Initial import from FreeBSD RELENG_4:
[dragonfly.git] / lib / msun / src / e_jn.c
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12
13 #ifndef lint
14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jn.c,v 1.6 1999/08/28 00:06:33 peter Exp $";
15 #endif
16
17 /*
18  * __ieee754_jn(n, x), __ieee754_yn(n, x)
19  * floating point Bessel's function of the 1st and 2nd kind
20  * of order n
21  *
22  * Special cases:
23  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
24  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
25  * Note 2. About jn(n,x), yn(n,x)
26  *      For n=0, j0(x) is called,
27  *      for n=1, j1(x) is called,
28  *      for n<x, forward recursion us used starting
29  *      from values of j0(x) and j1(x).
30  *      for n>x, a continued fraction approximation to
31  *      j(n,x)/j(n-1,x) is evaluated and then backward
32  *      recursion is used starting from a supposed value
33  *      for j(n,x). The resulting value of j(0,x) is
34  *      compared with the actual value to correct the
35  *      supposed value of j(n,x).
36  *
37  *      yn(n,x) is similar in all respects, except
38  *      that forward recursion is used for all
39  *      values of n>1.
40  *
41  */
42
43 #include "math.h"
44 #include "math_private.h"
45
46 #ifdef __STDC__
47 static const double
48 #else
49 static double
50 #endif
51 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
52 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
53 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
54
55 #ifdef __STDC__
56 static const double zero  =  0.00000000000000000000e+00;
57 #else
58 static double zero  =  0.00000000000000000000e+00;
59 #endif
60
61 #ifdef __STDC__
62         double __ieee754_jn(int n, double x)
63 #else
64         double __ieee754_jn(n,x)
65         int n; double x;
66 #endif
67 {
68         int32_t i,hx,ix,lx, sgn;
69         double a, b, temp, di;
70         double z, w;
71
72     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
73      * Thus, J(-n,x) = J(n,-x)
74      */
75         EXTRACT_WORDS(hx,lx,x);
76         ix = 0x7fffffff&hx;
77     /* if J(n,NaN) is NaN */
78         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
79         if(n<0){
80                 n = -n;
81                 x = -x;
82                 hx ^= 0x80000000;
83         }
84         if(n==0) return(__ieee754_j0(x));
85         if(n==1) return(__ieee754_j1(x));
86         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
87         x = fabs(x);
88         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
89             b = zero;
90         else if((double)n<=x) {
91                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
92             if(ix>=0x52D00000) { /* x > 2**302 */
93     /* (x >> n**2)
94      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
95      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
96      *      Let s=sin(x), c=cos(x),
97      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
98      *
99      *             n    sin(xn)*sqt2    cos(xn)*sqt2
100      *          ----------------------------------
101      *             0     s-c             c+s
102      *             1    -s-c            -c+s
103      *             2    -s+c            -c-s
104      *             3     s+c             c-s
105      */
106                 switch(n&3) {
107                     case 0: temp =  cos(x)+sin(x); break;
108                     case 1: temp = -cos(x)+sin(x); break;
109                     case 2: temp = -cos(x)-sin(x); break;
110                     case 3: temp =  cos(x)-sin(x); break;
111                 }
112                 b = invsqrtpi*temp/sqrt(x);
113             } else {
114                 a = __ieee754_j0(x);
115                 b = __ieee754_j1(x);
116                 for(i=1;i<n;i++){
117                     temp = b;
118                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
119                     a = temp;
120                 }
121             }
122         } else {
123             if(ix<0x3e100000) { /* x < 2**-29 */
124     /* x is tiny, return the first Taylor expansion of J(n,x)
125      * J(n,x) = 1/n!*(x/2)^n  - ...
126      */
127                 if(n>33)        /* underflow */
128                     b = zero;
129                 else {
130                     temp = x*0.5; b = temp;
131                     for (a=one,i=2;i<=n;i++) {
132                         a *= (double)i;         /* a = n! */
133                         b *= temp;              /* b = (x/2)^n */
134                     }
135                     b = b/a;
136                 }
137             } else {
138                 /* use backward recurrence */
139                 /*                      x      x^2      x^2
140                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
141                  *                      2n  - 2(n+1) - 2(n+2)
142                  *
143                  *                      1      1        1
144                  *  (for large x)   =  ----  ------   ------   .....
145                  *                      2n   2(n+1)   2(n+2)
146                  *                      -- - ------ - ------ -
147                  *                       x     x         x
148                  *
149                  * Let w = 2n/x and h=2/x, then the above quotient
150                  * is equal to the continued fraction:
151                  *                  1
152                  *      = -----------------------
153                  *                     1
154                  *         w - -----------------
155                  *                        1
156                  *              w+h - ---------
157                  *                     w+2h - ...
158                  *
159                  * To determine how many terms needed, let
160                  * Q(0) = w, Q(1) = w(w+h) - 1,
161                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
162                  * When Q(k) > 1e4      good for single
163                  * When Q(k) > 1e9      good for double
164                  * When Q(k) > 1e17     good for quadruple
165                  */
166             /* determine k */
167                 double t,v;
168                 double q0,q1,h,tmp; int32_t k,m;
169                 w  = (n+n)/(double)x; h = 2.0/(double)x;
170                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
171                 while(q1<1.0e9) {
172                         k += 1; z += h;
173                         tmp = z*q1 - q0;
174                         q0 = q1;
175                         q1 = tmp;
176                 }
177                 m = n+n;
178                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
179                 a = t;
180                 b = one;
181                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
182                  *  Hence, if n*(log(2n/x)) > ...
183                  *  single 8.8722839355e+01
184                  *  double 7.09782712893383973096e+02
185                  *  long double 1.1356523406294143949491931077970765006170e+04
186                  *  then recurrent value may overflow and the result is
187                  *  likely underflow to zero
188                  */
189                 tmp = n;
190                 v = two/x;
191                 tmp = tmp*__ieee754_log(fabs(v*tmp));
192                 if(tmp<7.09782712893383973096e+02) {
193                     for(i=n-1,di=(double)(i+i);i>0;i--){
194                         temp = b;
195                         b *= di;
196                         b  = b/x - a;
197                         a = temp;
198                         di -= two;
199                     }
200                 } else {
201                     for(i=n-1,di=(double)(i+i);i>0;i--){
202                         temp = b;
203                         b *= di;
204                         b  = b/x - a;
205                         a = temp;
206                         di -= two;
207                     /* scale b to avoid spurious overflow */
208                         if(b>1e100) {
209                             a /= b;
210                             t /= b;
211                             b  = one;
212                         }
213                     }
214                 }
215                 b = (t*__ieee754_j0(x)/b);
216             }
217         }
218         if(sgn==1) return -b; else return b;
219 }
220
221 #ifdef __STDC__
222         double __ieee754_yn(int n, double x)
223 #else
224         double __ieee754_yn(n,x)
225         int n; double x;
226 #endif
227 {
228         int32_t i,hx,ix,lx;
229         int32_t sign;
230         double a, b, temp;
231
232         EXTRACT_WORDS(hx,lx,x);
233         ix = 0x7fffffff&hx;
234     /* if Y(n,NaN) is NaN */
235         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
236         if((ix|lx)==0) return -one/zero;
237         if(hx<0) return zero/zero;
238         sign = 1;
239         if(n<0){
240                 n = -n;
241                 sign = 1 - ((n&1)<<1);
242         }
243         if(n==0) return(__ieee754_y0(x));
244         if(n==1) return(sign*__ieee754_y1(x));
245         if(ix==0x7ff00000) return zero;
246         if(ix>=0x52D00000) { /* x > 2**302 */
247     /* (x >> n**2)
248      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
249      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
250      *      Let s=sin(x), c=cos(x),
251      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
252      *
253      *             n    sin(xn)*sqt2    cos(xn)*sqt2
254      *          ----------------------------------
255      *             0     s-c             c+s
256      *             1    -s-c            -c+s
257      *             2    -s+c            -c-s
258      *             3     s+c             c-s
259      */
260                 switch(n&3) {
261                     case 0: temp =  sin(x)-cos(x); break;
262                     case 1: temp = -sin(x)-cos(x); break;
263                     case 2: temp = -sin(x)+cos(x); break;
264                     case 3: temp =  sin(x)+cos(x); break;
265                 }
266                 b = invsqrtpi*temp/sqrt(x);
267         } else {
268             u_int32_t high;
269             a = __ieee754_y0(x);
270             b = __ieee754_y1(x);
271         /* quit if b is -inf */
272             GET_HIGH_WORD(high,b);
273             for(i=1;i<n&&high!=0xfff00000;i++){
274                 temp = b;
275                 b = ((double)(i+i)/x)*b - a;
276                 GET_HIGH_WORD(high,b);
277                 a = temp;
278             }
279         }
280         if(sign>0) return b; else return -b;
281 }