Document sysctls vm.fast_fault, vm.dreadful_invltlb, lwkt.preempt_hit/_miss,
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74
75 /*
76  *      Page fault handling module.
77  */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89
90 #include <cpu/lwbuf.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int didlimit;
119         int hardfault;
120         int fault_flags;
121         int map_generation;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 
128            "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
139                         int prot);
140
141 /*
142  * The caller must hold vm_token.
143  */
144 static __inline void
145 release_page(struct faultstate *fs)
146 {
147         vm_page_deactivate(fs->m);
148         vm_page_wakeup(fs->m);
149         fs->m = NULL;
150 }
151
152 /*
153  * The caller must hold vm_token.
154  */
155 static __inline void
156 unlock_map(struct faultstate *fs)
157 {
158         if (fs->lookup_still_valid && fs->map) {
159                 vm_map_lookup_done(fs->map, fs->entry, 0);
160                 fs->lookup_still_valid = FALSE;
161         }
162 }
163
164 /*
165  * Clean up after a successful call to vm_fault_object() so another call
166  * to vm_fault_object() can be made.
167  *
168  * The caller must hold vm_token.
169  */
170 static void
171 _cleanup_successful_fault(struct faultstate *fs, int relock)
172 {
173         if (fs->object != fs->first_object) {
174                 vm_page_free(fs->first_m);
175                 vm_object_pip_wakeup(fs->object);
176                 fs->first_m = NULL;
177         }
178         fs->object = fs->first_object;
179         if (relock && fs->lookup_still_valid == FALSE) {
180                 if (fs->map)
181                         vm_map_lock_read(fs->map);
182                 fs->lookup_still_valid = TRUE;
183         }
184 }
185
186 /*
187  * The caller must hold vm_token.
188  */
189 static void
190 _unlock_things(struct faultstate *fs, int dealloc)
191 {
192         vm_object_pip_wakeup(fs->first_object);
193         _cleanup_successful_fault(fs, 0);
194         if (dealloc) {
195                 vm_object_deallocate(fs->first_object);
196                 fs->first_object = NULL;
197         }
198         unlock_map(fs); 
199         if (fs->vp != NULL) { 
200                 vput(fs->vp);
201                 fs->vp = NULL;
202         }
203 }
204
205 #define unlock_things(fs) _unlock_things(fs, 0)
206 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
207 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
208
209 /*
210  * TRYPAGER 
211  *
212  * Determine if the pager for the current object *might* contain the page.
213  *
214  * We only need to try the pager if this is not a default object (default
215  * objects are zero-fill and have no real pager), and if we are not taking
216  * a wiring fault or if the FS entry is wired.
217  */
218 #define TRYPAGER(fs)    \
219                 (fs->object->type != OBJT_DEFAULT && \
220                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
221
222 /*
223  * vm_fault:
224  *
225  * Handle a page fault occuring at the given address, requiring the given
226  * permissions, in the map specified.  If successful, the page is inserted
227  * into the associated physical map.
228  *
229  * NOTE: The given address should be truncated to the proper page address.
230  *
231  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
232  * a standard error specifying why the fault is fatal is returned.
233  *
234  * The map in question must be referenced, and remains so.
235  * The caller may hold no locks.
236  * No other requirements.
237  */
238 int
239 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
240 {
241         int result;
242         vm_pindex_t first_pindex;
243         struct faultstate fs;
244         int growstack;
245
246         mycpu->gd_cnt.v_vm_faults++;
247
248         fs.didlimit = 0;
249         fs.hardfault = 0;
250         fs.fault_flags = fault_flags;
251         growstack = 1;
252
253 RetryFault:
254         /*
255          * Find the vm_map_entry representing the backing store and resolve
256          * the top level object and page index.  This may have the side
257          * effect of executing a copy-on-write on the map entry and/or
258          * creating a shadow object, but will not COW any actual VM pages.
259          *
260          * On success fs.map is left read-locked and various other fields 
261          * are initialized but not otherwise referenced or locked.
262          *
263          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
264          * VM_FAULT_WRITE if the map entry is a virtual page table and also
265          * writable, so we can set the 'A'accessed bit in the virtual page
266          * table entry.
267          */
268         fs.map = map;
269         result = vm_map_lookup(&fs.map, vaddr, fault_type,
270                                &fs.entry, &fs.first_object,
271                                &first_pindex, &fs.first_prot, &fs.wired);
272
273         /*
274          * If the lookup failed or the map protections are incompatible,
275          * the fault generally fails.  However, if the caller is trying
276          * to do a user wiring we have more work to do.
277          */
278         if (result != KERN_SUCCESS) {
279                 if (result != KERN_PROTECTION_FAILURE ||
280                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
281                 {
282                         if (result == KERN_INVALID_ADDRESS && growstack &&
283                             map != &kernel_map && curproc != NULL) {
284                                 result = vm_map_growstack(curproc, vaddr);
285                                 if (result != KERN_SUCCESS)
286                                         return (KERN_FAILURE);
287                                 growstack = 0;
288                                 goto RetryFault;
289                         }
290                         return (result);
291                 }
292
293                 /*
294                  * If we are user-wiring a r/w segment, and it is COW, then
295                  * we need to do the COW operation.  Note that we don't
296                  * currently COW RO sections now, because it is NOT desirable
297                  * to COW .text.  We simply keep .text from ever being COW'ed
298                  * and take the heat that one cannot debug wired .text sections.
299                  */
300                 result = vm_map_lookup(&fs.map, vaddr,
301                                        VM_PROT_READ|VM_PROT_WRITE|
302                                         VM_PROT_OVERRIDE_WRITE,
303                                        &fs.entry, &fs.first_object,
304                                        &first_pindex, &fs.first_prot,
305                                        &fs.wired);
306                 if (result != KERN_SUCCESS)
307                         return result;
308
309                 /*
310                  * If we don't COW now, on a user wire, the user will never
311                  * be able to write to the mapping.  If we don't make this
312                  * restriction, the bookkeeping would be nearly impossible.
313                  */
314                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
315                         fs.entry->max_protection &= ~VM_PROT_WRITE;
316         }
317
318         /*
319          * fs.map is read-locked
320          *
321          * Misc checks.  Save the map generation number to detect races.
322          */
323         fs.map_generation = fs.map->timestamp;
324
325         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
326                 panic("vm_fault: fault on nofault entry, addr: %lx",
327                     (u_long)vaddr);
328         }
329
330         /*
331          * A system map entry may return a NULL object.  No object means
332          * no pager means an unrecoverable kernel fault.
333          */
334         if (fs.first_object == NULL) {
335                 panic("vm_fault: unrecoverable fault at %p in entry %p",
336                         (void *)vaddr, fs.entry);
337         }
338
339         /*
340          * Make a reference to this object to prevent its disposal while we
341          * are messing with it.  Once we have the reference, the map is free
342          * to be diddled.  Since objects reference their shadows (and copies),
343          * they will stay around as well.
344          *
345          * Bump the paging-in-progress count to prevent size changes (e.g.
346          * truncation operations) during I/O.  This must be done after
347          * obtaining the vnode lock in order to avoid possible deadlocks.
348          *
349          * The vm_token is needed to manipulate the vm_object
350          */
351         lwkt_gettoken(&vm_token);
352         vm_object_reference(fs.first_object);
353         fs.vp = vnode_pager_lock(fs.first_object);
354         vm_object_pip_add(fs.first_object, 1);
355         lwkt_reltoken(&vm_token);
356
357         fs.lookup_still_valid = TRUE;
358         fs.first_m = NULL;
359         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
360
361         /*
362          * If the entry is wired we cannot change the page protection.
363          */
364         if (fs.wired)
365                 fault_type = fs.first_prot;
366
367         /*
368          * The page we want is at (first_object, first_pindex), but if the
369          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
370          * page table to figure out the actual pindex.
371          *
372          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
373          * ONLY
374          */
375         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
376                 result = vm_fault_vpagetable(&fs, &first_pindex,
377                                              fs.entry->aux.master_pde,
378                                              fault_type);
379                 if (result == KERN_TRY_AGAIN)
380                         goto RetryFault;
381                 if (result != KERN_SUCCESS)
382                         return (result);
383         }
384
385         /*
386          * Now we have the actual (object, pindex), fault in the page.  If
387          * vm_fault_object() fails it will unlock and deallocate the FS
388          * data.   If it succeeds everything remains locked and fs->object
389          * will have an additional PIP count if it is not equal to
390          * fs->first_object
391          *
392          * vm_fault_object will set fs->prot for the pmap operation.  It is
393          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
394          * page can be safely written.  However, it will force a read-only
395          * mapping for a read fault if the memory is managed by a virtual
396          * page table.
397          */
398         result = vm_fault_object(&fs, first_pindex, fault_type);
399
400         if (result == KERN_TRY_AGAIN)
401                 goto RetryFault;
402         if (result != KERN_SUCCESS)
403                 return (result);
404
405         /*
406          * On success vm_fault_object() does not unlock or deallocate, and fs.m
407          * will contain a busied page.
408          *
409          * Enter the page into the pmap and do pmap-related adjustments.
410          */
411         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
412
413         /*
414          * Burst in a few more pages if possible.  The fs.map should still
415          * be locked.
416          */
417         if (fault_flags & VM_FAULT_BURST) {
418                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
419                     fs.wired == 0) {
420                         vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
421                 }
422         }
423         unlock_things(&fs);
424
425         vm_page_flag_clear(fs.m, PG_ZERO);
426         vm_page_flag_set(fs.m, PG_REFERENCED);
427
428         /*
429          * If the page is not wired down, then put it where the pageout daemon
430          * can find it.
431          *
432          * We do not really need to get vm_token here but since all the
433          * vm_*() calls have to doing it here improves efficiency.
434          */
435         lwkt_gettoken(&vm_token);
436         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
437                 if (fs.wired)
438                         vm_page_wire(fs.m);
439                 else
440                         vm_page_unwire(fs.m, 1);
441         } else {
442                 vm_page_activate(fs.m);
443         }
444
445         if (curthread->td_lwp) {
446                 if (fs.hardfault) {
447                         curthread->td_lwp->lwp_ru.ru_majflt++;
448                 } else {
449                         curthread->td_lwp->lwp_ru.ru_minflt++;
450                 }
451         }
452
453         /*
454          * Unlock everything, and return
455          */
456         vm_page_wakeup(fs.m);
457         vm_object_deallocate(fs.first_object);
458         lwkt_reltoken(&vm_token);
459
460         return (KERN_SUCCESS);
461 }
462
463 /*
464  * Fault in the specified virtual address in the current process map, 
465  * returning a held VM page or NULL.  See vm_fault_page() for more 
466  * information.
467  *
468  * No requirements.
469  */
470 vm_page_t
471 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
472 {
473         struct lwp *lp = curthread->td_lwp;
474         vm_page_t m;
475
476         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
477                           fault_type, VM_FAULT_NORMAL, errorp);
478         return(m);
479 }
480
481 /*
482  * Fault in the specified virtual address in the specified map, doing all
483  * necessary manipulation of the object store and all necessary I/O.  Return
484  * a held VM page or NULL, and set *errorp.  The related pmap is not
485  * updated.
486  *
487  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
488  * and marked PG_REFERENCED as well.
489  *
490  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
491  * error will be returned.
492  *
493  * No requirements.
494  */
495 vm_page_t
496 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
497               int fault_flags, int *errorp)
498 {
499         vm_pindex_t first_pindex;
500         struct faultstate fs;
501         int result;
502         vm_prot_t orig_fault_type = fault_type;
503
504         mycpu->gd_cnt.v_vm_faults++;
505
506         fs.didlimit = 0;
507         fs.hardfault = 0;
508         fs.fault_flags = fault_flags;
509         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
510
511 RetryFault:
512         /*
513          * Find the vm_map_entry representing the backing store and resolve
514          * the top level object and page index.  This may have the side
515          * effect of executing a copy-on-write on the map entry and/or
516          * creating a shadow object, but will not COW any actual VM pages.
517          *
518          * On success fs.map is left read-locked and various other fields 
519          * are initialized but not otherwise referenced or locked.
520          *
521          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
522          * if the map entry is a virtual page table and also writable,
523          * so we can set the 'A'accessed bit in the virtual page table entry.
524          */
525         fs.map = map;
526         result = vm_map_lookup(&fs.map, vaddr, fault_type,
527                                &fs.entry, &fs.first_object,
528                                &first_pindex, &fs.first_prot, &fs.wired);
529
530         if (result != KERN_SUCCESS) {
531                 *errorp = result;
532                 return (NULL);
533         }
534
535         /*
536          * fs.map is read-locked
537          *
538          * Misc checks.  Save the map generation number to detect races.
539          */
540         fs.map_generation = fs.map->timestamp;
541
542         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
543                 panic("vm_fault: fault on nofault entry, addr: %lx",
544                     (u_long)vaddr);
545         }
546
547         /*
548          * A system map entry may return a NULL object.  No object means
549          * no pager means an unrecoverable kernel fault.
550          */
551         if (fs.first_object == NULL) {
552                 panic("vm_fault: unrecoverable fault at %p in entry %p",
553                         (void *)vaddr, fs.entry);
554         }
555
556         /*
557          * Make a reference to this object to prevent its disposal while we
558          * are messing with it.  Once we have the reference, the map is free
559          * to be diddled.  Since objects reference their shadows (and copies),
560          * they will stay around as well.
561          *
562          * Bump the paging-in-progress count to prevent size changes (e.g.
563          * truncation operations) during I/O.  This must be done after
564          * obtaining the vnode lock in order to avoid possible deadlocks.
565          *
566          * The vm_token is needed to manipulate the vm_object
567          */
568         lwkt_gettoken(&vm_token);
569         vm_object_reference(fs.first_object);
570         fs.vp = vnode_pager_lock(fs.first_object);
571         vm_object_pip_add(fs.first_object, 1);
572         lwkt_reltoken(&vm_token);
573
574         fs.lookup_still_valid = TRUE;
575         fs.first_m = NULL;
576         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
577
578         /*
579          * If the entry is wired we cannot change the page protection.
580          */
581         if (fs.wired)
582                 fault_type = fs.first_prot;
583
584         /*
585          * The page we want is at (first_object, first_pindex), but if the
586          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
587          * page table to figure out the actual pindex.
588          *
589          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
590          * ONLY
591          */
592         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
593                 result = vm_fault_vpagetable(&fs, &first_pindex,
594                                              fs.entry->aux.master_pde,
595                                              fault_type);
596                 if (result == KERN_TRY_AGAIN)
597                         goto RetryFault;
598                 if (result != KERN_SUCCESS) {
599                         *errorp = result;
600                         return (NULL);
601                 }
602         }
603
604         /*
605          * Now we have the actual (object, pindex), fault in the page.  If
606          * vm_fault_object() fails it will unlock and deallocate the FS
607          * data.   If it succeeds everything remains locked and fs->object
608          * will have an additinal PIP count if it is not equal to
609          * fs->first_object
610          */
611         result = vm_fault_object(&fs, first_pindex, fault_type);
612
613         if (result == KERN_TRY_AGAIN)
614                 goto RetryFault;
615         if (result != KERN_SUCCESS) {
616                 *errorp = result;
617                 return(NULL);
618         }
619
620         if ((orig_fault_type & VM_PROT_WRITE) &&
621             (fs.prot & VM_PROT_WRITE) == 0) {
622                 *errorp = KERN_PROTECTION_FAILURE;
623                 unlock_and_deallocate(&fs);
624                 return(NULL);
625         }
626
627         /*
628          * On success vm_fault_object() does not unlock or deallocate, and fs.m
629          * will contain a busied page.
630          */
631         unlock_things(&fs);
632
633         /*
634          * Return a held page.  We are not doing any pmap manipulation so do
635          * not set PG_MAPPED.  However, adjust the page flags according to
636          * the fault type because the caller may not use a managed pmapping
637          * (so we don't want to lose the fact that the page will be dirtied
638          * if a write fault was specified).
639          */
640         lwkt_gettoken(&vm_token);
641         vm_page_hold(fs.m);
642         vm_page_flag_clear(fs.m, PG_ZERO);
643         if (fault_type & VM_PROT_WRITE)
644                 vm_page_dirty(fs.m);
645
646         /*
647          * Update the pmap.  We really only have to do this if a COW
648          * occured to replace the read-only page with the new page.  For
649          * now just do it unconditionally. XXX
650          */
651         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
652         vm_page_flag_set(fs.m, PG_REFERENCED);
653
654         /*
655          * Unbusy the page by activating it.  It remains held and will not
656          * be reclaimed.
657          */
658         vm_page_activate(fs.m);
659
660         if (curthread->td_lwp) {
661                 if (fs.hardfault) {
662                         curthread->td_lwp->lwp_ru.ru_majflt++;
663                 } else {
664                         curthread->td_lwp->lwp_ru.ru_minflt++;
665                 }
666         }
667
668         /*
669          * Unlock everything, and return the held page.
670          */
671         vm_page_wakeup(fs.m);
672         vm_object_deallocate(fs.first_object);
673         lwkt_reltoken(&vm_token);
674
675         *errorp = 0;
676         return(fs.m);
677 }
678
679 /*
680  * Fault in the specified (object,offset), dirty the returned page as
681  * needed.  If the requested fault_type cannot be done NULL and an
682  * error is returned.
683  *
684  * A held (but not busied) page is returned.
685  *
686  * No requirements.
687  */
688 vm_page_t
689 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
690                      vm_prot_t fault_type, int fault_flags, int *errorp)
691 {
692         int result;
693         vm_pindex_t first_pindex;
694         struct faultstate fs;
695         struct vm_map_entry entry;
696
697         bzero(&entry, sizeof(entry));
698         entry.object.vm_object = object;
699         entry.maptype = VM_MAPTYPE_NORMAL;
700         entry.protection = entry.max_protection = fault_type;
701
702         fs.didlimit = 0;
703         fs.hardfault = 0;
704         fs.fault_flags = fault_flags;
705         fs.map = NULL;
706         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
707
708 RetryFault:
709         
710         fs.first_object = object;
711         first_pindex = OFF_TO_IDX(offset);
712         fs.entry = &entry;
713         fs.first_prot = fault_type;
714         fs.wired = 0;
715         /*fs.map_generation = 0; unused */
716
717         /*
718          * Make a reference to this object to prevent its disposal while we
719          * are messing with it.  Once we have the reference, the map is free
720          * to be diddled.  Since objects reference their shadows (and copies),
721          * they will stay around as well.
722          *
723          * Bump the paging-in-progress count to prevent size changes (e.g.
724          * truncation operations) during I/O.  This must be done after
725          * obtaining the vnode lock in order to avoid possible deadlocks.
726          */
727         lwkt_gettoken(&vm_token);
728         vm_object_reference(fs.first_object);
729         fs.vp = vnode_pager_lock(fs.first_object);
730         vm_object_pip_add(fs.first_object, 1);
731         lwkt_reltoken(&vm_token);
732
733         fs.lookup_still_valid = TRUE;
734         fs.first_m = NULL;
735         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
736
737 #if 0
738         /* XXX future - ability to operate on VM object using vpagetable */
739         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
740                 result = vm_fault_vpagetable(&fs, &first_pindex,
741                                              fs.entry->aux.master_pde,
742                                              fault_type);
743                 if (result == KERN_TRY_AGAIN)
744                         goto RetryFault;
745                 if (result != KERN_SUCCESS) {
746                         *errorp = result;
747                         return (NULL);
748                 }
749         }
750 #endif
751
752         /*
753          * Now we have the actual (object, pindex), fault in the page.  If
754          * vm_fault_object() fails it will unlock and deallocate the FS
755          * data.   If it succeeds everything remains locked and fs->object
756          * will have an additinal PIP count if it is not equal to
757          * fs->first_object
758          */
759         result = vm_fault_object(&fs, first_pindex, fault_type);
760
761         if (result == KERN_TRY_AGAIN)
762                 goto RetryFault;
763         if (result != KERN_SUCCESS) {
764                 *errorp = result;
765                 return(NULL);
766         }
767
768         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
769                 *errorp = KERN_PROTECTION_FAILURE;
770                 unlock_and_deallocate(&fs);
771                 return(NULL);
772         }
773
774         /*
775          * On success vm_fault_object() does not unlock or deallocate, and fs.m
776          * will contain a busied page.
777          */
778         unlock_things(&fs);
779
780         /*
781          * Return a held page.  We are not doing any pmap manipulation so do
782          * not set PG_MAPPED.  However, adjust the page flags according to
783          * the fault type because the caller may not use a managed pmapping
784          * (so we don't want to lose the fact that the page will be dirtied
785          * if a write fault was specified).
786          */
787         lwkt_gettoken(&vm_token);
788         vm_page_hold(fs.m);
789         vm_page_flag_clear(fs.m, PG_ZERO);
790         if (fault_type & VM_PROT_WRITE)
791                 vm_page_dirty(fs.m);
792
793         /*
794          * Indicate that the page was accessed.
795          */
796         vm_page_flag_set(fs.m, PG_REFERENCED);
797
798         /*
799          * Unbusy the page by activating it.  It remains held and will not
800          * be reclaimed.
801          */
802         vm_page_activate(fs.m);
803
804         if (curthread->td_lwp) {
805                 if (fs.hardfault) {
806                         mycpu->gd_cnt.v_vm_faults++;
807                         curthread->td_lwp->lwp_ru.ru_majflt++;
808                 } else {
809                         curthread->td_lwp->lwp_ru.ru_minflt++;
810                 }
811         }
812
813         /*
814          * Unlock everything, and return the held page.
815          */
816         vm_page_wakeup(fs.m);
817         vm_object_deallocate(fs.first_object);
818         lwkt_reltoken(&vm_token);
819
820         *errorp = 0;
821         return(fs.m);
822 }
823
824 /*
825  * Translate the virtual page number (first_pindex) that is relative
826  * to the address space into a logical page number that is relative to the
827  * backing object.  Use the virtual page table pointed to by (vpte).
828  *
829  * This implements an N-level page table.  Any level can terminate the
830  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
831  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
832  *
833  * No requirements (vm_token need not be held).
834  */
835 static
836 int
837 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
838                     vpte_t vpte, int fault_type)
839 {
840         struct lwbuf *lwb;
841         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
842         int result = KERN_SUCCESS;
843         vpte_t *ptep;
844
845         for (;;) {
846                 /*
847                  * We cannot proceed if the vpte is not valid, not readable
848                  * for a read fault, or not writable for a write fault.
849                  */
850                 if ((vpte & VPTE_V) == 0) {
851                         unlock_and_deallocate(fs);
852                         return (KERN_FAILURE);
853                 }
854                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
855                         unlock_and_deallocate(fs);
856                         return (KERN_FAILURE);
857                 }
858                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
859                         unlock_and_deallocate(fs);
860                         return (KERN_FAILURE);
861                 }
862                 if ((vpte & VPTE_PS) || vshift == 0)
863                         break;
864                 KKASSERT(vshift >= VPTE_PAGE_BITS);
865
866                 /*
867                  * Get the page table page.  Nominally we only read the page
868                  * table, but since we are actively setting VPTE_M and VPTE_A,
869                  * tell vm_fault_object() that we are writing it. 
870                  *
871                  * There is currently no real need to optimize this.
872                  */
873                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
874                                          VM_PROT_READ|VM_PROT_WRITE);
875                 if (result != KERN_SUCCESS)
876                         return (result);
877
878                 /*
879                  * Process the returned fs.m and look up the page table
880                  * entry in the page table page.
881                  */
882                 vshift -= VPTE_PAGE_BITS;
883                 lwb = lwbuf_alloc(fs->m);
884                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
885                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
886                 vpte = *ptep;
887
888                 /*
889                  * Page table write-back.  If the vpte is valid for the
890                  * requested operation, do a write-back to the page table.
891                  *
892                  * XXX VPTE_M is not set properly for page directory pages.
893                  * It doesn't get set in the page directory if the page table
894                  * is modified during a read access.
895                  */
896                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
897                     (vpte & VPTE_W)) {
898                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
899                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
900                                 vm_page_dirty(fs->m);
901                         }
902                 }
903                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
904                     (vpte & VPTE_R)) {
905                         if ((vpte & VPTE_A) == 0) {
906                                 atomic_set_long(ptep, VPTE_A);
907                                 vm_page_dirty(fs->m);
908                         }
909                 }
910                 lwbuf_free(lwb);
911                 vm_page_flag_set(fs->m, PG_REFERENCED);
912                 vm_page_activate(fs->m);
913                 vm_page_wakeup(fs->m);
914                 cleanup_successful_fault(fs);
915         }
916         /*
917          * Combine remaining address bits with the vpte.
918          */
919         /* JG how many bits from each? */
920         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
921                   (*pindex & ((1L << vshift) - 1));
922         return (KERN_SUCCESS);
923 }
924
925
926 /*
927  * This is the core of the vm_fault code.
928  *
929  * Do all operations required to fault-in (fs.first_object, pindex).  Run
930  * through the shadow chain as necessary and do required COW or virtual
931  * copy operations.  The caller has already fully resolved the vm_map_entry
932  * and, if appropriate, has created a copy-on-write layer.  All we need to
933  * do is iterate the object chain.
934  *
935  * On failure (fs) is unlocked and deallocated and the caller may return or
936  * retry depending on the failure code.  On success (fs) is NOT unlocked or
937  * deallocated, fs.m will contained a resolved, busied page, and fs.object
938  * will have an additional PIP count if it is not equal to fs.first_object.
939  *
940  * No requirements.
941  */
942 static
943 int
944 vm_fault_object(struct faultstate *fs,
945                 vm_pindex_t first_pindex, vm_prot_t fault_type)
946 {
947         vm_object_t next_object;
948         vm_pindex_t pindex;
949
950         fs->prot = fs->first_prot;
951         fs->object = fs->first_object;
952         pindex = first_pindex;
953
954         /* 
955          * If a read fault occurs we try to make the page writable if
956          * possible.  There are three cases where we cannot make the
957          * page mapping writable:
958          *
959          * (1) The mapping is read-only or the VM object is read-only,
960          *     fs->prot above will simply not have VM_PROT_WRITE set.
961          *
962          * (2) If the mapping is a virtual page table we need to be able
963          *     to detect writes so we can set VPTE_M in the virtual page
964          *     table.
965          *
966          * (3) If the VM page is read-only or copy-on-write, upgrading would
967          *     just result in an unnecessary COW fault.
968          *
969          * VM_PROT_VPAGED is set if faulting via a virtual page table and
970          * causes adjustments to the 'M'odify bit to also turn off write
971          * access to force a re-fault.
972          */
973         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
974                 if ((fault_type & VM_PROT_WRITE) == 0)
975                         fs->prot &= ~VM_PROT_WRITE;
976         }
977
978         lwkt_gettoken(&vm_token);
979
980         for (;;) {
981                 /*
982                  * If the object is dead, we stop here
983                  */
984                 if (fs->object->flags & OBJ_DEAD) {
985                         unlock_and_deallocate(fs);
986                         lwkt_reltoken(&vm_token);
987                         return (KERN_PROTECTION_FAILURE);
988                 }
989
990                 /*
991                  * See if page is resident.  spl protection is required
992                  * to avoid an interrupt unbusy/free race against our
993                  * lookup.  We must hold the protection through a page
994                  * allocation or busy.
995                  */
996                 crit_enter();
997                 fs->m = vm_page_lookup(fs->object, pindex);
998                 if (fs->m != NULL) {
999                         int queue;
1000                         /*
1001                          * Wait/Retry if the page is busy.  We have to do this
1002                          * if the page is busy via either PG_BUSY or 
1003                          * vm_page_t->busy because the vm_pager may be using
1004                          * vm_page_t->busy for pageouts ( and even pageins if
1005                          * it is the vnode pager ), and we could end up trying
1006                          * to pagein and pageout the same page simultaneously.
1007                          *
1008                          * We can theoretically allow the busy case on a read
1009                          * fault if the page is marked valid, but since such
1010                          * pages are typically already pmap'd, putting that
1011                          * special case in might be more effort then it is 
1012                          * worth.  We cannot under any circumstances mess
1013                          * around with a vm_page_t->busy page except, perhaps,
1014                          * to pmap it.
1015                          */
1016                         if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1017                                 unlock_things(fs);
1018                                 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1019                                 mycpu->gd_cnt.v_intrans++;
1020                                 vm_object_deallocate(fs->first_object);
1021                                 fs->first_object = NULL;
1022                                 lwkt_reltoken(&vm_token);
1023                                 crit_exit();
1024                                 return (KERN_TRY_AGAIN);
1025                         }
1026
1027                         /*
1028                          * If reactivating a page from PQ_CACHE we may have
1029                          * to rate-limit.
1030                          */
1031                         queue = fs->m->queue;
1032                         vm_page_unqueue_nowakeup(fs->m);
1033
1034                         if ((queue - fs->m->pc) == PQ_CACHE && 
1035                             vm_page_count_severe()) {
1036                                 vm_page_activate(fs->m);
1037                                 unlock_and_deallocate(fs);
1038                                 vm_waitpfault();
1039                                 lwkt_reltoken(&vm_token);
1040                                 crit_exit();
1041                                 return (KERN_TRY_AGAIN);
1042                         }
1043
1044                         /*
1045                          * Mark page busy for other processes, and the 
1046                          * pagedaemon.  If it still isn't completely valid
1047                          * (readable), or if a read-ahead-mark is set on
1048                          * the VM page, jump to readrest, else we found the
1049                          * page and can return.
1050                          *
1051                          * We can release the spl once we have marked the
1052                          * page busy.
1053                          */
1054                         vm_page_busy(fs->m);
1055                         crit_exit();
1056
1057                         if (fs->m->object != &kernel_object) {
1058                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1059                                     VM_PAGE_BITS_ALL) {
1060                                         goto readrest;
1061                                 }
1062                                 if (fs->m->flags & PG_RAM) {
1063                                         if (debug_cluster)
1064                                                 kprintf("R");
1065                                         vm_page_flag_clear(fs->m, PG_RAM);
1066                                         goto readrest;
1067                                 }
1068                         }
1069                         break; /* break to PAGE HAS BEEN FOUND */
1070                 }
1071
1072                 /*
1073                  * Page is not resident, If this is the search termination
1074                  * or the pager might contain the page, allocate a new page.
1075                  *
1076                  * NOTE: We are still in a critical section.
1077                  */
1078                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1079                         /*
1080                          * If the page is beyond the object size we fail
1081                          */
1082                         if (pindex >= fs->object->size) {
1083                                 lwkt_reltoken(&vm_token);
1084                                 crit_exit();
1085                                 unlock_and_deallocate(fs);
1086                                 return (KERN_PROTECTION_FAILURE);
1087                         }
1088
1089                         /*
1090                          * Ratelimit.
1091                          */
1092                         if (fs->didlimit == 0 && curproc != NULL) {
1093                                 int limticks;
1094
1095                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1096                                 if (limticks) {
1097                                         lwkt_reltoken(&vm_token);
1098                                         crit_exit();
1099                                         unlock_and_deallocate(fs);
1100                                         tsleep(curproc, 0, "vmrate", limticks);
1101                                         fs->didlimit = 1;
1102                                         return (KERN_TRY_AGAIN);
1103                                 }
1104                         }
1105
1106                         /*
1107                          * Allocate a new page for this object/offset pair.
1108                          */
1109                         fs->m = NULL;
1110                         if (!vm_page_count_severe()) {
1111                                 fs->m = vm_page_alloc(fs->object, pindex,
1112                                     (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1113                         }
1114                         if (fs->m == NULL) {
1115                                 lwkt_reltoken(&vm_token);
1116                                 crit_exit();
1117                                 unlock_and_deallocate(fs);
1118                                 vm_waitpfault();
1119                                 return (KERN_TRY_AGAIN);
1120                         }
1121                 }
1122                 crit_exit();
1123
1124 readrest:
1125                 /*
1126                  * We have found an invalid or partially valid page, a
1127                  * page with a read-ahead mark which might be partially or
1128                  * fully valid (and maybe dirty too), or we have allocated
1129                  * a new page.
1130                  *
1131                  * Attempt to fault-in the page if there is a chance that the
1132                  * pager has it, and potentially fault in additional pages
1133                  * at the same time.
1134                  *
1135                  * We are NOT in splvm here and if TRYPAGER is true then
1136                  * fs.m will be non-NULL and will be PG_BUSY for us.
1137                  */
1138                 if (TRYPAGER(fs)) {
1139                         int rv;
1140                         int seqaccess;
1141                         u_char behavior = vm_map_entry_behavior(fs->entry);
1142
1143                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1144                                 seqaccess = 0;
1145                         else
1146                                 seqaccess = -1;
1147
1148                         /*
1149                          * If sequential access is detected then attempt
1150                          * to deactivate/cache pages behind the scan to
1151                          * prevent resource hogging.
1152                          *
1153                          * Use of PG_RAM to detect sequential access
1154                          * also simulates multi-zone sequential access
1155                          * detection for free.
1156                          *
1157                          * NOTE: Partially valid dirty pages cannot be
1158                          *       deactivated without causing NFS picemeal
1159                          *       writes to barf.
1160                          */
1161                         if ((fs->first_object->type != OBJT_DEVICE) &&
1162                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1163                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1164                                  (fs->m->flags & PG_RAM)))
1165                         ) {
1166                                 vm_pindex_t scan_pindex;
1167                                 int scan_count = 16;
1168
1169                                 if (first_pindex < 16) {
1170                                         scan_pindex = 0;
1171                                         scan_count = 0;
1172                                 } else {
1173                                         scan_pindex = first_pindex - 16;
1174                                         if (scan_pindex < 16)
1175                                                 scan_count = scan_pindex;
1176                                         else
1177                                                 scan_count = 16;
1178                                 }
1179
1180                                 crit_enter();
1181                                 while (scan_count) {
1182                                         vm_page_t mt;
1183
1184                                         mt = vm_page_lookup(fs->first_object,
1185                                                             scan_pindex);
1186                                         if (mt == NULL ||
1187                                             (mt->valid != VM_PAGE_BITS_ALL)) {
1188                                                 break;
1189                                         }
1190                                         if (mt->busy ||
1191                                             (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1192                                             mt->hold_count ||
1193                                             mt->wire_count)  {
1194                                                 goto skip;
1195                                         }
1196                                         if (mt->dirty == 0)
1197                                                 vm_page_test_dirty(mt);
1198                                         if (mt->dirty) {
1199                                                 vm_page_busy(mt);
1200                                                 vm_page_protect(mt,
1201                                                                 VM_PROT_NONE);
1202                                                 vm_page_deactivate(mt);
1203                                                 vm_page_wakeup(mt);
1204                                         } else {
1205                                                 vm_page_cache(mt);
1206                                         }
1207 skip:
1208                                         --scan_count;
1209                                         --scan_pindex;
1210                                 }
1211                                 crit_exit();
1212
1213                                 seqaccess = 1;
1214                         }
1215
1216                         /*
1217                          * Avoid deadlocking against the map when doing I/O.
1218                          * fs.object and the page is PG_BUSY'd.
1219                          */
1220                         unlock_map(fs);
1221
1222                         /*
1223                          * Acquire the page data.  We still hold a ref on
1224                          * fs.object and the page has been PG_BUSY's.
1225                          *
1226                          * The pager may replace the page (for example, in
1227                          * order to enter a fictitious page into the
1228                          * object).  If it does so it is responsible for
1229                          * cleaning up the passed page and properly setting
1230                          * the new page PG_BUSY.
1231                          *
1232                          * If we got here through a PG_RAM read-ahead
1233                          * mark the page may be partially dirty and thus
1234                          * not freeable.  Don't bother checking to see
1235                          * if the pager has the page because we can't free
1236                          * it anyway.  We have to depend on the get_page
1237                          * operation filling in any gaps whether there is
1238                          * backing store or not.
1239                          */
1240                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1241
1242                         if (rv == VM_PAGER_OK) {
1243                                 /*
1244                                  * Relookup in case pager changed page. Pager
1245                                  * is responsible for disposition of old page
1246                                  * if moved.
1247                                  *
1248                                  * XXX other code segments do relookups too.
1249                                  * It's a bad abstraction that needs to be
1250                                  * fixed/removed.
1251                                  */
1252                                 fs->m = vm_page_lookup(fs->object, pindex);
1253                                 if (fs->m == NULL) {
1254                                         lwkt_reltoken(&vm_token);
1255                                         unlock_and_deallocate(fs);
1256                                         return (KERN_TRY_AGAIN);
1257                                 }
1258
1259                                 ++fs->hardfault;
1260                                 break; /* break to PAGE HAS BEEN FOUND */
1261                         }
1262
1263                         /*
1264                          * Remove the bogus page (which does not exist at this
1265                          * object/offset); before doing so, we must get back
1266                          * our object lock to preserve our invariant.
1267                          *
1268                          * Also wake up any other process that may want to bring
1269                          * in this page.
1270                          *
1271                          * If this is the top-level object, we must leave the
1272                          * busy page to prevent another process from rushing
1273                          * past us, and inserting the page in that object at
1274                          * the same time that we are.
1275                          */
1276                         if (rv == VM_PAGER_ERROR) {
1277                                 if (curproc)
1278                                         kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1279                                 else
1280                                         kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1281                         }
1282
1283                         /*
1284                          * Data outside the range of the pager or an I/O error
1285                          *
1286                          * The page may have been wired during the pagein,
1287                          * e.g. by the buffer cache, and cannot simply be
1288                          * freed.  Call vnode_pager_freepage() to deal with it.
1289                          */
1290                         /*
1291                          * XXX - the check for kernel_map is a kludge to work
1292                          * around having the machine panic on a kernel space
1293                          * fault w/ I/O error.
1294                          */
1295                         if (((fs->map != &kernel_map) &&
1296                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1297                                 vnode_pager_freepage(fs->m);
1298                                 lwkt_reltoken(&vm_token);
1299                                 fs->m = NULL;
1300                                 unlock_and_deallocate(fs);
1301                                 if (rv == VM_PAGER_ERROR)
1302                                         return (KERN_FAILURE);
1303                                 else
1304                                         return (KERN_PROTECTION_FAILURE);
1305                                 /* NOT REACHED */
1306                         }
1307                         if (fs->object != fs->first_object) {
1308                                 vnode_pager_freepage(fs->m);
1309                                 fs->m = NULL;
1310                                 /*
1311                                  * XXX - we cannot just fall out at this
1312                                  * point, m has been freed and is invalid!
1313                                  */
1314                         }
1315                 }
1316
1317                 /*
1318                  * We get here if the object has a default pager (or unwiring) 
1319                  * or the pager doesn't have the page.
1320                  */
1321                 if (fs->object == fs->first_object)
1322                         fs->first_m = fs->m;
1323
1324                 /*
1325                  * Move on to the next object.  Lock the next object before
1326                  * unlocking the current one.
1327                  */
1328                 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1329                 next_object = fs->object->backing_object;
1330                 if (next_object == NULL) {
1331                         /*
1332                          * If there's no object left, fill the page in the top
1333                          * object with zeros.
1334                          */
1335                         if (fs->object != fs->first_object) {
1336                                 vm_object_pip_wakeup(fs->object);
1337
1338                                 fs->object = fs->first_object;
1339                                 pindex = first_pindex;
1340                                 fs->m = fs->first_m;
1341                         }
1342                         fs->first_m = NULL;
1343
1344                         /*
1345                          * Zero the page if necessary and mark it valid.
1346                          */
1347                         if ((fs->m->flags & PG_ZERO) == 0) {
1348                                 vm_page_zero_fill(fs->m);
1349                         } else {
1350                                 mycpu->gd_cnt.v_ozfod++;
1351                         }
1352                         mycpu->gd_cnt.v_zfod++;
1353                         fs->m->valid = VM_PAGE_BITS_ALL;
1354                         break;  /* break to PAGE HAS BEEN FOUND */
1355                 }
1356                 if (fs->object != fs->first_object) {
1357                         vm_object_pip_wakeup(fs->object);
1358                 }
1359                 KASSERT(fs->object != next_object,
1360                         ("object loop %p", next_object));
1361                 fs->object = next_object;
1362                 vm_object_pip_add(fs->object, 1);
1363         }
1364
1365         /*
1366          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1367          * is held.]
1368          *
1369          * vm_token is still held
1370          *
1371          * If the page is being written, but isn't already owned by the
1372          * top-level object, we have to copy it into a new page owned by the
1373          * top-level object.
1374          */
1375         KASSERT((fs->m->flags & PG_BUSY) != 0,
1376                 ("vm_fault: not busy after main loop"));
1377
1378         if (fs->object != fs->first_object) {
1379                 /*
1380                  * We only really need to copy if we want to write it.
1381                  */
1382                 if (fault_type & VM_PROT_WRITE) {
1383                         /*
1384                          * This allows pages to be virtually copied from a 
1385                          * backing_object into the first_object, where the 
1386                          * backing object has no other refs to it, and cannot
1387                          * gain any more refs.  Instead of a bcopy, we just 
1388                          * move the page from the backing object to the 
1389                          * first object.  Note that we must mark the page 
1390                          * dirty in the first object so that it will go out 
1391                          * to swap when needed.
1392                          */
1393                         if (
1394                                 /*
1395                                  * Map, if present, has not changed
1396                                  */
1397                                 (fs->map == NULL ||
1398                                 fs->map_generation == fs->map->timestamp) &&
1399                                 /*
1400                                  * Only one shadow object
1401                                  */
1402                                 (fs->object->shadow_count == 1) &&
1403                                 /*
1404                                  * No COW refs, except us
1405                                  */
1406                                 (fs->object->ref_count == 1) &&
1407                                 /*
1408                                  * No one else can look this object up
1409                                  */
1410                                 (fs->object->handle == NULL) &&
1411                                 /*
1412                                  * No other ways to look the object up
1413                                  */
1414                                 ((fs->object->type == OBJT_DEFAULT) ||
1415                                  (fs->object->type == OBJT_SWAP)) &&
1416                                 /*
1417                                  * We don't chase down the shadow chain
1418                                  */
1419                                 (fs->object == fs->first_object->backing_object) &&
1420
1421                                 /*
1422                                  * grab the lock if we need to
1423                                  */
1424                                 (fs->lookup_still_valid ||
1425                                  fs->map == NULL ||
1426                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1427                             ) {
1428                                 
1429                                 fs->lookup_still_valid = 1;
1430                                 /*
1431                                  * get rid of the unnecessary page
1432                                  */
1433                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1434                                 vm_page_free(fs->first_m);
1435                                 fs->first_m = NULL;
1436
1437                                 /*
1438                                  * grab the page and put it into the 
1439                                  * process'es object.  The page is 
1440                                  * automatically made dirty.
1441                                  */
1442                                 vm_page_rename(fs->m, fs->first_object, first_pindex);
1443                                 fs->first_m = fs->m;
1444                                 vm_page_busy(fs->first_m);
1445                                 fs->m = NULL;
1446                                 mycpu->gd_cnt.v_cow_optim++;
1447                         } else {
1448                                 /*
1449                                  * Oh, well, lets copy it.
1450                                  */
1451                                 vm_page_copy(fs->m, fs->first_m);
1452                                 vm_page_event(fs->m, VMEVENT_COW);
1453                         }
1454
1455                         if (fs->m) {
1456                                 /*
1457                                  * We no longer need the old page or object.
1458                                  */
1459                                 release_page(fs);
1460                         }
1461
1462                         /*
1463                          * fs->object != fs->first_object due to above 
1464                          * conditional
1465                          */
1466                         vm_object_pip_wakeup(fs->object);
1467
1468                         /*
1469                          * Only use the new page below...
1470                          */
1471
1472                         mycpu->gd_cnt.v_cow_faults++;
1473                         fs->m = fs->first_m;
1474                         fs->object = fs->first_object;
1475                         pindex = first_pindex;
1476                 } else {
1477                         /*
1478                          * If it wasn't a write fault avoid having to copy
1479                          * the page by mapping it read-only.
1480                          */
1481                         fs->prot &= ~VM_PROT_WRITE;
1482                 }
1483         }
1484
1485         /*
1486          * We may have had to unlock a map to do I/O.  If we did then
1487          * lookup_still_valid will be FALSE.  If the map generation count
1488          * also changed then all sorts of things could have happened while
1489          * we were doing the I/O and we need to retry.
1490          */
1491
1492         if (!fs->lookup_still_valid &&
1493             fs->map != NULL &&
1494             (fs->map->timestamp != fs->map_generation)) {
1495                 release_page(fs);
1496                 lwkt_reltoken(&vm_token);
1497                 unlock_and_deallocate(fs);
1498                 return (KERN_TRY_AGAIN);
1499         }
1500
1501         /*
1502          * If the fault is a write, we know that this page is being
1503          * written NOW so dirty it explicitly to save on pmap_is_modified()
1504          * calls later.
1505          *
1506          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1507          * if the page is already dirty to prevent data written with
1508          * the expectation of being synced from not being synced.
1509          * Likewise if this entry does not request NOSYNC then make
1510          * sure the page isn't marked NOSYNC.  Applications sharing
1511          * data should use the same flags to avoid ping ponging.
1512          *
1513          * Also tell the backing pager, if any, that it should remove
1514          * any swap backing since the page is now dirty.
1515          */
1516         if (fs->prot & VM_PROT_WRITE) {
1517                 vm_object_set_writeable_dirty(fs->m->object);
1518                 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1519                         if (fs->m->dirty == 0)
1520                                 vm_page_flag_set(fs->m, PG_NOSYNC);
1521                 } else {
1522                         vm_page_flag_clear(fs->m, PG_NOSYNC);
1523                 }
1524                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1525                         crit_enter();
1526                         vm_page_dirty(fs->m);
1527                         swap_pager_unswapped(fs->m);
1528                         crit_exit();
1529                 }
1530         }
1531
1532         lwkt_reltoken(&vm_token);
1533
1534         /*
1535          * Page had better still be busy.  We are still locked up and 
1536          * fs->object will have another PIP reference if it is not equal
1537          * to fs->first_object.
1538          */
1539         KASSERT(fs->m->flags & PG_BUSY,
1540                 ("vm_fault: page %p not busy!", fs->m));
1541
1542         /*
1543          * Sanity check: page must be completely valid or it is not fit to
1544          * map into user space.  vm_pager_get_pages() ensures this.
1545          */
1546         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1547                 vm_page_zero_invalid(fs->m, TRUE);
1548                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1549         }
1550
1551         return (KERN_SUCCESS);
1552 }
1553
1554 /*
1555  * Wire down a range of virtual addresses in a map.  The entry in question
1556  * should be marked in-transition and the map must be locked.  We must
1557  * release the map temporarily while faulting-in the page to avoid a
1558  * deadlock.  Note that the entry may be clipped while we are blocked but
1559  * will never be freed.
1560  *
1561  * No requirements.
1562  */
1563 int
1564 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1565 {
1566         boolean_t fictitious;
1567         vm_offset_t start;
1568         vm_offset_t end;
1569         vm_offset_t va;
1570         vm_paddr_t pa;
1571         pmap_t pmap;
1572         int rv;
1573
1574         pmap = vm_map_pmap(map);
1575         start = entry->start;
1576         end = entry->end;
1577         fictitious = entry->object.vm_object &&
1578                         (entry->object.vm_object->type == OBJT_DEVICE);
1579
1580         lwkt_gettoken(&vm_token);
1581         vm_map_unlock(map);
1582         map->timestamp++;
1583
1584         /*
1585          * We simulate a fault to get the page and enter it in the physical
1586          * map.
1587          */
1588         for (va = start; va < end; va += PAGE_SIZE) {
1589                 if (user_wire) {
1590                         rv = vm_fault(map, va, VM_PROT_READ, 
1591                                         VM_FAULT_USER_WIRE);
1592                 } else {
1593                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1594                                         VM_FAULT_CHANGE_WIRING);
1595                 }
1596                 if (rv) {
1597                         while (va > start) {
1598                                 va -= PAGE_SIZE;
1599                                 if ((pa = pmap_extract(pmap, va)) == 0)
1600                                         continue;
1601                                 pmap_change_wiring(pmap, va, FALSE);
1602                                 if (!fictitious)
1603                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1604                         }
1605                         vm_map_lock(map);
1606                         lwkt_reltoken(&vm_token);
1607                         return (rv);
1608                 }
1609         }
1610         vm_map_lock(map);
1611         lwkt_reltoken(&vm_token);
1612         return (KERN_SUCCESS);
1613 }
1614
1615 /*
1616  * Unwire a range of virtual addresses in a map.  The map should be
1617  * locked.
1618  */
1619 void
1620 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1621 {
1622         boolean_t fictitious;
1623         vm_offset_t start;
1624         vm_offset_t end;
1625         vm_offset_t va;
1626         vm_paddr_t pa;
1627         pmap_t pmap;
1628
1629         pmap = vm_map_pmap(map);
1630         start = entry->start;
1631         end = entry->end;
1632         fictitious = entry->object.vm_object &&
1633                         (entry->object.vm_object->type == OBJT_DEVICE);
1634
1635         /*
1636          * Since the pages are wired down, we must be able to get their
1637          * mappings from the physical map system.
1638          */
1639         lwkt_gettoken(&vm_token);
1640         for (va = start; va < end; va += PAGE_SIZE) {
1641                 pa = pmap_extract(pmap, va);
1642                 if (pa != 0) {
1643                         pmap_change_wiring(pmap, va, FALSE);
1644                         if (!fictitious)
1645                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1646                 }
1647         }
1648         lwkt_reltoken(&vm_token);
1649 }
1650
1651 /*
1652  * Reduce the rate at which memory is allocated to a process based
1653  * on the perceived load on the VM system. As the load increases
1654  * the allocation burst rate goes down and the delay increases. 
1655  *
1656  * Rate limiting does not apply when faulting active or inactive
1657  * pages.  When faulting 'cache' pages, rate limiting only applies
1658  * if the system currently has a severe page deficit.
1659  *
1660  * XXX vm_pagesupply should be increased when a page is freed.
1661  *
1662  * We sleep up to 1/10 of a second.
1663  */
1664 static int
1665 vm_fault_ratelimit(struct vmspace *vmspace)
1666 {
1667         if (vm_load_enable == 0)
1668                 return(0);
1669         if (vmspace->vm_pagesupply > 0) {
1670                 --vmspace->vm_pagesupply;       /* SMP race ok */
1671                 return(0);
1672         }
1673 #ifdef INVARIANTS
1674         if (vm_load_debug) {
1675                 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1676                         vm_load, 
1677                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1678                         curproc->p_pid, curproc->p_comm);
1679         }
1680 #endif
1681         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1682         return(vm_load * hz / 10000);
1683 }
1684
1685 /*
1686  * Copy all of the pages from a wired-down map entry to another.
1687  *
1688  * The source and destination maps must be locked for write.
1689  * The source map entry must be wired down (or be a sharing map
1690  * entry corresponding to a main map entry that is wired down).
1691  *
1692  * No other requirements.
1693  */
1694 void
1695 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1696                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1697 {
1698         vm_object_t dst_object;
1699         vm_object_t src_object;
1700         vm_ooffset_t dst_offset;
1701         vm_ooffset_t src_offset;
1702         vm_prot_t prot;
1703         vm_offset_t vaddr;
1704         vm_page_t dst_m;
1705         vm_page_t src_m;
1706
1707 #ifdef  lint
1708         src_map++;
1709 #endif  /* lint */
1710
1711         src_object = src_entry->object.vm_object;
1712         src_offset = src_entry->offset;
1713
1714         /*
1715          * Create the top-level object for the destination entry. (Doesn't
1716          * actually shadow anything - we copy the pages directly.)
1717          */
1718         vm_map_entry_allocate_object(dst_entry);
1719         dst_object = dst_entry->object.vm_object;
1720
1721         prot = dst_entry->max_protection;
1722
1723         /*
1724          * Loop through all of the pages in the entry's range, copying each
1725          * one from the source object (it should be there) to the destination
1726          * object.
1727          */
1728         for (vaddr = dst_entry->start, dst_offset = 0;
1729             vaddr < dst_entry->end;
1730             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1731
1732                 /*
1733                  * Allocate a page in the destination object
1734                  */
1735                 do {
1736                         dst_m = vm_page_alloc(dst_object,
1737                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1738                         if (dst_m == NULL) {
1739                                 vm_wait(0);
1740                         }
1741                 } while (dst_m == NULL);
1742
1743                 /*
1744                  * Find the page in the source object, and copy it in.
1745                  * (Because the source is wired down, the page will be in
1746                  * memory.)
1747                  */
1748                 src_m = vm_page_lookup(src_object,
1749                         OFF_TO_IDX(dst_offset + src_offset));
1750                 if (src_m == NULL)
1751                         panic("vm_fault_copy_wired: page missing");
1752
1753                 vm_page_copy(src_m, dst_m);
1754                 vm_page_event(src_m, VMEVENT_COW);
1755
1756                 /*
1757                  * Enter it in the pmap...
1758                  */
1759
1760                 vm_page_flag_clear(dst_m, PG_ZERO);
1761                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1762
1763                 /*
1764                  * Mark it no longer busy, and put it on the active list.
1765                  */
1766                 vm_page_activate(dst_m);
1767                 vm_page_wakeup(dst_m);
1768         }
1769 }
1770
1771 #if 0
1772
1773 /*
1774  * This routine checks around the requested page for other pages that
1775  * might be able to be faulted in.  This routine brackets the viable
1776  * pages for the pages to be paged in.
1777  *
1778  * Inputs:
1779  *      m, rbehind, rahead
1780  *
1781  * Outputs:
1782  *  marray (array of vm_page_t), reqpage (index of requested page)
1783  *
1784  * Return value:
1785  *  number of pages in marray
1786  */
1787 static int
1788 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1789                           vm_page_t *marray, int *reqpage)
1790 {
1791         int i,j;
1792         vm_object_t object;
1793         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1794         vm_page_t rtm;
1795         int cbehind, cahead;
1796
1797         object = m->object;
1798         pindex = m->pindex;
1799
1800         /*
1801          * we don't fault-ahead for device pager
1802          */
1803         if (object->type == OBJT_DEVICE) {
1804                 *reqpage = 0;
1805                 marray[0] = m;
1806                 return 1;
1807         }
1808
1809         /*
1810          * if the requested page is not available, then give up now
1811          */
1812         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1813                 *reqpage = 0;   /* not used by caller, fix compiler warn */
1814                 return 0;
1815         }
1816
1817         if ((cbehind == 0) && (cahead == 0)) {
1818                 *reqpage = 0;
1819                 marray[0] = m;
1820                 return 1;
1821         }
1822
1823         if (rahead > cahead) {
1824                 rahead = cahead;
1825         }
1826
1827         if (rbehind > cbehind) {
1828                 rbehind = cbehind;
1829         }
1830
1831         /*
1832          * Do not do any readahead if we have insufficient free memory.
1833          *
1834          * XXX code was broken disabled before and has instability
1835          * with this conditonal fixed, so shortcut for now.
1836          */
1837         if (burst_fault == 0 || vm_page_count_severe()) {
1838                 marray[0] = m;
1839                 *reqpage = 0;
1840                 return 1;
1841         }
1842
1843         /*
1844          * scan backward for the read behind pages -- in memory 
1845          *
1846          * Assume that if the page is not found an interrupt will not
1847          * create it.  Theoretically interrupts can only remove (busy)
1848          * pages, not create new associations.
1849          */
1850         if (pindex > 0) {
1851                 if (rbehind > pindex) {
1852                         rbehind = pindex;
1853                         startpindex = 0;
1854                 } else {
1855                         startpindex = pindex - rbehind;
1856                 }
1857
1858                 crit_enter();
1859                 lwkt_gettoken(&vm_token);
1860                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1861                         if (vm_page_lookup(object, tpindex - 1))
1862                                 break;
1863                 }
1864
1865                 i = 0;
1866                 while (tpindex < pindex) {
1867                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1868                         if (rtm == NULL) {
1869                                 lwkt_reltoken(&vm_token);
1870                                 crit_exit();
1871                                 for (j = 0; j < i; j++) {
1872                                         vm_page_free(marray[j]);
1873                                 }
1874                                 marray[0] = m;
1875                                 *reqpage = 0;
1876                                 return 1;
1877                         }
1878                         marray[i] = rtm;
1879                         ++i;
1880                         ++tpindex;
1881                 }
1882                 lwkt_reltoken(&vm_token);
1883                 crit_exit();
1884         } else {
1885                 i = 0;
1886         }
1887
1888         /*
1889          * Assign requested page
1890          */
1891         marray[i] = m;
1892         *reqpage = i;
1893         ++i;
1894
1895         /*
1896          * Scan forwards for read-ahead pages
1897          */
1898         tpindex = pindex + 1;
1899         endpindex = tpindex + rahead;
1900         if (endpindex > object->size)
1901                 endpindex = object->size;
1902
1903         crit_enter();
1904         lwkt_gettoken(&vm_token);
1905         while (tpindex < endpindex) {
1906                 if (vm_page_lookup(object, tpindex))
1907                         break;
1908                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1909                 if (rtm == NULL)
1910                         break;
1911                 marray[i] = rtm;
1912                 ++i;
1913                 ++tpindex;
1914         }
1915         lwkt_reltoken(&vm_token);
1916         crit_exit();
1917
1918         return (i);
1919 }
1920
1921 #endif
1922
1923 /*
1924  * vm_prefault() provides a quick way of clustering pagefaults into a
1925  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1926  * except it runs at page fault time instead of mmap time.
1927  *
1928  * This code used to be per-platform pmap_prefault().  It is now
1929  * machine-independent and enhanced to also pre-fault zero-fill pages
1930  * (see vm.fast_fault) as well as make them writable, which greatly
1931  * reduces the number of page faults programs incur.
1932  *
1933  * Application performance when pre-faulting zero-fill pages is heavily
1934  * dependent on the application.  Very tiny applications like /bin/echo
1935  * lose a little performance while applications of any appreciable size
1936  * gain performance.  Prefaulting multiple pages also reduces SMP
1937  * congestion and can improve SMP performance significantly.
1938  *
1939  * NOTE!  prot may allow writing but this only applies to the top level
1940  *        object.  If we wind up mapping a page extracted from a backing
1941  *        object we have to make sure it is read-only.
1942  *
1943  * NOTE!  The caller has already handled any COW operations on the
1944  *        vm_map_entry via the normal fault code.  Do NOT call this
1945  *        shortcut unless the normal fault code has run on this entry.
1946  *
1947  * No other requirements.
1948  */
1949 #define PFBAK 4
1950 #define PFFOR 4
1951 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1952
1953 static int vm_prefault_pageorder[] = {
1954         -PAGE_SIZE, PAGE_SIZE,
1955         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
1956         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
1957         -4 * PAGE_SIZE, 4 * PAGE_SIZE
1958 };
1959
1960 static void
1961 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1962 {
1963         struct lwp *lp;
1964         vm_page_t m;
1965         vm_offset_t starta;
1966         vm_offset_t addr;
1967         vm_pindex_t index;
1968         vm_pindex_t pindex;
1969         vm_object_t object;
1970         int pprot;
1971         int i;
1972
1973         /*
1974          * We do not currently prefault mappings that use virtual page
1975          * tables.  We do not prefault foreign pmaps.
1976          */
1977         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1978                 return;
1979         lp = curthread->td_lwp;
1980         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1981                 return;
1982
1983         object = entry->object.vm_object;
1984
1985         starta = addra - PFBAK * PAGE_SIZE;
1986         if (starta < entry->start)
1987                 starta = entry->start;
1988         else if (starta > addra)
1989                 starta = 0;
1990
1991         /*
1992          * critical section protection is required to maintain the
1993          * page/object association, interrupts can free pages and remove
1994          * them from their objects.
1995          */
1996         crit_enter();
1997         lwkt_gettoken(&vm_token);
1998         for (i = 0; i < PAGEORDER_SIZE; i++) {
1999                 vm_object_t lobject;
2000                 int allocated = 0;
2001
2002                 addr = addra + vm_prefault_pageorder[i];
2003                 if (addr > addra + (PFFOR * PAGE_SIZE))
2004                         addr = 0;
2005
2006                 if (addr < starta || addr >= entry->end)
2007                         continue;
2008
2009                 if (pmap_prefault_ok(pmap, addr) == 0)
2010                         continue;
2011
2012                 /*
2013                  * Follow the VM object chain to obtain the page to be mapped
2014                  * into the pmap.
2015                  *
2016                  * If we reach the terminal object without finding a page
2017                  * and we determine it would be advantageous, then allocate
2018                  * a zero-fill page for the base object.  The base object
2019                  * is guaranteed to be OBJT_DEFAULT for this case.
2020                  *
2021                  * In order to not have to check the pager via *haspage*()
2022                  * we stop if any non-default object is encountered.  e.g.
2023                  * a vnode or swap object would stop the loop.
2024                  */
2025                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2026                 lobject = object;
2027                 pindex = index;
2028                 pprot = prot;
2029
2030                 while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2031                         if (lobject->type != OBJT_DEFAULT)
2032                                 break;
2033                         if (lobject->backing_object == NULL) {
2034                                 if (vm_fast_fault == 0)
2035                                         break;
2036                                 if (vm_prefault_pageorder[i] < 0 ||
2037                                     (prot & VM_PROT_WRITE) == 0 ||
2038                                     vm_page_count_min(0)) {
2039                                         break;
2040                                 }
2041                                 /* note: allocate from base object */
2042                                 m = vm_page_alloc(object, index,
2043                                               VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2044
2045                                 if ((m->flags & PG_ZERO) == 0) {
2046                                         vm_page_zero_fill(m);
2047                                 } else {
2048                                         vm_page_flag_clear(m, PG_ZERO);
2049                                         mycpu->gd_cnt.v_ozfod++;
2050                                 }
2051                                 mycpu->gd_cnt.v_zfod++;
2052                                 m->valid = VM_PAGE_BITS_ALL;
2053                                 allocated = 1;
2054                                 pprot = prot;
2055                                 /* lobject = object .. not needed */
2056                                 break;
2057                         }
2058                         if (lobject->backing_object_offset & PAGE_MASK)
2059                                 break;
2060                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2061                         lobject = lobject->backing_object;
2062                         pprot &= ~VM_PROT_WRITE;
2063                 }
2064                 /*
2065                  * NOTE: lobject now invalid (if we did a zero-fill we didn't
2066                  *       bother assigning lobject = object).
2067                  *
2068                  * Give-up if the page is not available.
2069                  */
2070                 if (m == NULL)
2071                         break;
2072
2073                 /*
2074                  * Do not conditionalize on PG_RAM.  If pages are present in
2075                  * the VM system we assume optimal caching.  If caching is
2076                  * not optimal the I/O gravy train will be restarted when we
2077                  * hit an unavailable page.  We do not want to try to restart
2078                  * the gravy train now because we really don't know how much
2079                  * of the object has been cached.  The cost for restarting
2080                  * the gravy train should be low (since accesses will likely
2081                  * be I/O bound anyway).
2082                  *
2083                  * The object must be marked dirty if we are mapping a
2084                  * writable page.
2085                  */
2086                 if (pprot & VM_PROT_WRITE)
2087                         vm_object_set_writeable_dirty(m->object);
2088
2089                 /*
2090                  * Enter the page into the pmap if appropriate.  If we had
2091                  * allocated the page we have to place it on a queue.  If not
2092                  * we just have to make sure it isn't on the cache queue
2093                  * (pages on the cache queue are not allowed to be mapped).
2094                  */
2095                 if (allocated) {
2096                         pmap_enter(pmap, addr, m, pprot, 0);
2097                         vm_page_deactivate(m);
2098                         vm_page_wakeup(m);
2099                 } else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2100                     (m->busy == 0) &&
2101                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2102
2103                         if ((m->queue - m->pc) == PQ_CACHE) {
2104                                 vm_page_deactivate(m);
2105                         }
2106                         vm_page_busy(m);
2107                         pmap_enter(pmap, addr, m, pprot, 0);
2108                         vm_page_wakeup(m);
2109                 }
2110         }
2111         lwkt_reltoken(&vm_token);
2112         crit_exit();
2113 }