If the chain has an associated core with refs at 0
352                  * the chain must be the first in the core's linked list
353                  * by definition, and we will recursively drop the ref
354                  * implied by the chain->next_parent field.
355                  *
356                  * Otherwise if the rbtree containing chain is empty we try
357                  * to recursively drop our parent (only the first one could
358                  * possibly have refs == 0 since the rest are linked via
359                  * next_parent).
360                  *
361                  * Otherwise we try to recursively drop a sibling.
362                  */
363                 if (chain->next_parent) {
364                         KKASSERT(core != NULL);
365                         rdrop1 = chain->next_parent;
366                 }
367                 if (RB_EMPTY(&above->rbtree)) {
368                         rdrop2 = above->first_parent;
369                         if (rdrop2 == NULL || rdrop2->refs ||
370                             atomic_cmpset_int(&rdrop2->refs, 0, 1) == 0) {
371                                 rdrop2 = NULL;
372                         }
373                 } else {
374                         rdrop2 = RB_ROOT(&above->rbtree);
375                         if (atomic_cmpset_int(&rdrop2->refs, 0, 1) == 0)
376                                 rdrop2 = NULL;
377                 }
378                 spin_unlock(&above->cst.spin);
379                 above = NULL;   /* safety */
380         } else {
381                 if (chain->next_parent) {
382                         KKASSERT(core != NULL);
383                         rdrop1 = chain->next_parent;
384                 }
385         }
386
387         /*
388          * We still have the core spinlock (if core is non-NULL).  The
389          * above spinlock is gone.
390          */
391         if (core) {
392                 KKASSERT(core->first_parent == chain);
393                 if (chain->next_parent) {
394                         /* parent should already be set */
395                         KKASSERT(rdrop1 == chain->next_parent);
396                 }
397                 core->first_parent = chain->next_parent;
398                 chain->next_parent = NULL;
399                 chain->core = NULL;
400
401                 if (atomic_fetchadd_int(&core->sharecnt, -1) == 1) {
402                         /*
403                          * On the 1->0 transition of core we can destroy
404                          * it.
405                          */
406                         spin_unlock(&core->cst.spin);
407                         KKASSERT(core->cst.count == 0);
408                         KKASSERT(core->cst.upgrade == 0);
409                         kfree(core, hmp->mchain);
410                 } else {
411                         spin_unlock(&core->cst.spin);
412                 }
413                 core = NULL;    /* safety */
414         }
415
416         /*
417          * All spin locks are gone, finish freeing stuff.
418          */
419         KKASSERT((chain->flags & (HAMMER2_CHAIN_MOVED |
420                                   HAMMER2_CHAIN_MODIFIED)) == 0);
421
422         switch(chain->bref.type) {
423         case HAMMER2_BREF_TYPE_VOLUME:
424         case HAMMER2_BREF_TYPE_FREEMAP:
425                 chain->data = NULL;
426                 break;
427         case HAMMER2_BREF_TYPE_INODE:
428                 if (chain->data) {
429                         kfree(chain->data, hmp->mchain);
430                         chain->data = NULL;
431                 }
432                 break;
433         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
434                 if (chain->data) {
435                         kfree(chain->data, hmp->mchain);
436                         chain->data = NULL;
437                 }
438                 break;
439         default:
440                 KKASSERT(chain->data == NULL);
441                 break;
442         }
443
444         KKASSERT(chain->bp == NULL);
445         chain->hmp = NULL;
446
447         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
448                 chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
449                 kfree(chain, hmp->mchain);
450         }
451         if (rdrop1 && rdrop2) {
452                 hammer2_chain_drop(rdrop1);
453                 return(rdrop2);
454         } else if (rdrop1)
455                 return(rdrop1);
456         else
457                 return(rdrop2);
458 }
459
460 /*
461  * Ref and lock a chain element, acquiring its data with I/O if necessary,
462  * and specify how you would like the data to be resolved.
463  *
464  * Returns 0 on success or an error code if the data could not be acquired.
465  * The chain element is locked on return regardless of whether an error
466  * occurred or not.
467  *
468  * The lock is allowed to recurse, multiple locking ops will aggregate
469  * the requested resolve types.  Once data is assigned it will not be
470  * removed until the last unlock.
471  *
472  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
473  *                         (typically used to avoid device/logical buffer
474  *                          aliasing for data)
475  *
476  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
477  *                         the INITIAL-create state (indirect blocks only).
478  *
479  *                         Do not resolve data elements for DATA chains.
480  *                         (typically used to avoid device/logical buffer
481  *                          aliasing for data)
482  *
483  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
484  *
485  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
486  *                         it will be locked exclusive.
487  *
488  * NOTE: Embedded elements (volume header, inodes) are always resolved
489  *       regardless.
490  *
491  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
492  *       element will instantiate and zero its buffer, and flush it on
493  *       release.
494  *
495  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
496  *       so as not to instantiate a device buffer, which could alias against
497  *       a logical file buffer.  However, if ALWAYS is specified the
498  *       device buffer will be instantiated anyway.
499  *
500  * WARNING! If data must be fetched a shared lock will temporarily be
501  *          upgraded to exclusive.  However, a deadlock can occur if
502  *          the caller owns more than one shared lock.
503  */
504 int
505 hammer2_chain_lock(hammer2_chain_t *chain, int how)
506 {
507         hammer2_mount_t *hmp;
508         hammer2_chain_core_t *core;
509         hammer2_blockref_t *bref;
510         hammer2_off_t pbase;
511         hammer2_off_t pmask;
512         hammer2_off_t peof;
513         ccms_state_t ostate;
514         size_t boff;
515         size_t psize;
516         int error;
517         char *bdata;
518
519         /*
520          * Ref and lock the element.  Recursive locks are allowed.
521          */
522         if ((how & HAMMER2_RESOLVE_NOREF) == 0)
523                 hammer2_chain_ref(chain);
524         atomic_add_int(&chain->lockcnt, 1);
525
526         hmp = chain->hmp;
527         KKASSERT(hmp != NULL);
528
529         /*
530          * Get the appropriate lock.
531          */
532         core = chain->core;
533         if (how & HAMMER2_RESOLVE_SHARED)
534                 ccms_thread_lock(&core->cst, CCMS_STATE_SHARED);
535         else
536                 ccms_thread_lock(&core->cst, CCMS_STATE_EXCLUSIVE);
537
538         /*
539          * If we already have a valid data pointer no further action is
540          * necessary.
541          */
542         if (chain->data)
543                 return (0);
544
545         /*
546          * Do we have to resolve the data?
547          */
548         switch(how & HAMMER2_RESOLVE_MASK) {
549         case HAMMER2_RESOLVE_NEVER:
550                 return(0);
551         case HAMMER2_RESOLVE_MAYBE:
552                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
553                         return(0);
554                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
555                         return(0);
556 #if 0
557                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
558                         return(0);
559 #endif
560                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
561                         return(0);
562                 /* fall through */
563         case HAMMER2_RESOLVE_ALWAYS:
564                 break;
565         }
566
567         /*
568          * Upgrade to an exclusive lock so we can safely manipulate the
569          * buffer cache.  If another thread got to it before us we
570          * can just return.
571          */
572         ostate = ccms_thread_lock_upgrade(&core->cst);
573         if (chain->data) {
574                 ccms_thread_lock_downgrade(&core->cst, ostate);
575                 return (0);
576         }
577
578         /*
579          * We must resolve to a device buffer, either by issuing I/O or
580          * by creating a zero-fill element.  We do not mark the buffer
581          * dirty when creating a zero-fill element (the hammer2_chain_modify()
582          * API must still be used to do that).
583          *
584          * The device buffer is variable-sized in powers of 2 down
585          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
586          * chunk always contains buffers of the same size. (XXX)
587          *
588          * The minimum physical IO size may be larger than the variable
589          * block size.
590          */
591         bref = &chain->bref;
592
593         psize = hammer2_devblksize(chain->bytes);
594         pmask = (hammer2_off_t)psize - 1;
595         pbase = bref->data_off & ~pmask;
596         boff = bref->data_off & (HAMMER2_OFF_MASK & pmask);
597         KKASSERT(pbase != 0);
598         peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
599
600         /*
601          * The getblk() optimization can only be used on newly created
602          * elements if the physical block size matches the request.
603          */
604         if ((chain->flags & HAMMER2_CHAIN_INITIAL) &&
605             chain->bytes == psize) {
606                 chain->bp = getblk(hmp->devvp, pbase, psize, 0, 0);
607                 error = 0;
608         } else if (hammer2_isclusterable(chain)) {
609                 error = cluster_read(hmp->devvp, peof, pbase, psize,
610                                      psize, HAMMER2_PBUFSIZE*4,
611                                      &chain->bp);
612                 adjreadcounter(&chain->bref, chain->bytes);
613         } else {
614                 error = bread(hmp->devvp, pbase, psize, &chain->bp);
615                 adjreadcounter(&chain->bref, chain->bytes);
616         }
617
618         if (error) {
619                 kprintf("hammer2_chain_get: I/O error %016jx: %d\n",
620                         (intmax_t)pbase, error);
621                 bqrelse(chain->bp);
622                 chain->bp = NULL;
623                 ccms_thread_lock_downgrade(&core->cst, ostate);
624                 return (error);
625         }
626
627         /*
628          * Zero the data area if the chain is in the INITIAL-create state.
629          * Mark the buffer for bdwrite().  This clears the INITIAL state
630          * but does not mark the chain modified.
631          */
632         bdata = (char *)chain->bp->b_data + boff;
633         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
634                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
635                 bzero(bdata, chain->bytes);
636                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
637         }
638
639         /*
640          * Setup the data pointer, either pointing it to an embedded data
641          * structure and copying the data from the buffer, or pointing it
642          * into the buffer.
643          *
644          * The buffer is not retained when copying to an embedded data
645          * structure in order to avoid potential deadlocks or recursions
646          * on the same physical buffer.
647          */
648         switch (bref->type) {
649         case HAMMER2_BREF_TYPE_VOLUME:
650         case HAMMER2_BREF_TYPE_FREEMAP:
651                 /*
652                  * Copy data from bp to embedded buffer
653                  */
654                 panic("hammer2_chain_lock: called on unresolved volume header");
655 #if 0
656                 /* NOT YET */
657                 KKASSERT(pbase == 0);
658                 KKASSERT(chain->bytes == HAMMER2_PBUFSIZE);
659                 bcopy(bdata, &hmp->voldata, chain->bytes);
660                 chain->data = (void *)&hmp->voldata;
661                 bqrelse(chain->bp);
662                 chain->bp = NULL;
663 #endif
664                 break;
665         case HAMMER2_BREF_TYPE_INODE:
666                 /*
667                  * Copy data from bp to embedded buffer, do not retain the
668                  * device buffer.
669                  */
670                 KKASSERT(chain->bytes == sizeof(chain->data->ipdata));
671                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
672                 chain->data = kmalloc(sizeof(chain->data->ipdata),
673                                       hmp->mchain, M_WAITOK | M_ZERO);
674                 bcopy(bdata, &chain->data->ipdata, chain->bytes);
675                 bqrelse(chain->bp);
676                 chain->bp = NULL;
677                 break;
678         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
679                 KKASSERT(chain->bytes == sizeof(chain->data->bmdata));
680                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
681                 chain->data = kmalloc(sizeof(chain->data->bmdata),
682                                       hmp->mchain, M_WAITOK | M_ZERO);
683                 bcopy(bdata, &chain->data->bmdata, chain->bytes);
684                 bqrelse(chain->bp);
685                 chain->bp = NULL;
686                 break;
687         case HAMMER2_BREF_TYPE_INDIRECT:
688         case HAMMER2_BREF_TYPE_DATA:
689         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
690         default:
691                 /*
692                  * Point data at the device buffer and leave bp intact.
693                  */
694                 chain->data = (void *)bdata;
695                 break;
696         }
697
698         /*
699          * Make sure the bp is not specifically owned by this thread before
700          * restoring to a possibly shared lock, so another hammer2 thread
701          * can release it.
702          */
703         if (chain->bp)
704                 BUF_KERNPROC(chain->bp);
705         ccms_thread_lock_downgrade(&core->cst, ostate);
706         return (0);
707 }
708
709 /*
710  * Asynchronously read the device buffer (dbp) and execute the specified
711  * callback.  The caller should pass-in a locked chain (shared lock is ok).
712  * The function is responsible for unlocking the chain and for disposing
713  * of dbp.
714  *
715  * NOTE!  A NULL dbp (but non-NULL data) will be passed to the function
716  *        if the dbp is integrated into the chain, because we do not want
717  *        the caller to dispose of dbp in that situation.
718  */
719 static void hammer2_chain_load_async_callback(struct bio *bio);
720
721 void
722 hammer2_chain_load_async(hammer2_chain_t *chain,
723         void (*func)(hammer2_chain_t *, struct buf *, char *, void *),
724         void *arg)
725 {
726         hammer2_cbinfo_t *cbinfo;
727         hammer2_mount_t *hmp;
728         hammer2_blockref_t *bref;
729         hammer2_off_t pbase;
730         hammer2_off_t pmask;
731         hammer2_off_t peof;
732         struct buf *dbp;
733         size_t boff;
734         size_t psize;
735         char *bdata;
736
737         if (chain->data) {
738                 func(chain, NULL, (char *)chain->data, arg);
739                 return;
740         }
741
742         /*
743          * We must resolve to a device buffer, either by issuing I/O or
744          * by creating a zero-fill element.  We do not mark the buffer
745          * dirty when creating a zero-fill element (the hammer2_chain_modify()
746          * API must still be used to do that).
747          *
748          * The device buffer is variable-sized in powers of 2 down
749          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
750          * chunk always contains buffers of the same size. (XXX)
751          *
752          * The minimum physical IO size may be larger than the variable
753          * block size.
754          */
755         bref = &chain->bref;
756
757         psize = hammer2_devblksize(chain->bytes);
758         pmask = (hammer2_off_t)psize - 1;
759         pbase = bref->data_off & ~pmask;
760         boff = bref->data_off & (HAMMER2_OFF_MASK & pmask);
761         KKASSERT(pbase != 0);
762         peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
763
764         hmp = chain->hmp;
765
766         /*
767          * The getblk() optimization can only be used on newly created
768          * elements if the physical block size matches the request.
769          */
770         if ((chain->flags & HAMMER2_CHAIN_INITIAL) &&
771             chain->bytes == psize) {
772                 dbp = getblk(hmp->devvp, pbase, psize, 0, 0);
773                 /*atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);*/
774                 bdata = (char *)dbp->b_data + boff;
775                 bzero(bdata, chain->bytes);
776                 /*atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);*/
777                 func(chain, dbp, bdata, arg);
778                 bqrelse(dbp);
779                 return;
780         }
781
782         adjreadcounter(&chain->bref, chain->bytes);
783         cbinfo = kmalloc(sizeof(*cbinfo), hmp->mchain, M_INTWAIT | M_ZERO);
784         cbinfo->chain = chain;
785         cbinfo->func = func;
786         cbinfo->arg = arg;
787         cbinfo->boff = boff;
788
789         cluster_readcb(hmp->devvp, peof, pbase, psize,
790                 HAMMER2_PBUFSIZE*4, HAMMER2_PBUFSIZE*4,
791                 hammer2_chain_load_async_callback, cbinfo);
792 }
793
794 static void
795 hammer2_chain_load_async_callback(struct bio *bio)
796 {
797         hammer2_cbinfo_t *cbinfo;
798         hammer2_mount_t *hmp;
799         struct buf *dbp;
800         char *data;
801
802         /*
803          * Nobody is waiting for bio/dbp to complete, we are
804          * responsible for handling the biowait() equivalent
805          * on dbp which means clearing BIO_DONE and BIO_SYNC
806          * and calling bpdone() if it hasn't already been called
807          * to restore any covered holes in the buffer's backing
808          * store.
809          */
810         dbp = bio->bio_buf;
811         if ((bio->bio_flags & BIO_DONE) == 0)
812                 bpdone(dbp, 0);
813         bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
814
815         /*
816          * Extract the auxillary info and issue the callback.
817          * Finish up with the dbp after it returns.
818          */
819         cbinfo = bio->bio_caller_info1.ptr;
820         /*ccms_thread_lock_setown(cbinfo->chain->core);*/
821         data = dbp->b_data + cbinfo->boff;
822         hmp = cbinfo->chain->hmp;
823
824         cbinfo = bio->bio_caller_info1.ptr;
825         if (cbinfo->chain->flags & HAMMER2_CHAIN_INITIAL)
826                 bzero(data, cbinfo->chain->bytes);
827         cbinfo->func(cbinfo->chain, dbp, data, cbinfo->arg);
828         /* cbinfo->chain is stale now */
829         bqrelse(dbp);
830         kfree(cbinfo, hmp->mchain);
831 }
832
833 /*
834  * Unlock and deref a chain element.
835  *
836  * On the last lock release any non-embedded data (chain->bp) will be
837  * retired.
838  */
839 void
840 hammer2_chain_unlock(hammer2_chain_t *chain)
841 {
842         hammer2_chain_core_t *core = chain->core;
843         ccms_state_t ostate;
844         long *counterp;
845         u_int lockcnt;
846
847         /*
848          * The core->cst lock can be shared across several chains so we
849          * need to track the per-chain lockcnt separately.
850          *
851          * If multiple locks are present (or being attempted) on this
852          * particular chain we can just unlock, drop refs, and return.
853          *
854          * Otherwise fall-through on the 1->0 transition.
855          */
856         for (;;) {
857                 lockcnt = chain->lockcnt;
858                 KKASSERT(lockcnt > 0);
859                 cpu_ccfence();
860                 if (lockcnt > 1) {
861                         if (atomic_cmpset_int(&chain->lockcnt,
862                                               lockcnt, lockcnt - 1)) {
863                                 ccms_thread_unlock(&core->cst);
864                                 hammer2_chain_drop(chain);
865                                 return;
866                         }
867                 } else {
868                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
869                                 break;
870                 }
871                 /* retry */
872         }
873
874         /*
875          * On the 1->0 transition we upgrade the core lock (if necessary)
876          * to exclusive for terminal processing.  If after upgrading we find
877          * that lockcnt is non-zero, another thread is racing us and will
878          * handle the unload for us later on, so just cleanup and return
879          * leaving the data/bp intact
880          *
881          * Otherwise if lockcnt is still 0 it is possible for it to become
882          * non-zero and race, but since we hold the core->cst lock
883          * exclusively all that will happen is that the chain will be
884          * reloaded after we unload it.
885          */
886         ostate = ccms_thread_lock_upgrade(&core->cst);
887         if (chain->lockcnt) {
888                 ccms_thread_unlock_upgraded(&core->cst, ostate);
889                 hammer2_chain_drop(chain);
890                 return;
891         }
892
893         /*
894          * Shortcut the case if the data is embedded or not resolved.
895          *
896          * Do NOT NULL out chain->data (e.g. inode data), it might be
897          * dirty.
898          *
899          * The DIRTYBP flag is non-applicable in this situation and can
900          * be cleared to keep the flags state clean.
901          */
902         if (chain->bp == NULL) {
903                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
904                 ccms_thread_unlock_upgraded(&core->cst, ostate);
905                 hammer2_chain_drop(chain);
906                 return;
907         }
908
909         /*
910          * Statistics
911          */
912         if ((chain->flags & HAMMER2_CHAIN_DIRTYBP) == 0) {
913                 ;
914         } else if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
915                 switch(chain->bref.type) {
916                 case HAMMER2_BREF_TYPE_DATA:
917                         counterp = &hammer2_ioa_file_write;
918                         break;
919                 case HAMMER2_BREF_TYPE_INODE:
920                         counterp = &hammer2_ioa_meta_write;
921                         break;
922                 case HAMMER2_BREF_TYPE_INDIRECT:
923                         counterp = &hammer2_ioa_indr_write;
924                         break;
925                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
926                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
927                         counterp = &hammer2_ioa_fmap_write;
928                         break;
929                 default:
930                         counterp = &hammer2_ioa_volu_write;
931                         break;
932                 }
933                 *counterp += chain->bytes;
934         } else {
935                 switch(chain->bref.type) {
936                 case HAMMER2_BREF_TYPE_DATA:
937                         counterp = &hammer2_iod_file_write;
938                         break;
939                 case HAMMER2_BREF_TYPE_INODE:
940                         counterp = &hammer2_iod_meta_write;
941                         break;
942                 case HAMMER2_BREF_TYPE_INDIRECT:
943                         counterp = &hammer2_iod_indr_write;
944                         break;
945                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
946                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
947                         counterp = &hammer2_iod_fmap_write;
948                         break;
949                 default:
950                         counterp = &hammer2_iod_volu_write;
951                         break;
952                 }
953                 *counterp += chain->bytes;
954         }
955
956         /*
957          * Clean out the bp.
958          *
959          * If a device buffer was used for data be sure to destroy the
960          * buffer when we are done to avoid aliases (XXX what about the
961          * underlying VM pages?).
962          *
963          * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
964          *       is possible.
965          */
966 #if 0
967         /*
968          * XXX our primary cache is now the block device, not
969          * the logical file. don't release the buffer.
970          */
971         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
972                 chain->bp->b_flags |= B_RELBUF;
973 #endif
974
975         /*
976          * The DIRTYBP flag tracks whether we have to bdwrite() the buffer
977          * or not.  The flag will get re-set when chain_modify() is called,
978          * even if MODIFIED is already set, allowing the OS to retire the
979          * buffer independent of a hammer2 flus.
980          */
981         chain->data = NULL;
982         if (chain->flags & HAMMER2_CHAIN_DIRTYBP) {
983                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
984                 if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
985                         atomic_clear_int(&chain->flags,
986                                          HAMMER2_CHAIN_IOFLUSH);
987                         chain->bp->b_flags |= B_RELBUF;
988                         cluster_awrite(chain->bp);
989                 } else {
990                         chain->bp->b_flags |= B_CLUSTEROK;
991                         bdwrite(chain->bp);
992                 }
993         } else {
994                 if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
995                         atomic_clear_int(&chain->flags,
996                                          HAMMER2_CHAIN_IOFLUSH);
997                         chain->bp->b_flags |= B_RELBUF;
998                         brelse(chain->bp);
999                 } else {
1000                         /* bp might still be dirty */
1001                         bqrelse(chain->bp);
1002                 }
1003         }
1004         chain->bp = NULL;
1005         ccms_thread_unlock_upgraded(&core->cst, ostate);
1006         hammer2_chain_drop(chain);
1007 }
1008
1009 /*
1010  * Resize the chain's physical storage allocation in-place.  This may
1011  * replace the passed-in chain with a new chain.
1012  *
1013  * Chains can be resized smaller without reallocating the storage.
1014  * Resizing larger will reallocate the storage.
1015  *
1016  * Must be passed an exclusively locked parent and chain, returns a new
1017  * exclusively locked chain at the same index and unlocks the old chain.
1018  * Flushes the buffer if necessary.
1019  *
1020  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1021  * to avoid instantiating a device buffer that conflicts with the vnode
1022  * data buffer.  That is, the passed-in bp is a logical buffer, whereas
1023  * any chain-oriented bp would be a device buffer.
1024  *
1025  * XXX flags currently ignored, uses chain->bp to detect data/no-data.
1026  * XXX return error if cannot resize.
1027  */
1028 void
1029 hammer2_chain_resize(hammer2_trans_t *trans, hammer2_inode_t *ip,
1030                      struct buf *bp,
1031                      hammer2_chain_t *parent, hammer2_chain_t **chainp,
1032                      int nradix, int flags)
1033 {
1034         hammer2_mount_t *hmp;
1035         hammer2_chain_t *chain;
1036         hammer2_off_t pbase;
1037         size_t obytes;
1038         size_t nbytes;
1039         size_t bbytes;
1040         int boff;
1041
1042         chain = *chainp;
1043         hmp = chain->hmp;
1044
1045         /*
1046          * Only data and indirect blocks can be resized for now.
1047          * (The volu root, inodes, and freemap elements use a fixed size).
1048          */
1049         KKASSERT(chain != &hmp->vchain);
1050         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1051                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
1052
1053         /*
1054          * Nothing to do if the element is already the proper size
1055          */
1056         obytes = chain->bytes;
1057         nbytes = 1U << nradix;
1058         if (obytes == nbytes)
1059                 return;
1060
1061         /*
1062          * Delete the old chain and duplicate it at the same (parent, index),
1063          * returning a new chain.  This allows the old chain to still be
1064          * used by the flush code.  Duplication occurs in-place.
1065          *
1066          * The parent does not have to be locked for the delete/duplicate call,
1067          * but is in this particular code path.
1068          *
1069          * NOTE: If we are not crossing a synchronization point the
1070          *       duplication code will simply reuse the existing chain
1071          *       structure.
1072          */
1073         hammer2_chain_delete_duplicate(trans, &chain, 0);
1074
1075         /*
1076          * Set MODIFIED and add a chain ref to prevent destruction.  Both
1077          * modified flags share the same ref.  (duplicated chains do not
1078          * start out MODIFIED unless possibly if the duplication code
1079          * decided to reuse the existing chain as-is).
1080          *
1081          * If the chain is already marked MODIFIED then we can safely
1082          * return the previous allocation to the pool without having to
1083          * worry about snapshots.  XXX check flush synchronization.
1084          */
1085         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1086                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1087                 hammer2_chain_ref(chain);
1088         }
1089
1090         /*
1091          * Relocate the block, even if making it smaller (because different
1092          * block sizes may be in different regions).
1093          */
1094         hammer2_freemap_alloc(trans, chain->hmp, &chain->bref, nbytes);
1095         chain->bytes = nbytes;
1096         /*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
1097
1098         /*
1099          * The device buffer may be larger than the allocation size.
1100          */
1101         bbytes = hammer2_devblksize(chain->bytes);
1102         pbase = chain->bref.data_off & ~(hammer2_off_t)(bbytes - 1);
1103         boff = chain->bref.data_off & HAMMER2_OFF_MASK & (bbytes - 1);
1104
1105         /*
1106          * For now just support it on DATA chains (and not on indirect
1107          * blocks).
1108          */
1109         KKASSERT(chain->bp == NULL);
1110
1111         /*
1112          * Make sure the chain is marked MOVED and SUBMOD is set in the
1113          * parent(s) so the adjustments are picked up by flush.
1114          */
1115         if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
1116                 hammer2_chain_ref(chain);
1117                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
1118         }
1119         hammer2_chain_setsubmod(trans, chain);
1120         *chainp = chain;
1121 }
1122
1123 /*
1124  * Set a chain modified, making it read-write and duplicating it if necessary.
1125  * This function will assign a new physical block to the chain if necessary
1126  *
1127  * Duplication of already-modified chains is possible when the modification
1128  * crosses a flush synchronization boundary.
1129  *
1130  * Non-data blocks - The chain should be locked to at least the RESOLVE_MAYBE
1131  *                   level or the COW operation will not work.
1132  *
1133  * Data blocks     - The chain is usually locked RESOLVE_NEVER so as not to
1134  *                   run the data through the device buffers.
1135  *
1136  * This function may return a different chain than was passed, in which case
1137  * the old chain will be unlocked and the new chain will be locked.
1138  *
1139  * ip->chain may be adjusted by hammer2_chain_modify_ip().
1140  */
1141 hammer2_inode_data_t *
1142 hammer2_chain_modify_ip(hammer2_trans_t *trans, hammer2_inode_t *ip,
1143                         hammer2_chain_t **chainp, int flags)
1144 {
1145         atomic_set_int(&ip->flags, HAMMER2_INODE_MODIFIED);
1146         hammer2_chain_modify(trans, chainp, flags);
1147         if (ip->chain != *chainp)
1148                 hammer2_inode_repoint(ip, NULL, *chainp);
1149         return(&ip->chain->data->ipdata);
1150 }
1151
1152 void
1153 hammer2_chain_modify(hammer2_trans_t *trans, hammer2_chain_t **chainp,
1154                      int flags)
1155 {
1156         hammer2_mount_t *hmp;
1157         hammer2_chain_t *chain;
1158         hammer2_off_t pbase;
1159         hammer2_off_t pmask;
1160         hammer2_off_t peof;
1161         hammer2_tid_t flush_tid;
1162         struct buf *nbp;
1163         int error;
1164         int wasinitial;
1165         size_t psize;
1166         size_t boff;
1167         void *bdata;
1168
1169         /*
1170          * Data must be resolved if already assigned unless explicitly
1171          * flagged otherwise.
1172          */
1173         chain = *chainp;
1174         hmp = chain->hmp;
1175         if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1176             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1177                 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
1178                 hammer2_chain_unlock(chain);
1179         }
1180
1181         /*
1182          * data is not optional for freemap chains (we must always be sure
1183          * to copy the data on COW storage allocations).
1184          */
1185         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1186             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1187                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1188                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1189         }
1190
1191         /*
1192          * If the chain is already marked MODIFIED we can usually just
1193          * return.  However, if a modified chain is modified again in
1194          * a synchronization-point-crossing manner we have to issue a
1195          * delete/duplicate on the chain to avoid flush interference.
1196          */
1197         if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1198                 /*
1199                  * Which flush_tid do we need to check?  If the chain is
1200                  * related to the freemap we have to use the freemap flush
1201                  * tid (free_flush_tid), otherwise we use the normal filesystem
1202                  * flush tid (topo_flush_tid).  The two flush domains are
1203                  * almost completely independent of each other.
1204                  */
1205                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1206                     chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1207                         flush_tid = hmp->topo_flush_tid; /* XXX */
1208                         goto skipxx;    /* XXX */
1209                 } else {
1210                         flush_tid = hmp->topo_flush_tid;
1211                 }
1212
1213                 /*
1214                  * Main tests
1215                  */
1216                 if (chain->modify_tid <= flush_tid &&
1217                     trans->sync_tid > flush_tid) {
1218                         /*
1219                          * Modifications cross synchronization point,
1220                          * requires delete-duplicate.
1221                          */
1222                         KKASSERT((flags & HAMMER2_MODIFY_ASSERTNOCOPY) == 0);
1223                         hammer2_chain_delete_duplicate(trans, chainp, 0);
1224                         chain = *chainp;
1225                         /* fall through using duplicate */
1226                 }
1227 skipxx: /* XXX */
1228                 /*
1229                  * Quick return path, set DIRTYBP to ensure that
1230                  * the later retirement of bp will write it out.
1231                  *
1232                  * quick return path also needs the modify_tid
1233                  * logic.
1234                  */
1235                 if (chain->bp)
1236                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
1237                 if ((flags & HAMMER2_MODIFY_NO_MODIFY_TID) == 0)
1238                         chain->bref.modify_tid = trans->sync_tid;
1239                 chain->modify_tid = trans->sync_tid;
1240                 return;
1241         }
1242
1243         /*
1244          * modify_tid is only update for primary modifications, not for
1245          * propagated brefs.  mirror_tid will be updated regardless during
1246          * the flush, no need to set it here.
1247          */
1248         if ((flags & HAMMER2_MODIFY_NO_MODIFY_TID) == 0)
1249                 chain->bref.modify_tid = trans->sync_tid;
1250
1251         /*
1252          * Set MODIFIED and add a chain ref to prevent destruction.  Both
1253          * modified flags share the same ref.
1254          */
1255         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1256                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1257                 hammer2_chain_ref(chain);
1258         }
1259
1260         /*
1261          * Adjust chain->modify_tid so the flusher knows when the
1262          * modification occurred.
1263          */
1264         chain->modify_tid = trans->sync_tid;
1265
1266         /*
1267          * The modification or re-modification requires an allocation and
1268          * possible COW.
1269          *
1270          * We normally always allocate new storage here.  If storage exists
1271          * and MODIFY_NOREALLOC is passed in, we do not allocate new storage.
1272          */
1273         if (chain != &hmp->vchain &&
1274             chain != &hmp->fchain &&
1275             ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1276              (flags & HAMMER2_MODIFY_NOREALLOC) == 0)
1277         ) {
1278                 hammer2_freemap_alloc(trans, chain->hmp,
1279                                       &chain->bref, chain->bytes);
1280                 /* XXX failed allocation */
1281         }
1282
1283         /*
1284          * Do not COW if OPTDATA is set.  INITIAL flag remains unchanged.
1285          * (OPTDATA does not prevent [re]allocation of storage, only the
1286          * related copy-on-write op).
1287          */
1288         if (flags & HAMMER2_MODIFY_OPTDATA)
1289                 goto skip2;
1290
1291         /*
1292          * Clearing the INITIAL flag (for indirect blocks) indicates that
1293          * we've processed the uninitialized storage allocation.
1294          *
1295          * If this flag is already clear we are likely in a copy-on-write
1296          * situation but we have to be sure NOT to bzero the storage if
1297          * no data is present.
1298          */
1299         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1300                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1301                 wasinitial = 1;
1302         } else {
1303                 wasinitial = 0;
1304         }
1305
1306 #if 0
1307         /*
1308          * We currently should never instantiate a device buffer for a
1309          * file data chain.  (We definitely can for a freemap chain).
1310          *
1311          * XXX we can now do this
1312          */
1313         KKASSERT(chain->bref.type != HAMMER2_BREF_TYPE_DATA);
1314 #endif
1315
1316         /*
1317          * Instantiate data buffer and possibly execute COW operation
1318          */
1319         switch(chain->bref.type) {
1320         case HAMMER2_BREF_TYPE_VOLUME:
1321         case HAMMER2_BREF_TYPE_FREEMAP:
1322         case HAMMER2_BREF_TYPE_INODE:
1323         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1324                 /*
1325                  * The data is embedded, no copy-on-write operation is
1326                  * needed.
1327                  */
1328                 KKASSERT(chain->bp == NULL);
1329                 break;
1330         case HAMMER2_BREF_TYPE_DATA:
1331         case HAMMER2_BREF_TYPE_INDIRECT:
1332         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1333                 /*
1334                  * Perform the copy-on-write operation
1335                  */
1336                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1337
1338                 psize = hammer2_devblksize(chain->bytes);
1339                 pmask = (hammer2_off_t)psize - 1;
1340                 pbase = chain->bref.data_off & ~pmask;
1341                 boff = chain->bref.data_off & (HAMMER2_OFF_MASK & pmask);
1342                 KKASSERT(pbase != 0);
1343                 peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
1344
1345                 /*
1346                  * The getblk() optimization can only be used if the
1347                  * chain element size matches the physical block size.
1348                  */
1349                 if (chain->bp && chain->bp->b_loffset == pbase) {
1350                         nbp = chain->bp;
1351                         error = 0;
1352                 } else if (chain->bytes == psize) {
1353                         nbp = getblk(hmp->devvp, pbase, psize, 0, 0);
1354                         error = 0;
1355                 } else if (hammer2_isclusterable(chain)) {
1356                         error = cluster_read(hmp->devvp, peof, pbase, psize,
1357                                              psize, HAMMER2_PBUFSIZE*4,
1358                                              &nbp);
1359                         adjreadcounter(&chain->bref, chain->bytes);
1360                 } else {
1361                         error = bread(hmp->devvp, pbase, psize, &nbp);
1362                         adjreadcounter(&chain->bref, chain->bytes);
1363                 }
1364                 KKASSERT(error == 0);
1365                 bdata = (char *)nbp->b_data + boff;
1366
1367                 /*
1368                  * Copy or zero-fill on write depending on whether
1369                  * chain->data exists or not.  Retire the existing bp
1370                  * based on the DIRTYBP flag.  Set the DIRTYBP flag to
1371                  * indicate that retirement of nbp should use bdwrite().
1372                  */
1373                 if (chain->data) {
1374                         KKASSERT(chain->bp != NULL);
1375                         if (chain->data != bdata) {
1376                                 bcopy(chain->data, bdata, chain->bytes);
1377                         }
1378                 } else if (wasinitial) {
1379                         bzero(bdata, chain->bytes);
1380                 } else {
1381                         /*
1382                          * We have a problem.  We were asked to COW but
1383                          * we don't have any data to COW with!
1384                          */
1385                         panic("hammer2_chain_modify: having a COW %p\n",
1386                               chain);
1387                 }
1388                 if (chain->bp != nbp) {
1389                         if (chain->bp) {
1390                                 if (chain->flags & HAMMER2_CHAIN_DIRTYBP) {
1391                                         chain->bp->b_flags |= B_CLUSTEROK;
1392                                         bdwrite(chain->bp);
1393                                 } else {
1394                                         chain->bp->b_flags |= B_RELBUF;
1395                                         brelse(chain->bp);
1396                                 }
1397                         }
1398                         chain->bp = nbp;
1399                         BUF_KERNPROC(chain->bp);
1400                 }
1401                 chain->data = bdata;
1402                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
1403                 break;
1404         default:
1405                 panic("hammer2_chain_modify: illegal non-embedded type %d",
1406                       chain->bref.type);
1407                 break;
1408
1409         }
1410 skip2:
1411         hammer2_chain_setsubmod(trans, chain);
1412 }
1413
1414 /*
1415  * Mark the volume as having been modified.  This short-cut version
1416  * does not have to lock the volume's chain, which allows the ioctl
1417  * code to make adjustments to connections without deadlocking.  XXX
1418  *
1419  * No ref is made on vchain when flagging it MODIFIED.
1420  */
1421 void
1422 hammer2_modify_volume(hammer2_mount_t *hmp)
1423 {
1424         hammer2_voldata_lock(hmp);
1425         hammer2_voldata_unlock(hmp, 1);
1426 }
1427
1428 /*
1429  * Locate an in-memory chain.  The parent must be locked.  The in-memory
1430  * chain is returned with a reference and without a lock, or NULL
1431  * if not found.
1432  *
1433  * This function returns the chain at the specified index with the highest
1434  * delete_tid.  The caller must check whether the chain is flagged
1435  * CHAIN_DELETED or not.  However, because chain iterations can be removed
1436  * from memory we must ALSO check that DELETED chains are not flushed.  A
1437  * DELETED chain which has been flushed must be ignored (the caller must
1438  * check the parent's blockref array).
1439  *
1440  * NOTE: If no chain is found the caller usually must check the on-media
1441  *       array to determine if a blockref exists at the index.
1442  */
1443 struct hammer2_chain_find_info {
1444         hammer2_chain_t *best;
1445         hammer2_tid_t   delete_tid;
1446         int index;
1447 };
1448
1449 static
1450 int
1451 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1452 {
1453         struct hammer2_chain_find_info *info = data;
1454
1455         if (child->index < info->index)
1456                 return(-1);
1457         if (child->index > info->index)
1458                 return(1);
1459         return(0);
1460 }
1461
1462 static
1463 int
1464 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1465 {
1466         struct hammer2_chain_find_info *info = data;
1467
1468         if (info->delete_tid < child->delete_tid) {
1469                 info->delete_tid = child->delete_tid;
1470                 info->best = child;
1471         }
1472         return(0);
1473 }
1474
1475 static
1476 hammer2_chain_t *
1477 hammer2_chain_find_locked(hammer2_chain_t *parent, int index)
1478 {
1479         struct hammer2_chain_find_info info;
1480         hammer2_chain_t *child;
1481
1482         info.index = index;
1483         info.delete_tid = 0;
1484         info.best = NULL;
1485
1486         RB_SCAN(hammer2_chain_tree, &parent->core->rbtree,
1487                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
1488                 &info);
1489         child = info.best;
1490
1491         return (child);
1492 }
1493
1494 hammer2_chain_t *
1495 hammer2_chain_find(hammer2_chain_t *parent, int index)
1496 {
1497         hammer2_chain_t *child;
1498
1499         spin_lock(&parent->core->cst.spin);
1500         child = hammer2_chain_find_locked(parent, index);
1501         if (child)
1502                 hammer2_chain_ref(child);
1503         spin_unlock(&parent->core->cst.spin);
1504
1505         return (child);
1506 }
1507
1508 /*
1509  * Return a locked chain structure with all associated data acquired.
1510  * (if LOOKUP_NOLOCK is requested the returned chain is only referenced).
1511  *
1512  * Caller must hold the parent locked shared or exclusive since we may
1513  * need the parent's bref array to find our block.
1514  *
1515  * The returned child is locked as requested.  If NOLOCK, the returned
1516  * child is still at least referenced.
1517  */
1518 hammer2_chain_t *
1519 hammer2_chain_get(hammer2_chain_t *parent, int index, int flags)
1520 {
1521         hammer2_blockref_t *bref;
1522         hammer2_mount_t *hmp = parent->hmp;
1523         hammer2_chain_core_t *above = parent->core;
1524         hammer2_chain_t *chain;
1525         hammer2_chain_t dummy;
1526         int how;
1527
1528         /*
1529          * Figure out how to lock.  MAYBE can be used to optimized
1530          * the initial-create state for indirect blocks.
1531          */
1532         if (flags & HAMMER2_LOOKUP_ALWAYS)
1533                 how = HAMMER2_RESOLVE_ALWAYS;
1534         else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK))
1535                 how = HAMMER2_RESOLVE_NEVER;
1536         else
1537                 how = HAMMER2_RESOLVE_MAYBE;
1538         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK))
1539                 how |= HAMMER2_RESOLVE_SHARED;
1540
1541 retry:
1542         /*
1543          * First see if we have a (possibly modified) chain element cached
1544          * for this (parent, index).  Acquire the data if necessary.
1545          *
1546          * If chain->data is non-NULL the chain should already be marked
1547          * modified.
1548          */
1549         dummy.flags = 0;
1550         dummy.index = index;
1551         dummy.delete_tid = HAMMER2_MAX_TID;
1552         spin_lock(&above->cst.spin);
1553         chain = RB_FIND(hammer2_chain_tree, &above->rbtree, &dummy);
1554         if (chain) {
1555                 hammer2_chain_ref(chain);
1556                 spin_unlock(&above->cst.spin);
1557                 if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
1558                         hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
1559                 return(chain);
1560         }
1561         spin_unlock(&above->cst.spin);
1562
1563         /*
1564          * The parent chain must not be in the INITIAL state.
1565          */
1566         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1567                 panic("hammer2_chain_get: Missing bref(1)");
1568                 /* NOT REACHED */
1569         }
1570
1571         /*
1572          * No RBTREE entry found, lookup the bref and issue I/O (switch on
1573          * the parent's bref to determine where and how big the array is).
1574          */
1575         switch(parent->bref.type) {
1576         case HAMMER2_BREF_TYPE_INODE:
1577                 KKASSERT(index >= 0 && index < HAMMER2_SET_COUNT);
1578                 bref = &parent->data->ipdata.u.blockset.blockref[index];
1579                 break;
1580         case HAMMER2_BREF_TYPE_INDIRECT:
1581         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1582                 KKASSERT(parent->data != NULL);
1583                 KKASSERT(index >= 0 &&
1584                          index < parent->bytes / sizeof(hammer2_blockref_t));
1585                 bref = &parent->data->npdata[index];
1586                 break;
1587         case HAMMER2_BREF_TYPE_VOLUME:
1588                 KKASSERT(index >= 0 && index < HAMMER2_SET_COUNT);
1589                 bref = &hmp->voldata.sroot_blockset.blockref[index];
1590                 break;
1591         case HAMMER2_BREF_TYPE_FREEMAP:
1592                 KKASSERT(index >= 0 && index < HAMMER2_SET_COUNT);
1593                 bref = &hmp->voldata.freemap_blockset.blockref[index];
1594                 break;
1595         default:
1596                 bref = NULL;
1597                 panic("hammer2_chain_get: unrecognized blockref type: %d",
1598                       parent->bref.type);
1599         }
1600         if (bref->type == 0) {
1601                 panic("hammer2_chain_get: Missing bref(2)");
1602                 /* NOT REACHED */
1603         }
1604
1605         /*
1606          * Allocate a chain structure representing the existing media
1607          * entry.  Resulting chain has one ref and is not locked.
1608          *
1609          * The locking operation we do later will issue I/O to read it.
1610          */
1611         chain = hammer2_chain_alloc(hmp, NULL, bref);
1612         hammer2_chain_core_alloc(chain, NULL);  /* ref'd chain returned */
1613
1614         /*
1615          * Link the chain into its parent.  A spinlock is required to safely
1616          * access the RBTREE, and it is possible to collide with another
1617          * hammer2_chain_get() operation because the caller might only hold
1618          * a shared lock on the parent.
1619          */
1620         KKASSERT(parent->refs > 0);
1621         spin_lock(&above->cst.spin);
1622         chain->above = above;
1623         chain->index = index;
1624         if (RB_INSERT(hammer2_chain_tree, &above->rbtree, chain)) {
1625                 chain->above = NULL;
1626                 chain->index = -1;
1627                 spin_unlock(&above->cst.spin);
1628                 hammer2_chain_drop(chain);
1629                 goto retry;
1630         }
1631         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
1632         spin_unlock(&above->cst.spin);
1633
1634         /*
1635          * Our new chain is referenced but NOT locked.  Lock the chain
1636          * below.  The locking operation also resolves its data.
1637          *
1638          * If NOLOCK is set the release will release the one-and-only lock.
1639          */
1640         if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0) {
1641                 hammer2_chain_lock(chain, how); /* recusive lock */
1642                 hammer2_chain_drop(chain);      /* excess ref */
1643         }
1644         return (chain);
1645 }
1646
1647 /*
1648  * Lookup initialization/completion API
1649  */
1650 hammer2_chain_t *
1651 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1652 {
1653         if (flags & HAMMER2_LOOKUP_SHARED) {
1654                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1655                                            HAMMER2_RESOLVE_SHARED);
1656         } else {
1657                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1658         }
1659         return (parent);
1660 }
1661
1662 void
1663 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1664 {
1665         if (parent)
1666                 hammer2_chain_unlock(parent);
1667 }
1668
1669 static
1670 hammer2_chain_t *
1671 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1672 {
1673         hammer2_chain_t *oparent;
1674         hammer2_chain_t *nparent;
1675         hammer2_chain_core_t *above;
1676
1677         oparent = *parentp;
1678         above = oparent->above;
1679
1680         spin_lock(&above->cst.spin);
1681         nparent = above->first_parent;
1682         while (hammer2_chain_refactor_test(nparent, 1))
1683                 nparent = nparent->next_parent;
1684         hammer2_chain_ref(nparent);     /* protect nparent, use in lock */
1685         spin_unlock(&above->cst.spin);
1686
1687         hammer2_chain_unlock(oparent);
1688         hammer2_chain_lock(nparent, how | HAMMER2_RESOLVE_NOREF);
1689         *parentp = nparent;
1690
1691         return (nparent);
1692 }
1693
1694 /*
1695  * Locate any key between key_beg and key_end inclusive.  (*parentp)
1696  * typically points to an inode but can also point to a related indirect
1697  * block and this function will recurse upwards and find the inode again.
1698  *
1699  * WARNING!  THIS DOES NOT RETURN KEYS IN LOGICAL KEY ORDER!  ANY KEY
1700  *           WITHIN THE RANGE CAN BE RETURNED.  HOWEVER, AN ITERATION
1701  *           WHICH PICKS UP WHERE WE LEFT OFF WILL CONTINUE THE SCAN
1702  *           AND ALL IN-RANGE KEYS WILL EVENTUALLY BE RETURNED (NOT
1703  *           NECESSARILY IN ORDER).
1704  *
1705  * (*parentp) must be exclusively locked and referenced and can be an inode
1706  * or an existing indirect block within the inode.
1707  *
1708  * On return (*parentp) will be modified to point at the deepest parent chain
1709  * element encountered during the search, as a helper for an insertion or
1710  * deletion.   The new (*parentp) will be locked and referenced and the old
1711  * will be unlocked and dereferenced (no change if they are both the same).
1712  *
1713  * The matching chain will be returned exclusively locked.  If NOLOCK is
1714  * requested the chain will be returned only referenced.
1715  *
1716  * NULL is returned if no match was found, but (*parentp) will still
1717  * potentially be adjusted.
1718  *
1719  * This function will also recurse up the chain if the key is not within the
1720  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1721  * can simply allow (*parentp) to float inside the loop.
1722  *
1723  * NOTE!  chain->data is not always resolved.  By default it will not be
1724  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1725  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1726  *        BREF_TYPE_DATA as the device buffer can alias the logical file
1727  *        buffer).
1728  */
1729 hammer2_chain_t *
1730 hammer2_chain_lookup(hammer2_chain_t **parentp,
1731                      hammer2_key_t key_beg, hammer2_key_t key_end,
1732                      int flags)
1733 {
1734         hammer2_mount_t *hmp;
1735         hammer2_chain_t *parent;
1736         hammer2_chain_t *chain;
1737         hammer2_chain_t *tmp;
1738         hammer2_blockref_t *base;
1739         hammer2_blockref_t *bref;
1740         hammer2_key_t scan_beg;
1741         hammer2_key_t scan_end;
1742         int count = 0;
1743         int i;
1744         int how_always = HAMMER2_RESOLVE_ALWAYS;
1745         int how_maybe = HAMMER2_RESOLVE_MAYBE;
1746
1747         if (flags & HAMMER2_LOOKUP_ALWAYS)
1748                 how_maybe = how_always;
1749
1750         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
1751                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1752                 how_always |= HAMMER2_RESOLVE_SHARED;
1753         }
1754
1755         /*
1756          * Recurse (*parentp) upward if necessary until the parent completely
1757          * encloses the key range or we hit the inode.
1758          */
1759         parent = *parentp;
1760         hmp = parent->hmp;
1761
1762         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1763                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1764                 scan_beg = parent->bref.key;
1765                 scan_end = scan_beg +
1766                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1767                 if (key_beg >= scan_beg && key_end <= scan_end)
1768                         break;
1769                 parent = hammer2_chain_getparent(parentp, how_maybe);
1770         }
1771
1772 again:
1773         /*
1774          * Locate the blockref array.  Currently we do a fully associative
1775          * search through the array.
1776          */
1777         switch(parent->bref.type) {
1778         case HAMMER2_BREF_TYPE_INODE:
1779                 /*
1780                  * Special shortcut for embedded data returns the inode
1781                  * itself.  Callers must detect this condition and access
1782                  * the embedded data (the strategy code does this for us).
1783                  *
1784                  * This is only applicable to regular files and softlinks.
1785                  */
1786                 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
1787                         if (flags & HAMMER2_LOOKUP_NOLOCK)
1788                                 hammer2_chain_ref(parent);
1789                         else
1790                                 hammer2_chain_lock(parent, how_always);
1791                         return (parent);
1792                 }
1793                 base = &parent->data->ipdata.u.blockset.blockref[0];
1794                 count = HAMMER2_SET_COUNT;
1795                 break;
1796         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1797         case HAMMER2_BREF_TYPE_INDIRECT:
1798                 /*
1799                  * Handle MATCHIND on the parent
1800                  */
1801                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
1802                         scan_beg = parent->bref.key;
1803                         scan_end = scan_beg +
1804                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1805                         if (key_beg == scan_beg && key_end == scan_end) {
1806                                 chain = parent;
1807                                 hammer2_chain_lock(chain, how_maybe);
1808                                 goto done;
1809                         }
1810                 }
1811                 /*
1812                  * Optimize indirect blocks in the INITIAL state to avoid
1813                  * I/O.
1814                  */
1815                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1816                         base = NULL;
1817                 } else {
1818                         if (parent->data == NULL)
1819                                 panic("parent->data is NULL");
1820                         base = &parent->data->npdata[0];
1821                 }
1822                 count = parent->bytes / sizeof(hammer2_blockref_t);
1823                 break;
1824         case HAMMER2_BREF_TYPE_VOLUME:
1825                 base = &hmp->voldata.sroot_blockset.blockref[0];
1826                 count = HAMMER2_SET_COUNT;
1827                 break;
1828         case HAMMER2_BREF_TYPE_FREEMAP:
1829                 base = &hmp->voldata.freemap_blockset.blockref[0];
1830                 count = HAMMER2_SET_COUNT;
1831                 break;
1832         default:
1833                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
1834                       parent->bref.type);
1835                 base = NULL;    /* safety */
1836                 count = 0;      /* safety */
1837         }
1838
1839         /*
1840          * If the element and key overlap we use the element.
1841          *
1842          * NOTE! Deleted elements are effectively invisible.  Deletions
1843          *       proactively clear the parent bref to the deleted child
1844          *       so we do not try to shadow here to avoid parent updates
1845          *       (which would be difficult since multiple deleted elements
1846          *       might represent different flush synchronization points).
1847          */
1848         bref = NULL;
1849         scan_beg = 0;   /* avoid compiler warning */
1850         scan_end = 0;   /* avoid compiler warning */
1851
1852         for (i = 0; i < count; ++i) {
1853                 tmp = hammer2_chain_find(parent, i);
1854                 if (tmp) {
1855                         if (tmp->flags & HAMMER2_CHAIN_DELETED) {
1856                                 hammer2_chain_drop(tmp);
1857                                 continue;
1858                         }
1859                         bref = &tmp->bref;
1860                         KKASSERT(bref->type != 0);
1861                 } else if (base == NULL || base[i].type == 0) {
1862                         continue;
1863                 } else {
1864                         bref = &base[i];
1865                 }
1866                 scan_beg = bref->key;
1867                 scan_end = scan_beg + ((hammer2_key_t)1 << bref->keybits) - 1;
1868                 if (tmp)
1869                         hammer2_chain_drop(tmp);
1870                 if (key_beg <= scan_end && key_end >= scan_beg)
1871                         break;
1872         }
1873         if (i == count) {
1874                 if (key_beg == key_end)
1875                         return (NULL);
1876                 return (hammer2_chain_next(parentp, NULL,
1877                                            key_beg, key_end, flags));
1878         }
1879
1880         /*
1881          * Acquire the new chain element.  If the chain element is an
1882          * indirect block we must search recursively.
1883          *
1884          * It is possible for the tmp chain above to be removed from
1885          * the RBTREE but the parent lock ensures it would not have been
1886          * destroyed from the media, so the chain_get() code will simply
1887          * reload it from the media in that case.
1888          */
1889         chain = hammer2_chain_get(parent, i, flags);
1890         if (chain == NULL)
1891                 return (NULL);
1892
1893         /*
1894          * If the chain element is an indirect block it becomes the new
1895          * parent and we loop on it.
1896          *
1897          * The parent always has to be locked with at least RESOLVE_MAYBE
1898          * so we can access its data.  It might need a fixup if the caller
1899          * passed incompatible flags.  Be careful not to cause a deadlock
1900          * as a data-load requires an exclusive lock.
1901          *
1902          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
1903          * range is within the requested key range we return the indirect
1904          * block and do NOT loop.  This is usually only used to acquire
1905          * freemap nodes.
1906          */
1907         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1908             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1909                 hammer2_chain_unlock(parent);
1910                 *parentp = parent = chain;
1911                 if (flags & HAMMER2_LOOKUP_NOLOCK) {
1912                         hammer2_chain_lock(chain,
1913                                            how_maybe |
1914                                            HAMMER2_RESOLVE_NOREF);
1915                 } else if ((flags & HAMMER2_LOOKUP_NODATA) &&
1916                            chain->data == NULL) {
1917                         hammer2_chain_ref(chain);
1918                         hammer2_chain_unlock(chain);
1919                         hammer2_chain_lock(chain,
1920                                            how_maybe |
1921                                            HAMMER2_RESOLVE_NOREF);
1922                 }
1923                 goto again;
1924         }
1925 done:
1926         /*
1927          * All done, return the chain
1928          */
1929         return (chain);
1930 }
1931
1932 /*
1933  * After having issued a lookup we can iterate all matching keys.
1934  *
1935  * If chain is non-NULL we continue the iteration from just after it's index.
1936  *
1937  * If chain is NULL we assume the parent was exhausted and continue the
1938  * iteration at the next parent.
1939  *
1940  * parent must be locked on entry and remains locked throughout.  chain's
1941  * lock status must match flags.  Chain is always at least referenced.
1942  *
1943  * WARNING!  The MATCHIND flag does not apply to this function.
1944  */
1945 hammer2_chain_t *
1946 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
1947                    hammer2_key_t key_beg, hammer2_key_t key_end,
1948                    int flags)
1949 {
1950         hammer2_mount_t *hmp;
1951         hammer2_chain_t *parent;
1952         hammer2_chain_t *tmp;
1953         hammer2_blockref_t *base;
1954         hammer2_blockref_t *bref;
1955         hammer2_key_t scan_beg;
1956         hammer2_key_t scan_end;
1957         int i;
1958         int how_maybe = HAMMER2_RESOLVE_MAYBE;
1959         int count;
1960
1961         if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK))
1962                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1963
1964         parent = *parentp;
1965         hmp = parent->hmp;
1966
1967 again:
1968         /*
1969          * Calculate the next index and recalculate the parent if necessary.
1970          */
1971         if (chain) {
1972                 /*
1973                  * Continue iteration within current parent.  If not NULL
1974                  * the passed-in chain may or may not be locked, based on
1975                  * the LOOKUP_NOLOCK flag (passed in as returned from lookup
1976                  * or a prior next).
1977                  */
1978                 i = chain->index + 1;
1979                 if (flags & HAMMER2_LOOKUP_NOLOCK)
1980                         hammer2_chain_drop(chain);
1981                 else
1982                         hammer2_chain_unlock(chain);
1983
1984                 /*
1985                  * Any scan where the lookup returned degenerate data embedded
1986                  * in the inode has an invalid index and must terminate.
1987                  */
1988                 if (chain == parent)
1989                         return(NULL);
1990                 chain = NULL;
1991         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1992                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1993                 /*
1994                  * We reached the end of the iteration.
1995                  */
1996                 return (NULL);
1997         } else {
1998                 /*
1999                  * Continue iteration with next parent unless the current
2000                  * parent covers the range.
2001                  */
2002                 scan_beg = parent->bref.key;
2003                 scan_end = scan_beg +
2004                             ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2005                 if (key_beg >= scan_beg && key_end <= scan_end)
2006                         return (NULL);
2007
2008                 i = parent->index + 1;
2009                 parent = hammer2_chain_getparent(parentp, how_maybe);
2010         }
2011
2012 again2:
2013         /*
2014          * Locate the blockref array.  Currently we do a fully associative
2015          * search through the array.
2016          */
2017         switch(parent->bref.type) {
2018         case HAMMER2_BREF_TYPE_INODE:
2019                 base = &parent->data->ipdata.u.blockset.blockref[0];
2020                 count = HAMMER2_SET_COUNT;
2021                 break;
2022         case HAMMER2_BREF_TYPE_INDIRECT:
2023         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2024                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2025                         base = NULL;
2026                 } else {
2027                         KKASSERT(parent->data != NULL);
2028                         base = &parent->data->npdata[0];
2029                 }
2030                 count = parent->bytes / sizeof(hammer2_blockref_t);
2031                 break;
2032         case HAMMER2_BREF_TYPE_VOLUME:
2033                 base = &hmp->voldata.sroot_blockset.blockref[0];
2034                 count = HAMMER2_SET_COUNT;
2035                 break;
2036         case HAMMER2_BREF_TYPE_FREEMAP:
2037                 base = &hmp->voldata.freemap_blockset.blockref[0];
2038                 count = HAMMER2_SET_COUNT;
2039                 break;
2040         default:
2041                 panic("hammer2_chain_next: unrecognized blockref type: %d",
2042                       parent->bref.type);
2043                 base = NULL;    /* safety */
2044                 count = 0;      /* safety */
2045                 break;
2046         }
2047         KKASSERT(i <= count);
2048
2049         /*
2050          * Look for the key.  If we are unable to find a match and an exact
2051          * match was requested we return NULL.  If a range was requested we
2052          * run hammer2_chain_next() to iterate.
2053          *
2054          * NOTE! Deleted elements are effectively invisible.  Deletions
2055          *       proactively clear the parent bref to the deleted child
2056          *       so we do not try to shadow here to avoid parent updates
2057          *       (which would be difficult since multiple deleted elements
2058          *       might represent different flush synchronization points).
2059          */
2060         bref = NULL;
2061         scan_beg = 0;   /* avoid compiler warning */
2062         scan_end = 0;   /* avoid compiler warning */
2063
2064         while (i < count) {
2065                 tmp = hammer2_chain_find(parent, i);
2066                 if (tmp) {
2067                         if (tmp->flags & HAMMER2_CHAIN_DELETED) {
2068                                 hammer2_chain_drop(tmp);
2069                                 ++i;
2070                                 continue;
2071                         }
2072                         bref = &tmp->bref;
2073                 } else if (base == NULL || base[i].type == 0) {
2074                         ++i;
2075                         continue;
2076                 } else {
2077                         bref = &base[i];
2078                 }
2079                 scan_beg = bref->key;
2080                 scan_end = scan_beg + ((hammer2_key_t)1 << bref->keybits) - 1;
2081                 if (tmp)
2082                         hammer2_chain_drop(tmp);
2083                 if (key_beg <= scan_end && key_end >= scan_beg)
2084                         break;
2085                 ++i;
2086         }
2087
2088         /*
2089          * If we couldn't find a match recurse up a parent to continue the
2090          * search.
2091          */
2092         if (i == count)
2093                 goto again;
2094
2095         /*
2096          * Acquire the new chain element.  If the chain element is an
2097          * indirect block we must search recursively.
2098          */
2099         chain = hammer2_chain_get(parent, i, flags);
2100         if (chain == NULL)
2101                 return (NULL);
2102
2103         /*
2104          * If the chain element is an indirect block it becomes the new
2105          * parent and we loop on it.
2106          *
2107          * The parent always has to be locked with at least RESOLVE_MAYBE
2108          * so we can access its data.  It might need a fixup if the caller
2109          * passed incompatible flags.  Be careful not to cause a deadlock
2110          * as a data-load requires an exclusive lock.
2111          *
2112          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2113          * range is within the requested key range we return the indirect
2114          * block and do NOT loop.  This is usually only used to acquire
2115          * freemap nodes.
2116          */
2117         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2118             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2119                 if ((flags & HAMMER2_LOOKUP_MATCHIND) == 0 ||
2120                     key_beg > scan_beg || key_end < scan_end) {
2121                         hammer2_chain_unlock(parent);
2122                         *parentp = parent = chain;
2123                         chain = NULL;
2124                         if (flags & HAMMER2_LOOKUP_NOLOCK) {
2125                                 hammer2_chain_lock(parent,
2126                                                    how_maybe |
2127                                                    HAMMER2_RESOLVE_NOREF);
2128                         } else if ((flags & HAMMER2_LOOKUP_NODATA) &&
2129                                    parent->data == NULL) {
2130                                 hammer2_chain_ref(parent);
2131                                 hammer2_chain_unlock(parent);
2132                                 hammer2_chain_lock(parent,
2133                                                    how_maybe |
2134                                                    HAMMER2_RESOLVE_NOREF);
2135                         }
2136                         i = 0;
2137                         goto again2;
2138                 }
2139         }
2140
2141         /*
2142          * All done, return chain
2143          */
2144         return (chain);
2145 }
2146
2147 /*
2148  * Loop on parent's children, issuing the callback for each child.
2149  *
2150  * Uses LOOKUP flags.
2151  */
2152 int
2153 hammer2_chain_iterate(hammer2_chain_t *parent,
2154                       int (*callback)(hammer2_chain_t *parent,
2155                                       hammer2_chain_t **chainp,
2156                                       void *arg),
2157                       void *arg, int flags)
2158 {
2159         hammer2_chain_t *chain;
2160         hammer2_blockref_t *base;
2161         int count;
2162         int i;
2163         int res;
2164
2165         /*
2166          * Scan the children (if any)
2167          */
2168         res = 0;
2169         i = 0;
2170         for (;;) {
2171                 /*
2172                  * Calculate the blockref array on each loop in order
2173                  * to allow the callback to temporarily unlock/relock
2174                  * the parent.
2175                  */
2176                 switch(parent->bref.type) {
2177                 case HAMMER2_BREF_TYPE_INODE:
2178                         base = &parent->data->ipdata.u.blockset.blockref[0];
2179                         count = HAMMER2_SET_COUNT;
2180                         break;
2181                 case HAMMER2_BREF_TYPE_INDIRECT:
2182                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2183                         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2184                                 base = NULL;
2185                         } else {
2186                                 KKASSERT(parent->data != NULL);
2187                                 base = &parent->data->npdata[0];
2188                         }
2189                         count = parent->bytes / sizeof(hammer2_blockref_t);
2190                         break;
2191                 case HAMMER2_BREF_TYPE_VOLUME:
2192                         base = &parent->hmp->voldata.sroot_blockset.blockref[0];
2193                         count = HAMMER2_SET_COUNT;
2194                         break;
2195                 case HAMMER2_BREF_TYPE_FREEMAP:
2196                         base = &parent->hmp->voldata.freemap_blockset.blockref[0];
2197                         count = HAMMER2_SET_COUNT;
2198                         break;
2199                 default:
2200                         /*
2201                          * The function allows calls on non-recursive
2202                          * chains and will effectively be a nop() in that
2203                          * case.
2204                          */
2205                         base = NULL;
2206                         count = 0;
2207                         break;
2208                 }
2209
2210                 /*
2211                  * Loop termination
2212                  */
2213                 if (i >= count)
2214                         break;
2215
2216                 /*
2217                  * Lookup the child, properly overloading any elements
2218                  * held in memory.
2219                  *
2220                  * NOTE: Deleted elements cover any underlying base[] entry
2221                  *       (which might not have been zero'd out yet).
2222                  *
2223                  * NOTE: The fact that there can be multiple stacked
2224                  *       deleted elements at the same index is hidden
2225                  *       by hammer2_chain_find().
2226                  */
2227                 chain = hammer2_chain_find(parent, i);
2228                 if (chain) {
2229                         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2230                                 hammer2_chain_drop(chain);
2231                                 ++i;
2232                                 continue;
2233                         }
2234                 } else if (base == NULL || base[i].type == 0) {
2235                         ++i;
2236                         continue;
2237                 }
2238                 if (chain)
2239                         hammer2_chain_drop(chain);
2240                 chain = hammer2_chain_get(parent, i, flags);
2241                 if (chain) {
2242                         res = callback(parent, &chain, arg);
2243                         if (chain) {
2244                                 if (flags & HAMMER2_LOOKUP_NOLOCK)
2245                                         hammer2_chain_drop(chain);
2246                                 else
2247                                         hammer2_chain_unlock(chain);
2248                         }
2249                         if (res < 0)
2250                                 break;
2251                 }
2252                 ++i;
2253         }
2254         return res;
2255 }
2256
2257 /*
2258  * Create and return a new hammer2 system memory structure of the specified
2259  * key, type and size and insert it under (*parentp).  This is a full
2260  * insertion, based on the supplied key/keybits, and may involve creating
2261  * indirect blocks and moving other chains around via delete/duplicate.
2262  *
2263  * (*parentp) must be exclusive locked and may be replaced on return
2264  * depending on how much work the function had to do.
2265  *
2266  * (*chainp) usually starts out NULL and returns the newly created chain,
2267  * but if the caller desires the caller may allocate a disconnected chain
2268  * and pass it in instead.  (It is also possible for the caller to use
2269  * chain_duplicate() to create a disconnected chain, manipulate it, then
2270  * pass it into this function to insert it).
2271  *
2272  * This function should NOT be used to insert INDIRECT blocks.  It is
2273  * typically used to create/insert inodes and data blocks.
2274  *
2275  * Caller must pass-in an exclusively locked parent the new chain is to
2276  * be inserted under, and optionally pass-in a disconnected, exclusively
2277  * locked chain to insert (else we create a new chain).  The function will
2278  * adjust (*parentp) as necessary, create or connect the chain, and
2279  * return an exclusively locked chain in *chainp.
2280  */
2281 int
2282 hammer2_chain_create(hammer2_trans_t *trans, hammer2_chain_t **parentp,
2283                      hammer2_chain_t **chainp,
2284                      hammer2_key_t key, int keybits, int type, size_t bytes)
2285 {
2286         hammer2_mount_t *hmp;
2287         hammer2_chain_t *chain;
2288         hammer2_chain_t *child;
2289         hammer2_chain_t *parent = *parentp;
2290         hammer2_chain_core_t *above;
2291         hammer2_blockref_t dummy;
2292         hammer2_blockref_t *base;
2293         int allocated = 0;
2294         int error = 0;
2295         int count;
2296         int i;
2297
2298         above = parent->core;
2299         KKASSERT(ccms_thread_lock_owned(&above->cst));
2300         hmp = parent->hmp;
2301         chain = *chainp;
2302
2303         if (chain == NULL) {
2304                 /*
2305                  * First allocate media space and construct the dummy bref,
2306                  * then allocate the in-memory chain structure.  Set the
2307                  * INITIAL flag for fresh chains.
2308                  */
2309                 bzero(&dummy, sizeof(dummy));
2310                 dummy.type = type;
2311                 dummy.key = key;
2312                 dummy.keybits = keybits;
2313                 dummy.data_off = hammer2_getradix(bytes);
2314                 dummy.methods = parent->bref.methods;
2315                 chain = hammer2_chain_alloc(hmp, trans, &dummy);
2316                 hammer2_chain_core_alloc(chain, NULL);
2317
2318                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2319
2320                 /*
2321                  * Lock the chain manually, chain_lock will load the chain
2322                  * which we do NOT want to do.  (note: chain->refs is set
2323                  * to 1 by chain_alloc() for us, but lockcnt is not).
2324                  */
2325                 chain->lockcnt = 1;
2326                 ccms_thread_lock(&chain->core->cst, CCMS_STATE_EXCLUSIVE);
2327                 allocated = 1;
2328
2329                 /*
2330                  * We do NOT set INITIAL here (yet).  INITIAL is only
2331                  * used for indirect blocks.
2332                  *
2333                  * Recalculate bytes to reflect the actual media block
2334                  * allocation.
2335                  */
2336                 bytes = (hammer2_off_t)1 <<
2337                         (int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2338                 chain->bytes = bytes;
2339
2340                 switch(type) {
2341                 case HAMMER2_BREF_TYPE_VOLUME:
2342                 case HAMMER2_BREF_TYPE_FREEMAP:
2343                         panic("hammer2_chain_create: called with volume type");
2344                         break;
2345                 case HAMMER2_BREF_TYPE_INODE:
2346                         KKASSERT(bytes == HAMMER2_INODE_BYTES);
2347                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
2348                         chain->data = kmalloc(sizeof(chain->data->ipdata),
2349                                               hmp->mchain, M_WAITOK | M_ZERO);
2350                         break;
2351                 case HAMMER2_BREF_TYPE_INDIRECT:
2352                         panic("hammer2_chain_create: cannot be used to"
2353                               "create indirect block");
2354                         break;
2355                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2356                         panic("hammer2_chain_create: cannot be used to"
2357                               "create freemap root or node");
2358                         break;
2359                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2360                         KKASSERT(bytes == sizeof(chain->data->bmdata));
2361                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
2362                         chain->data = kmalloc(sizeof(chain->data->bmdata),
2363                                               hmp->mchain, M_WAITOK | M_ZERO);
2364                         break;
2365                 case HAMMER2_BREF_TYPE_DATA:
2366                 default:
2367                         /* leave chain->data NULL */
2368                         KKASSERT(chain->data == NULL);
2369                         break;
2370                 }
2371         } else {
2372                 /*
2373                  * Potentially update the existing chain's key/keybits.
2374                  *
2375                  * Do NOT mess with the current state of the INITIAL flag.
2376                  */
2377                 chain->bref.key = key;
2378                 chain->bref.keybits = keybits;
2379                 KKASSERT(chain->above == NULL);
2380         }
2381
2382 again:
2383         above = parent->core;
2384
2385         /*
2386          * Locate a free blockref in the parent's array
2387          */
2388         switch(parent->bref.type) {
2389         case HAMMER2_BREF_TYPE_INODE:
2390                 KKASSERT((parent->data->ipdata.op_flags &
2391                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
2392                 KKASSERT(parent->data != NULL);
2393                 base = &parent->data->ipdata.u.blockset.blockref[0];
2394                 count = HAMMER2_SET_COUNT;
2395                 break;
2396         case HAMMER2_BREF_TYPE_INDIRECT:
2397         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2398                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2399                         base = NULL;
2400                 } else {
2401                         KKASSERT(parent->data != NULL);
2402                         base = &parent->data->npdata[0];
2403                 }
2404                 count = parent->bytes / sizeof(hammer2_blockref_t);
2405                 break;
2406         case HAMMER2_BREF_TYPE_VOLUME:
2407                 KKASSERT(parent->data != NULL);
2408                 base = &hmp->voldata.sroot_blockset.blockref[0];
2409                 count = HAMMER2_SET_COUNT;
2410                 break;
2411         case HAMMER2_BREF_TYPE_FREEMAP:
2412                 KKASSERT(parent->data != NULL);
2413                 base = &hmp->voldata.freemap_blockset.blockref[0];
2414                 count = HAMMER2_SET_COUNT;
2415                 break;
2416         default:
2417                 panic("hammer2_chain_create: unrecognized blockref type: %d",
2418                       parent->bref.type);
2419                 count = 0;
2420                 break;
2421         }
2422
2423         /*
2424          * Scan for an unallocated bref, also skipping any slots occupied
2425          * by in-memory chain elements that may not yet have been updated
2426          * in the parent's bref array.
2427          *
2428          * We don't have to hold the spinlock to save an empty slot as
2429          * new slots can only transition from empty if the parent is
2430          * locked exclusively.
2431          */
2432         spin_lock(&above->cst.spin);
2433         for (i = 0; i < count; ++i) {
2434                 child = hammer2_chain_find_locked(parent, i);
2435                 if (child) {
2436                         if (child->flags & HAMMER2_CHAIN_DELETED)
2437                                 break;
2438                         continue;
2439                 }
2440                 if (base == NULL)
2441                         break;
2442                 if (base[i].type == 0)
2443                         break;
2444         }
2445         spin_unlock(&above->cst.spin);
2446
2447         /*
2448          * If no free blockref could be found we must create an indirect
2449          * block and move a number of blockrefs into it.  With the parent
2450          * locked we can safely lock each child in order to move it without
2451          * causing a deadlock.
2452          *
2453          * This may return the new indirect block or the old parent depending
2454          * on where the key falls.  NULL is returned on error.
2455          */
2456         if (i == count) {
2457                 hammer2_chain_t *nparent;
2458
2459                 nparent = hammer2_chain_create_indirect(trans, parent,
2460                                                         key, keybits,
2461                                                         type, &error);
2462                 if (nparent == NULL) {
2463                         if (allocated)
2464                                 hammer2_chain_drop(chain);
2465                         chain = NULL;
2466                         goto done;
2467                 }
2468                 if (parent != nparent) {
2469                         hammer2_chain_unlock(parent);
2470                         parent = *parentp = nparent;
2471                 }
2472                 goto again;
2473         }
2474
2475         /*
2476          * Link the chain into its parent.  Later on we will have to set
2477          * the MOVED bit in situations where we don't mark the new chain
2478          * as being modified.
2479          */
2480         if (chain->above != NULL)
2481                 panic("hammer2: hammer2_chain_create: chain already connected");
2482         KKASSERT(chain->above == NULL);
2483         KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
2484
2485         chain->above = above;
2486         chain->index = i;
2487         spin_lock(&above->cst.spin);
2488         if (RB_INSERT(hammer2_chain_tree, &above->rbtree, chain))
2489                 panic("hammer2_chain_create: collision");
2490         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2491         spin_unlock(&above->cst.spin);
2492
2493         if (allocated) {
2494                 /*
2495                  * Mark the newly created chain modified.
2496                  *
2497                  * Device buffers are not instantiated for DATA elements
2498                  * as these are handled by logical buffers.
2499                  *
2500                  * Indirect and freemap node indirect blocks are handled
2501                  * by hammer2_chain_create_indirect() and not by this
2502                  * function.
2503                  *
2504                  * Data for all other bref types is expected to be
2505                  * instantiated (INODE, LEAF).
2506                  */
2507                 switch(chain->bref.type) {
2508                 case HAMMER2_BREF_TYPE_DATA:
2509                         hammer2_chain_modify(trans, &chain,
2510                                              HAMMER2_MODIFY_OPTDATA |
2511                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2512                         break;
2513                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2514                 case HAMMER2_BREF_TYPE_INODE:
2515                         hammer2_chain_modify(trans, &chain,
2516                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2517                         break;
2518                 default:
2519                         /*
2520                          * Remaining types are not supported by this function.
2521                          * In particular, INDIRECT and LEAF_NODE types are
2522                          * handled by create_indirect().
2523                          */
2524                         panic("hammer2_chain_create: bad type: %d",
2525                               chain->bref.type);
2526                         /* NOT REACHED */
2527                         break;
2528                 }
2529         } else {
2530                 /*
2531                  * When reconnecting a chain we must set MOVED and setsubmod
2532                  * so the flush recognizes that it must update the bref in
2533                  * the parent.
2534                  */
2535                 if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2536                         hammer2_chain_ref(chain);
2537                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
2538                 }
2539                 hammer2_chain_setsubmod(trans, chain);
2540         }
2541
2542 done:
2543         *chainp = chain;
2544
2545         return (error);
2546 }
2547
2548 /*
2549  * Replace (*chainp) with a duplicate.  The original *chainp is unlocked
2550  * and the replacement will be returned locked.  Both the original and the
2551  * new chain will share the same RBTREE (have the same chain->core), with
2552  * the new chain becoming the 'current' chain (meaning it is the first in
2553  * the linked list at core->chain_first).
2554  *
2555  * If (parent, i) then the new duplicated chain is inserted under the parent
2556  * at the specified index (the parent must not have a ref at that index).
2557  *
2558  * If (NULL, -1) then the new duplicated chain is not inserted anywhere,
2559  * similar to if it had just been chain_alloc()'d (suitable for passing into
2560  * hammer2_chain_create() after this function returns).
2561  *
2562  * NOTE! Duplication is used in order to retain the original topology to
2563  *       support flush synchronization points.  Both the original and the
2564  *       new chain will have the same transaction id and thus the operation
2565  *       appears atomic w/regards to media flushes.
2566  */
2567 static void hammer2_chain_dup_fixup(hammer2_chain_t *ochain,
2568                                     hammer2_chain_t *nchain);
2569
2570 void
2571 hammer2_chain_duplicate(hammer2_trans_t *trans, hammer2_chain_t *parent, int i,
2572                         hammer2_chain_t **chainp, hammer2_blockref_t *bref)
2573 {
2574         hammer2_mount_t *hmp;
2575         hammer2_blockref_t *base;
2576         hammer2_chain_t *ochain;
2577         hammer2_chain_t *nchain;
2578         hammer2_chain_t *scan;
2579         hammer2_chain_core_t *above;
2580         size_t bytes;
2581         int count;
2582         int oflags;
2583         void *odata;
2584
2585         /*
2586          * First create a duplicate of the chain structure, associating
2587          * it with the same core, making it the same size, pointing it
2588          * to the same bref (the same media block).
2589          */
2590         ochain = *chainp;
2591         hmp = ochain->hmp;
2592         if (bref == NULL)
2593                 bref = &ochain->bref;
2594         nchain = hammer2_chain_alloc(hmp, trans, bref);
2595         hammer2_chain_core_alloc(nchain, ochain->core);
2596         bytes = (hammer2_off_t)1 <<
2597                 (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2598         nchain->bytes = bytes;
2599         nchain->modify_tid = ochain->modify_tid;
2600
2601         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_NEVER);
2602         hammer2_chain_dup_fixup(ochain, nchain);
2603
2604         /*
2605          * If parent is not NULL, insert into the parent at the requested
2606          * index.  The newly duplicated chain must be marked MOVED and
2607          * SUBMODIFIED set in its parent(s).
2608          *
2609          * Having both chains locked is extremely important for atomicy.
2610          */
2611         if (parent) {
2612                 /*
2613                  * Locate a free blockref in the parent's array
2614                  */
2615                 above = parent->core;
2616                 KKASSERT(ccms_thread_lock_owned(&above->cst));
2617
2618                 switch(parent->bref.type) {
2619                 case HAMMER2_BREF_TYPE_INODE:
2620                         KKASSERT((parent->data->ipdata.op_flags &
2621                                   HAMMER2_OPFLAG_DIRECTDATA) == 0);
2622                         KKASSERT(parent->data != NULL);
2623                         base = &parent->data->ipdata.u.blockset.blockref[0];
2624                         count = HAMMER2_SET_COUNT;
2625                         break;
2626                 case HAMMER2_BREF_TYPE_INDIRECT:
2627                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2628                         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2629                                 base = NULL;
2630                         } else {
2631                                 KKASSERT(parent->data != NULL);
2632                                 base = &parent->data->npdata[0];
2633                         }
2634                         count = parent->bytes / sizeof(hammer2_blockref_t);
2635                         break;
2636                 case HAMMER2_BREF_TYPE_VOLUME:
2637                         KKASSERT(parent->data != NULL);
2638                         base = &hmp->voldata.sroot_blockset.blockref[0];
2639                         count = HAMMER2_SET_COUNT;
2640                         break;
2641                 case HAMMER2_BREF_TYPE_FREEMAP:
2642                         KKASSERT(parent->data != NULL);
2643                         base = &hmp->voldata.freemap_blockset.blockref[0];
2644                         count = HAMMER2_SET_COUNT;
2645                         break;
2646                 default:
2647                         panic("hammer2_chain_create: unrecognized "
2648                               "blockref type: %d",
2649                               parent->bref.type);
2650                         count = 0;
2651                         break;
2652                 }
2653                 KKASSERT(i >= 0 && i < count);
2654
2655                 KKASSERT((nchain->flags & HAMMER2_CHAIN_DELETED) == 0);
2656                 KKASSERT(parent->refs > 0);
2657
2658                 spin_lock(&above->cst.spin);
2659                 nchain->above = above;
2660                 nchain->index = i;
2661                 scan = hammer2_chain_find_locked(parent, i);
2662                 KKASSERT(base == NULL || base[i].type == 0 ||
2663                          scan == NULL ||
2664                          (scan->flags & HAMMER2_CHAIN_DELETED));
2665                 if (RB_INSERT(hammer2_chain_tree, &above->rbtree,
2666                               nchain)) {
2667                         panic("hammer2_chain_duplicate: collision");
2668                 }
2669                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_ONRBTREE);
2670                 spin_unlock(&above->cst.spin);
2671
2672                 if ((nchain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2673                         hammer2_chain_ref(nchain);
2674                         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_MOVED);
2675                 }
2676                 hammer2_chain_setsubmod(trans, nchain);
2677         }
2678
2679         /*
2680          * We have to unlock ochain to flush any dirty data, asserting the
2681          * case (data == NULL) to catch any extra locks that might have been
2682          * present, then transfer state to nchain.
2683          */
2684         oflags = ochain->flags;
2685         odata = ochain->data;
2686         hammer2_chain_unlock(ochain);
2687         KKASSERT((ochain->flags & HAMMER2_CHAIN_EMBEDDED) ||
2688                  ochain->data == NULL);
2689
2690         if (oflags & HAMMER2_CHAIN_INITIAL)
2691                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_INITIAL);
2692
2693         /*
2694          * WARNING!  We should never resolve DATA to device buffers
2695          *           (XXX allow it if the caller did?), and since
2696          *           we currently do not have the logical buffer cache
2697          *           buffer in-hand to fix its cached physical offset
2698          *           we also force the modify code to not COW it. XXX
2699          */
2700         if (oflags & HAMMER2_CHAIN_MODIFIED) {
2701                 if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2702                         hammer2_chain_modify(trans, &nchain,
2703                                              HAMMER2_MODIFY_OPTDATA |
2704                                              HAMMER2_MODIFY_NOREALLOC |
2705                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2706                 } else if (oflags & HAMMER2_CHAIN_INITIAL) {
2707                         hammer2_chain_modify(trans, &nchain,
2708                                              HAMMER2_MODIFY_OPTDATA |
2709                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2710                 } else {
2711                         hammer2_chain_modify(trans, &nchain,
2712                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2713                 }
2714                 hammer2_chain_drop(nchain);
2715         } else {
2716                 if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2717                         hammer2_chain_drop(nchain);
2718                 } else if (oflags & HAMMER2_CHAIN_INITIAL) {
2719                         hammer2_chain_drop(nchain);
2720                 } else {
2721                         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_ALWAYS |
2722                                                    HAMMER2_RESOLVE_NOREF);
2723                         hammer2_chain_unlock(nchain);
2724                 }
2725         }
2726         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_SUBMODIFIED);
2727         *chainp = nchain;
2728 }
2729
2730 #if 0
2731                 /*
2732                  * When the chain is in the INITIAL state we must still
2733                  * ensure that a block has been assigned so MOVED processing
2734                  * works as expected.
2735                  */
2736                 KKASSERT (nchain->bref.type != HAMMER2_BREF_TYPE_DATA);
2737                 hammer2_chain_modify(trans, &nchain,
2738                                      HAMMER2_MODIFY_OPTDATA |
2739                                      HAMMER2_MODIFY_ASSERTNOCOPY);
2740
2741
2742         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_MAYBE |
2743                                    HAMMER2_RESOLVE_NOREF); /* eat excess ref */
2744         hammer2_chain_unlock(nchain);
2745 #endif
2746
2747 /*
2748  * Special in-place delete-duplicate sequence which does not require a
2749  * locked parent.  (*chainp) is marked DELETED and atomically replaced
2750  * with a duplicate.  Atomicy is at the very-fine spin-lock level in
2751  * order to ensure that lookups do not race us.
2752  */
2753 void
2754 hammer2_chain_delete_duplicate(hammer2_trans_t *trans, hammer2_chain_t **chainp,
2755                                int flags)
2756 {
2757         hammer2_mount_t *hmp;
2758         hammer2_chain_t *ochain;
2759         hammer2_chain_t *nchain;
2760         hammer2_chain_core_t *above;
2761         size_t bytes;
2762         int oflags;
2763         void *odata;
2764
2765         /*
2766          * First create a duplicate of the chain structure
2767          */
2768         ochain = *chainp;
2769         hmp = ochain->hmp;
2770         nchain = hammer2_chain_alloc(hmp, trans, &ochain->bref);    /* 1 ref */
2771         if (flags & HAMMER2_DELDUP_RECORE)
2772                 hammer2_chain_core_alloc(nchain, NULL);
2773         else
2774                 hammer2_chain_core_alloc(nchain, ochain->core);
2775         above = ochain->above;
2776
2777         bytes = (hammer2_off_t)1 <<
2778                 (int)(ochain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2779         nchain->bytes = bytes;
2780         nchain->modify_tid = ochain->modify_tid;
2781         nchain->data_count += ochain->data_count;
2782         nchain->inode_count += ochain->inode_count;
2783
2784         /*
2785          * Lock nchain and insert into ochain's core hierarchy, marking
2786          * ochain DELETED at the same time.  Having both chains locked
2787          * is extremely important for atomicy.
2788          */
2789         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_NEVER);
2790         hammer2_chain_dup_fixup(ochain, nchain);
2791         /* extra ref still present from original allocation */
2792
2793         nchain->index = ochain->index;
2794
2795         spin_lock(&above->cst.spin);
2796         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_ONRBTREE);
2797         ochain->delete_tid = trans->sync_tid;
2798         nchain->above = above;
2799         atomic_set_int(&ochain->flags, HAMMER2_CHAIN_DELETED);
2800         if ((ochain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2801                 hammer2_chain_ref(ochain);
2802                 atomic_set_int(&ochain->flags, HAMMER2_CHAIN_MOVED);
2803         }
2804         if (RB_INSERT(hammer2_chain_tree, &above->rbtree, nchain)) {
2805                 panic("hammer2_chain_delete_duplicate: collision");
2806         }
2807         spin_unlock(&above->cst.spin);
2808
2809         /*
2810          * We have to unlock ochain to flush any dirty data, asserting the
2811          * case (data == NULL) to catch any extra locks that might have been
2812          * present, then transfer state to nchain.
2813          */
2814         oflags = ochain->flags;
2815         odata = ochain->data;
2816         hammer2_chain_unlock(ochain);   /* replacing ochain */
2817         KKASSERT(ochain->bref.type == HAMMER2_BREF_TYPE_INODE ||
2818                  ochain->data == NULL);
2819
2820         if (oflags & HAMMER2_CHAIN_INITIAL)
2821                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_INITIAL);
2822
2823         /*
2824          * WARNING!  We should never resolve DATA to device buffers
2825          *           (XXX allow it if the caller did?), and since
2826          *           we currently do not have the logical buffer cache
2827          *           buffer in-hand to fix its cached physical offset
2828          *           we also force the modify code to not COW it. XXX
2829          */
2830         if (oflags & HAMMER2_CHAIN_MODIFIED) {
2831                 if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2832                         hammer2_chain_modify(trans, &nchain,
2833                                              HAMMER2_MODIFY_OPTDATA |
2834                                              HAMMER2_MODIFY_NOREALLOC |
2835                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2836                 } else if (oflags & HAMMER2_CHAIN_INITIAL) {
2837                         hammer2_chain_modify(trans, &nchain,
2838                                              HAMMER2_MODIFY_OPTDATA |
2839                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2840                 } else {
2841                         hammer2_chain_modify(trans, &nchain,
2842                                              HAMMER2_MODIFY_ASSERTNOCOPY);
2843                 }
2844                 hammer2_chain_drop(nchain);
2845         } else {
2846                 if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2847                         hammer2_chain_drop(nchain);
2848                 } else if (oflags & HAMMER2_CHAIN_INITIAL) {
2849                         hammer2_chain_drop(nchain);
2850                 } else {
2851                         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_ALWAYS |
2852                                                    HAMMER2_RESOLVE_NOREF);
2853                         hammer2_chain_unlock(nchain);
2854                 }
2855         }
2856
2857         /*
2858          * Unconditionally set the MOVED and SUBMODIFIED bit to force
2859          * update of parent bref and indirect blockrefs during flush.
2860          */
2861         if ((nchain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2862                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_MOVED);
2863                 hammer2_chain_ref(nchain);
2864         }
2865         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_SUBMODIFIED);
2866         hammer2_chain_setsubmod(trans, nchain);
2867         *chainp = nchain;
2868 }
2869
2870 /*
2871  * Helper function to fixup inodes.  The caller procedure stack may hold
2872  * multiple locks on ochain if it represents an inode, preventing our
2873  * unlock from retiring its state to the buffer cache.
2874  *
2875  * In this situation any attempt to access the buffer cache could result
2876  * either in stale data or a deadlock.  Work around the problem by copying
2877  * the embedded data directly.
2878  */
2879 static
2880 void
2881 hammer2_chain_dup_fixup(hammer2_chain_t *ochain, hammer2_chain_t *nchain)
2882 {
2883         if (ochain->data == NULL)
2884                 return;
2885         switch(ochain->bref.type) {
2886         case HAMMER2_BREF_TYPE_INODE:
2887                 KKASSERT(nchain->data == NULL);
2888                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_EMBEDDED);
2889                 nchain->data = kmalloc(sizeof(nchain->data->ipdata),
2890                                        ochain->hmp->mchain, M_WAITOK | M_ZERO);
2891                 nchain->data->ipdata = ochain->data->ipdata;
2892                 break;
2893         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2894                 KKASSERT(nchain->data == NULL);
2895                 atomic_set_int(&nchain->flags, HAMMER2_CHAIN_EMBEDDED);
2896                 nchain->data = kmalloc(sizeof(nchain->data->bmdata),
2897                                        ochain->hmp->mchain, M_WAITOK | M_ZERO);
2898                 bcopy(ochain->data->bmdata,
2899                       nchain->data->bmdata,
2900                       sizeof(nchain->data->bmdata));
2901                 break;
2902         default:
2903                 break;
2904         }
2905 }
2906
2907 /*
2908  * Create a snapshot of the specified {parent, chain} with the specified
2909  * label.
2910  *
2911  * (a) We create a duplicate connected to the super-root as the specified
2912  *     label.
2913  *
2914  * (b) We issue a restricted flush using the current transaction on the
2915  *     duplicate.
2916  *
2917  * (c) We disconnect and reallocate the duplicate's core.
2918  */
2919 int
2920 hammer2_chain_snapshot(hammer2_trans_t *trans, hammer2_inode_t *ip,
2921                        hammer2_ioc_pfs_t *pfs)
2922 {
2923         hammer2_cluster_t *cluster;
2924         hammer2_mount_t *hmp;
2925         hammer2_chain_t *chain;
2926         hammer2_chain_t *nchain;
2927         hammer2_chain_t *parent;
2928         hammer2_inode_data_t *ipdata;
2929         size_t name_len;
2930         hammer2_key_t lhc;
2931         int error;
2932
2933         name_len = strlen(pfs->name);
2934         lhc = hammer2_dirhash(pfs->name, name_len);
2935         cluster = ip->pmp->mount_cluster;
2936         hmp = ip->chain->hmp;
2937         KKASSERT(hmp == cluster->hmp);  /* XXX */
2938
2939         /*
2940          * Create disconnected duplicate
2941          */
2942         KKASSERT((trans->flags & HAMMER2_TRANS_RESTRICTED) == 0);
2943         nchain = ip->chain;
2944         hammer2_chain_lock(nchain, HAMMER2_RESOLVE_MAYBE);
2945         hammer2_chain_duplicate(trans, NULL, -1, &nchain, NULL);
2946         atomic_set_int(&nchain->flags, HAMMER2_CHAIN_RECYCLE |
2947                                        HAMMER2_CHAIN_SNAPSHOT);
2948
2949         /*
2950          * Create named entry in the super-root.
2951          */
2952         parent = hammer2_chain_lookup_init(hmp->schain, 0);
2953         error = 0;
2954         while (error == 0) {
2955                 chain = hammer2_chain_lookup(&parent, lhc, lhc, 0);
2956                 if (chain == NULL)
2957                         break;
2958                 if ((lhc & HAMMER2_DIRHASH_LOMASK) == HAMMER2_DIRHASH_LOMASK)
2959                         error = ENOSPC;
2960                 hammer2_chain_unlock(chain);
2961                 chain = NULL;
2962                 ++lhc;
2963         }
2964         hammer2_chain_create(trans, &parent, &nchain, lhc, 0,
2965                              HAMMER2_BREF_TYPE_INODE,
2966                              HAMMER2_INODE_BYTES);
2967         hammer2_chain_modify(trans, &nchain, HAMMER2_MODIFY_ASSERTNOCOPY);
2968         hammer2_chain_lookup_done(parent);
2969         parent = NULL;  /* safety */
2970
2971         /*
2972          * Name fixup
2973          */
2974         ipdata = &nchain->data->ipdata;
2975         ipdata->name_key = lhc;
2976         ipdata->name_len = name_len;
2977         ksnprintf(ipdata->filename, sizeof(ipdata->filename), "%s", pfs->name);
2978
2979         /*
2980          * Set PFS type, generate a unique filesystem id, and generate
2981          * a cluster id.  Use the same clid when snapshotting a PFS root,
2982          * which theoretically allows the snapshot to be used as part of
2983          * the same cluster (perhaps as a cache).
2984          */
2985         ipdata->pfs_type = HAMMER2_PFSTYPE_SNAPSHOT;
2986         kern_uuidgen(&ipdata->pfs_fsid, 1);
2987         if (ip->chain == cluster->rchain)
2988                 ipdata->pfs_clid = ip->chain->data->ipdata.pfs_clid;
2989         else
2990                 kern_uuidgen(&ipdata->pfs_clid, 1);
2991
2992         /*
2993          * Issue a restricted flush of the snapshot.  This is a synchronous
2994          * operation.
2995          */
2996         trans->flags |= HAMMER2_TRANS_RESTRICTED;
2997         kprintf("SNAPSHOTA\n");
2998         tsleep(trans, 0, "snapslp", hz*4);
2999         kprintf("SNAPSHOTB\n");
3000         hammer2_chain_flush(trans, nchain);
3001         trans->flags &= ~HAMMER2_TRANS_RESTRICTED;
3002
3003 #if 0
3004         /*
3005          * Remove the link b/c nchain is a snapshot and snapshots don't
3006          * follow CHAIN_DELETED semantics ?
3007          */
3008         chain = ip->chain;
3009
3010
3011         KKASSERT(chain->duplink == nchain);
3012         KKASSERT(chain->core == nchain->core);
3013         KKASSERT(nchain->refs >= 2);
3014         chain->duplink = nchain->duplink;
3015         atomic_clear_int(&nchain->flags, HAMMER2_CHAIN_DUPTARGET);
3016         hammer2_chain_drop(nchain);
3017 #endif
3018
3019         kprintf("snapshot %s nchain->refs %d nchain->flags %08x\n",
3020                 pfs->name, nchain->refs, nchain->flags);
3021         hammer2_chain_unlock(nchain);
3022
3023         return (error);
3024 }
3025
3026 /*
3027  * Create an indirect block that covers one or more of the elements in the
3028  * current parent.  Either returns the existing parent with no locking or
3029  * ref changes or returns the new indirect block locked and referenced
3030  * and leaving the original parent lock/ref intact as well.
3031  *
3032  * If an error occurs, NULL is returned and *errorp is set to the error.
3033  *
3034  * The returned chain depends on where the specified key falls.
3035  *
3036  * The key/keybits for the indirect mode only needs to follow three rules:
3037  *
3038  * (1) That all elements underneath it fit within its key space and
3039  *
3040  * (2) That all elements outside it are outside its key space.
3041  *
3042  * (3) When creating the new indirect block any elements in the current
3043  *     parent that fit within the new indirect block's keyspace must be
3044  *     moved into the new indirect block.
3045  *
3046  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3047  *     keyspace the the current parent, but lookup/iteration rules will
3048  *     ensure (and must ensure) that rule (2) for all parents leading up
3049  *     to the nearest inode or the root volume header is adhered to.  This
3050  *     is accomplished by always recursing through matching keyspaces in
3051  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3052  *
3053  * The current implementation calculates the current worst-case keyspace by
3054  * iterating the current parent and then divides it into two halves, choosing
3055  * whichever half has the most elements (not necessarily the half containing
3056  * the requested key).
3057  *
3058  * We can also opt to use the half with the least number of elements.  This
3059  * causes lower-numbered keys (aka logical file offsets) to recurse through
3060  * fewer indirect blocks and higher-numbered keys to recurse through more.
3061  * This also has the risk of not moving enough elements to the new indirect
3062  * block and being forced to create several indirect blocks before the element
3063  * can be inserted.
3064  *
3065  * Must be called with an exclusively locked parent.
3066  */
3067 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3068                                 hammer2_key_t *keyp, int keybits,
3069                                 hammer2_blockref_t *base, int count);
3070 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
3071                                 hammer2_key_t *keyp, int keybits,
3072                                 hammer2_blockref_t *base, int count);
3073 static
3074 hammer2_chain_t *
3075 hammer2_chain_create_indirect(hammer2_trans_t *trans, hammer2_chain_t *parent,
3076                               hammer2_key_t create_key, int create_bits,
3077                               int for_type, int *errorp)
3078 {
3079         hammer2_mount_t *hmp;
3080         hammer2_chain_core_t *above;
3081         hammer2_chain_core_t *icore;
3082         hammer2_blockref_t *base;
3083         hammer2_blockref_t *bref;
3084         hammer2_chain_t *chain;
3085         hammer2_chain_t *child;
3086         hammer2_chain_t *ichain;
3087         hammer2_chain_t dummy;
3088         hammer2_key_t key = create_key;
3089         int keybits = create_bits;
3090         int count;
3091         int nbytes;
3092         int i;
3093
3094         /*
3095          * Calculate the base blockref pointer or NULL if the chain
3096          * is known to be empty.  We need to calculate the array count
3097          * for RB lookups either way.
3098          */
3099         hmp = parent->hmp;
3100         *errorp = 0;
3101         KKASSERT(ccms_thread_lock_owned(&parent->core->cst));
3102         above = parent->core;
3103
3104         /*hammer2_chain_modify(trans, &parent, HAMMER2_MODIFY_OPTDATA);*/
3105         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3106                 base = NULL;
3107
3108                 switch(parent->bref.type) {
3109                 case HAMMER2_BREF_TYPE_INODE:
3110                         count = HAMMER2_SET_COUNT;
3111                         break;
3112                 case HAMMER2_BREF_TYPE_INDIRECT:
3113                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3114                         count = parent->bytes / sizeof(hammer2_blockref_t);
3115                         break;
3116                 case HAMMER2_BREF_TYPE_VOLUME:
3117                         count = HAMMER2_SET_COUNT;
3118                         break;
3119                 case HAMMER2_BREF_TYPE_FREEMAP:
3120                         count = HAMMER2_SET_COUNT;
3121                         break;
3122                 default:
3123                         panic("hammer2_chain_create_indirect: "
3124                               "unrecognized blockref type: %d",
3125                               parent->bref.type);
3126                         count = 0;
3127                         break;
3128                 }
3129         } else {
3130                 switch(parent->bref.type) {
3131                 case HAMMER2_BREF_TYPE_INODE:
3132                         base = &parent->data->ipdata.u.blockset.blockref[0];
3133                         count = HAMMER2_SET_COUNT;
3134                         break;
3135                 case HAMMER2_BREF_TYPE_INDIRECT:
3136                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3137                         base = &parent->data->npdata[0];
3138                         count = parent->bytes / sizeof(hammer2_blockref_t);
3139                         break;
3140                 case HAMMER2_BREF_TYPE_VOLUME:
3141                         base = &hmp->voldata.sroot_blockset.blockref[0];
3142                         count = HAMMER2_SET_COUNT;
3143                         break;
3144                 case HAMMER2_BREF_TYPE_FREEMAP:
3145                         base = &hmp->voldata.freemap_blockset.blockref[0];
3146                         count = HAMMER2_SET_COUNT;
3147                         break;
3148                 default:
3149                         panic("hammer2_chain_create_indirect: "
3150                               "unrecognized blockref type: %d",
3151                               parent->bref.type);
3152                         count = 0;
3153                         break;
3154                 }
3155         }
3156
3157         /*
3158          * dummy used in later chain allocation (no longer used for lookups).
3159          */
3160         bzero(&dummy, sizeof(dummy));
3161         dummy.delete_tid = HAMMER2_MAX_TID;
3162
3163         /*
3164          * When creating an indirect block for a freemap node or leaf
3165          * the key/keybits must be fitted to static radix levels because
3166          * particular radix levels use particular reserved blocks in the
3167          * related zone.
3168          *
3169          * This routine calculates the key/radix of the indirect block
3170          * we need to create, and whether it is on the high-side or the
3171          * low-side.
3172          */
3173         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3174             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3175                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
3176                                                        base, count);
3177         } else {
3178                 keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
3179                                                       base, count);
3180         }
3181
3182         /*
3183          * Normalize the key for the radix being represented, keeping the
3184          * high bits and throwing away the low bits.
3185          */
3186         key &= ~(((hammer2_key_t)1 << keybits) - 1);
3187
3188         /*
3189          * How big should our new indirect block be?  It has to be at least
3190          * as large as its parent.
3191          */
3192         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE)
3193                 nbytes = HAMMER2_IND_BYTES_MIN;
3194         else
3195                 nbytes = HAMMER2_IND_BYTES_MAX;
3196         if (nbytes < count * sizeof(hammer2_blockref_t))
3197                 nbytes = count * sizeof(hammer2_blockref_t);
3198
3199         /*
3200          * Ok, create our new indirect block
3201          */
3202         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3203             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3204                 dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
3205         } else {
3206                 dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
3207         }
3208         dummy.bref.key = key;
3209         dummy.bref.keybits = keybits;
3210         dummy.bref.data_off = hammer2_getradix(nbytes);
3211         dummy.bref.methods = parent->bref.methods;
3212
3213         ichain = hammer2_chain_alloc(hmp, trans, &dummy.bref);
3214         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
3215         hammer2_chain_core_alloc(ichain, NULL);
3216         icore = ichain->core;
3217         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
3218         hammer2_chain_drop(ichain);     /* excess ref from alloc */
3219
3220         /*
3221          * We have to mark it modified to allocate its block, but use
3222          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
3223          * it won't be acted upon by the flush code.
3224          *
3225          * XXX leave the node unmodified, depend on the SUBMODIFIED
3226          * flush to assign and modify parent blocks.
3227          */
3228         hammer2_chain_modify(trans, &ichain, HAMMER2_MODIFY_OPTDATA);
3229
3230         /*
3231          * Iterate the original parent and move the matching brefs into
3232          * the new indirect block.
3233          *
3234          * At the same time locate an empty slot (or what will become an
3235          * empty slot) and assign the new indirect block to that slot.
3236          *
3237          * XXX handle flushes.
3238          */
3239         spin_lock(&above->cst.spin);
3240         for (i = 0; i < count; ++i) {
3241                 /*
3242                  * For keying purposes access the bref from the media or
3243                  * from our in-memory cache.  In cases where the in-memory
3244                  * cache overrides the media the keyrefs will be the same
3245                  * anyway so we can avoid checking the cache when the media
3246                  * has a key.
3247                  */
3248                 child = hammer2_chain_find_locked(parent, i);
3249                 if (child) {
3250                         if (child->flags & HAMMER2_CHAIN_DELETED) {
3251                                 if (ichain->index < 0)
3252                                         ichain->index = i;
3253                                 continue;
3254                         }
3255                         bref = &child->bref;
3256                 } else if (base && base[i].type) {
3257                         bref = &base[i];
3258                 } else {
3259                         if (ichain->index < 0)
3260                                 ichain->index = i;
3261                         continue;
3262                 }
3263
3264                 /*
3265                  * Skip keys that are not within the key/radix of the new
3266                  * indirect block.  They stay in the parent.
3267                  */
3268                 if ((~(((hammer2_key_t)1 << keybits) - 1) &
3269                     (key ^ bref->key)) != 0) {
3270                         continue;
3271                 }
3272
3273                 /*
3274                  * This element is being moved from the parent, its slot
3275                  * is available for our new indirect block.
3276                  */
3277                 if (ichain->index < 0)
3278                         ichain->index = i;
3279
3280                 /*
3281                  * Load the new indirect block by acquiring or allocating
3282                  * the related chain entries, then move them to the new
3283                  * parent (ichain) by deleting them from their old location
3284                  * and inserting a duplicate of the chain and any modified
3285                  * sub-chain in the new location.
3286                  *
3287                  * We must set MOVED in the chain being duplicated and
3288                  * SUBMODIFIED in the parent(s) so the flush code knows
3289                  * what is going on.  The latter is done after the loop.
3290                  *
3291                  * WARNING! above->cst.spin must be held when parent is
3292                  *          modified, even though we own the full blown lock,
3293                  *          to deal with setsubmod and rename races.
3294                  *          (XXX remove this req).
3295                  */
3296                 spin_unlock(&above->cst.spin);
3297                 chain = hammer2_chain_get(parent, i, HAMMER2_LOOKUP_NODATA);
3298                 hammer2_chain_delete(trans, chain, HAMMER2_DELETE_WILLDUP);
3299                 hammer2_chain_duplicate(trans, ichain, i, &chain, NULL);
3300                 hammer2_chain_unlock(chain);
3301                 KKASSERT(parent->refs > 0);
3302                 chain = NULL;
3303                 spin_lock(&above->cst.spin);
3304         }
3305         spin_unlock(&above->cst.spin);
3306
3307         /*
3308          * Insert the new indirect block into the parent now that we've
3309          * cleared out some entries in the parent.  We calculated a good
3310          * insertion index in the loop above (ichain->index).
3311          *
3312          * We don't have to set MOVED here because we mark ichain modified
3313          * down below (so the normal modified -> flush -> set-moved sequence
3314          * applies).
3315          *
3316          * The insertion shouldn't race as this is a completely new block
3317          * and the parent is locked.
3318          */
3319         if (ichain->index < 0)
3320                 kprintf("indirect parent %p count %d key %016jx/%d\n",
3321                         parent, count, (intmax_t)key, keybits);
3322         KKASSERT(ichain->index >= 0);
3323         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3324         spin_lock(&above->cst.spin);
3325         if (RB_INSERT(hammer2_chain_tree, &above->rbtree, ichain))
3326                 panic("hammer2_chain_create_indirect: ichain insertion");
3327         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_ONRBTREE);
3328         ichain->above = above;
3329         spin_unlock(&above->cst.spin);
3330
3331         /*
3332          * Mark the new indirect block modified after insertion, which
3333          * will propagate up through parent all the way to the root and
3334          * also allocate the physical block in ichain for our caller,
3335          * and assign ichain->data to a pre-zero'd space (because there
3336          * is not prior data to copy into it).
3337          *
3338          * We have to set SUBMODIFIED in ichain's flags manually so the
3339          * flusher knows it has to recurse through it to get to all of
3340          * our moved blocks, then call setsubmod() to set the bit
3341          * recursively.
3342          */
3343         /*hammer2_chain_modify(trans, &ichain, HAMMER2_MODIFY_OPTDATA);*/
3344         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_SUBMODIFIED);
3345         hammer2_chain_setsubmod(trans, ichain);
3346
3347         /*
3348          * Figure out what to return.
3349          */
3350         if (~(((hammer2_key_t)1 << keybits) - 1) &
3351                    (create_key ^ key)) {
3352                 /*
3353                  * Key being created is outside the key range,
3354                  * return the original parent.
3355                  */
3356                 hammer2_chain_unlock(ichain);
3357         } else {
3358                 /*
3359                  * Otherwise its in the range, return the new parent.
3360                  * (leave both the new and old parent locked).
3361                  */
3362                 parent = ichain;
3363         }
3364
3365         return(parent);
3366 }
3367
3368 /*
3369  * Calculate the keybits and highside/lowside of the freemap node the
3370  * caller is creating.
3371  *
3372  * This routine will specify the next higher-level freemap key/radix
3373  * representing the lowest-ordered set.  By doing so, eventually all
3374  * low-ordered sets will be moved one level down.
3375  *
3376  * We have to be careful here because the freemap reserves a limited
3377  * number of blocks for a limited number of levels.  So we can't just
3378  * push indiscriminately.
3379  */
3380 int
3381 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3382                              int keybits, hammer2_blockref_t *base, int count)
3383 {
3384         hammer2_chain_core_t *above;
3385         hammer2_chain_t *child;
3386         hammer2_blockref_t *bref;
3387         hammer2_key_t key;
3388         int locount;
3389         int hicount;
3390         int i;
3391
3392         key = *keyp;
3393         above = parent->core;
3394         locount = 0;
3395         hicount = 0;
3396         keybits = 64;
3397
3398         /*
3399          * Calculate the range of keys in the array being careful to skip
3400          * slots which are overridden with a deletion.
3401          */
3402         spin_lock(&above->cst.spin);
3403         for (i = 0; i < count; ++i) {
3404                 child = hammer2_chain_find_locked(parent, i);
3405                 if (child) {
3406                         if (child->flags & HAMMER2_CHAIN_DELETED)
3407                                 continue;
3408                         bref = &child->bref;
3409                 } else if (base && base[i].type) {
3410                         bref = &base[i];
3411                 } else {
3412                         continue;
3413                 }
3414
3415                 if (keybits > bref->keybits) {
3416                         key = bref->key;
3417                         keybits = bref->keybits;
3418                 } else if (keybits == bref->keybits && bref->key < key) {
3419                         key = bref->key;
3420                 }
3421         }
3422         spin_unlock(&above->cst.spin);
3423
3424         /*
3425          * Return the keybits for a higher-level FREEMAP_NODE covering
3426          * this node.
3427          */
3428         switch(keybits) {
3429         case HAMMER2_FREEMAP_LEVEL0_RADIX:
3430                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3431                 break;
3432         case HAMMER2_FREEMAP_LEVEL1_RADIX:
3433                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3434                 break;
3435         case HAMMER2_FREEMAP_LEVEL2_RADIX:
3436                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3437                 break;
3438         case HAMMER2_FREEMAP_LEVEL3_RADIX:
3439                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3440                 break;
3441         case HAMMER2_FREEMAP_LEVEL4_RADIX:
3442                 panic("hammer2_chain_indkey_freemap: level too high");
3443                 break;
3444         default:
3445                 panic("hammer2_chain_indkey_freemap: bad radix");
3446                 break;
3447         }
3448         *keyp = key;
3449
3450         return (keybits);
3451 }
3452
3453 /*
3454  * Calculate the keybits and highside/lowside of the indirect block the
3455  * caller is creating.
3456  */
3457 static int
3458 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3459                             int keybits, hammer2_blockref_t *base, int count)
3460 {
3461         hammer2_chain_core_t *above;
3462         hammer2_chain_t *child;
3463         hammer2_blockref_t *bref;
3464         hammer2_key_t key;
3465         int nkeybits;
3466         int locount;
3467         int hicount;
3468         int i;
3469
3470         key = *keyp;
3471         above = parent->core;
3472         locount = 0;
3473         hicount = 0;
3474
3475         /*
3476          * Calculate the range of keys in the array being careful to skip
3477          * slots which are overridden with a deletion.  Once the scan
3478          * completes we will cut the key range in half and shift half the
3479          * range into the new indirect block.
3480          */
3481         spin_lock(&above->cst.spin);
3482         for (i = 0; i < count; ++i) {
3483                 child = hammer2_chain_find_locked(parent, i);
3484                 if (child) {
3485                         if (child->flags & HAMMER2_CHAIN_DELETED)
3486                                 continue;
3487                         bref = &child->bref;
3488                 } else if (base && base[i].type) {
3489                         bref = &base[i];
3490                 } else {
3491                         continue;
3492                 }
3493
3494                 /*
3495                  * Expand our calculated key range (key, keybits) to fit
3496                  * the scanned key.  nkeybits represents the full range
3497                  * that we will later cut in half (two halves @ nkeybits - 1).
3498                  */
3499                 nkeybits = keybits;
3500                 if (nkeybits < bref->keybits) {
3501                         if (bref->keybits > 64) {
3502                                 kprintf("bad bref index %d chain %p bref %p\n",
3503                                         i, child, bref);
3504                                 Debugger("fubar");
3505                         }
3506                         nkeybits = bref->keybits;
3507                 }
3508                 while (nkeybits < 64 &&
3509                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
3510                         (key ^ bref->key)) != 0) {
3511                         ++nkeybits;
3512                 }
3513
3514                 /*
3515                  * If the new key range is larger we have to determine
3516                  * which side of the new key range the existing keys fall
3517                  * under by checking the high bit, then collapsing the
3518                  * locount into the hicount or vise-versa.
3519                  */
3520                 if (keybits != nkeybits) {
3521                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3522                                 hicount += locount;
3523                                 locount = 0;
3524                         } else {
3525                                 locount += hicount;
3526                                 hicount = 0;
3527                         }
3528                         keybits = nkeybits;
3529                 }
3530
3531                 /*
3532                  * The newly scanned key will be in the lower half or the
3533                  * higher half of the (new) key range.
3534                  */
3535                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3536                         ++hicount;
3537                 else
3538                         ++locount;
3539         }
3540         spin_unlock(&above->cst.spin);
3541         bref = NULL;    /* now invalid (safety) */
3542
3543         /*
3544          * Adjust keybits to represent half of the full range calculated
3545          * above (radix 63 max)
3546          */
3547         --keybits;
3548
3549         /*
3550          * Select whichever half contains the most elements.  Theoretically
3551          * we can select either side as long as it contains at least one
3552          * element (in order to ensure that a free slot is present to hold
3553          * the indirect block).
3554          */
3555         if (hammer2_indirect_optimize) {
3556                 /*
3557                  * Insert node for least number of keys, this will arrange
3558                  * the first few blocks of a large file or the first few
3559                  * inodes in a directory with fewer indirect blocks when
3560                  * created linearly.
3561                  */
3562                 if (hicount < locount && hicount != 0)
3563                         key |= (hammer2_key_t)1 << keybits;
3564                 else
3565                         key &= ~(hammer2_key_t)1 << keybits;
3566         } else {
3567                 /*
3568                  * Insert node for most number of keys, best for heavily
3569                  * fragmented files.
3570                  */
3571                 if (hicount > locount)
3572                         key |= (hammer2_key_t)1 << keybits;
3573                 else
3574                         key &= ~(hammer2_key_t)1 << keybits;
3575         }
3576         *keyp = key;
3577
3578         return (keybits);
3579 }
3580
3581 /*
3582  * Sets CHAIN_DELETED and CHAIN_MOVED in the chain being deleted and
3583  * set chain->delete_tid.
3584  *
3585  * This function does NOT generate a modification to the parent.  It
3586  * would be nearly impossible to figure out which parent to modify anyway.
3587  * Such modifications are handled by the flush code and are properly merged
3588  * using the flush synchronization point.
3589  *
3590  * The find/get code will properly overload the RBTREE check on top of
3591  * the bref check to detect deleted entries.
3592  *
3593  * This function is NOT recursive.  Any entity already pushed into the
3594  * chain (such as an inode) may still need visibility into its contents,
3595  * as well as the ability to read and modify the contents.  For example,
3596  * for an unlinked file which is still open.
3597  *
3598  * NOTE: This function does NOT set chain->modify_tid, allowing future
3599  *       code to distinguish between live and deleted chains by testing
3600  *       sync_tid.
3601  *
3602  * NOTE: Deletions normally do not occur in the middle of a duplication
3603  *       chain but we use a trick for hardlink migration that refactors
3604  *       the originating inode without deleting it, so we make no assumptions
3605  *       here.
3606  */
3607 void
3608 hammer2_chain_delete(hammer2_trans_t *trans, hammer2_chain_t *chain, int flags)
3609 {
3610         KKASSERT(ccms_thread_lock_owned(&chain->core->cst));
3611
3612         /*
3613          * Nothing to do if already marked.
3614          */
3615         if (chain->flags & HAMMER2_CHAIN_DELETED)
3616                 return;
3617
3618         /*
3619          * We must set MOVED along with DELETED for the flush code to
3620          * recognize the operation and properly disconnect the chain
3621          * in-memory.
3622          *
3623          * The setting of DELETED causes finds, lookups, and _next iterations
3624          * to no longer recognize the chain.  RB_SCAN()s will still have
3625          * visibility (needed for flush serialization points).
3626          *
3627          * We need the spinlock on the core whos RBTREE contains chain
3628          * to protect against races.
3629          */
3630         spin_lock(&chain->above->cst.spin);
3631         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3632         if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
3633                 hammer2_chain_ref(chain);
3634                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
3635         }
3636         chain->delete_tid = trans->sync_tid;
3637         spin_unlock(&chain->above->cst.spin);
3638
3639         /*
3640          * Mark the underlying block as possibly being free unless WILLDUP
3641          * is set.  Duplication can occur in many situations, particularly
3642          * when chains are moved to indirect blocks.
3643          */
3644         if ((flags & HAMMER2_DELETE_WILLDUP) == 0)
3645                 hammer2_freemap_free(trans, chain->hmp, &chain->bref, 0);
3646         hammer2_chain_setsubmod(trans, chain);
3647 }
3648
3649 void
3650 hammer2_chain_wait(hammer2_chain_t *chain)
3651 {
3652         tsleep(chain, 0, "chnflw", 1);
3653 }
3654
3655 static
3656 void
3657 adjreadcounter(hammer2_blockref_t *bref, size_t bytes)
3658 {
3659         long *counterp;
3660
3661         switch(bref->type) {
3662         case HAMMER2_BREF_TYPE_DATA:
3663                 counterp = &hammer2_iod_file_read;
3664                 break;
3665         case HAMMER2_BREF_TYPE_INODE:
3666                 counterp = &hammer2_iod_meta_read;
3667                 break;
3668         case HAMMER2_BREF_TYPE_INDIRECT:
3669                 counterp = &hammer2_iod_indr_read;
3670                 break;
3671         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3672         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3673                 counterp = &hammer2_iod_fmap_read;
3674                 break;
3675         default:
3676                 counterp = &hammer2_iod_volu_read;
3677                 break;
3678         }
3679         *counterp += bytes;
3680 }