Merge from vendor branch OPENSSH:
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2006, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  * 
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  * 
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  * 
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  * 
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  * 
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  * 
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  * 
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  * 
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.68 2008/04/03 12:55:15 sephe Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.  
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input 
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95
96 #include "opt_polling.h"
97 #include "opt_inet.h"
98 #include "opt_serializer.h"
99
100 #include <sys/param.h>
101 #include <sys/bus.h>
102 #include <sys/endian.h>
103 #include <sys/kernel.h>
104 #include <sys/ktr.h>
105 #include <sys/malloc.h>
106 #include <sys/mbuf.h>
107 #include <sys/module.h>
108 #include <sys/rman.h>
109 #include <sys/serialize.h>
110 #include <sys/socket.h>
111 #include <sys/sockio.h>
112 #include <sys/sysctl.h>
113
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_types.h>
121 #include <net/ifq_var.h>
122 #include <net/vlan/if_vlan_var.h>
123 #include <net/vlan/if_vlan_ether.h>
124
125 #ifdef INET
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/in_var.h>
129 #include <netinet/ip.h>
130 #include <netinet/tcp.h>
131 #include <netinet/udp.h>
132 #endif
133
134 #include <dev/netif/em/if_em_hw.h>
135 #include <dev/netif/em/if_em.h>
136
137 #define EM_X60_WORKAROUND
138
139 /*********************************************************************
140  *  Set this to one to display debug statistics
141  *********************************************************************/
142 int     em_display_debug_stats = 0;
143
144 /*********************************************************************
145  *  Driver version
146  *********************************************************************/
147
148 char em_driver_version[] = "6.2.9";
149
150
151 /*********************************************************************
152  *  PCI Device ID Table
153  *
154  *  Used by probe to select devices to load on
155  *  Last field stores an index into em_strings
156  *  Last entry must be all 0s
157  *
158  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
159  *********************************************************************/
160
161 static em_vendor_info_t em_vendor_info_array[] =
162 {
163         /* Intel(R) PRO/1000 Network Connection */
164         { 0x8086, E1000_DEV_ID_82540EM,         PCI_ANY_ID, PCI_ANY_ID, 0},
165         { 0x8086, E1000_DEV_ID_82540EM_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
166         { 0x8086, E1000_DEV_ID_82540EP,         PCI_ANY_ID, PCI_ANY_ID, 0},
167         { 0x8086, E1000_DEV_ID_82540EP_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
168         { 0x8086, E1000_DEV_ID_82540EP_LP,      PCI_ANY_ID, PCI_ANY_ID, 0},
169
170         { 0x8086, E1000_DEV_ID_82541EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
171         { 0x8086, E1000_DEV_ID_82541ER,         PCI_ANY_ID, PCI_ANY_ID, 0},
172         { 0x8086, E1000_DEV_ID_82541ER_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
173         { 0x8086, E1000_DEV_ID_82541EI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
174         { 0x8086, E1000_DEV_ID_82541GI,         PCI_ANY_ID, PCI_ANY_ID, 0},
175         { 0x8086, E1000_DEV_ID_82541GI_LF,      PCI_ANY_ID, PCI_ANY_ID, 0},
176         { 0x8086, E1000_DEV_ID_82541GI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
177
178         { 0x8086, E1000_DEV_ID_82542,           PCI_ANY_ID, PCI_ANY_ID, 0},
179
180         { 0x8086, E1000_DEV_ID_82543GC_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
181         { 0x8086, E1000_DEV_ID_82543GC_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
182
183         { 0x8086, E1000_DEV_ID_82544EI_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
184         { 0x8086, E1000_DEV_ID_82544EI_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
185         { 0x8086, E1000_DEV_ID_82544GC_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
186         { 0x8086, E1000_DEV_ID_82544GC_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
187
188         { 0x8086, E1000_DEV_ID_82545EM_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
189         { 0x8086, E1000_DEV_ID_82545EM_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
190         { 0x8086, E1000_DEV_ID_82545GM_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
191         { 0x8086, E1000_DEV_ID_82545GM_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
192         { 0x8086, E1000_DEV_ID_82545GM_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
193
194         { 0x8086, E1000_DEV_ID_82546EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
195         { 0x8086, E1000_DEV_ID_82546EB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
196         { 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
197         { 0x8086, E1000_DEV_ID_82546GB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
198         { 0x8086, E1000_DEV_ID_82546GB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
199         { 0x8086, E1000_DEV_ID_82546GB_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
200         { 0x8086, E1000_DEV_ID_82546GB_PCIE,    PCI_ANY_ID, PCI_ANY_ID, 0},
201         { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
202         { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
203                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
204
205         { 0x8086, E1000_DEV_ID_82547EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
206         { 0x8086, E1000_DEV_ID_82547EI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
207         { 0x8086, E1000_DEV_ID_82547GI,         PCI_ANY_ID, PCI_ANY_ID, 0},
208
209         { 0x8086, E1000_DEV_ID_82571EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
210         { 0x8086, E1000_DEV_ID_82571EB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
211         { 0x8086, E1000_DEV_ID_82571EB_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
212         { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
213                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
214         { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE,
215                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
216
217         { 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
218                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
219         { 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
220                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
221         { 0x8086, E1000_DEV_ID_82572EI_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
222         { 0x8086, E1000_DEV_ID_82572EI_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
223         { 0x8086, E1000_DEV_ID_82572EI_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
224         { 0x8086, E1000_DEV_ID_82572EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
225
226         { 0x8086, E1000_DEV_ID_82573E,          PCI_ANY_ID, PCI_ANY_ID, 0},
227         { 0x8086, E1000_DEV_ID_82573E_IAMT,     PCI_ANY_ID, PCI_ANY_ID, 0},
228         { 0x8086, E1000_DEV_ID_82573L,          PCI_ANY_ID, PCI_ANY_ID, 0},
229
230         { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
231                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
232         { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
233                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
234         { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
235                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
236         { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
237                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
238
239         { 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,  PCI_ANY_ID, PCI_ANY_ID, 0},
240         { 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,    PCI_ANY_ID, PCI_ANY_ID, 0},
241         { 0x8086, E1000_DEV_ID_ICH8_IGP_C,      PCI_ANY_ID, PCI_ANY_ID, 0},
242         { 0x8086, E1000_DEV_ID_ICH8_IFE,        PCI_ANY_ID, PCI_ANY_ID, 0},
243         { 0x8086, E1000_DEV_ID_ICH8_IFE_GT,     PCI_ANY_ID, PCI_ANY_ID, 0},
244         { 0x8086, E1000_DEV_ID_ICH8_IFE_G,      PCI_ANY_ID, PCI_ANY_ID, 0},
245         { 0x8086, E1000_DEV_ID_ICH8_IGP_M,      PCI_ANY_ID, PCI_ANY_ID, 0},
246
247         { 0x8086, E1000_DEV_ID_ICH9_IGP_AMT,    PCI_ANY_ID, PCI_ANY_ID, 0},
248         { 0x8086, E1000_DEV_ID_ICH9_IGP_C,      PCI_ANY_ID, PCI_ANY_ID, 0},
249         { 0x8086, E1000_DEV_ID_ICH9_IFE,        PCI_ANY_ID, PCI_ANY_ID, 0},
250         { 0x8086, E1000_DEV_ID_ICH9_IFE_GT,     PCI_ANY_ID, PCI_ANY_ID, 0},
251         { 0x8086, E1000_DEV_ID_ICH9_IFE_G,      PCI_ANY_ID, PCI_ANY_ID, 0},
252
253         { 0x8086, E1000_DEV_ID_82575EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
254         { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
255                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
256         { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
257                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
258         { 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
259         { 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
260         /* required last entry */
261         { 0, 0, 0, 0, 0}
262 };
263
264 /*********************************************************************
265  *  Table of branding strings for all supported NICs.
266  *********************************************************************/
267
268 static const char *em_strings[] = {
269         "Intel(R) PRO/1000 Network Connection"
270 };
271
272 /*********************************************************************
273  *  Function prototypes
274  *********************************************************************/
275 static int      em_probe(device_t);
276 static int      em_attach(device_t);
277 static int      em_detach(device_t);
278 static int      em_shutdown(device_t);
279 static void     em_intr(void *);
280 static int      em_suspend(device_t);
281 static int      em_resume(device_t);
282 static void     em_start(struct ifnet *);
283 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
284 static void     em_watchdog(struct ifnet *);
285 static void     em_init(void *);
286 static void     em_stop(void *);
287 static void     em_media_status(struct ifnet *, struct ifmediareq *);
288 static int      em_media_change(struct ifnet *);
289 static void     em_identify_hardware(struct adapter *);
290 static int      em_allocate_pci_resources(device_t);
291 static void     em_free_pci_resources(device_t);
292 static void     em_local_timer(void *);
293 static int      em_hardware_init(struct adapter *);
294 static void     em_setup_interface(device_t, struct adapter *);
295 static int      em_setup_transmit_structures(struct adapter *);
296 static void     em_initialize_transmit_unit(struct adapter *);
297 static int      em_setup_receive_structures(struct adapter *);
298 static void     em_initialize_receive_unit(struct adapter *);
299 static void     em_enable_intr(struct adapter *);
300 static void     em_disable_intr(struct adapter *);
301 static void     em_free_transmit_structures(struct adapter *);
302 static void     em_free_receive_structures(struct adapter *);
303 static void     em_update_stats_counters(struct adapter *);
304 static void     em_txeof(struct adapter *);
305 static int      em_allocate_receive_structures(struct adapter *);
306 static void     em_rxeof(struct adapter *, int);
307 static void     em_receive_checksum(struct adapter *, struct em_rx_desc *,
308                                     struct mbuf *);
309 static void     em_transmit_checksum_setup(struct adapter *, struct mbuf *,
310                                            uint32_t *, uint32_t *);
311 static void     em_set_promisc(struct adapter *);
312 static void     em_disable_promisc(struct adapter *);
313 static void     em_set_multi(struct adapter *);
314 static void     em_print_hw_stats(struct adapter *);
315 static void     em_update_link_status(struct adapter *);
316 static int      em_get_buf(int i, struct adapter *, struct mbuf *, int how);
317 static void     em_enable_vlans(struct adapter *);
318 static void     em_disable_vlans(struct adapter *);
319 static int      em_encap(struct adapter *, struct mbuf *);
320 static void     em_smartspeed(struct adapter *);
321 static int      em_82547_fifo_workaround(struct adapter *, int);
322 static void     em_82547_update_fifo_head(struct adapter *, int);
323 static int      em_82547_tx_fifo_reset(struct adapter *);
324 static void     em_82547_move_tail(void *);
325 static void     em_82547_move_tail_serialized(struct adapter *);
326 static int      em_dma_malloc(struct adapter *, bus_size_t,
327                               struct em_dma_alloc *);
328 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
329 static void     em_print_debug_info(struct adapter *);
330 static int      em_is_valid_ether_addr(uint8_t *);
331 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
332 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
333 static uint32_t em_fill_descriptors(bus_addr_t address, uint32_t length, 
334                                    PDESC_ARRAY desc_array);
335 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
336 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
337 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
338                                         const char *,
339                                         struct em_int_delay_info *, int, int);
340
341 /*********************************************************************
342  *  FreeBSD Device Interface Entry Points
343  *********************************************************************/
344
345 static device_method_t em_methods[] = {
346         /* Device interface */
347         DEVMETHOD(device_probe, em_probe),
348         DEVMETHOD(device_attach, em_attach),
349         DEVMETHOD(device_detach, em_detach),
350         DEVMETHOD(device_shutdown, em_shutdown),
351         DEVMETHOD(device_suspend, em_suspend),
352         DEVMETHOD(device_resume, em_resume),
353         {0, 0}
354 };
355
356 static driver_t em_driver = {
357         "em", em_methods, sizeof(struct adapter),
358 };
359
360 static devclass_t em_devclass;
361
362 DECLARE_DUMMY_MODULE(if_em);
363 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
364
365 /*********************************************************************
366  *  Tunable default values.
367  *********************************************************************/
368
369 #define E1000_TICKS_TO_USECS(ticks)     ((1024 * (ticks) + 500) / 1000)
370 #define E1000_USECS_TO_TICKS(usecs)     ((1000 * (usecs) + 512) / 1024)
371
372 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
373 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
374 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
375 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
376 static int em_int_throttle_ceil = 10000;
377 static int em_rxd = EM_DEFAULT_RXD;
378 static int em_txd = EM_DEFAULT_TXD;
379 static int em_smart_pwr_down = FALSE;
380
381 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
382 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
383 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
384 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
385 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
386 TUNABLE_INT("hw.em.rxd", &em_rxd);
387 TUNABLE_INT("hw.em.txd", &em_txd);
388 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
389
390 /*
391  * Kernel trace for characterization of operations
392  */
393 #if !defined(KTR_IF_EM)
394 #define KTR_IF_EM       KTR_ALL
395 #endif
396 KTR_INFO_MASTER(if_em);
397 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
398 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
399 #ifdef DEVICE_POLLING
400 KTR_INFO(KTR_IF_EM, if_em, poll_beg, 2, "poll begin", 0);
401 KTR_INFO(KTR_IF_EM, if_em, poll_end, 3, "poll end", 0);
402 #endif
403 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
404 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
405 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
406 #define logif(name)     KTR_LOG(if_em_ ## name)
407
408 /*********************************************************************
409  *  Device identification routine
410  *
411  *  em_probe determines if the driver should be loaded on
412  *  adapter based on PCI vendor/device id of the adapter.
413  *
414  *  return 0 on success, positive on failure
415  *********************************************************************/
416
417 static int
418 em_probe(device_t dev)
419 {
420         em_vendor_info_t *ent;
421
422         uint16_t pci_vendor_id = 0;
423         uint16_t pci_device_id = 0;
424         uint16_t pci_subvendor_id = 0;
425         uint16_t pci_subdevice_id = 0;
426         char adapter_name[60];
427
428         INIT_DEBUGOUT("em_probe: begin");
429
430         pci_vendor_id = pci_get_vendor(dev);
431         if (pci_vendor_id != EM_VENDOR_ID)
432                 return (ENXIO);
433
434         pci_device_id = pci_get_device(dev);
435         pci_subvendor_id = pci_get_subvendor(dev);
436         pci_subdevice_id = pci_get_subdevice(dev);
437
438         ent = em_vendor_info_array;
439         while (ent->vendor_id != 0) {
440                 if ((pci_vendor_id == ent->vendor_id) &&
441                     (pci_device_id == ent->device_id) &&
442
443                     ((pci_subvendor_id == ent->subvendor_id) ||
444                      (ent->subvendor_id == PCI_ANY_ID)) &&
445
446                     ((pci_subdevice_id == ent->subdevice_id) ||
447                      (ent->subdevice_id == PCI_ANY_ID))) {
448                         ksnprintf(adapter_name, sizeof(adapter_name),
449                                  "%s, Version - %s",  em_strings[ent->index], 
450                                  em_driver_version);
451                         device_set_desc_copy(dev, adapter_name);
452                         device_set_async_attach(dev, TRUE);
453                         return (0);
454                 }
455                 ent++;
456         }
457
458         return (ENXIO);
459 }
460
461 /*********************************************************************
462  *  Device initialization routine
463  *
464  *  The attach entry point is called when the driver is being loaded.
465  *  This routine identifies the type of hardware, allocates all resources
466  *  and initializes the hardware.
467  *
468  *  return 0 on success, positive on failure
469  *********************************************************************/
470
471 static int
472 em_attach(device_t dev)
473 {
474         struct adapter *adapter;
475         int tsize, rsize;
476         int error = 0;
477
478         INIT_DEBUGOUT("em_attach: begin");
479
480         adapter = device_get_softc(dev);
481
482         callout_init(&adapter->timer);
483         callout_init(&adapter->tx_fifo_timer);
484
485         adapter->dev = dev;
486         adapter->osdep.dev = dev;
487
488         /* SYSCTL stuff */
489         sysctl_ctx_init(&adapter->sysctl_ctx);
490         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
491                                                SYSCTL_STATIC_CHILDREN(_hw),
492                                                OID_AUTO, 
493                                                device_get_nameunit(dev),
494                                                CTLFLAG_RD,
495                                                0, "");
496
497         if (adapter->sysctl_tree == NULL) {
498                 device_printf(dev, "Unable to create sysctl tree\n");
499                 return EIO;
500         }
501
502         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,  
503                         SYSCTL_CHILDREN(adapter->sysctl_tree),
504                         OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW, 
505                         (void *)adapter, 0,
506                         em_sysctl_debug_info, "I", "Debug Information");
507
508         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,  
509                         SYSCTL_CHILDREN(adapter->sysctl_tree),
510                         OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, 
511                         (void *)adapter, 0,
512                         em_sysctl_stats, "I", "Statistics");
513
514         /* Determine hardware revision */
515         em_identify_hardware(adapter);
516
517         /* Set up some sysctls for the tunable interrupt delays */
518         em_add_int_delay_sysctl(adapter, "rx_int_delay",
519                                 "receive interrupt delay in usecs",
520                                 &adapter->rx_int_delay,
521                                 E1000_REG_OFFSET(&adapter->hw, RDTR),
522                                 em_rx_int_delay_dflt);
523         em_add_int_delay_sysctl(adapter, "tx_int_delay",
524                                 "transmit interrupt delay in usecs",
525                                 &adapter->tx_int_delay,
526                                 E1000_REG_OFFSET(&adapter->hw, TIDV),
527                                 em_tx_int_delay_dflt);
528         if (adapter->hw.mac_type >= em_82540) {
529                 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
530                                         "receive interrupt delay limit in usecs",
531                                         &adapter->rx_abs_int_delay,
532                                         E1000_REG_OFFSET(&adapter->hw, RADV),
533                                         em_rx_abs_int_delay_dflt);
534                 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
535                                         "transmit interrupt delay limit in usecs",
536                                         &adapter->tx_abs_int_delay,
537                                         E1000_REG_OFFSET(&adapter->hw, TADV),
538                                         em_tx_abs_int_delay_dflt);
539                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
540                         SYSCTL_CHILDREN(adapter->sysctl_tree),
541                         OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
542                         adapter, 0, em_sysctl_int_throttle, "I", NULL);
543         }
544
545         /*
546          * Validate number of transmit and receive descriptors. It
547          * must not exceed hardware maximum, and must be multiple
548          * of EM_DBA_ALIGN.
549          */
550         if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
551             (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
552             (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
553             (em_txd < EM_MIN_TXD)) {
554                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
555                               EM_DEFAULT_TXD, em_txd);
556                 adapter->num_tx_desc = EM_DEFAULT_TXD;
557         } else {
558                 adapter->num_tx_desc = em_txd;
559         }
560  
561         if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
562             (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
563             (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
564             (em_rxd < EM_MIN_RXD)) {
565                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
566                               EM_DEFAULT_RXD, em_rxd);
567                 adapter->num_rx_desc = EM_DEFAULT_RXD;
568         } else {
569                 adapter->num_rx_desc = em_rxd;
570         }
571
572         SYSCTL_ADD_INT(&adapter->sysctl_ctx,
573                        SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "rxd",
574                        CTLFLAG_RD, &adapter->num_rx_desc, 0, NULL);
575         SYSCTL_ADD_INT(&adapter->sysctl_ctx,
576                        SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "txd",
577                        CTLFLAG_RD, &adapter->num_tx_desc, 0, NULL);
578
579         adapter->hw.autoneg = DO_AUTO_NEG;
580         adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
581         adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
582         adapter->hw.tbi_compatibility_en = TRUE;
583         adapter->rx_buffer_len = EM_RXBUFFER_2048;
584
585         adapter->hw.phy_init_script = 1;
586         adapter->hw.phy_reset_disable = FALSE;
587
588 #ifndef EM_MASTER_SLAVE
589         adapter->hw.master_slave = em_ms_hw_default;
590 #else
591         adapter->hw.master_slave = EM_MASTER_SLAVE;
592 #endif
593
594         /*
595          * Set the max frame size assuming standard ethernet
596          * sized frames.
597          */   
598         adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
599
600         adapter->hw.min_frame_size =
601             MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
602
603         /*
604          * This controls when hardware reports transmit completion
605          * status.
606          */
607         adapter->hw.report_tx_early = 1;
608
609         error = em_allocate_pci_resources(dev);
610         if (error)
611                 goto fail;
612
613         /* Initialize eeprom parameters */
614         em_init_eeprom_params(&adapter->hw);
615
616         tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
617                          EM_DBA_ALIGN);
618
619         /* Allocate Transmit Descriptor ring */
620         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
621         if (error) {
622                 device_printf(dev, "Unable to allocate TxDescriptor memory\n");
623                 goto fail;
624         }
625         adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
626
627         rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
628                          EM_DBA_ALIGN);
629
630         /* Allocate Receive Descriptor ring */
631         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
632         if (error) {
633                 device_printf(dev, "Unable to allocate rx_desc memory\n");
634                 goto fail;
635         }
636         adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
637
638         /* Initialize the hardware */
639         if (em_hardware_init(adapter)) {
640                 device_printf(dev, "Unable to initialize the hardware\n");
641                 error = EIO;
642                 goto fail;
643         }
644
645         /* Copy the permanent MAC address out of the EEPROM */
646         if (em_read_mac_addr(&adapter->hw) < 0) {
647                 device_printf(dev,
648                               "EEPROM read error while reading MAC address\n");
649                 error = EIO;
650                 goto fail;
651         }
652
653         if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
654                 device_printf(dev, "Invalid MAC address\n");
655                 error = EIO;
656                 goto fail;
657         }
658
659         /* Setup OS specific network interface */
660         em_setup_interface(dev, adapter);
661
662         /* Initialize statistics */
663         em_clear_hw_cntrs(&adapter->hw);
664         em_update_stats_counters(adapter);
665         adapter->hw.get_link_status = 1;
666         em_update_link_status(adapter);
667
668         /* Indicate SOL/IDER usage */
669         if (em_check_phy_reset_block(&adapter->hw)) {
670                 device_printf(dev, "PHY reset is blocked due to "
671                               "SOL/IDER session.\n");
672         }
673  
674         /* Identify 82544 on PCIX */
675         em_get_bus_info(&adapter->hw);
676         if (adapter->hw.bus_type == em_bus_type_pcix &&
677             adapter->hw.mac_type == em_82544)
678                 adapter->pcix_82544 = TRUE;
679         else
680                 adapter->pcix_82544 = FALSE;
681
682         error = bus_setup_intr(dev, adapter->res_interrupt, INTR_NETSAFE,
683                            em_intr, adapter,
684                            &adapter->int_handler_tag,
685                            adapter->interface_data.ac_if.if_serializer);
686         if (error) {
687                 device_printf(dev, "Error registering interrupt handler!\n");
688                 ether_ifdetach(&adapter->interface_data.ac_if);
689                 goto fail;
690         }
691
692         INIT_DEBUGOUT("em_attach: end");
693         return(0);
694
695 fail:
696         em_detach(dev);
697         return(error);
698 }
699
700 /*********************************************************************
701  *  Device removal routine
702  *
703  *  The detach entry point is called when the driver is being removed.
704  *  This routine stops the adapter and deallocates all the resources
705  *  that were allocated for driver operation.
706  *
707  *  return 0 on success, positive on failure
708  *********************************************************************/
709
710 static int
711 em_detach(device_t dev)
712 {
713         struct adapter *adapter = device_get_softc(dev);
714
715         INIT_DEBUGOUT("em_detach: begin");
716
717         if (device_is_attached(dev)) {
718                 struct ifnet *ifp = &adapter->interface_data.ac_if;
719
720                 lwkt_serialize_enter(ifp->if_serializer);
721                 adapter->in_detach = 1;
722                 em_stop(adapter);
723                 em_phy_hw_reset(&adapter->hw);
724                 bus_teardown_intr(dev, adapter->res_interrupt, 
725                                   adapter->int_handler_tag);
726                 lwkt_serialize_exit(ifp->if_serializer);
727
728                 ether_ifdetach(ifp);
729         }
730         bus_generic_detach(dev);
731
732         em_free_pci_resources(dev);
733
734         /* Free Transmit Descriptor ring */
735         if (adapter->tx_desc_base != NULL) {
736                 em_dma_free(adapter, &adapter->txdma);
737                 adapter->tx_desc_base = NULL;
738         }
739
740         /* Free Receive Descriptor ring */
741         if (adapter->rx_desc_base != NULL) {
742                 em_dma_free(adapter, &adapter->rxdma);
743                 adapter->rx_desc_base = NULL;
744         }
745
746         /* Free sysctl tree */
747         if (adapter->sysctl_tree != NULL) {
748                 adapter->sysctl_tree = NULL;
749                 sysctl_ctx_free(&adapter->sysctl_ctx);
750         }
751
752         return (0);
753 }
754
755 /*********************************************************************
756  *
757  *  Shutdown entry point
758  *
759  **********************************************************************/
760
761 static int
762 em_shutdown(device_t dev)
763 {
764         struct adapter *adapter = device_get_softc(dev);
765         struct ifnet *ifp = &adapter->interface_data.ac_if;
766
767         lwkt_serialize_enter(ifp->if_serializer);
768         em_stop(adapter);
769         lwkt_serialize_exit(ifp->if_serializer);
770
771         return (0);
772 }
773
774 /*
775  * Suspend/resume device methods.
776  */
777 static int
778 em_suspend(device_t dev)
779 {
780         struct adapter *adapter = device_get_softc(dev);
781         struct ifnet *ifp = &adapter->interface_data.ac_if;
782
783         lwkt_serialize_enter(ifp->if_serializer);
784         em_stop(adapter);
785         lwkt_serialize_exit(ifp->if_serializer);
786         return (0);
787 }
788
789 static int
790 em_resume(device_t dev)
791 {
792         struct adapter *adapter = device_get_softc(dev);
793         struct ifnet *ifp = &adapter->interface_data.ac_if;
794
795         lwkt_serialize_enter(ifp->if_serializer);
796         ifp->if_flags &= ~IFF_RUNNING;
797         em_init(adapter);
798         if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
799                 em_start(ifp);
800         lwkt_serialize_exit(ifp->if_serializer);
801
802         return bus_generic_resume(dev);
803 }
804
805 /*********************************************************************
806  *  Transmit entry point
807  *
808  *  em_start is called by the stack to initiate a transmit.
809  *  The driver will remain in this routine as long as there are
810  *  packets to transmit and transmit resources are available.
811  *  In case resources are not available stack is notified and
812  *  the packet is requeued.
813  **********************************************************************/
814
815 static void
816 em_start(struct ifnet *ifp)
817 {
818         struct mbuf *m_head;
819         struct adapter *adapter = ifp->if_softc;
820
821         ASSERT_SERIALIZED(ifp->if_serializer);
822
823         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
824                 return;
825         if (!adapter->link_active)
826                 return;
827         while (!ifq_is_empty(&ifp->if_snd)) {
828                 m_head = ifq_poll(&ifp->if_snd);
829
830                 if (m_head == NULL)
831                         break;
832
833                 logif(pkt_txqueue);
834                 if (em_encap(adapter, m_head)) {
835                         ifp->if_flags |= IFF_OACTIVE;
836                         break;
837                 }
838                 ifq_dequeue(&ifp->if_snd, m_head);
839
840                 /* Send a copy of the frame to the BPF listener */
841                 ETHER_BPF_MTAP(ifp, m_head);
842
843                 /* Set timeout in case hardware has problems transmitting. */
844                 ifp->if_timer = EM_TX_TIMEOUT;
845         }
846 }
847
848 /*********************************************************************
849  *  Ioctl entry point
850  *
851  *  em_ioctl is called when the user wants to configure the
852  *  interface.
853  *
854  *  return 0 on success, positive on failure
855  **********************************************************************/
856
857 static int
858 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
859 {
860         int max_frame_size, mask, error = 0, reinit = 0;
861         struct ifreq *ifr = (struct ifreq *) data;
862         struct adapter *adapter = ifp->if_softc;
863         uint16_t eeprom_data = 0;
864
865         ASSERT_SERIALIZED(ifp->if_serializer);
866
867         if (adapter->in_detach)
868                 return 0;
869
870         switch (command) {
871         case SIOCSIFMTU:
872                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
873                 switch (adapter->hw.mac_type) {
874                 case em_82573:
875                         /*
876                          * 82573 only supports jumbo frames
877                          * if ASPM is disabled.
878                          */
879                         em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3,
880                             1, &eeprom_data);
881                         if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
882                                 max_frame_size = ETHER_MAX_LEN;
883                                 break;
884                         }
885                         /* Allow Jumbo frames */
886                         /* FALLTHROUGH */
887                 case em_82571:
888                 case em_82572:
889                 case em_ich9lan:
890                 case em_80003es2lan:    /* Limit Jumbo Frame size */
891                         max_frame_size = 9234;
892                         break;
893                 case em_ich8lan:
894                         /* ICH8 does not support jumbo frames */
895                         max_frame_size = ETHER_MAX_LEN;
896                         break;
897                 default:
898                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
899                         break;
900                 }
901                 if (ifr->ifr_mtu >
902                         max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
903                         error = EINVAL;
904                 } else {
905                         ifp->if_mtu = ifr->ifr_mtu;
906                         adapter->hw.max_frame_size = 
907                         ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
908                         ifp->if_flags &= ~IFF_RUNNING;
909                         em_init(adapter);
910                 }
911                 break;
912         case SIOCSIFFLAGS:
913                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS "
914                                "(Set Interface Flags)");
915                 if (ifp->if_flags & IFF_UP) {
916                         if (!(ifp->if_flags & IFF_RUNNING)) {
917                                 em_init(adapter);
918                         } else if ((ifp->if_flags ^ adapter->if_flags) &
919                                    IFF_PROMISC) {
920                                 em_disable_promisc(adapter);
921                                 em_set_promisc(adapter);
922                         }
923                 } else {
924                         if (ifp->if_flags & IFF_RUNNING)
925                                 em_stop(adapter);
926                 }
927                 adapter->if_flags = ifp->if_flags;
928                 break;
929         case SIOCADDMULTI:
930         case SIOCDELMULTI:
931                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
932                 if (ifp->if_flags & IFF_RUNNING) {
933                         em_disable_intr(adapter);
934                         em_set_multi(adapter);
935                         if (adapter->hw.mac_type == em_82542_rev2_0)
936                                 em_initialize_receive_unit(adapter);
937 #ifdef DEVICE_POLLING
938                         /* Do not enable interrupt if polling(4) is enabled */
939                         if ((ifp->if_flags & IFF_POLLING) == 0)
940 #endif
941                         em_enable_intr(adapter);
942                 }
943                 break;
944         case SIOCSIFMEDIA:
945                 /* Check SOL/IDER usage */
946                 if (em_check_phy_reset_block(&adapter->hw)) {
947                         if_printf(ifp, "Media change is blocked due to "
948                                   "SOL/IDER session.\n");
949                         break;
950                 }
951                 /* FALLTHROUGH */
952         case SIOCGIFMEDIA:
953                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA "
954                                "(Get/Set Interface Media)");
955                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
956                 break;
957         case SIOCSIFCAP:
958                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
959                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
960                 if (mask & IFCAP_HWCSUM) {
961                         ifp->if_capenable ^= IFCAP_HWCSUM;
962                         reinit = 1;
963                 }
964                 if (mask & IFCAP_VLAN_HWTAGGING) {
965                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
966                         reinit = 1;
967                 }
968                 if (reinit && (ifp->if_flags & IFF_RUNNING)) {
969                         ifp->if_flags &= ~IFF_RUNNING;
970                         em_init(adapter);
971                 }
972                 break;
973         default:
974                 error = ether_ioctl(ifp, command, data);
975                 break;
976         }
977
978         return (error);
979 }
980
981 /*********************************************************************
982  *  Watchdog entry point
983  *
984  *  This routine is called whenever hardware quits transmitting.
985  *
986  **********************************************************************/
987
988 static void
989 em_watchdog(struct ifnet *ifp)
990 {
991         struct adapter *adapter = ifp->if_softc;
992
993         /*
994          * If we are in this routine because of pause frames, then
995          * don't reset the hardware.
996          */
997         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
998                 ifp->if_timer = EM_TX_TIMEOUT;
999                 return;
1000         }
1001
1002         if (em_check_for_link(&adapter->hw) == 0)
1003                 if_printf(ifp, "watchdog timeout -- resetting\n");
1004
1005         ifp->if_flags &= ~IFF_RUNNING;
1006         em_init(adapter);
1007
1008         adapter->watchdog_timeouts++;
1009 }
1010
1011 /*********************************************************************
1012  *  Init entry point
1013  *
1014  *  This routine is used in two ways. It is used by the stack as
1015  *  init entry point in network interface structure. It is also used
1016  *  by the driver as a hw/sw initialization routine to get to a
1017  *  consistent state.
1018  *
1019  *  return 0 on success, positive on failure
1020  **********************************************************************/
1021
1022 static void
1023 em_init(void *arg)
1024 {
1025         struct adapter *adapter = arg;
1026         uint32_t pba;
1027         struct ifnet *ifp = &adapter->interface_data.ac_if;
1028
1029         ASSERT_SERIALIZED(ifp->if_serializer);
1030
1031         INIT_DEBUGOUT("em_init: begin");
1032
1033         if (ifp->if_flags & IFF_RUNNING)
1034                 return;
1035
1036         em_stop(adapter);
1037
1038         /*
1039          * Packet Buffer Allocation (PBA)
1040          * Writing PBA sets the receive portion of the buffer
1041          * the remainder is used for the transmit buffer.
1042          *
1043          * Devices before the 82547 had a Packet Buffer of 64K.
1044          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1045          * After the 82547 the buffer was reduced to 40K.
1046          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1047          *   Note: default does not leave enough room for Jumbo Frame >10k.
1048          */
1049         switch (adapter->hw.mac_type) {
1050         case em_82547:
1051         case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1052                 if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1053                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1054                 else
1055                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1056
1057                 adapter->tx_fifo_head = 0;
1058                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1059                 adapter->tx_fifo_size =
1060                         (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1061                 break;
1062         /* Total Packet Buffer on these is 48K */
1063         case em_82571:
1064         case em_82572:
1065         case em_80003es2lan:
1066                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1067                 break;
1068         case em_82573: /* 82573: Total Packet Buffer is 32K */
1069                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1070                 break;
1071         case em_ich8lan:
1072                 pba = E1000_PBA_8K;
1073                 break;
1074         case em_ich9lan:
1075 #define E1000_PBA_10K   0x000A
1076                 pba = E1000_PBA_10K;
1077                 break;
1078         default:
1079                 /* Devices before 82547 had a Packet Buffer of 64K.   */
1080                 if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1081                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1082                 else
1083                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1084         }
1085
1086         INIT_DEBUGOUT1("em_init: pba=%dK",pba);
1087         E1000_WRITE_REG(&adapter->hw, PBA, pba);
1088
1089         /* Get the latest mac address, User can use a LAA */
1090         bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
1091               ETHER_ADDR_LEN);
1092
1093         /* Initialize the hardware */
1094         if (em_hardware_init(adapter)) {
1095                 if_printf(ifp, "Unable to initialize the hardware\n");
1096                 return;
1097         }
1098         em_update_link_status(adapter);
1099
1100         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1101                 em_enable_vlans(adapter);
1102
1103         /* Set hardware offload abilities */
1104         if (adapter->hw.mac_type >= em_82543) {
1105                 if (ifp->if_capenable & IFCAP_TXCSUM)
1106                         ifp->if_hwassist = EM_CHECKSUM_FEATURES;
1107                 else
1108                         ifp->if_hwassist = 0;
1109         }
1110
1111         /* Prepare transmit descriptors and buffers */
1112         if (em_setup_transmit_structures(adapter)) {
1113                 if_printf(ifp, "Could not setup transmit structures\n");
1114                 em_stop(adapter);
1115                 return;
1116         }
1117         em_initialize_transmit_unit(adapter);
1118
1119         /* Setup Multicast table */
1120         em_set_multi(adapter);
1121
1122         /* Prepare receive descriptors and buffers */
1123         if (em_setup_receive_structures(adapter)) {
1124                 if_printf(ifp, "Could not setup receive structures\n");
1125                 em_stop(adapter);
1126                 return;
1127         }
1128         em_initialize_receive_unit(adapter);
1129
1130         /* Don't lose promiscuous settings */
1131         em_set_promisc(adapter);
1132
1133         ifp->if_flags |= IFF_RUNNING;
1134         ifp->if_flags &= ~IFF_OACTIVE;
1135
1136         callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1137         em_clear_hw_cntrs(&adapter->hw);
1138
1139 #ifdef DEVICE_POLLING
1140         /* Do not enable interrupt if polling(4) is enabled */
1141         if (ifp->if_flags & IFF_POLLING)
1142                 em_disable_intr(adapter);
1143         else
1144 #endif
1145         em_enable_intr(adapter);
1146
1147         /* Don't reset the phy next time init gets called */
1148         adapter->hw.phy_reset_disable = TRUE;
1149 }
1150
1151 #ifdef DEVICE_POLLING
1152
1153 static void
1154 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1155 {
1156         struct adapter *adapter = ifp->if_softc;
1157         uint32_t reg_icr;
1158
1159         logif(poll_beg);
1160
1161         ASSERT_SERIALIZED(ifp->if_serializer);
1162
1163         switch(cmd) {
1164         case POLL_REGISTER:
1165                 em_disable_intr(adapter);
1166                 break;
1167         case POLL_DEREGISTER:
1168                 em_enable_intr(adapter);
1169                 break;
1170         case POLL_AND_CHECK_STATUS:
1171                 reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1172                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1173                         callout_stop(&adapter->timer);
1174                         adapter->hw.get_link_status = 1;
1175                         em_check_for_link(&adapter->hw);
1176                         em_update_link_status(adapter);
1177                         callout_reset(&adapter->timer, hz, em_local_timer,
1178                                       adapter);
1179                 }
1180                 /* fall through */
1181         case POLL_ONLY:
1182                 if (ifp->if_flags & IFF_RUNNING) {
1183                         em_rxeof(adapter, count);
1184                         em_txeof(adapter);
1185
1186                         if (!ifq_is_empty(&ifp->if_snd))
1187                                 em_start(ifp);
1188                 }
1189                 break;
1190         }
1191         logif(poll_end);
1192 }
1193
1194 #endif /* DEVICE_POLLING */
1195
1196 /*********************************************************************
1197  *
1198  *  Interrupt Service routine
1199  *
1200  *********************************************************************/
1201 static void
1202 em_intr(void *arg)
1203 {
1204         uint32_t reg_icr;
1205         struct ifnet *ifp;
1206         struct adapter *adapter = arg;
1207
1208         ifp = &adapter->interface_data.ac_if;  
1209
1210         logif(intr_beg);
1211         ASSERT_SERIALIZED(ifp->if_serializer);
1212
1213         reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1214         if ((adapter->hw.mac_type >= em_82571 &&
1215              (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1216             reg_icr == 0) {
1217                 logif(intr_end);
1218                 return;
1219         }
1220
1221         /*
1222          * XXX: some laptops trigger several spurious interrupts on em(4)
1223          * when in the resume cycle. The ICR register reports all-ones
1224          * value in this case. Processing such interrupts would lead to
1225          * a freeze. I don't know why.
1226          */
1227         if (reg_icr == 0xffffffff) {
1228                 logif(intr_end);
1229                 return;
1230         }
1231
1232         /*
1233          * note: do not attempt to improve efficiency by looping.  This 
1234          * only results in unnecessary piecemeal collection of received
1235          * packets and unnecessary piecemeal cleanups of the transmit ring.
1236          */
1237         if (ifp->if_flags & IFF_RUNNING) {
1238                 em_rxeof(adapter, -1);
1239                 em_txeof(adapter);
1240         }
1241
1242         /* Link status change */
1243         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1244                 callout_stop(&adapter->timer);
1245                 adapter->hw.get_link_status = 1;
1246                 em_check_for_link(&adapter->hw);
1247                 em_update_link_status(adapter);
1248                 callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1249         }
1250
1251         if (reg_icr & E1000_ICR_RXO)
1252                 adapter->rx_overruns++;
1253
1254         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1255                 em_start(ifp);
1256         logif(intr_end);
1257 }
1258
1259 /*********************************************************************
1260  *
1261  *  Media Ioctl callback
1262  *
1263  *  This routine is called whenever the user queries the status of
1264  *  the interface using ifconfig.
1265  *
1266  **********************************************************************/
1267 static void
1268 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1269 {
1270         struct adapter *adapter = ifp->if_softc;
1271         u_char fiber_type = IFM_1000_SX;
1272
1273         INIT_DEBUGOUT("em_media_status: begin");
1274
1275         ASSERT_SERIALIZED(ifp->if_serializer);
1276
1277         em_check_for_link(&adapter->hw);
1278         em_update_link_status(adapter);
1279
1280         ifmr->ifm_status = IFM_AVALID;
1281         ifmr->ifm_active = IFM_ETHER;
1282
1283         if (!adapter->link_active)
1284                 return;
1285
1286         ifmr->ifm_status |= IFM_ACTIVE;
1287
1288         if (adapter->hw.media_type == em_media_type_fiber ||
1289             adapter->hw.media_type == em_media_type_internal_serdes) {
1290                 if (adapter->hw.mac_type == em_82545)
1291                         fiber_type = IFM_1000_LX;
1292                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1293         } else {
1294                 switch (adapter->link_speed) {
1295                 case 10:
1296                         ifmr->ifm_active |= IFM_10_T;
1297                         break;
1298                 case 100:
1299                         ifmr->ifm_active |= IFM_100_TX;
1300                         break;
1301                 case 1000:
1302                         ifmr->ifm_active |= IFM_1000_T;
1303                         break;
1304                 }
1305                 if (adapter->link_duplex == FULL_DUPLEX)
1306                         ifmr->ifm_active |= IFM_FDX;
1307                 else
1308                         ifmr->ifm_active |= IFM_HDX;
1309         }
1310 }
1311
1312 /*********************************************************************
1313  *
1314  *  Media Ioctl callback
1315  *
1316  *  This routine is called when the user changes speed/duplex using
1317  *  media/mediopt option with ifconfig.
1318  *
1319  **********************************************************************/
1320 static int
1321 em_media_change(struct ifnet *ifp)
1322 {
1323         struct adapter *adapter = ifp->if_softc;
1324         struct ifmedia *ifm = &adapter->media;
1325
1326         INIT_DEBUGOUT("em_media_change: begin");
1327
1328         ASSERT_SERIALIZED(ifp->if_serializer);
1329
1330         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1331                 return (EINVAL);
1332
1333         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1334         case IFM_AUTO:
1335                 adapter->hw.autoneg = DO_AUTO_NEG;
1336                 adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1337                 break;
1338         case IFM_1000_LX:
1339         case IFM_1000_SX:
1340         case IFM_1000_T:
1341                 adapter->hw.autoneg = DO_AUTO_NEG;
1342                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1343                 break;
1344         case IFM_100_TX:
1345                 adapter->hw.autoneg = FALSE;
1346                 adapter->hw.autoneg_advertised = 0;
1347                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1348                         adapter->hw.forced_speed_duplex = em_100_full;
1349                 else
1350                         adapter->hw.forced_speed_duplex = em_100_half;
1351                 break;
1352         case IFM_10_T:
1353                 adapter->hw.autoneg = FALSE;
1354                 adapter->hw.autoneg_advertised = 0;
1355                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1356                         adapter->hw.forced_speed_duplex = em_10_full;
1357                 else
1358                         adapter->hw.forced_speed_duplex = em_10_half;
1359                 break;
1360         default:
1361                 if_printf(ifp, "Unsupported media type\n");
1362         }
1363         /*
1364          * As the speed/duplex settings may have changed we need to
1365          * reset the PHY.
1366          */
1367         adapter->hw.phy_reset_disable = FALSE;
1368
1369         ifp->if_flags &= ~IFF_RUNNING;
1370         em_init(adapter);
1371
1372         return(0);
1373 }
1374
1375 static void
1376 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1377          int error)
1378 {
1379         struct em_q *q = arg;
1380
1381         if (error)
1382                 return;
1383         KASSERT(nsegs <= EM_MAX_SCATTER,
1384                 ("Too many DMA segments returned when mapping tx packet"));
1385         q->nsegs = nsegs;
1386         bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1387 }
1388
1389 /*********************************************************************
1390  *
1391  *  This routine maps the mbufs to tx descriptors.
1392  *
1393  *  return 0 on success, positive on failure
1394  **********************************************************************/
1395 static int
1396 em_encap(struct adapter *adapter, struct mbuf *m_head)
1397 {
1398         uint32_t txd_upper = 0, txd_lower = 0, txd_used = 0, txd_saved = 0;
1399         int i, j, error, last = 0;
1400
1401         struct em_q q;
1402         struct em_buffer *tx_buffer = NULL, *tx_buffer_first;
1403         bus_dmamap_t map;
1404         struct em_tx_desc *current_tx_desc = NULL;
1405         struct ifnet *ifp = &adapter->interface_data.ac_if;
1406
1407         /*
1408          * Force a cleanup if number of TX descriptors
1409          * available hits the threshold
1410          */
1411         if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1412                 em_txeof(adapter);
1413                 if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1414                         adapter->no_tx_desc_avail1++;
1415                         return (ENOBUFS);
1416                 }
1417         }
1418
1419         /*
1420          * Capture the first descriptor index, this descriptor will have
1421          * the index of the EOP which is the only one that now gets a
1422          * DONE bit writeback.
1423          */
1424         tx_buffer_first = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
1425
1426         /*
1427          * Map the packet for DMA.
1428          */
1429         map = tx_buffer_first->map;
1430         error = bus_dmamap_load_mbuf(adapter->txtag, map, m_head, em_tx_cb,
1431                                      &q, BUS_DMA_NOWAIT);
1432         if (error != 0) {
1433                 adapter->no_tx_dma_setup++;
1434                 return (error);
1435         }
1436         KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1437
1438         if (q.nsegs > (adapter->num_tx_desc_avail - 2)) {
1439                 adapter->no_tx_desc_avail2++;
1440                 error = ENOBUFS;
1441                 goto fail;
1442         }
1443
1444         if (ifp->if_hwassist > 0) {
1445                 em_transmit_checksum_setup(adapter,  m_head,
1446                                            &txd_upper, &txd_lower);
1447         }
1448
1449         i = adapter->next_avail_tx_desc;
1450         if (adapter->pcix_82544)
1451                 txd_saved = i;
1452
1453         /* Set up our transmit descriptors */
1454         for (j = 0; j < q.nsegs; j++) {
1455                 /* If adapter is 82544 and on PCIX bus */
1456                 if(adapter->pcix_82544) {
1457                         DESC_ARRAY desc_array;
1458                         uint32_t array_elements, counter;
1459
1460                         /* 
1461                          * Check the Address and Length combination and
1462                          * split the data accordingly
1463                          */
1464                         array_elements = em_fill_descriptors(q.segs[j].ds_addr,
1465                                                 q.segs[j].ds_len, &desc_array);
1466                         for (counter = 0; counter < array_elements; counter++) {
1467                                 if (txd_used == adapter->num_tx_desc_avail) {
1468                                         adapter->next_avail_tx_desc = txd_saved;
1469                                         adapter->no_tx_desc_avail2++;
1470                                         error = ENOBUFS;
1471                                         goto fail;
1472                                 }
1473                                 tx_buffer = &adapter->tx_buffer_area[i];
1474                                 current_tx_desc = &adapter->tx_desc_base[i];
1475                                 current_tx_desc->buffer_addr = htole64(
1476                                         desc_array.descriptor[counter].address);
1477                                 current_tx_desc->lower.data = htole32(
1478                                         adapter->txd_cmd | txd_lower |
1479                                         (uint16_t)desc_array.descriptor[counter].length);
1480                                 current_tx_desc->upper.data = htole32(txd_upper);
1481
1482                                 last = i;
1483                                 if (++i == adapter->num_tx_desc)
1484                                         i = 0;
1485
1486                                 tx_buffer->m_head = NULL;
1487                                 tx_buffer->next_eop = -1;
1488                                 txd_used++;
1489                         }
1490                 } else {
1491                         tx_buffer = &adapter->tx_buffer_area[i];
1492                         current_tx_desc = &adapter->tx_desc_base[i];
1493
1494                         current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1495                         current_tx_desc->lower.data = htole32(
1496                                 adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1497                         current_tx_desc->upper.data = htole32(txd_upper);
1498
1499                         last = i;
1500                         if (++i == adapter->num_tx_desc)
1501                                 i = 0;
1502
1503                         tx_buffer->m_head = NULL;
1504                         tx_buffer->next_eop = -1;
1505                 }
1506         }
1507
1508         adapter->next_avail_tx_desc = i;
1509         if (adapter->pcix_82544)
1510                 adapter->num_tx_desc_avail -= txd_used;
1511         else
1512                 adapter->num_tx_desc_avail -= q.nsegs;
1513
1514         /* Find out if we are in vlan mode */
1515         if (m_head->m_flags & M_VLANTAG) {
1516                 /* Set the vlan id */
1517                 current_tx_desc->upper.fields.special =
1518                         htole16(m_head->m_pkthdr.ether_vlantag);
1519
1520                 /* Tell hardware to add tag */
1521                 current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1522         }
1523
1524         tx_buffer->m_head = m_head;
1525         tx_buffer_first->map = tx_buffer->map;
1526         tx_buffer->map = map;
1527         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1528
1529         /*
1530          * Last Descriptor of Packet needs End Of Packet (EOP)
1531          * and Report Status (RS)
1532          */
1533         current_tx_desc->lower.data |=
1534                 htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
1535
1536         /*
1537          * Keep track in the first buffer which descriptor will be
1538          * written back.
1539          */
1540         tx_buffer_first->next_eop = last;
1541
1542         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1543                         BUS_DMASYNC_PREWRITE);
1544
1545         /* 
1546          * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1547          * that this frame is available to transmit.
1548          */
1549         if (adapter->hw.mac_type == em_82547 &&
1550             adapter->link_duplex == HALF_DUPLEX) {
1551                 em_82547_move_tail_serialized(adapter);
1552         } else {
1553                 E1000_WRITE_REG(&adapter->hw, TDT, i);
1554                 if (adapter->hw.mac_type == em_82547) {
1555                         em_82547_update_fifo_head(adapter,
1556                                                   m_head->m_pkthdr.len);
1557                 }
1558         }
1559
1560         return (0);
1561 fail:
1562         bus_dmamap_unload(adapter->txtag, map);
1563         return error;
1564 }
1565
1566 /*********************************************************************
1567  *
1568  * 82547 workaround to avoid controller hang in half-duplex environment.
1569  * The workaround is to avoid queuing a large packet that would span
1570  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1571  * in this case. We do that only when FIFO is quiescent.
1572  *
1573  **********************************************************************/
1574 static void
1575 em_82547_move_tail(void *arg)
1576 {
1577         struct adapter *adapter = arg;
1578         struct ifnet *ifp = &adapter->interface_data.ac_if;
1579
1580         lwkt_serialize_enter(ifp->if_serializer);
1581         em_82547_move_tail_serialized(adapter);
1582         lwkt_serialize_exit(ifp->if_serializer);
1583 }
1584
1585 static void
1586 em_82547_move_tail_serialized(struct adapter *adapter)
1587 {
1588         uint16_t hw_tdt;
1589         uint16_t sw_tdt;
1590         struct em_tx_desc *tx_desc;
1591         uint16_t length = 0;
1592         boolean_t eop = 0;
1593
1594         hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1595         sw_tdt = adapter->next_avail_tx_desc;
1596
1597         while (hw_tdt != sw_tdt) {
1598                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1599                 length += tx_desc->lower.flags.length;
1600                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1601                 if (++hw_tdt == adapter->num_tx_desc)
1602                         hw_tdt = 0;
1603
1604                 if (eop) {
1605                         if (em_82547_fifo_workaround(adapter, length)) {
1606                                 adapter->tx_fifo_wrk_cnt++;
1607                                 callout_reset(&adapter->tx_fifo_timer, 1,
1608                                         em_82547_move_tail, adapter);
1609                                 break;
1610                         }
1611                         E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1612                         em_82547_update_fifo_head(adapter, length);
1613                         length = 0;
1614                 }
1615         }       
1616 }
1617
1618 static int
1619 em_82547_fifo_workaround(struct adapter *adapter, int len)
1620 {       
1621         int fifo_space, fifo_pkt_len;
1622
1623         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1624
1625         if (adapter->link_duplex == HALF_DUPLEX) {
1626                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1627
1628                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1629                         if (em_82547_tx_fifo_reset(adapter))
1630                                 return (0);
1631                         else
1632                                 return (1);
1633                 }
1634         }
1635
1636         return (0);
1637 }
1638
1639 static void
1640 em_82547_update_fifo_head(struct adapter *adapter, int len)
1641 {
1642         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1643
1644         /* tx_fifo_head is always 16 byte aligned */
1645         adapter->tx_fifo_head += fifo_pkt_len;
1646         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1647                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1648 }
1649
1650 static int
1651 em_82547_tx_fifo_reset(struct adapter *adapter)
1652 {
1653         uint32_t tctl;
1654
1655         if (E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH) &&
1656             E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH) &&
1657             E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS) &&
1658             E1000_READ_REG(&adapter->hw, TDFPC) == 0) {
1659                 /* Disable TX unit */
1660                 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1661                 E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1662
1663                 /* Reset FIFO pointers */
1664                 E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1665                 E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1666                 E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1667                 E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1668
1669                 /* Re-enable TX unit */
1670                 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1671                 E1000_WRITE_FLUSH(&adapter->hw);
1672
1673                 adapter->tx_fifo_head = 0;
1674                 adapter->tx_fifo_reset_cnt++;
1675
1676                 return (TRUE);
1677         } else {
1678                 return (FALSE);
1679         }
1680 }
1681
1682 static void
1683 em_set_promisc(struct adapter *adapter)
1684 {
1685         uint32_t reg_rctl;
1686         struct ifnet *ifp = &adapter->interface_data.ac_if;
1687
1688         reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1689
1690         adapter->em_insert_vlan_header = 0;
1691         if (ifp->if_flags & IFF_PROMISC) {
1692                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1693                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1694
1695                 /*
1696                  * Disable VLAN stripping in promiscous mode.
1697                  * This enables bridging of vlan tagged frames to occur 
1698                  * and also allows vlan tags to be seen in tcpdump.
1699                  */
1700                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1701                         em_disable_vlans(adapter);
1702                 adapter->em_insert_vlan_header = 1;
1703         } else if (ifp->if_flags & IFF_ALLMULTI) {
1704                 reg_rctl |= E1000_RCTL_MPE;
1705                 reg_rctl &= ~E1000_RCTL_UPE;
1706                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1707         }
1708 }
1709
1710 static void
1711 em_disable_promisc(struct adapter *adapter)
1712 {
1713         struct ifnet *ifp = &adapter->interface_data.ac_if;
1714
1715         uint32_t reg_rctl;
1716
1717         reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1718
1719         reg_rctl &= (~E1000_RCTL_UPE);
1720         reg_rctl &= (~E1000_RCTL_MPE);
1721         E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1722
1723         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1724                 em_enable_vlans(adapter);
1725         adapter->em_insert_vlan_header = 0;
1726 }
1727
1728 /*********************************************************************
1729  *  Multicast Update
1730  *
1731  *  This routine is called whenever multicast address list is updated.
1732  *
1733  **********************************************************************/
1734
1735 static void
1736 em_set_multi(struct adapter *adapter)
1737 {
1738         uint32_t reg_rctl = 0;
1739         uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1740         struct ifmultiaddr *ifma;
1741         int mcnt = 0;
1742         struct ifnet *ifp = &adapter->interface_data.ac_if;
1743
1744         IOCTL_DEBUGOUT("em_set_multi: begin");
1745
1746         if (adapter->hw.mac_type == em_82542_rev2_0) {
1747                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1748                 if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1749                         em_pci_clear_mwi(&adapter->hw);
1750                 reg_rctl |= E1000_RCTL_RST;
1751                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1752                 msec_delay(5);
1753         }
1754
1755         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1756                 if (ifma->ifma_addr->sa_family != AF_LINK)
1757                         continue;
1758
1759                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1760                         break;
1761
1762                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1763                       &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1764                 mcnt++;
1765         }
1766
1767         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1768                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1769                 reg_rctl |= E1000_RCTL_MPE;
1770                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1771         } else {
1772                 em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1773         }
1774
1775         if (adapter->hw.mac_type == em_82542_rev2_0) {
1776                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1777                 reg_rctl &= ~E1000_RCTL_RST;
1778                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1779                 msec_delay(5);
1780                 if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1781                         em_pci_set_mwi(&adapter->hw);
1782         }
1783 }
1784
1785 /*********************************************************************
1786  *  Timer routine
1787  *
1788  *  This routine checks for link status and updates statistics.
1789  *
1790  **********************************************************************/
1791
1792 static void
1793 em_local_timer(void *arg)
1794 {
1795         struct ifnet *ifp;
1796         struct adapter *adapter = arg;
1797         ifp = &adapter->interface_data.ac_if;
1798
1799         lwkt_serialize_enter(ifp->if_serializer);
1800
1801         em_check_for_link(&adapter->hw);
1802         em_update_link_status(adapter);
1803         em_update_stats_counters(adapter);
1804         if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1805                 em_print_hw_stats(adapter);
1806         em_smartspeed(adapter);
1807
1808         callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1809
1810         lwkt_serialize_exit(ifp->if_serializer);
1811 }
1812
1813 static void
1814 em_update_link_status(struct adapter *adapter)
1815 {
1816         struct ifnet *ifp;
1817         ifp = &adapter->interface_data.ac_if;
1818
1819         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1820                 if (adapter->link_active == 0) {
1821                         em_get_speed_and_duplex(&adapter->hw, 
1822                                                 &adapter->link_speed, 
1823                                                 &adapter->link_duplex);
1824                         /* Check if we may set SPEED_MODE bit on PCI-E */
1825                         if (adapter->link_speed == SPEED_1000 &&
1826                             (adapter->hw.mac_type == em_82571 ||
1827                              adapter->hw.mac_type == em_82572)) {
1828                                 int tarc0;
1829
1830                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
1831                                 tarc0 |= SPEED_MODE_BIT;
1832                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
1833                         }
1834                         if (bootverbose) {
1835                                 if_printf(&adapter->interface_data.ac_if,
1836                                           "Link is up %d Mbps %s\n",
1837                                           adapter->link_speed,
1838                                           adapter->link_duplex == FULL_DUPLEX ?
1839                                                 "Full Duplex" : "Half Duplex");
1840                         }
1841                         adapter->link_active = 1;
1842                         adapter->smartspeed = 0;
1843                         ifp->if_baudrate = adapter->link_speed * 1000000;
1844                         ifp->if_link_state = LINK_STATE_UP;
1845                         if_link_state_change(ifp);
1846                 }
1847         } else {
1848                 if (adapter->link_active == 1) {
1849                         ifp->if_baudrate = 0;
1850                         adapter->link_speed = 0;
1851                         adapter->link_duplex = 0;
1852                         if (bootverbose) {
1853                                 if_printf(&adapter->interface_data.ac_if,
1854                                           "Link is Down\n");
1855                         }
1856                         adapter->link_active = 0;
1857                         ifp->if_link_state = LINK_STATE_DOWN;
1858                         if_link_state_change(ifp);
1859                 }
1860         }
1861 }
1862
1863 /*********************************************************************
1864  *
1865  *  This routine disables all traffic on the adapter by issuing a
1866  *  global reset on the MAC and deallocates TX/RX buffers.
1867  *
1868  **********************************************************************/
1869
1870 static void
1871 em_stop(void *arg)
1872 {
1873         struct ifnet   *ifp;
1874         struct adapter * adapter = arg;
1875         ifp = &adapter->interface_data.ac_if;
1876
1877         ASSERT_SERIALIZED(ifp->if_serializer);
1878
1879         INIT_DEBUGOUT("em_stop: begin");
1880         em_disable_intr(adapter);
1881         em_reset_hw(&adapter->hw);
1882         callout_stop(&adapter->timer);
1883         callout_stop(&adapter->tx_fifo_timer);
1884         em_free_transmit_structures(adapter);
1885         em_free_receive_structures(adapter);
1886
1887         /* Tell the stack that the interface is no longer active */
1888         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1889         ifp->if_timer = 0;
1890 }
1891
1892 /*********************************************************************
1893  *
1894  *  Determine hardware revision.
1895  *
1896  **********************************************************************/
1897 static void
1898 em_identify_hardware(struct adapter *adapter)
1899 {
1900         device_t dev = adapter->dev;
1901
1902         /* Make sure our PCI config space has the necessary stuff set */
1903         adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1904         if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1905               (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1906                 device_printf(dev, "Memory Access and/or Bus Master bits "
1907                               "were not set!\n");
1908                 adapter->hw.pci_cmd_word |= PCIM_CMD_BUSMASTEREN |
1909                                             PCIM_CMD_MEMEN;
1910                 pci_write_config(dev, PCIR_COMMAND,
1911                                  adapter->hw.pci_cmd_word, 2);
1912         }
1913
1914         /* Save off the information about this board */
1915         adapter->hw.vendor_id = pci_get_vendor(dev);
1916         adapter->hw.device_id = pci_get_device(dev);
1917         adapter->hw.revision_id = pci_get_revid(dev);
1918         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1919         adapter->hw.subsystem_id = pci_get_subdevice(dev);
1920
1921         /* Identify the MAC */
1922         if (em_set_mac_type(&adapter->hw))
1923                 device_printf(dev, "Unknown MAC Type\n");
1924
1925         if (adapter->hw.mac_type == em_82541 ||
1926             adapter->hw.mac_type == em_82541_rev_2 ||
1927             adapter->hw.mac_type == em_82547 ||
1928             adapter->hw.mac_type == em_82547_rev_2)
1929                 adapter->hw.phy_init_script = TRUE;
1930 }
1931
1932 static int
1933 em_allocate_pci_resources(device_t dev)
1934 {
1935         struct adapter *adapter = device_get_softc(dev);
1936         int rid;
1937
1938         rid = PCIR_BAR(0);
1939         adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1940                                                      &rid, RF_ACTIVE);
1941         if (adapter->res_memory == NULL) {
1942                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1943                 return ENXIO;
1944         }
1945         adapter->osdep.mem_bus_space_tag =
1946                 rman_get_bustag(adapter->res_memory);
1947         adapter->osdep.mem_bus_space_handle =
1948             rman_get_bushandle(adapter->res_memory);
1949         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
1950
1951         if (adapter->hw.mac_type > em_82543) {
1952                 /* Figure our where our IO BAR is ? */
1953                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1954                         uint32_t val;
1955
1956                         val = pci_read_config(dev, rid, 4);
1957                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1958                                 adapter->io_rid = rid;
1959                                 break;
1960                         }
1961                         rid += 4;
1962                         /* check for 64bit BAR */
1963                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1964                                 rid += 4;
1965                 }
1966                 if (rid >= PCIR_CIS) {
1967                         device_printf(dev, "Unable to locate IO BAR\n");
1968                         return (ENXIO);
1969                 }
1970
1971                 adapter->res_ioport = bus_alloc_resource_any(dev,
1972                     SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1973                 if (!(adapter->res_ioport)) {
1974                         device_printf(dev, "Unable to allocate bus resource: "
1975                                       "ioport\n");
1976                         return ENXIO;
1977                 }
1978                 adapter->hw.io_base = 0;
1979                 adapter->osdep.io_bus_space_tag =
1980                         rman_get_bustag(adapter->res_ioport);
1981                 adapter->osdep.io_bus_space_handle =
1982                         rman_get_bushandle(adapter->res_ioport);
1983         }
1984
1985         /* For ICH8 we need to find the flash memory. */
1986         if ((adapter->hw.mac_type == em_ich8lan) ||
1987             (adapter->hw.mac_type == em_ich9lan)) {
1988                 rid = EM_FLASH;
1989                 adapter->flash_mem = bus_alloc_resource_any(dev,
1990                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
1991                 if (adapter->flash_mem == NULL) {
1992                         device_printf(dev, "Unable to allocate bus resource: "
1993                                       "flash memory\n");
1994                         return ENXIO;
1995                 }
1996                 adapter->osdep.flash_bus_space_tag =
1997                     rman_get_bustag(adapter->flash_mem);
1998                 adapter->osdep.flash_bus_space_handle =
1999                     rman_get_bushandle(adapter->flash_mem);
2000         }
2001
2002         rid = 0x0;
2003         adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2004             &rid, RF_SHAREABLE | RF_ACTIVE);
2005         if (adapter->res_interrupt == NULL) {
2006                 device_printf(dev, "Unable to allocate bus resource: "
2007                               "interrupt\n");
2008                 return ENXIO;
2009         }
2010
2011         adapter->hw.back = &adapter->osdep;
2012
2013         return 0;
2014 }
2015
2016 static void
2017 em_free_pci_resources(device_t dev)
2018 {
2019         struct adapter *adapter = device_get_softc(dev);
2020
2021         if (adapter->res_interrupt != NULL) {
2022                 bus_release_resource(dev, SYS_RES_IRQ, 0, 
2023                                      adapter->res_interrupt);
2024         }
2025         if (adapter->res_memory != NULL) {
2026                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 
2027                                      adapter->res_memory);
2028         }
2029
2030         if (adapter->res_ioport != NULL) {
2031                 bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid, 
2032                                      adapter->res_ioport);
2033         }
2034
2035         if (adapter->flash_mem != NULL) {
2036                 bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
2037                                      adapter->flash_mem);
2038         }
2039 }
2040
2041 /*********************************************************************
2042  *
2043  *  Initialize the hardware to a configuration as specified by the
2044  *  adapter structure. The controller is reset, the EEPROM is
2045  *  verified, the MAC address is set, then the shared initialization
2046  *  routines are called.
2047  *
2048  **********************************************************************/
2049 static int
2050 em_hardware_init(struct adapter *adapter)
2051 {
2052         uint16_t        rx_buffer_size;
2053
2054         INIT_DEBUGOUT("em_hardware_init: begin");
2055         /* Issue a global reset */
2056         em_reset_hw(&adapter->hw);
2057
2058         /* When hardware is reset, fifo_head is also reset */
2059         adapter->tx_fifo_head = 0;
2060
2061         /* Make sure we have a good EEPROM before we read from it */
2062         if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2063                 if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2064                         device_printf(adapter->dev,
2065                                       "The EEPROM Checksum Is Not Valid\n");
2066                         return (EIO);
2067                 }
2068         }
2069
2070         if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
2071                 device_printf(adapter->dev,
2072                               "EEPROM read error while reading part number\n");
2073                 return (EIO);
2074         }
2075
2076         /* Set up smart power down as default off on newer adapters. */
2077         if (!em_smart_pwr_down &&
2078             (adapter->hw.mac_type == em_82571 ||
2079              adapter->hw.mac_type == em_82572)) {
2080                 uint16_t phy_tmp = 0;
2081
2082                 /* Speed up time to link by disabling smart power down. */
2083                 em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2084                                 &phy_tmp);
2085                 phy_tmp &= ~IGP02E1000_PM_SPD;
2086                 em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2087                                  phy_tmp);
2088         }
2089
2090         /*
2091          * These parameters control the automatic generation (Tx) and
2092          * response (Rx) to Ethernet PAUSE frames.
2093          * - High water mark should allow for at least two frames to be
2094          *   received after sending an XOFF.
2095          * - Low water mark works best when it is very near the high water mark.
2096          *   This allows the receiver to restart by sending XON when it has
2097          *   drained a bit.  Here we use an arbitary value of 1500 which will
2098          *   restart after one full frame is pulled from the buffer.  There
2099          *   could be several smaller frames in the buffer and if so they will
2100          *   not trigger the XON until their total number reduces the buffer
2101          *   by 1500.
2102          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2103          */
2104         rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
2105
2106         adapter->hw.fc_high_water =
2107             rx_buffer_size - roundup2(adapter->hw.max_frame_size, 1024); 
2108         adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
2109         if (adapter->hw.mac_type == em_80003es2lan)
2110                 adapter->hw.fc_pause_time = 0xFFFF;
2111         else
2112                 adapter->hw.fc_pause_time = 1000;
2113         adapter->hw.fc_send_xon = TRUE;
2114         adapter->hw.fc = E1000_FC_FULL;
2115
2116         if (em_init_hw(&adapter->hw) < 0) {
2117                 device_printf(adapter->dev, "Hardware Initialization Failed");
2118                 return (EIO);
2119         }
2120
2121         em_check_for_link(&adapter->hw);
2122
2123         return (0);
2124 }
2125
2126 /*********************************************************************
2127  *
2128  *  Setup networking device structure and register an interface.
2129  *
2130  **********************************************************************/
2131 static void
2132 em_setup_interface(device_t dev, struct adapter *adapter)
2133 {
2134         struct ifnet *ifp;
2135         u_char fiber_type = IFM_1000_SX;        /* default type */
2136         INIT_DEBUGOUT("em_setup_interface: begin");
2137
2138         ifp = &adapter->interface_data.ac_if;
2139         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2140         ifp->if_mtu = ETHERMTU;
2141         ifp->if_baudrate = 1000000000;
2142         ifp->if_init =  em_init;
2143         ifp->if_softc = adapter;
2144         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2145         ifp->if_ioctl = em_ioctl;
2146         ifp->if_start = em_start;
2147 #ifdef DEVICE_POLLING
2148         ifp->if_poll = em_poll;
2149 #endif
2150         ifp->if_watchdog = em_watchdog;
2151         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2152         ifq_set_ready(&ifp->if_snd);
2153
2154         if (adapter->hw.mac_type >= em_82543)
2155                 ifp->if_capabilities |= IFCAP_HWCSUM;
2156
2157         ifp->if_capenable = ifp->if_capabilities;
2158
2159         ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
2160
2161 #ifdef PROFILE_SERIALIZER
2162         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2163                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2164                         "serializer_sleep", CTLFLAG_RW,
2165                         &ifp->if_serializer->sleep_cnt, 0, NULL);
2166         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2167                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2168                         "serializer_tryfail", CTLFLAG_RW,
2169                         &ifp->if_serializer->tryfail_cnt, 0, NULL);
2170         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2171                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2172                         "serializer_enter", CTLFLAG_RW,
2173                         &ifp->if_serializer->enter_cnt, 0, NULL);
2174         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2175                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2176                         "serializer_try", CTLFLAG_RW,
2177                         &ifp->if_serializer->try_cnt, 0, NULL);
2178 #endif
2179
2180         /*
2181          * Tell the upper layer(s) we support long frames.
2182          */
2183         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2184         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2185 #if 0
2186         ifp->if_capenable |= IFCAP_VLAN_MTU;
2187 #endif
2188
2189         /*
2190          * Specify the media types supported by this adapter and register
2191          * callbacks to update media and link information
2192          */
2193         ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
2194                      em_media_status);
2195         if (adapter->hw.media_type == em_media_type_fiber ||
2196             adapter->hw.media_type == em_media_type_internal_serdes) {
2197                 if (adapter->hw.mac_type == em_82545)
2198                         fiber_type = IFM_1000_LX;
2199                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2200                             0, NULL);
2201                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2202         } else {
2203                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2204                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2205                             0, NULL);
2206                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2207                             0, NULL);
2208                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2209                             0, NULL);
2210                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
2211                             0, NULL);
2212                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2213         }
2214         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2215         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2216 }
2217
2218 /*********************************************************************
2219  *
2220  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2221  *
2222  **********************************************************************/
2223 static void
2224 em_smartspeed(struct adapter *adapter)
2225 {
2226         uint16_t phy_tmp;
2227
2228         if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
2229             !adapter->hw.autoneg ||
2230             !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2231                 return;
2232
2233         if (adapter->smartspeed == 0) {
2234                 /*
2235                  * If Master/Slave config fault is asserted twice,
2236                  * we assume back-to-back.
2237                  */
2238                 em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2239                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2240                         return;
2241                 em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2242                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2243                         em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2244                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2245                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2246                                 em_write_phy_reg(&adapter->hw,
2247                                                  PHY_1000T_CTRL, phy_tmp);
2248                                 adapter->smartspeed++;
2249                                 if (adapter->hw.autoneg &&
2250                                     !em_phy_setup_autoneg(&adapter->hw) &&
2251                                     !em_read_phy_reg(&adapter->hw, PHY_CTRL,
2252                                                      &phy_tmp)) {
2253                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2254                                                     MII_CR_RESTART_AUTO_NEG);
2255                                         em_write_phy_reg(&adapter->hw,
2256                                                          PHY_CTRL, phy_tmp);
2257                                 }
2258                         }
2259                 }
2260                 return;
2261         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2262                 /* If still no link, perhaps using 2/3 pair cable */
2263                 em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2264                 phy_tmp |= CR_1000T_MS_ENABLE;
2265                 em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2266                 if (adapter->hw.autoneg &&
2267                     !em_phy_setup_autoneg(&adapter->hw) &&
2268                     !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
2269                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2270                                     MII_CR_RESTART_AUTO_NEG);
2271                         em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
2272                 }
2273         }
2274         /* Restart process after EM_SMARTSPEED_MAX iterations */
2275         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2276                 adapter->smartspeed = 0;
2277 }
2278
2279 /*
2280  * Manage DMA'able memory.
2281  */
2282 static void
2283 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2284 {
2285         if (error)
2286                 return;
2287         *(bus_addr_t *)arg = segs->ds_addr;
2288 }
2289
2290 static int
2291 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2292               struct em_dma_alloc *dma)
2293 {
2294         device_t dev = adapter->dev;
2295         int error;
2296
2297         error = bus_dma_tag_create(NULL,                /* parent */
2298                                    EM_DBA_ALIGN, 0,     /* alignment, bounds */
2299                                    BUS_SPACE_MAXADDR,   /* lowaddr */
2300                                    BUS_SPACE_MAXADDR,   /* highaddr */
2301                                    NULL, NULL,          /* filter, filterarg */
2302                                    size,                /* maxsize */
2303                                    1,                   /* nsegments */
2304                                    size,                /* maxsegsize */
2305                                    0,                   /* flags */
2306                                    &dma->dma_tag);
2307         if (error) {
2308                 device_printf(dev, "%s: bus_dma_tag_create failed; error %d\n",
2309                               __func__, error);
2310                 return error;
2311         }
2312
2313         error = bus_dmamem_alloc(dma->dma_tag, (void**)&dma->dma_vaddr,
2314                                  BUS_DMA_WAITOK, &dma->dma_map);
2315         if (error) {
2316                 device_printf(dev, "%s: bus_dmammem_alloc failed; "
2317                               "size %llu, error %d\n",
2318                               __func__, (uintmax_t)size, error);
2319                 goto fail;
2320         }
2321
2322         error = bus_dmamap_load(dma->dma_tag, dma->dma_map,
2323                                 dma->dma_vaddr, size,
2324                                 em_dmamap_cb, &dma->dma_paddr,
2325                                 BUS_DMA_WAITOK);
2326         if (error) {
2327                 device_printf(dev, "%s: bus_dmamap_load failed; error %u\n",
2328                               __func__, error);
2329                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2330                 goto fail;
2331         }
2332
2333         return 0;
2334 fail:
2335         bus_dma_tag_destroy(dma->dma_tag);
2336         dma->dma_tag = NULL;
2337         return error;
2338 }
2339
2340 static void
2341 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2342 {
2343         if (dma->dma_tag != NULL) {
2344                 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2345                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2346                 bus_dma_tag_destroy(dma->dma_tag);
2347                 dma->dma_tag = NULL;
2348         }
2349 }
2350
2351 /*********************************************************************
2352  *
2353  *  Allocate and initialize transmit structures.
2354  *
2355  **********************************************************************/
2356 static int
2357 em_setup_transmit_structures(struct adapter *adapter)
2358 {
2359         struct em_buffer *tx_buffer;
2360         bus_size_t size;
2361         int error, i;
2362
2363         /*
2364          * Setup DMA descriptor areas.
2365          */
2366         size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
2367         if (bus_dma_tag_create(NULL,                    /* parent */
2368                                1, 0,                    /* alignment, bounds */
2369                                BUS_SPACE_MAXADDR,       /* lowaddr */ 
2370                                BUS_SPACE_MAXADDR,       /* highaddr */
2371                                NULL, NULL,              /* filter, filterarg */
2372                                size,                    /* maxsize */
2373                                EM_MAX_SCATTER,          /* nsegments */
2374                                size,                    /* maxsegsize */
2375                                0,                       /* flags */ 
2376                                &adapter->txtag)) {
2377                 device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2378                 return(ENOMEM);
2379         }
2380
2381         adapter->tx_buffer_area =
2382                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2383                         M_DEVBUF, M_WAITOK | M_ZERO);
2384
2385         bzero(adapter->tx_desc_base,
2386               sizeof(struct em_tx_desc) * adapter->num_tx_desc);
2387         tx_buffer = adapter->tx_buffer_area;
2388         for (i = 0; i < adapter->num_tx_desc; i++) {
2389                 error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
2390                 if (error) {
2391                         device_printf(adapter->dev,
2392                                       "Unable to create TX DMA map\n");
2393                         goto fail;
2394                 }
2395                 tx_buffer++;
2396         }
2397
2398         adapter->next_avail_tx_desc = 0;
2399         adapter->next_tx_to_clean = 0;
2400
2401         /* Set number of descriptors available */
2402         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2403
2404         /* Set checksum context */
2405         adapter->active_checksum_context = OFFLOAD_NONE;
2406
2407         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2408                         BUS_DMASYNC_PREWRITE);
2409
2410         return (0);
2411 fail:
2412         em_free_transmit_structures(adapter);
2413         return (error);
2414 }
2415
2416 /*********************************************************************
2417  *
2418  *  Enable transmit unit.
2419  *
2420  **********************************************************************/
2421 static void
2422 em_initialize_transmit_unit(struct adapter *adapter)
2423 {
2424         uint32_t reg_tctl;
2425         uint32_t reg_tipg = 0;
2426         uint64_t bus_addr;
2427
2428         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2429
2430         /* Setup the Base and Length of the Tx Descriptor Ring */
2431         bus_addr = adapter->txdma.dma_paddr;
2432         E1000_WRITE_REG(&adapter->hw, TDLEN,
2433                         adapter->num_tx_desc * sizeof(struct em_tx_desc));
2434         E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2435         E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2436
2437         /* Setup the HW Tx Head and Tail descriptor pointers */
2438         E1000_WRITE_REG(&adapter->hw, TDT, 0);
2439         E1000_WRITE_REG(&adapter->hw, TDH, 0);
2440
2441         HW_DEBUGOUT2("Base = %x, Length = %x\n",
2442                      E1000_READ_REG(&adapter->hw, TDBAL),
2443                      E1000_READ_REG(&adapter->hw, TDLEN));
2444
2445         /* Set the default values for the Tx Inter Packet Gap timer */
2446         switch (adapter->hw.mac_type) {
2447         case em_82542_rev2_0:
2448         case em_82542_rev2_1:
2449                 reg_tipg = DEFAULT_82542_TIPG_IPGT;
2450                 reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2451                 reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2452                 break;
2453         case em_80003es2lan:
2454                 reg_tipg = DEFAULT_82543_TIPG_IPGR1;
2455                 reg_tipg |=
2456                     DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2457                 break;
2458         default:
2459                 if (adapter->hw.media_type == em_media_type_fiber ||
2460                     adapter->hw.media_type == em_media_type_internal_serdes)
2461                         reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2462                 else
2463                         reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2464                 reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2465                 reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2466         }
2467
2468         E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2469         E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2470         if (adapter->hw.mac_type >= em_82540) {
2471                 E1000_WRITE_REG(&adapter->hw, TADV,
2472                                 adapter->tx_abs_int_delay.value);
2473         }
2474
2475         /* Program the Transmit Control Register */
2476         reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2477                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2478         if (adapter->hw.mac_type >= em_82571)
2479                 reg_tctl |= E1000_TCTL_MULR;
2480         if (adapter->link_duplex == 1)
2481                 reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2482         else
2483                 reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2484
2485         /* This write will effectively turn on the transmit unit. */
2486         E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2487
2488         /* Setup Transmit Descriptor Base Settings */
2489         adapter->txd_cmd = E1000_TXD_CMD_IFCS;
2490
2491         if (adapter->tx_int_delay.value > 0)
2492                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2493 }
2494
2495 /*********************************************************************
2496  *
2497  *  Free all transmit related data structures.
2498  *
2499  **********************************************************************/
2500 static void
2501 em_free_transmit_structures(struct adapter *adapter)
2502 {
2503         struct em_buffer *tx_buffer;
2504         int i;
2505
2506         INIT_DEBUGOUT("free_transmit_structures: begin");
2507
2508         if (adapter->tx_buffer_area != NULL) {
2509                 tx_buffer = adapter->tx_buffer_area;
2510                 for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2511                         if (tx_buffer->m_head != NULL) {
2512                                 bus_dmamap_unload(adapter->txtag,
2513                                                   tx_buffer->map);
2514                                 m_freem(tx_buffer->m_head);
2515                         }
2516
2517                         if (tx_buffer->map != NULL) {
2518                                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2519                                 tx_buffer->map = NULL;
2520                         }
2521                         tx_buffer->m_head = NULL;
2522                 }
2523         }
2524         if (adapter->tx_buffer_area != NULL) {
2525                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2526                 adapter->tx_buffer_area = NULL;
2527         }
2528         if (adapter->txtag != NULL) {
2529                 bus_dma_tag_destroy(adapter->txtag);
2530                 adapter->txtag = NULL;
2531         }
2532 }
2533
2534 /*********************************************************************
2535  *
2536  *  The offload context needs to be set when we transfer the first
2537  *  packet of a particular protocol (TCP/UDP). We change the
2538  *  context only if the protocol type changes.
2539  *
2540  **********************************************************************/
2541 static void
2542 em_transmit_checksum_setup(struct adapter *adapter,
2543                            struct mbuf *mp,
2544                            uint32_t *txd_upper,
2545                            uint32_t *txd_lower) 
2546 {
2547         struct em_context_desc *TXD;
2548         struct em_buffer *tx_buffer;
2549         int curr_txd;
2550
2551         if (mp->m_pkthdr.csum_flags) {
2552                 if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2553                         *txd_upper = E1000_TXD_POPTS_TXSM << 8;
2554                         *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2555                         if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2556                                 return;
2557                         else
2558                                 adapter->active_checksum_context = OFFLOAD_TCP_IP;
2559                 } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2560                         *txd_upper = E1000_TXD_POPTS_TXSM << 8;
2561                         *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2562                         if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2563                                 return;
2564                         else
2565                                 adapter->active_checksum_context = OFFLOAD_UDP_IP;
2566                 } else {
2567                         *txd_upper = 0;
2568                         *txd_lower = 0;
2569                         return;
2570                 }
2571         } else {
2572                 *txd_upper = 0;
2573                 *txd_lower = 0;
2574                 return;
2575         }
2576
2577         /*
2578          * If we reach this point, the checksum offload context
2579          * needs to be reset.
2580          */
2581         curr_txd = adapter->next_avail_tx_desc;
2582         tx_buffer = &adapter->tx_buffer_area[curr_txd];
2583         TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2584
2585         TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2586         TXD->lower_setup.ip_fields.ipcso =
2587             ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2588         TXD->lower_setup.ip_fields.ipcse =
2589             htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2590
2591         TXD->upper_setup.tcp_fields.tucss =
2592             ETHER_HDR_LEN + sizeof(struct ip);
2593         TXD->upper_setup.tcp_fields.tucse = htole16(0);
2594
2595         if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2596                 TXD->upper_setup.tcp_fields.tucso =
2597                         ETHER_HDR_LEN + sizeof(struct ip) +
2598                         offsetof(struct tcphdr, th_sum);
2599         } else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2600                 TXD->upper_setup.tcp_fields.tucso =
2601                         ETHER_HDR_LEN + sizeof(struct ip) +
2602                         offsetof(struct udphdr, uh_sum);
2603         }
2604
2605         TXD->tcp_seg_setup.data = htole32(0);
2606         TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2607
2608         tx_buffer->m_head = NULL;
2609         tx_buffer->next_eop = -1;
2610
2611         if (++curr_txd == adapter->num_tx_desc)
2612                 curr_txd = 0;
2613
2614         adapter->num_tx_desc_avail--;
2615         adapter->next_avail_tx_desc = curr_txd;
2616 }
2617
2618 /**********************************************************************
2619  *
2620  *  Examine each tx_buffer in the used queue. If the hardware is done
2621  *  processing the packet then free associated resources. The
2622  *  tx_buffer is put back on the free queue.
2623  *
2624  **********************************************************************/
2625
2626 static void
2627 em_txeof(struct adapter *adapter)
2628 {
2629         int first, last, done, num_avail;
2630         struct em_buffer *tx_buffer;
2631         struct em_tx_desc *tx_desc, *eop_desc;
2632         struct ifnet *ifp = &adapter->interface_data.ac_if;
2633
2634         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2635                 return;
2636
2637         num_avail = adapter->num_tx_desc_avail; 
2638         first = adapter->next_tx_to_clean;
2639         tx_desc = &adapter->tx_desc_base[first];
2640         tx_buffer = &adapter->tx_buffer_area[first];
2641         last = tx_buffer->next_eop;
2642         KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2643         eop_desc = &adapter->tx_desc_base[last];
2644
2645         /*
2646          * Now caculate the terminating index for the cleanup loop below
2647          */
2648         if (++last == adapter->num_tx_desc)
2649                 last = 0;
2650         done = last;
2651
2652         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2653                         BUS_DMASYNC_POSTREAD);
2654
2655         while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2656                 while (first != done) {
2657                         tx_desc->upper.data = 0;
2658                         tx_desc->lower.data = 0;
2659                         num_avail++;
2660
2661                         logif(pkt_txclean);
2662
2663                         if (tx_buffer->m_head) {
2664                                 ifp->if_opackets++;
2665                                 bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2666                                                 BUS_DMASYNC_POSTWRITE);
2667                                 bus_dmamap_unload(adapter->txtag,
2668                                                   tx_buffer->map);
2669
2670                                 m_freem(tx_buffer->m_head);
2671                                 tx_buffer->m_head = NULL;
2672                         }
2673                         tx_buffer->next_eop = -1;
2674
2675                         if (++first == adapter->num_tx_desc)
2676                                 first = 0;
2677
2678                         tx_buffer = &adapter->tx_buffer_area[first];
2679                         tx_desc = &adapter->tx_desc_base[first];
2680                 }
2681                 /* See if we can continue to the next packet */
2682                 last = tx_buffer->next_eop;
2683                 if (last != -1) {
2684                         KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2685                         eop_desc = &adapter->tx_desc_base[last];
2686                         if (++last == adapter->num_tx_desc)
2687                                 last = 0;
2688                         done = last;
2689                 } else {
2690                         break;
2691                 }
2692         }
2693
2694         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2695                         BUS_DMASYNC_PREWRITE);
2696
2697         adapter->next_tx_to_clean = first;
2698
2699         /*
2700          * If we have enough room, clear IFF_OACTIVE to tell the stack
2701          * that it is OK to send packets.
2702          * If there are no pending descriptors, clear the timeout. Otherwise,
2703          * if some descriptors have been freed, restart the timeout.
2704          */
2705         if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2706                 ifp->if_flags &= ~IFF_OACTIVE;
2707                 if (num_avail == adapter->num_tx_desc)
2708                         ifp->if_timer = 0;
2709                 else if (num_avail == adapter->num_tx_desc_avail)
2710                         ifp->if_timer = EM_TX_TIMEOUT;
2711         }
2712         adapter->num_tx_desc_avail = num_avail;
2713 }
2714
2715 /*********************************************************************
2716  *
2717  *  Get a buffer from system mbuf buffer pool.
2718  *
2719  **********************************************************************/
2720 static int
2721 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2722 {
2723         struct mbuf *mp = nmp;
2724         struct em_buffer *rx_buffer;
2725         struct ifnet *ifp;
2726         bus_addr_t paddr;
2727         int error;
2728
2729         ifp = &adapter->interface_data.ac_if;
2730
2731         if (mp == NULL) {
2732                 mp = m_getcl(how, MT_DATA, M_PKTHDR);
2733                 if (mp == NULL) {
2734                         adapter->mbuf_cluster_failed++;
2735                         return (ENOBUFS);
2736                 }
2737                 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2738         } else {
2739                 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2740                 mp->m_data = mp->m_ext.ext_buf;
2741                 mp->m_next = NULL;
2742         }
2743
2744         if (ifp->if_mtu <= ETHERMTU)
2745                 m_adj(mp, ETHER_ALIGN);
2746
2747         rx_buffer = &adapter->rx_buffer_area[i];
2748
2749         /*
2750          * Using memory from the mbuf cluster pool, invoke the
2751          * bus_dma machinery to arrange the memory mapping.
2752          */
2753         error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2754                                 mtod(mp, void *), mp->m_len,
2755                                 em_dmamap_cb, &paddr, 0);
2756         if (error) {
2757                 m_freem(mp);
2758                 return (error);
2759         }
2760         rx_buffer->m_head = mp;
2761         adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2762         bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2763
2764         return (0);
2765 }
2766
2767 /*********************************************************************
2768  *
2769  *  Allocate memory for rx_buffer structures. Since we use one
2770  *  rx_buffer per received packet, the maximum number of rx_buffer's
2771  *  that we'll need is equal to the number of receive descriptors
2772  *  that we've allocated.
2773  *
2774  **********************************************************************/
2775 static int
2776 em_allocate_receive_structures(struct adapter *adapter)
2777 {
2778         int i, error, size;
2779         struct em_buffer *rx_buffer;
2780
2781         size = adapter->num_rx_desc * sizeof(struct em_buffer);
2782         adapter->rx_buffer_area = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2783
2784         error = bus_dma_tag_create(NULL,                /* parent */
2785                                    1, 0,                /* alignment, bounds */
2786                                    BUS_SPACE_MAXADDR,   /* lowaddr */
2787                                    BUS_SPACE_MAXADDR,   /* highaddr */
2788                                    NULL, NULL,          /* filter, filterarg */
2789                                    MCLBYTES,            /* maxsize */
2790                                    1,                   /* nsegments */
2791                                    MCLBYTES,            /* maxsegsize */
2792                                    0,                   /* flags */
2793                                    &adapter->rxtag);
2794         if (error) {
2795                 device_printf(adapter->dev, "%s: bus_dma_tag_create failed; "
2796                               "error %u\n", __func__, error);
2797                 goto fail;
2798         }
2799  
2800         rx_buffer = adapter->rx_buffer_area;
2801         for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2802                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2803                                           &rx_buffer->map);
2804                 if (error) {
2805                         device_printf(adapter->dev,
2806                                       "%s: bus_dmamap_create failed; "
2807                                       "error %u\n", __func__, error);
2808                         goto fail;
2809                 }
2810         }
2811
2812         for (i = 0; i < adapter->num_rx_desc; i++) {
2813                 error = em_get_buf(i, adapter, NULL, MB_DONTWAIT);
2814                 if (error)
2815                         goto fail;
2816         }
2817
2818         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2819                         BUS_DMASYNC_PREWRITE);
2820
2821         return (0);
2822 fail:
2823         em_free_receive_structures(adapter);
2824         return (error);
2825 }
2826
2827 /*********************************************************************
2828  *
2829  *  Allocate and initialize receive structures.
2830  *
2831  **********************************************************************/
2832 static int
2833 em_setup_receive_structures(struct adapter *adapter)
2834 {
2835         int error;
2836
2837         bzero(adapter->rx_desc_base,
2838               sizeof(struct em_rx_desc) * adapter->num_rx_desc);
2839
2840         error = em_allocate_receive_structures(adapter);
2841         if (error)
2842                 return (error);
2843
2844         /* Setup our descriptor pointers */
2845         adapter->next_rx_desc_to_check = 0;
2846
2847         return (0);
2848 }
2849
2850 /*********************************************************************
2851  *
2852  *  Enable receive unit.
2853  *
2854  **********************************************************************/
2855 static void
2856 em_initialize_receive_unit(struct adapter *adapter)
2857 {
2858         uint32_t reg_rctl;
2859         uint32_t reg_rxcsum;
2860         struct ifnet *ifp;
2861         uint64_t bus_addr;
2862  
2863         INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2864
2865         ifp = &adapter->interface_data.ac_if;
2866
2867         /*
2868          * Make sure receives are disabled while setting
2869          * up the descriptor ring
2870          */
2871         E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2872
2873         /* Set the Receive Delay Timer Register */
2874         E1000_WRITE_REG(&adapter->hw, RDTR, 
2875                         adapter->rx_int_delay.value | E1000_RDT_FPDB);
2876
2877         if(adapter->hw.mac_type >= em_82540) {
2878                 E1000_WRITE_REG(&adapter->hw, RADV,
2879                                 adapter->rx_abs_int_delay.value);
2880
2881                 /* Set the interrupt throttling rate in 256ns increments */  
2882                 if (em_int_throttle_ceil) {
2883                         E1000_WRITE_REG(&adapter->hw, ITR,
2884                                 1000000000 / 256 / em_int_throttle_ceil);
2885                 } else {
2886                         E1000_WRITE_REG(&adapter->hw, ITR, 0);
2887                 }
2888         }
2889
2890         /* Setup the Base and Length of the Rx Descriptor Ring */
2891         bus_addr = adapter->rxdma.dma_paddr;
2892         E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2893                         sizeof(struct em_rx_desc));
2894         E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2895         E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2896
2897         /* Setup the Receive Control Register */
2898         reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2899                    E1000_RCTL_RDMTS_HALF |
2900                    (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2901
2902         if (adapter->hw.tbi_compatibility_on == TRUE)
2903                 reg_rctl |= E1000_RCTL_SBP;
2904
2905         switch (adapter->rx_buffer_len) {
2906         default:
2907         case EM_RXBUFFER_2048:
2908                 reg_rctl |= E1000_RCTL_SZ_2048;
2909                 break;
2910         case EM_RXBUFFER_4096:
2911                 reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX |
2912                             E1000_RCTL_LPE;
2913                 break;            
2914         case EM_RXBUFFER_8192:
2915                 reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX |
2916                             E1000_RCTL_LPE;
2917                 break;
2918         case EM_RXBUFFER_16384:
2919                 reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX |
2920                             E1000_RCTL_LPE;
2921                 break;
2922         }
2923
2924         if (ifp->if_mtu > ETHERMTU)
2925                 reg_rctl |= E1000_RCTL_LPE;
2926
2927         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2928         if ((adapter->hw.mac_type >= em_82543) &&
2929             (ifp->if_capenable & IFCAP_RXCSUM)) {
2930                 reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2931                 reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2932                 E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2933         }
2934
2935 #ifdef EM_X60_WORKAROUND
2936         if (adapter->hw.mac_type == em_82573)
2937                 E1000_WRITE_REG(&adapter->hw, RDTR, 32);
2938 #endif
2939
2940         /* Enable Receives */
2941         E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2942
2943         /* Setup the HW Rx Head and Tail Descriptor Pointers */
2944         E1000_WRITE_REG(&adapter->hw, RDH, 0);
2945         E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2946 }
2947
2948 /*********************************************************************
2949  *
2950  *  Free receive related data structures.
2951  *
2952  **********************************************************************/
2953 static void
2954 em_free_receive_structures(struct adapter *adapter)
2955 {
2956         struct em_buffer *rx_buffer;
2957         int i;
2958
2959         INIT_DEBUGOUT("free_receive_structures: begin");
2960
2961         if (adapter->rx_buffer_area != NULL) {
2962                 rx_buffer = adapter->rx_buffer_area;
2963                 for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2964                         if (rx_buffer->m_head != NULL) {
2965                                 bus_dmamap_unload(adapter->rxtag,
2966                                                   rx_buffer->map);
2967                                 m_freem(rx_buffer->m_head);
2968                                 rx_buffer->m_head = NULL;
2969                         }
2970                         if (rx_buffer->map != NULL) {
2971                                 bus_dmamap_destroy(adapter->rxtag,
2972                                                    rx_buffer->map);
2973                                 rx_buffer->map = NULL;
2974                         }
2975                 }
2976         }
2977         if (adapter->rx_buffer_area != NULL) {
2978                 kfree(adapter->rx_buffer_area, M_DEVBUF);
2979                 adapter->rx_buffer_area = NULL;
2980         }
2981         if (adapter->rxtag != NULL) {
2982                 bus_dma_tag_destroy(adapter->rxtag);
2983                 adapter->rxtag = NULL;
2984         }
2985 }
2986
2987 /*********************************************************************
2988  *
2989  *  This routine executes in interrupt context. It replenishes
2990  *  the mbufs in the descriptor and sends data which has been
2991  *  dma'ed into host memory to upper layer.
2992  *
2993  *  We loop at most count times if count is > 0, or until done if
2994  *  count < 0.
2995  *
2996  *********************************************************************/
2997 static void
2998 em_rxeof(struct adapter *adapter, int count)
2999 {
3000         struct ifnet *ifp;
3001         struct mbuf *mp;
3002         uint8_t accept_frame = 0;
3003         uint8_t eop = 0;
3004         uint16_t len, desc_len, prev_len_adj;
3005         int i;
3006
3007         /* Pointer to the receive descriptor being examined. */
3008         struct em_rx_desc *current_desc;
3009
3010         ifp = &adapter->interface_data.ac_if;
3011         i = adapter->next_rx_desc_to_check;
3012         current_desc = &adapter->rx_desc_base[i];
3013
3014         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3015                         BUS_DMASYNC_POSTREAD);
3016
3017         if (!(current_desc->status & E1000_RXD_STAT_DD))
3018                 return;
3019
3020         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3021                 logif(pkt_receive);
3022                 mp = adapter->rx_buffer_area[i].m_head;
3023                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3024                                 BUS_DMASYNC_POSTREAD);
3025                 bus_dmamap_unload(adapter->rxtag,
3026                                   adapter->rx_buffer_area[i].map);
3027
3028                 accept_frame = 1;
3029                 prev_len_adj = 0;
3030                 desc_len = le16toh(current_desc->length);
3031                 if (current_desc->status & E1000_RXD_STAT_EOP) {
3032                         count--;
3033                         eop = 1;
3034                         if (desc_len < ETHER_CRC_LEN) {
3035                                 len = 0;
3036                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3037                         } else {
3038                                 len = desc_len - ETHER_CRC_LEN;
3039                         }
3040                 } else {
3041                         eop = 0;
3042                         len = desc_len;
3043                 }
3044
3045                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3046                         uint8_t last_byte;
3047                         uint32_t pkt_len = desc_len;
3048
3049                         if (adapter->fmp != NULL)
3050                                 pkt_len += adapter->fmp->m_pkthdr.len; 
3051
3052                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3053
3054                         if (TBI_ACCEPT(&adapter->hw, current_desc->status, 
3055                                        current_desc->errors, 
3056                                        pkt_len, last_byte)) {
3057                                 em_tbi_adjust_stats(&adapter->hw, 
3058                                                     &adapter->stats, 
3059                                                     pkt_len, 
3060                                                     adapter->hw.mac_addr);
3061                                 if (len > 0)
3062                                         len--;
3063                         } else {
3064                                 accept_frame = 0;
3065                         }
3066                 }
3067
3068                 if (accept_frame) {
3069                         if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
3070                                 adapter->dropped_pkts++;
3071                                 em_get_buf(i, adapter, mp, MB_DONTWAIT);
3072                                 if (adapter->fmp != NULL)
3073                                         m_freem(adapter->fmp);
3074                                 adapter->fmp = NULL;
3075                                 adapter->lmp = NULL;
3076                                 goto skip;
3077                         }
3078
3079                         /* Assign correct length to the current fragment */
3080                         mp->m_len = len;
3081
3082                         if (adapter->fmp == NULL) {
3083                                 mp->m_pkthdr.len = len;
3084                                 adapter->fmp = mp;       /* Store the first mbuf */
3085                                 adapter->lmp = mp;
3086                         } else {
3087                                 /* Chain mbuf's together */
3088                                 /* 
3089                                  * Adjust length of previous mbuf in chain if
3090                                  * we received less than 4 bytes in the last
3091                                  * descriptor.
3092                                  */
3093                                 if (prev_len_adj > 0) {
3094                                         adapter->lmp->m_len -= prev_len_adj;
3095                                         adapter->fmp->m_pkthdr.len -= prev_len_adj;
3096                                 }
3097                                 adapter->lmp->m_next = mp;
3098                                 adapter->lmp = adapter->lmp->m_next;
3099                                 adapter->fmp->m_pkthdr.len += len;
3100                         }
3101
3102                         if (eop) {
3103                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3104                                 ifp->if_ipackets++;
3105
3106                                 em_receive_checksum(adapter, current_desc,
3107                                                     adapter->fmp);
3108                                 if (current_desc->status & E1000_RXD_STAT_VP) {
3109                                         VLAN_INPUT_TAG(adapter->fmp,
3110                                                        (current_desc->special & 
3111                                                         E1000_RXD_SPC_VLAN_MASK));
3112                                 } else {
3113                                         ifp->if_input(ifp, adapter->fmp);
3114                                 }
3115                                 adapter->fmp = NULL;
3116                                 adapter->lmp = NULL;
3117                         }
3118                 } else {
3119                         adapter->dropped_pkts++;
3120                         em_get_buf(i, adapter, mp, MB_DONTWAIT);
3121                         if (adapter->fmp != NULL) 
3122                                 m_freem(adapter->fmp);
3123                         adapter->fmp = NULL;
3124                         adapter->lmp = NULL;
3125                 }
3126
3127 skip:
3128                 /* Zero out the receive descriptors status. */
3129                 current_desc->status = 0;
3130
3131                 /* Advance our pointers to the next descriptor. */
3132                 if (++i == adapter->num_rx_desc) {
3133                         i = 0;
3134                         current_desc = adapter->rx_desc_base;
3135                 } else {
3136                         current_desc++;
3137                 }
3138         }
3139
3140         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3141                         BUS_DMASYNC_PREWRITE);
3142
3143         adapter->next_rx_desc_to_check = i;
3144
3145         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3146         if (--i < 0)
3147                 i = adapter->num_rx_desc - 1;
3148
3149         E1000_WRITE_REG(&adapter->hw, RDT, i);
3150 }
3151
3152 /*********************************************************************
3153  *
3154  *  Verify that the hardware indicated that the checksum is valid.
3155  *  Inform the stack about the status of checksum so that stack
3156  *  doesn't spend time verifying the checksum.
3157  *
3158  *********************************************************************/
3159 static void
3160 em_receive_checksum(struct adapter *adapter,
3161                     struct em_rx_desc *rx_desc,
3162                     struct mbuf *mp)
3163 {
3164         /* 82543 or newer only */
3165         if ((adapter->hw.mac_type < em_82543) ||
3166             /* Ignore Checksum bit is set */
3167             (rx_desc->status & E1000_RXD_STAT_IXSM)) {
3168                 mp->m_pkthdr.csum_flags = 0;
3169                 return;
3170         }
3171
3172         if (rx_desc->status & E1000_RXD_STAT_IPCS) {
3173                 /* Did it pass? */
3174                 if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3175                         /* IP Checksum Good */
3176                         mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3177                         mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3178                 } else {
3179                         mp->m_pkthdr.csum_flags = 0;
3180                 }
3181         }
3182
3183         if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
3184                 /* Did it pass? */
3185                 if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3186                         mp->m_pkthdr.csum_flags |=
3187                         (CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3188                          CSUM_FRAG_NOT_CHECKED);
3189                         mp->m_pkthdr.csum_data = htons(0xffff);
3190                 }
3191         }
3192 }
3193
3194
3195 static void 
3196 em_enable_vlans(struct adapter *adapter)
3197 {
3198         uint32_t ctrl;
3199
3200         E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
3201
3202         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3203         ctrl |= E1000_CTRL_VME;
3204         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3205 }
3206
3207 static void
3208 em_disable_vlans(struct adapter *adapter)
3209 {
3210         uint32_t ctrl;
3211
3212         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3213         ctrl &= ~E1000_CTRL_VME;
3214         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3215 }
3216
3217 /*
3218  * note: we must call bus_enable_intr() prior to enabling the hardware
3219  * interrupt and bus_disable_intr() after disabling the hardware interrupt
3220  * in order to avoid handler execution races from scheduled interrupt
3221  * threads.
3222  */
3223 static void
3224 em_enable_intr(struct adapter *adapter)
3225 {
3226         struct ifnet *ifp = &adapter->interface_data.ac_if;
3227         
3228         if ((ifp->if_flags & IFF_POLLING) == 0) {
3229                 lwkt_serialize_handler_enable(ifp->if_serializer);
3230                 E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
3231         }
3232 }
3233
3234 static void
3235 em_disable_intr(struct adapter *adapter)
3236 {
3237         /*
3238          * The first version of 82542 had an errata where when link was forced
3239          * it would stay up even up even if the cable was disconnected.
3240          * Sequence errors were used to detect the disconnect and then the
3241          * driver would unforce the link.  This code in the in the ISR.  For
3242          * this to work correctly the Sequence error interrupt had to be
3243          * enabled all the time.
3244          */
3245         if (adapter->hw.mac_type == em_82542_rev2_0) {
3246                 E1000_WRITE_REG(&adapter->hw, IMC,
3247                                 (0xffffffff & ~E1000_IMC_RXSEQ));
3248         } else {
3249                 E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
3250         }
3251
3252         lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
3253 }
3254
3255 static int
3256 em_is_valid_ether_addr(uint8_t *addr)
3257 {
3258         static const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3259
3260         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3261                 return (FALSE);
3262         else
3263                 return (TRUE);
3264 }
3265
3266 void
3267 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3268 {
3269         pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
3270 }
3271
3272 void
3273 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3274 {
3275         *value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
3276 }
3277
3278 void
3279 em_pci_set_mwi(struct em_hw *hw)
3280 {
3281         pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3282                          (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
3283 }
3284
3285 void
3286 em_pci_clear_mwi(struct em_hw *hw)
3287 {
3288         pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3289                          (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
3290 }
3291
3292 uint32_t
3293 em_io_read(struct em_hw *hw, unsigned long port)
3294 {
3295         struct em_osdep *io = hw->back;
3296
3297         return bus_space_read_4(io->io_bus_space_tag,
3298                                 io->io_bus_space_handle, port);
3299 }
3300
3301 void
3302 em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
3303 {
3304         struct em_osdep *io = hw->back;
3305
3306         bus_space_write_4(io->io_bus_space_tag,
3307                           io->io_bus_space_handle, port, value);
3308 }
3309
3310 /*
3311  * We may eventually really do this, but its unnecessary 
3312  * for now so we just return unsupported.
3313  */
3314 int32_t
3315 em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3316 {
3317         return (0);
3318 }
3319
3320
3321 /*********************************************************************
3322  * 82544 Coexistence issue workaround.
3323  *    There are 2 issues.
3324  *      1. Transmit Hang issue.
3325  *    To detect this issue, following equation can be used...
3326  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3327  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
3328  *
3329  *      2. DAC issue.
3330  *    To detect this issue, following equation can be used...
3331  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3332  *          If SUM[3:0] is in between 9 to c, we will have this issue.
3333  *
3334  *
3335  *    WORKAROUND:
3336  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
3337  *          9,a,b,c (DAC)
3338  *
3339 *************************************************************************/
3340 static uint32_t
3341 em_fill_descriptors(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3342 {
3343         /* Since issue is sensitive to length and address.*/
3344         /* Let us first check the address...*/
3345         uint32_t safe_terminator;
3346         if (length <= 4) {
3347                 desc_array->descriptor[0].address = address;
3348                 desc_array->descriptor[0].length = length;
3349                 desc_array->elements = 1;
3350                 return (desc_array->elements);
3351         }
3352         safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3353         /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */ 
3354         if (safe_terminator == 0 ||
3355             (safe_terminator > 4 && safe_terminator < 9) || 
3356             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3357                 desc_array->descriptor[0].address = address;
3358                 desc_array->descriptor[0].length = length;
3359                 desc_array->elements = 1;
3360                 return (desc_array->elements);
3361         }
3362
3363         desc_array->descriptor[0].address = address;
3364         desc_array->descriptor[0].length = length - 4;
3365         desc_array->descriptor[1].address = address + (length - 4);
3366         desc_array->descriptor[1].length = 4;
3367         desc_array->elements = 2;
3368         return (desc_array->elements);
3369 }
3370
3371 /**********************************************************************
3372  *
3373  *  Update the board statistics counters.
3374  *
3375  **********************************************************************/
3376 static void
3377 em_update_stats_counters(struct adapter *adapter)
3378 {
3379         struct ifnet   *ifp;
3380
3381         if (adapter->hw.media_type == em_media_type_copper ||
3382             (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
3383                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
3384                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
3385         }
3386         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
3387         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
3388         adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
3389         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
3390
3391         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
3392         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
3393         adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
3394         adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
3395         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
3396         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
3397         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
3398         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
3399         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
3400         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
3401         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
3402         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
3403         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
3404         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
3405         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
3406         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
3407         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
3408         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
3409         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
3410         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
3411
3412         /* For the 64-bit byte counters the low dword must be read first. */
3413         /* Both registers clear on the read of the high dword */
3414
3415         adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
3416         adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
3417         adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
3418         adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
3419
3420         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
3421         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
3422         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
3423         adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
3424         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
3425
3426         adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
3427         adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
3428         adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
3429         adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
3430
3431         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
3432         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
3433         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
3434         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
3435         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
3436         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
3437         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
3438         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
3439         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
3440         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
3441
3442         if (adapter->hw.mac_type >= em_82543) {
3443                 adapter->stats.algnerrc += 
3444                     E1000_READ_REG(&adapter->hw, ALGNERRC);
3445                 adapter->stats.rxerrc += 
3446                     E1000_READ_REG(&adapter->hw, RXERRC);
3447                 adapter->stats.tncrs += 
3448                     E1000_READ_REG(&adapter->hw, TNCRS);
3449                 adapter->stats.cexterr += 
3450                     E1000_READ_REG(&adapter->hw, CEXTERR);
3451                 adapter->stats.tsctc += 
3452                     E1000_READ_REG(&adapter->hw, TSCTC);
3453                 adapter->stats.tsctfc += 
3454                     E1000_READ_REG(&adapter->hw, TSCTFC);
3455         }
3456         ifp = &adapter->interface_data.ac_if;
3457
3458         /* Fill out the OS statistics structure */
3459         ifp->if_collisions = adapter->stats.colc;
3460
3461         /* Rx Errors */
3462         ifp->if_ierrors =
3463                 adapter->dropped_pkts +
3464                 adapter->stats.rxerrc +
3465                 adapter->stats.crcerrs +
3466                 adapter->stats.algnerrc +
3467                 adapter->stats.ruc + adapter->stats.roc +
3468                 adapter->stats.mpc + adapter->stats.cexterr +
3469                 adapter->rx_overruns;
3470
3471         /* Tx Errors */
3472         ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
3473                           adapter->watchdog_timeouts;
3474 }
3475
3476
3477 /**********************************************************************
3478  *
3479  *  This routine is called only when em_display_debug_stats is enabled.
3480  *  This routine provides a way to take a look at important statistics
3481  *  maintained by the driver and hardware.
3482  *
3483  **********************************************************************/
3484 static void
3485 em_print_debug_info(struct adapter *adapter)
3486 {
3487         device_t dev= adapter->dev;
3488         uint8_t *hw_addr = adapter->hw.hw_addr;
3489
3490         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3491         device_printf(dev, "CTRL  = 0x%x RCTL = 0x%x\n",
3492                       E1000_READ_REG(&adapter->hw, CTRL),
3493                       E1000_READ_REG(&adapter->hw, RCTL));
3494         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3495                       ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3496                       (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3497         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3498                       adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3499         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3500                       E1000_READ_REG(&adapter->hw, TIDV),
3501                       E1000_READ_REG(&adapter->hw, TADV));
3502         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3503                       E1000_READ_REG(&adapter->hw, RDTR),
3504                       E1000_READ_REG(&adapter->hw, RADV));
3505         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3506                       (long long)adapter->tx_fifo_wrk_cnt,
3507                       (long long)adapter->tx_fifo_reset_cnt);
3508         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3509                       E1000_READ_REG(&adapter->hw, TDH),
3510                       E1000_READ_REG(&adapter->hw, TDT));
3511         device_printf(dev, "Num Tx descriptors avail = %d\n",
3512                       adapter->num_tx_desc_avail);
3513         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3514                       adapter->no_tx_desc_avail1);
3515         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3516                       adapter->no_tx_desc_avail2);
3517         device_printf(dev, "Std mbuf failed = %ld\n",
3518                       adapter->mbuf_alloc_failed);
3519         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3520                       adapter->mbuf_cluster_failed);
3521         device_printf(dev, "Driver dropped packets = %ld\n",
3522                       adapter->dropped_pkts);
3523 }
3524
3525 static void
3526 em_print_hw_stats(struct adapter *adapter)
3527 {
3528         device_t dev= adapter->dev;
3529
3530         device_printf(dev, "Excessive collisions = %lld\n",
3531                       (long long)adapter->stats.ecol);
3532         device_printf(dev, "Symbol errors = %lld\n",
3533                       (long long)adapter->stats.symerrs);
3534         device_printf(dev, "Sequence errors = %lld\n",
3535                       (long long)adapter->stats.sec);
3536         device_printf(dev, "Defer count = %lld\n",
3537                       (long long)adapter->stats.dc);
3538
3539         device_printf(dev, "Missed Packets = %lld\n",
3540                       (long long)adapter->stats.mpc);
3541         device_printf(dev, "Receive No Buffers = %lld\n",
3542                       (long long)adapter->stats.rnbc);
3543         /* RLEC is inaccurate on some hardware, calculate our own. */
3544         device_printf(dev, "Receive Length errors = %lld\n",
3545                       (long long)adapter->stats.roc +
3546                       (long long)adapter->stats.ruc);
3547         device_printf(dev, "Receive errors = %lld\n",
3548                       (long long)adapter->stats.rxerrc);
3549         device_printf(dev, "Crc errors = %lld\n",
3550                       (long long)adapter->stats.crcerrs);
3551         device_printf(dev, "Alignment errors = %lld\n",
3552                       (long long)adapter->stats.algnerrc);
3553         device_printf(dev, "Carrier extension errors = %lld\n",
3554                       (long long)adapter->stats.cexterr);
3555         device_printf(dev, "RX overruns = %lu\n", adapter->rx_overruns);
3556         device_printf(dev, "Watchdog timeouts = %lu\n",
3557                       adapter->watchdog_timeouts);
3558
3559         device_printf(dev, "XON Rcvd = %lld\n",
3560                       (long long)adapter->stats.xonrxc);
3561         device_printf(dev, "XON Xmtd = %lld\n",
3562                       (long long)adapter->stats.xontxc);
3563         device_printf(dev, "XOFF Rcvd = %lld\n",
3564                       (long long)adapter->stats.xoffrxc);
3565         device_printf(dev, "XOFF Xmtd = %lld\n",
3566                       (long long)adapter->stats.xofftxc);
3567
3568         device_printf(dev, "Good Packets Rcvd = %lld\n",
3569                       (long long)adapter->stats.gprc);
3570         device_printf(dev, "Good Packets Xmtd = %lld\n",
3571                       (long long)adapter->stats.gptc);
3572 }
3573
3574 static int
3575 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3576 {
3577         int error;
3578         int result;
3579         struct adapter *adapter;
3580
3581         result = -1;
3582         error = sysctl_handle_int(oidp, &result, 0, req);
3583
3584         if (error || !req->newptr)
3585                 return (error);
3586
3587         if (result == 1) {
3588                 adapter = (struct adapter *)arg1;
3589                 em_print_debug_info(adapter);
3590         }
3591
3592         return (error);
3593 }
3594
3595 static int
3596 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3597 {
3598         int error;
3599         int result;
3600         struct adapter *adapter;
3601
3602         result = -1;
3603         error = sysctl_handle_int(oidp, &result, 0, req);
3604
3605         if (error || !req->newptr)
3606                 return (error);
3607
3608         if (result == 1) {
3609                 adapter = (struct adapter *)arg1;
3610                 em_print_hw_stats(adapter);
3611         }
3612
3613         return (error);
3614 }
3615
3616 static int
3617 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3618 {
3619         struct em_int_delay_info *info;
3620         struct adapter *adapter;
3621         uint32_t regval;
3622         int error;
3623         int usecs;
3624         int ticks;
3625
3626         info = (struct em_int_delay_info *)arg1;
3627         adapter = info->adapter;
3628         usecs = info->value;
3629         error = sysctl_handle_int(oidp, &usecs, 0, req);
3630         if (error != 0 || req->newptr == NULL)
3631                 return (error);
3632         if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3633                 return (EINVAL);
3634         info->value = usecs;
3635         ticks = E1000_USECS_TO_TICKS(usecs);
3636
3637         lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3638         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3639         regval = (regval & ~0xffff) | (ticks & 0xffff);
3640         /* Handle a few special cases. */
3641         switch (info->offset) {
3642         case E1000_RDTR:
3643         case E1000_82542_RDTR:
3644                 regval |= E1000_RDT_FPDB;
3645                 break;
3646         case E1000_TIDV:
3647         case E1000_82542_TIDV:
3648                 if (ticks == 0) {
3649                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3650                         /* Don't write 0 into the TIDV register. */
3651                         regval++;
3652                 } else
3653                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3654                 break;
3655         }
3656         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3657         lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3658         return (0);
3659 }
3660
3661 static void
3662 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3663                         const char *description, struct em_int_delay_info *info,
3664                         int offset, int value)
3665 {
3666         info->adapter = adapter;
3667         info->offset = offset;
3668         info->value = value;
3669         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3670                         SYSCTL_CHILDREN(adapter->sysctl_tree),
3671                         OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3672                         info, 0, em_sysctl_int_delay, "I", description);
3673 }
3674
3675 static int
3676 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3677 {
3678         struct adapter *adapter = (void *)arg1;
3679         int error;
3680         int throttle;
3681
3682         throttle = em_int_throttle_ceil;
3683         error = sysctl_handle_int(oidp, &throttle, 0, req);
3684         if (error || req->newptr == NULL)
3685                 return error;
3686         if (throttle < 0 || throttle > 1000000000 / 256)
3687                 return EINVAL;
3688         if (throttle) {
3689                 /*
3690                  * Set the interrupt throttling rate in 256ns increments,
3691                  * recalculate sysctl value assignment to get exact frequency.
3692                  */
3693                 throttle = 1000000000 / 256 / throttle;
3694                 lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3695                 em_int_throttle_ceil = 1000000000 / 256 / throttle;
3696                 E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3697                 lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3698         } else {
3699                 lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3700                 em_int_throttle_ceil = 0;
3701                 E1000_WRITE_REG(&adapter->hw, ITR, 0);
3702                 lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3703         }
3704         device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n", 
3705                         em_int_throttle_ceil);
3706         return 0;
3707 }