98d38ff5498a66a0fdb36472cccee817df2024ec
[dragonfly.git] / sys / vm / swap_pager.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  * 
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  * 
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  * 
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  * 
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *      The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *                              New Swap System
70  *                              Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *      - The new swapper uses the new radix bitmap code.  This should scale
75  *        to arbitrarily small or arbitrarily large swap spaces and an almost
76  *        arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *      - on the fly reallocation of swap during putpages.  The new system
81  *        does not try to keep previously allocated swap blocks for dirty
82  *        pages.  
83  *
84  *      - on the fly deallocation of swap
85  *
86  *      - No more garbage collection required.  Unnecessarily allocated swap
87  *        blocks only exist for dirty vm_page_t's now and these are already
88  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *        removal of invalidated swap blocks when a page is destroyed
90  *        or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c     8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96
97 #include "opt_swap.h"
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/conf.h>
101 #include <sys/kernel.h>
102 #include <sys/proc.h>
103 #include <sys/buf.h>
104 #include <sys/vnode.h>
105 #include <sys/malloc.h>
106 #include <sys/vmmeter.h>
107 #include <sys/sysctl.h>
108 #include <sys/blist.h>
109 #include <sys/lock.h>
110 #include <sys/kcollect.h>
111
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
121
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
124
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     SWB_NPAGES
127 #endif
128
129 #define SWM_FREE        0x02    /* free, period                 */
130 #define SWM_POP         0x04    /* pop out                      */
131
132 #define SWBIO_READ      0x01
133 #define SWBIO_WRITE     0x02
134 #define SWBIO_SYNC      0x04
135 #define SWBIO_TTC       0x08    /* for VM_PAGER_TRY_TO_CACHE */
136
137 struct swfreeinfo {
138         vm_object_t     object;
139         vm_pindex_t     basei;
140         vm_pindex_t     begi;
141         vm_pindex_t     endi;   /* inclusive */
142 };
143
144 struct swswapoffinfo {
145         vm_object_t     object;
146         int             devidx;
147         int             shared;
148 };
149
150 /*
151  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
152  * in the old system.
153  */
154
155 int swap_pager_full;            /* swap space exhaustion (task killing) */
156 int swap_fail_ticks;            /* when we became exhausted */
157 int swap_pager_almost_full;     /* swap space exhaustion (w/ hysteresis)*/
158 swblk_t vm_swap_cache_use;
159 swblk_t vm_swap_anon_use;
160 static int vm_report_swap_allocs;
161
162 static struct krate kswaprate = { 1 };
163 static int nsw_rcount;          /* free read buffers                    */
164 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
165 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
166 static int nsw_wcount_async_max;/* assigned maximum                     */
167 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
168
169 struct blist *swapblist;
170 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
171 static int swap_burst_read = 0; /* allow burst reading */
172 static swblk_t swapiterator;    /* linearize allocations */
173 int swap_user_async = 0;        /* user swap pager operation can be async */
174
175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
176
177 /* from vm_swap.c */
178 extern struct vnode *swapdev_vp;
179 extern struct swdevt *swdevt;
180 extern int nswdev;
181
182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
183
184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
185         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
187         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
189         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
190
191 #if SWBLK_BITS == 64
192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
193         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
195         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
196 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
197         CTLFLAG_RD, &vm_swap_size, 0, "");
198 #else
199 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
200         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
201 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
202         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
203 SYSCTL_INT(_vm, OID_AUTO, swap_size,
204         CTLFLAG_RD, &vm_swap_size, 0, "");
205 #endif
206 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
207         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
208
209 vm_zone_t               swap_zone;
210
211 /*
212  * Red-Black tree for swblock entries
213  *
214  * The caller must hold vm_token
215  */
216 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
217              vm_pindex_t, swb_index);
218
219 int
220 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
221 {
222         if (swb1->swb_index < swb2->swb_index)
223                 return(-1);
224         if (swb1->swb_index > swb2->swb_index)
225                 return(1);
226         return(0);
227 }
228
229 static
230 int
231 rb_swblock_scancmp(struct swblock *swb, void *data)
232 {
233         struct swfreeinfo *info = data;
234
235         if (swb->swb_index < info->basei)
236                 return(-1);
237         if (swb->swb_index > info->endi)
238                 return(1);
239         return(0);
240 }
241
242 static
243 int
244 rb_swblock_condcmp(struct swblock *swb, void *data)
245 {
246         struct swfreeinfo *info = data;
247
248         if (swb->swb_index < info->basei)
249                 return(-1);
250         return(0);
251 }
252
253 /*
254  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
255  * calls hooked from other parts of the VM system and do not appear here.
256  * (see vm/swap_pager.h).
257  */
258
259 static void     swap_pager_dealloc (vm_object_t object);
260 static int      swap_pager_getpage (vm_object_t, vm_page_t *, int);
261 static void     swap_chain_iodone(struct bio *biox);
262
263 struct pagerops swappagerops = {
264         swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
265         swap_pager_getpage,     /* pagein                               */
266         swap_pager_putpages,    /* pageout                              */
267         swap_pager_haspage      /* get backing store status for page    */
268 };
269
270 /*
271  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
272  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
273  *
274  * swap_*() routines are externally accessible.  swp_*() routines are
275  * internal.
276  */
277
278 int nswap_lowat = 128;          /* in pages, swap_pager_almost_full warn */
279 int nswap_hiwat = 512;          /* in pages, swap_pager_almost_full warn */
280
281 static __inline void    swp_sizecheck (void);
282 static void     swp_pager_async_iodone (struct bio *bio);
283
284 /*
285  * Swap bitmap functions
286  */
287
288 static __inline void    swp_pager_freeswapspace(vm_object_t object,
289                                                 swblk_t blk, int npages);
290 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
291
292 /*
293  * Metadata functions
294  */
295
296 static void swp_pager_meta_convert(vm_object_t);
297 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
298 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
299 static void swp_pager_meta_free_all(vm_object_t);
300 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
301
302 /*
303  * SWP_SIZECHECK() -    update swap_pager_full indication
304  *      
305  *      update the swap_pager_almost_full indication and warn when we are
306  *      about to run out of swap space, using lowat/hiwat hysteresis.
307  *
308  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
309  *
310  * No restrictions on call
311  * This routine may not block.
312  * SMP races are ok.
313  */
314 static __inline void
315 swp_sizecheck(void)
316 {
317         if (vm_swap_size < nswap_lowat) {
318                 if (swap_pager_almost_full == 0) {
319                         kprintf("swap_pager: out of swap space\n");
320                         swap_pager_almost_full = 1;
321                         swap_fail_ticks = ticks;
322                 }
323         } else {
324                 swap_pager_full = 0;
325                 if (vm_swap_size > nswap_hiwat)
326                         swap_pager_almost_full = 0;
327         }
328 }
329
330 /*
331  * Long-term data collection on 10-second interval.  Return the value
332  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
333  *
334  * Return total swap in the scale field.  This can change if swap is
335  * regularly added or removed and may cause some historical confusion
336  * in that case, but SWAPPCT will always be historically accurate.
337  */
338
339 #define PTOB(value)     ((uint64_t)(value) << PAGE_SHIFT)
340
341 static uint64_t
342 collect_swap_callback(int n)
343 {
344         uint64_t total = vm_swap_max;
345         uint64_t anon = vm_swap_anon_use;
346         uint64_t cache = vm_swap_cache_use;
347
348         if (total == 0)         /* avoid divide by zero */
349                 total = 1;
350         kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
351         kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
352         kcollect_setscale(KCOLLECT_SWAPANO,
353                           KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
354         kcollect_setscale(KCOLLECT_SWAPCAC,
355                           KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
356         return (((anon + cache) * 10000 + (total >> 1)) / total);
357 }
358
359 /*
360  * SWAP_PAGER_INIT() -  initialize the swap pager!
361  *
362  *      Expected to be started from system init.  NOTE:  This code is run 
363  *      before much else so be careful what you depend on.  Most of the VM
364  *      system has yet to be initialized at this point.
365  *
366  * Called from the low level boot code only.
367  */
368 static void
369 swap_pager_init(void *arg __unused)
370 {
371         kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
372                           KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
373         kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
374                           KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
375         kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
376                           KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
377 }
378 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
379
380 /*
381  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
382  *
383  *      Expected to be started from pageout process once, prior to entering
384  *      its main loop.
385  *
386  * Called from the low level boot code only.
387  */
388 void
389 swap_pager_swap_init(void)
390 {
391         int n, n2;
392
393         /*
394          * Number of in-transit swap bp operations.  Don't
395          * exhaust the pbufs completely.  Make sure we
396          * initialize workable values (0 will work for hysteresis
397          * but it isn't very efficient).
398          *
399          * The nsw_cluster_max is constrained by the number of pages an XIO
400          * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
401          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
402          * constrained by the swap device interleave stripe size.
403          *
404          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
405          * designed to prevent other I/O from having high latencies due to
406          * our pageout I/O.  The value 4 works well for one or two active swap
407          * devices but is probably a little low if you have more.  Even so,
408          * a higher value would probably generate only a limited improvement
409          * with three or four active swap devices since the system does not
410          * typically have to pageout at extreme bandwidths.   We will want
411          * at least 2 per swap devices, and 4 is a pretty good value if you
412          * have one NFS swap device due to the command/ack latency over NFS.
413          * So it all works out pretty well.
414          */
415
416         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
417
418         nsw_rcount = (nswbuf_kva + 1) / 2;
419         nsw_wcount_sync = (nswbuf_kva + 3) / 4;
420         nsw_wcount_async = 4;
421         nsw_wcount_async_max = nsw_wcount_async;
422
423         /*
424          * The zone is dynamically allocated so generally size it to
425          * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
426          * on physical memory of around 8x (each swblock can hold 16 pages).
427          *
428          * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
429          * has increased dramatically.
430          */
431         n = vmstats.v_page_count / 2;
432         if (maxswzone && n < maxswzone / sizeof(struct swblock))
433                 n = maxswzone / sizeof(struct swblock);
434         n2 = n;
435
436         do {
437                 swap_zone = zinit(
438                         "SWAPMETA", 
439                         sizeof(struct swblock), 
440                         n,
441                         ZONE_INTERRUPT);
442                 if (swap_zone != NULL)
443                         break;
444                 /*
445                  * if the allocation failed, try a zone two thirds the
446                  * size of the previous attempt.
447                  */
448                 n -= ((n + 2) / 3);
449         } while (n > 0);
450
451         if (swap_zone == NULL)
452                 panic("swap_pager_swap_init: swap_zone == NULL");
453         if (n2 != n)
454                 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
455 }
456
457 /*
458  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
459  *                      its metadata structures.
460  *
461  *      This routine is called from the mmap and fork code to create a new
462  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
463  *      and then converting it with swp_pager_meta_convert().
464  *
465  *      We only support unnamed objects.
466  *
467  * No restrictions.
468  */
469 vm_object_t
470 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
471 {
472         vm_object_t object;
473
474         KKASSERT(handle == NULL);
475         object = vm_object_allocate_hold(OBJT_DEFAULT,
476                                          OFF_TO_IDX(offset + PAGE_MASK + size));
477         swp_pager_meta_convert(object);
478         vm_object_drop(object);
479
480         return (object);
481 }
482
483 /*
484  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
485  *
486  *      The swap backing for the object is destroyed.  The code is 
487  *      designed such that we can reinstantiate it later, but this
488  *      routine is typically called only when the entire object is
489  *      about to be destroyed.
490  *
491  * The object must be locked or unreferenceable.
492  * No other requirements.
493  */
494 static void
495 swap_pager_dealloc(vm_object_t object)
496 {
497         vm_object_hold(object);
498         vm_object_pip_wait(object, "swpdea");
499
500         /*
501          * Free all remaining metadata.  We only bother to free it from 
502          * the swap meta data.  We do not attempt to free swapblk's still
503          * associated with vm_page_t's for this object.  We do not care
504          * if paging is still in progress on some objects.
505          */
506         swp_pager_meta_free_all(object);
507         vm_object_drop(object);
508 }
509
510 /************************************************************************
511  *                      SWAP PAGER BITMAP ROUTINES                      *
512  ************************************************************************/
513
514 /*
515  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
516  *
517  *      Allocate swap for the requested number of pages.  The starting
518  *      swap block number (a page index) is returned or SWAPBLK_NONE
519  *      if the allocation failed.
520  *
521  *      Also has the side effect of advising that somebody made a mistake
522  *      when they configured swap and didn't configure enough.
523  *
524  * The caller must hold the object.
525  * This routine may not block.
526  */
527 static __inline swblk_t
528 swp_pager_getswapspace(vm_object_t object, int npages)
529 {
530         swblk_t blk;
531
532         lwkt_gettoken(&vm_token);
533         blk = blist_allocat(swapblist, npages, swapiterator);
534         if (blk == SWAPBLK_NONE)
535                 blk = blist_allocat(swapblist, npages, 0);
536         if (blk == SWAPBLK_NONE) {
537                 if (swap_pager_full != 2) {
538                         if (vm_swap_max == 0) {
539                                 krateprintf(&kswaprate,
540                                         "Warning: The system would like to "
541                                         "page to swap but no swap space "
542                                         "is configured!\n");
543                         } else {
544                                 krateprintf(&kswaprate,
545                                         "swap_pager_getswapspace: "
546                                         "swap full allocating %d pages\n",
547                                         npages);
548                         }
549                         swap_pager_full = 2;
550                         if (swap_pager_almost_full == 0)
551                                 swap_fail_ticks = ticks;
552                         swap_pager_almost_full = 1;
553                 }
554         } else {
555                 /* swapiterator = blk; disable for now, doesn't work well */
556                 swapacctspace(blk, -npages);
557                 if (object->type == OBJT_SWAP)
558                         vm_swap_anon_use += npages;
559                 else
560                         vm_swap_cache_use += npages;
561                 swp_sizecheck();
562         }
563         lwkt_reltoken(&vm_token);
564         return(blk);
565 }
566
567 /*
568  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
569  *
570  *      This routine returns the specified swap blocks back to the bitmap.
571  *
572  *      Note:  This routine may not block (it could in the old swap code),
573  *      and through the use of the new blist routines it does not block.
574  *
575  * This routine may not block.
576  */
577
578 static __inline void
579 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
580 {
581         struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
582
583         lwkt_gettoken(&vm_token);
584         sp->sw_nused -= npages;
585         if (object->type == OBJT_SWAP)
586                 vm_swap_anon_use -= npages;
587         else
588                 vm_swap_cache_use -= npages;
589
590         if (sp->sw_flags & SW_CLOSING) {
591                 lwkt_reltoken(&vm_token);
592                 return;
593         }
594
595         blist_free(swapblist, blk, npages);
596         vm_swap_size += npages;
597         swp_sizecheck();
598         lwkt_reltoken(&vm_token);
599 }
600
601 /*
602  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
603  *                              range within an object.
604  *
605  *      This is a globally accessible routine.
606  *
607  *      This routine removes swapblk assignments from swap metadata.
608  *
609  *      The external callers of this routine typically have already destroyed 
610  *      or renamed vm_page_t's associated with this range in the object so 
611  *      we should be ok.
612  *
613  * No requirements.
614  */
615 void
616 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
617 {
618         vm_object_hold(object);
619         swp_pager_meta_free(object, start, size);
620         vm_object_drop(object);
621 }
622
623 /*
624  * No requirements.
625  */
626 void
627 swap_pager_freespace_all(vm_object_t object)
628 {
629         vm_object_hold(object);
630         swp_pager_meta_free_all(object);
631         vm_object_drop(object);
632 }
633
634 /*
635  * This function conditionally frees swap cache swap starting at
636  * (*basei) in the object.  (count) swap blocks will be nominally freed.
637  * The actual number of blocks freed can be more or less than the
638  * requested number.
639  *
640  * This function nominally returns the number of blocks freed.  However,
641  * the actual number of blocks freed may be less then the returned value.
642  * If the function is unable to exhaust the object or if it is able to
643  * free (approximately) the requested number of blocks it returns
644  * a value n > count.
645  *
646  * If we exhaust the object we will return a value n <= count.
647  *
648  * The caller must hold the object.
649  *
650  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
651  *           callers should always pass a count value > 0.
652  */
653 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
654
655 int
656 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
657 {
658         struct swfreeinfo info;
659         int n;
660         int t;
661
662         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
663
664         info.object = object;
665         info.basei = *basei;    /* skip up to this page index */
666         info.begi = count;      /* max swap pages to destroy */
667         info.endi = count * 8;  /* max swblocks to scan */
668
669         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
670                                 swap_pager_condfree_callback, &info);
671         *basei = info.basei;
672
673         /*
674          * Take the higher difference swblocks vs pages
675          */
676         n = count - (int)info.begi;
677         t = count * 8 - (int)info.endi;
678         if (n < t)
679                 n = t;
680         if (n < 1)
681                 n = 1;
682         return(n);
683 }
684
685 /*
686  * The idea is to free whole meta-block to avoid fragmenting
687  * the swap space or disk I/O.  We only do this if NO VM pages
688  * are present.
689  *
690  * We do not have to deal with clearing PG_SWAPPED in related VM
691  * pages because there are no related VM pages.
692  *
693  * The caller must hold the object.
694  */
695 static int
696 swap_pager_condfree_callback(struct swblock *swap, void *data)
697 {
698         struct swfreeinfo *info = data;
699         vm_object_t object = info->object;
700         int i;
701
702         for (i = 0; i < SWAP_META_PAGES; ++i) {
703                 if (vm_page_lookup(object, swap->swb_index + i))
704                         break;
705         }
706         info->basei = swap->swb_index + SWAP_META_PAGES;
707         if (i == SWAP_META_PAGES) {
708                 info->begi -= swap->swb_count;
709                 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
710         }
711         --info->endi;
712         if ((int)info->begi < 0 || (int)info->endi < 0)
713                 return(-1);
714         lwkt_yield();
715         return(0);
716 }
717
718 /*
719  * Called by vm_page_alloc() when a new VM page is inserted
720  * into a VM object.  Checks whether swap has been assigned to
721  * the page and sets PG_SWAPPED as necessary.
722  *
723  * (m) must be busied by caller and remains busied on return.
724  */
725 void
726 swap_pager_page_inserted(vm_page_t m)
727 {
728         if (m->object->swblock_count) {
729                 vm_object_hold(m->object);
730                 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
731                         vm_page_flag_set(m, PG_SWAPPED);
732                 vm_object_drop(m->object);
733         }
734 }
735
736 /*
737  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
738  *
739  *      Assigns swap blocks to the specified range within the object.  The 
740  *      swap blocks are not zerod.  Any previous swap assignment is destroyed.
741  *
742  *      Returns 0 on success, -1 on failure.
743  *
744  * The caller is responsible for avoiding races in the specified range.
745  * No other requirements.
746  */
747 int
748 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
749 {
750         int n = 0;
751         swblk_t blk = SWAPBLK_NONE;
752         vm_pindex_t beg = start;        /* save start index */
753
754         vm_object_hold(object);
755
756         while (size) {
757                 if (n == 0) {
758                         n = BLIST_MAX_ALLOC;
759                         while ((blk = swp_pager_getswapspace(object, n)) ==
760                                SWAPBLK_NONE)
761                         {
762                                 n >>= 1;
763                                 if (n == 0) {
764                                         swp_pager_meta_free(object, beg,
765                                                             start - beg);
766                                         vm_object_drop(object);
767                                         return(-1);
768                                 }
769                         }
770                 }
771                 swp_pager_meta_build(object, start, blk);
772                 --size;
773                 ++start;
774                 ++blk;
775                 --n;
776         }
777         swp_pager_meta_free(object, start, n);
778         vm_object_drop(object);
779         return(0);
780 }
781
782 /*
783  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
784  *                      and destroy the source.
785  *
786  *      Copy any valid swapblks from the source to the destination.  In
787  *      cases where both the source and destination have a valid swapblk,
788  *      we keep the destination's.
789  *
790  *      This routine is allowed to block.  It may block allocating metadata
791  *      indirectly through swp_pager_meta_build() or if paging is still in
792  *      progress on the source. 
793  *
794  *      XXX vm_page_collapse() kinda expects us not to block because we 
795  *      supposedly do not need to allocate memory, but for the moment we
796  *      *may* have to get a little memory from the zone allocator, but
797  *      it is taken from the interrupt memory.  We should be ok. 
798  *
799  *      The source object contains no vm_page_t's (which is just as well)
800  *      The source object is of type OBJT_SWAP.
801  *
802  *      The source and destination objects must be held by the caller.
803  */
804 void
805 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
806                 vm_pindex_t base_index, int destroysource)
807 {
808         vm_pindex_t i;
809
810         ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
811         ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
812
813         /*
814          * transfer source to destination.
815          */
816         for (i = 0; i < dstobject->size; ++i) {
817                 swblk_t dstaddr;
818
819                 /*
820                  * Locate (without changing) the swapblk on the destination,
821                  * unless it is invalid in which case free it silently, or
822                  * if the destination is a resident page, in which case the
823                  * source is thrown away.
824                  */
825                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
826
827                 if (dstaddr == SWAPBLK_NONE) {
828                         /*
829                          * Destination has no swapblk and is not resident,
830                          * copy source.
831                          */
832                         swblk_t srcaddr;
833
834                         srcaddr = swp_pager_meta_ctl(srcobject,
835                                                      base_index + i, SWM_POP);
836
837                         if (srcaddr != SWAPBLK_NONE)
838                                 swp_pager_meta_build(dstobject, i, srcaddr);
839                 } else {
840                         /*
841                          * Destination has valid swapblk or it is represented
842                          * by a resident page.  We destroy the sourceblock.
843                          */
844                         swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
845                 }
846         }
847
848         /*
849          * Free left over swap blocks in source.
850          *
851          * We have to revert the type to OBJT_DEFAULT so we do not accidently
852          * double-remove the object from the swap queues.
853          */
854         if (destroysource) {
855                 /*
856                  * Reverting the type is not necessary, the caller is going
857                  * to destroy srcobject directly, but I'm doing it here
858                  * for consistency since we've removed the object from its
859                  * queues.
860                  */
861                 swp_pager_meta_free_all(srcobject);
862                 if (srcobject->type == OBJT_SWAP)
863                         srcobject->type = OBJT_DEFAULT;
864         }
865 }
866
867 /*
868  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
869  *                              the requested page.
870  *
871  *      We determine whether good backing store exists for the requested
872  *      page and return TRUE if it does, FALSE if it doesn't.
873  *
874  *      If TRUE, we also try to determine how much valid, contiguous backing
875  *      store exists before and after the requested page within a reasonable
876  *      distance.  We do not try to restrict it to the swap device stripe
877  *      (that is handled in getpages/putpages).  It probably isn't worth
878  *      doing here.
879  *
880  * No requirements.
881  */
882 boolean_t
883 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
884 {
885         swblk_t blk0;
886
887         /*
888          * do we have good backing store at the requested index ?
889          */
890         vm_object_hold(object);
891         blk0 = swp_pager_meta_ctl(object, pindex, 0);
892
893         if (blk0 == SWAPBLK_NONE) {
894                 vm_object_drop(object);
895                 return (FALSE);
896         }
897         vm_object_drop(object);
898         return (TRUE);
899 }
900
901 /*
902  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
903  *
904  * This removes any associated swap backing store, whether valid or
905  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
906  * objects.
907  *
908  * This routine is typically called when a page is made dirty, at
909  * which point any associated swap can be freed.  MADV_FREE also
910  * calls us in a special-case situation
911  *
912  * NOTE!!!  If the page is clean and the swap was valid, the caller
913  *          should make the page dirty before calling this routine.
914  *          This routine does NOT change the m->dirty status of the page.
915  *          Also: MADV_FREE depends on it.
916  *
917  * The page must be busied.
918  * The caller can hold the object to avoid blocking, else we might block.
919  * No other requirements.
920  */
921 void
922 swap_pager_unswapped(vm_page_t m)
923 {
924         if (m->flags & PG_SWAPPED) {
925                 vm_object_hold(m->object);
926                 KKASSERT(m->flags & PG_SWAPPED);
927                 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
928                 vm_page_flag_clear(m, PG_SWAPPED);
929                 vm_object_drop(m->object);
930         }
931 }
932
933 /*
934  * SWAP_PAGER_STRATEGY() - read, write, free blocks
935  *
936  * This implements a VM OBJECT strategy function using swap backing store.
937  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
938  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
939  * requests will return EINVAL.
940  *
941  * This is intended to be a cacheless interface (i.e. caching occurs at
942  * higher levels), and is also used as a swap-based SSD cache for vnode
943  * and device objects.
944  *
945  * All I/O goes directly to and from the swap device.
946  *      
947  * We currently attempt to run I/O synchronously or asynchronously as
948  * the caller requests.  This isn't perfect because we loose error
949  * sequencing when we run multiple ops in parallel to satisfy a request.
950  * But this is swap, so we let it all hang out.
951  *
952  * NOTE: This function supports the KVABIO API wherein bp->b_data might
953  *       not be synchronized to the current cpu.
954  *
955  * No requirements.
956  */
957 void
958 swap_pager_strategy(vm_object_t object, struct bio *bio)
959 {
960         struct buf *bp = bio->bio_buf;
961         struct bio *nbio;
962         vm_pindex_t start;
963         vm_pindex_t biox_blkno = 0;
964         int count;
965         char *data;
966         struct bio *biox;
967         struct buf *bufx;
968 #if 0
969         struct bio_track *track;
970 #endif
971
972 #if 0
973         /*
974          * tracking for swapdev vnode I/Os
975          */
976         if (bp->b_cmd == BUF_CMD_READ)
977                 track = &swapdev_vp->v_track_read;
978         else
979                 track = &swapdev_vp->v_track_write;
980 #endif
981
982         /*
983          * Only supported commands
984          */
985         if (bp->b_cmd != BUF_CMD_FREEBLKS &&
986             bp->b_cmd != BUF_CMD_READ &&
987             bp->b_cmd != BUF_CMD_WRITE) {
988                 bp->b_error = EINVAL;
989                 bp->b_flags |= B_ERROR | B_INVAL;
990                 biodone(bio);
991                 return;
992         }
993
994         /*
995          * bcount must be an integral number of pages.
996          */
997         if (bp->b_bcount & PAGE_MASK) {
998                 bp->b_error = EINVAL;
999                 bp->b_flags |= B_ERROR | B_INVAL;
1000                 biodone(bio);
1001                 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1002                         "not page bounded\n",
1003                         bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1004                 return;
1005         }
1006
1007         /*
1008          * Clear error indication, initialize page index, count, data pointer.
1009          */
1010         bp->b_error = 0;
1011         bp->b_flags &= ~B_ERROR;
1012         bp->b_resid = bp->b_bcount;
1013
1014         start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1015         count = howmany(bp->b_bcount, PAGE_SIZE);
1016
1017         /*
1018          * WARNING!  Do not dereference *data without issuing a bkvasync()
1019          */
1020         data = bp->b_data;
1021
1022         /*
1023          * Deal with BUF_CMD_FREEBLKS
1024          */
1025         if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1026                 /*
1027                  * FREE PAGE(s) - destroy underlying swap that is no longer
1028                  *                needed.
1029                  */
1030                 vm_object_hold(object);
1031                 swp_pager_meta_free(object, start, count);
1032                 vm_object_drop(object);
1033                 bp->b_resid = 0;
1034                 biodone(bio);
1035                 return;
1036         }
1037
1038         /*
1039          * We need to be able to create a new cluster of I/O's.  We cannot
1040          * use the caller fields of the passed bio so push a new one.
1041          *
1042          * Because nbio is just a placeholder for the cluster links,
1043          * we can biodone() the original bio instead of nbio to make
1044          * things a bit more efficient.
1045          */
1046         nbio = push_bio(bio);
1047         nbio->bio_offset = bio->bio_offset;
1048         nbio->bio_caller_info1.cluster_head = NULL;
1049         nbio->bio_caller_info2.cluster_tail = NULL;
1050
1051         biox = NULL;
1052         bufx = NULL;
1053
1054         /*
1055          * Execute read or write
1056          */
1057         vm_object_hold(object);
1058
1059         while (count > 0) {
1060                 swblk_t blk;
1061
1062                 /*
1063                  * Obtain block.  If block not found and writing, allocate a
1064                  * new block and build it into the object.
1065                  */
1066                 blk = swp_pager_meta_ctl(object, start, 0);
1067                 if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1068                         blk = swp_pager_getswapspace(object, 1);
1069                         if (blk == SWAPBLK_NONE) {
1070                                 bp->b_error = ENOMEM;
1071                                 bp->b_flags |= B_ERROR;
1072                                 break;
1073                         }
1074                         swp_pager_meta_build(object, start, blk);
1075                 }
1076                         
1077                 /*
1078                  * Do we have to flush our current collection?  Yes if:
1079                  *
1080                  *      - no swap block at this index
1081                  *      - swap block is not contiguous
1082                  *      - we cross a physical disk boundry in the
1083                  *        stripe.
1084                  */
1085                 if (biox &&
1086                     (biox_blkno + btoc(bufx->b_bcount) != blk ||
1087                      ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1088                         switch(bp->b_cmd) {
1089                         case BUF_CMD_READ:
1090                                 ++mycpu->gd_cnt.v_swapin;
1091                                 mycpu->gd_cnt.v_swappgsin +=
1092                                         btoc(bufx->b_bcount);
1093                                 break;
1094                         case BUF_CMD_WRITE:
1095                                 ++mycpu->gd_cnt.v_swapout;
1096                                 mycpu->gd_cnt.v_swappgsout +=
1097                                         btoc(bufx->b_bcount);
1098                                 bufx->b_dirtyend = bufx->b_bcount;
1099                                 break;
1100                         default:
1101                                 /* NOT REACHED */
1102                                 break;
1103                         }
1104
1105                         /*
1106                          * Finished with this buf.
1107                          */
1108                         KKASSERT(bufx->b_bcount != 0);
1109                         if (bufx->b_cmd != BUF_CMD_READ)
1110                                 bufx->b_dirtyend = bufx->b_bcount;
1111                         biox = NULL;
1112                         bufx = NULL;
1113                 }
1114
1115                 /*
1116                  * Add new swapblk to biox, instantiating biox if necessary.
1117                  * Zero-fill reads are able to take a shortcut.
1118                  */
1119                 if (blk == SWAPBLK_NONE) {
1120                         /*
1121                          * We can only get here if we are reading.
1122                          */
1123                         bkvasync(bp);
1124                         bzero(data, PAGE_SIZE);
1125                         bp->b_resid -= PAGE_SIZE;
1126                 } else {
1127                         if (biox == NULL) {
1128                                 /* XXX chain count > 4, wait to <= 4 */
1129
1130                                 bufx = getpbuf(NULL);
1131                                 bufx->b_flags |= B_KVABIO;
1132                                 biox = &bufx->b_bio1;
1133                                 cluster_append(nbio, bufx);
1134                                 bufx->b_cmd = bp->b_cmd;
1135                                 biox->bio_done = swap_chain_iodone;
1136                                 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1137                                 biox->bio_caller_info1.cluster_parent = nbio;
1138                                 biox_blkno = blk;
1139                                 bufx->b_bcount = 0;
1140                                 bufx->b_data = data;
1141                         }
1142                         bufx->b_bcount += PAGE_SIZE;
1143                 }
1144                 --count;
1145                 ++start;
1146                 data += PAGE_SIZE;
1147         }
1148
1149         vm_object_drop(object);
1150
1151         /*
1152          *  Flush out last buffer
1153          */
1154         if (biox) {
1155                 if (bufx->b_cmd == BUF_CMD_READ) {
1156                         ++mycpu->gd_cnt.v_swapin;
1157                         mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1158                 } else {
1159                         ++mycpu->gd_cnt.v_swapout;
1160                         mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1161                         bufx->b_dirtyend = bufx->b_bcount;
1162                 }
1163                 KKASSERT(bufx->b_bcount);
1164                 if (bufx->b_cmd != BUF_CMD_READ)
1165                         bufx->b_dirtyend = bufx->b_bcount;
1166                 /* biox, bufx = NULL */
1167         }
1168
1169         /*
1170          * Now initiate all the I/O.  Be careful looping on our chain as
1171          * I/O's may complete while we are still initiating them.
1172          *
1173          * If the request is a 100% sparse read no bios will be present
1174          * and we just biodone() the buffer.
1175          */
1176         nbio->bio_caller_info2.cluster_tail = NULL;
1177         bufx = nbio->bio_caller_info1.cluster_head;
1178
1179         if (bufx) {
1180                 while (bufx) {
1181                         biox = &bufx->b_bio1;
1182                         BUF_KERNPROC(bufx);
1183                         bufx = bufx->b_cluster_next;
1184                         vn_strategy(swapdev_vp, biox);
1185                 }
1186         } else {
1187                 biodone(bio);
1188         }
1189
1190         /*
1191          * Completion of the cluster will also call biodone_chain(nbio).
1192          * We never call biodone(nbio) so we don't have to worry about
1193          * setting up a bio_done callback.  It's handled in the sub-IO.
1194          */
1195         /**/
1196 }
1197
1198 /*
1199  * biodone callback
1200  *
1201  * No requirements.
1202  */
1203 static void
1204 swap_chain_iodone(struct bio *biox)
1205 {
1206         struct buf **nextp;
1207         struct buf *bufx;       /* chained sub-buffer */
1208         struct bio *nbio;       /* parent nbio with chain glue */
1209         struct buf *bp;         /* original bp associated with nbio */
1210         int chain_empty;
1211
1212         bufx = biox->bio_buf;
1213         nbio = biox->bio_caller_info1.cluster_parent;
1214         bp = nbio->bio_buf;
1215
1216         /*
1217          * Update the original buffer
1218          */
1219         KKASSERT(bp != NULL);
1220         if (bufx->b_flags & B_ERROR) {
1221                 atomic_set_int(&bufx->b_flags, B_ERROR);
1222                 bp->b_error = bufx->b_error;    /* race ok */
1223         } else if (bufx->b_resid != 0) {
1224                 atomic_set_int(&bufx->b_flags, B_ERROR);
1225                 bp->b_error = EINVAL;           /* race ok */
1226         } else {
1227                 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1228         }
1229
1230         /*
1231          * Remove us from the chain.
1232          */
1233         spin_lock(&swapbp_spin);
1234         nextp = &nbio->bio_caller_info1.cluster_head;
1235         while (*nextp != bufx) {
1236                 KKASSERT(*nextp != NULL);
1237                 nextp = &(*nextp)->b_cluster_next;
1238         }
1239         *nextp = bufx->b_cluster_next;
1240         chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1241         spin_unlock(&swapbp_spin);
1242
1243         /*
1244          * Clean up bufx.  If the chain is now empty we finish out
1245          * the parent.  Note that we may be racing other completions
1246          * so we must use the chain_empty status from above.
1247          */
1248         if (chain_empty) {
1249                 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1250                         atomic_set_int(&bp->b_flags, B_ERROR);
1251                         bp->b_error = EINVAL;
1252                 }
1253                 biodone_chain(nbio);
1254         }
1255         relpbuf(bufx, NULL);
1256 }
1257
1258 /*
1259  * SWAP_PAGER_GETPAGES() - bring page in from swap
1260  *
1261  * The requested page may have to be brought in from swap.  Calculate the
1262  * swap block and bring in additional pages if possible.  All pages must
1263  * have contiguous swap block assignments and reside in the same object.
1264  *
1265  * The caller has a single vm_object_pip_add() reference prior to
1266  * calling us and we should return with the same.
1267  *
1268  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1269  * and any additinal pages unbusied.
1270  *
1271  * If the caller encounters a PG_RAM page it will pass it to us even though
1272  * it may be valid and dirty.  We cannot overwrite the page in this case!
1273  * The case is used to allow us to issue pure read-aheads.
1274  *
1275  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1276  *       the PG_RAM page is validated at the same time as mreq.  What we
1277  *       really need to do is issue a separate read-ahead pbuf.
1278  *
1279  * No requirements.
1280  */
1281 static int
1282 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1283 {
1284         struct buf *bp;
1285         struct bio *bio;
1286         vm_page_t mreq;
1287         vm_page_t m;
1288         vm_offset_t kva;
1289         swblk_t blk;
1290         int i;
1291         int j;
1292         int raonly;
1293         int error;
1294         u_int32_t busy_count;
1295         vm_page_t marray[XIO_INTERNAL_PAGES];
1296
1297         mreq = *mpp;
1298
1299         vm_object_hold(object);
1300         if (mreq->object != object) {
1301                 panic("swap_pager_getpages: object mismatch %p/%p", 
1302                     object, 
1303                     mreq->object
1304                 );
1305         }
1306
1307         /*
1308          * We don't want to overwrite a fully valid page as it might be
1309          * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1310          * valid page with PG_RAM set.
1311          *
1312          * In this case we see if the next page is a suitable page-in
1313          * candidate and if it is we issue read-ahead.  PG_RAM will be
1314          * set on the last page of the read-ahead to continue the pipeline.
1315          */
1316         if (mreq->valid == VM_PAGE_BITS_ALL) {
1317                 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1318                         vm_object_drop(object);
1319                         return(VM_PAGER_OK);
1320                 }
1321                 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1322                 if (blk == SWAPBLK_NONE) {
1323                         vm_object_drop(object);
1324                         return(VM_PAGER_OK);
1325                 }
1326                 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1327                                             TRUE, &error);
1328                 if (error) {
1329                         vm_object_drop(object);
1330                         return(VM_PAGER_OK);
1331                 } else if (m == NULL) {
1332                         /*
1333                          * Use VM_ALLOC_QUICK to avoid blocking on cache
1334                          * page reuse.
1335                          */
1336                         m = vm_page_alloc(object, mreq->pindex + 1,
1337                                           VM_ALLOC_QUICK);
1338                         if (m == NULL) {
1339                                 vm_object_drop(object);
1340                                 return(VM_PAGER_OK);
1341                         }
1342                 } else {
1343                         if (m->valid) {
1344                                 vm_page_wakeup(m);
1345                                 vm_object_drop(object);
1346                                 return(VM_PAGER_OK);
1347                         }
1348                         vm_page_unqueue_nowakeup(m);
1349                 }
1350                 /* page is busy */
1351                 mreq = m;
1352                 raonly = 1;
1353         } else {
1354                 raonly = 0;
1355         }
1356
1357         /*
1358          * Try to block-read contiguous pages from swap if sequential,
1359          * otherwise just read one page.  Contiguous pages from swap must
1360          * reside within a single device stripe because the I/O cannot be
1361          * broken up across multiple stripes.
1362          *
1363          * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1364          * set up such that the case(s) are handled implicitly.
1365          */
1366         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1367         marray[0] = mreq;
1368
1369         for (i = 1; i <= swap_burst_read &&
1370                     i < XIO_INTERNAL_PAGES &&
1371                     mreq->pindex + i < object->size; ++i) {
1372                 swblk_t iblk;
1373
1374                 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1375                 if (iblk != blk + i)
1376                         break;
1377                 if ((blk ^ iblk) & ~SWB_DMMASK)
1378                         break;
1379                 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1380                                             TRUE, &error);
1381                 if (error) {
1382                         break;
1383                 } else if (m == NULL) {
1384                         /*
1385                          * Use VM_ALLOC_QUICK to avoid blocking on cache
1386                          * page reuse.
1387                          */
1388                         m = vm_page_alloc(object, mreq->pindex + i,
1389                                           VM_ALLOC_QUICK);
1390                         if (m == NULL)
1391                                 break;
1392                 } else {
1393                         if (m->valid) {
1394                                 vm_page_wakeup(m);
1395                                 break;
1396                         }
1397                         vm_page_unqueue_nowakeup(m);
1398                 }
1399                 /* page is busy */
1400                 marray[i] = m;
1401         }
1402         if (i > 1)
1403                 vm_page_flag_set(marray[i - 1], PG_RAM);
1404
1405         /*
1406          * If mreq is the requested page and we have nothing to do return
1407          * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1408          * page and must be cleaned up.
1409          */
1410         if (blk == SWAPBLK_NONE) {
1411                 KKASSERT(i == 1);
1412                 if (raonly) {
1413                         vnode_pager_freepage(mreq);
1414                         vm_object_drop(object);
1415                         return(VM_PAGER_OK);
1416                 } else {
1417                         vm_object_drop(object);
1418                         return(VM_PAGER_FAIL);
1419                 }
1420         }
1421
1422         /*
1423          * Map our page(s) into kva for input
1424          *
1425          * Use the KVABIO API to avoid synchronizing the pmap.
1426          */
1427         bp = getpbuf_kva(&nsw_rcount);
1428         bio = &bp->b_bio1;
1429         kva = (vm_offset_t) bp->b_kvabase;
1430         bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1431         pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1432
1433         bp->b_data = (caddr_t)kva;
1434         bp->b_bcount = PAGE_SIZE * i;
1435         bp->b_xio.xio_npages = i;
1436         bp->b_flags |= B_KVABIO;
1437         bio->bio_done = swp_pager_async_iodone;
1438         bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1439         bio->bio_caller_info1.index = SWBIO_READ;
1440
1441         /*
1442          * Set index.  If raonly set the index beyond the array so all
1443          * the pages are treated the same, otherwise the original mreq is
1444          * at index 0.
1445          */
1446         if (raonly)
1447                 bio->bio_driver_info = (void *)(intptr_t)i;
1448         else
1449                 bio->bio_driver_info = (void *)(intptr_t)0;
1450
1451         for (j = 0; j < i; ++j) {
1452                 atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1453                                PBUSY_SWAPINPROG);
1454         }
1455
1456         mycpu->gd_cnt.v_swapin++;
1457         mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1458
1459         /*
1460          * We still hold the lock on mreq, and our automatic completion routine
1461          * does not remove it.
1462          */
1463         vm_object_pip_add(object, bp->b_xio.xio_npages);
1464
1465         /*
1466          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1467          * this point because we automatically release it on completion.
1468          * Instead, we look at the one page we are interested in which we
1469          * still hold a lock on even through the I/O completion.
1470          *
1471          * The other pages in our m[] array are also released on completion,
1472          * so we cannot assume they are valid anymore either.
1473          */
1474         bp->b_cmd = BUF_CMD_READ;
1475         BUF_KERNPROC(bp);
1476         vn_strategy(swapdev_vp, bio);
1477
1478         /*
1479          * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1480          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1481          * is set in the meta-data.
1482          *
1483          * If this is a read-ahead only we return immediately without
1484          * waiting for I/O.
1485          */
1486         if (raonly) {
1487                 vm_object_drop(object);
1488                 return(VM_PAGER_OK);
1489         }
1490
1491         /*
1492          * Read-ahead includes originally requested page case.
1493          */
1494         for (;;) {
1495                 busy_count = mreq->busy_count;
1496                 cpu_ccfence();
1497                 if ((busy_count & PBUSY_SWAPINPROG) == 0)
1498                         break;
1499                 tsleep_interlock(mreq, 0);
1500                 if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1501                                        busy_count |
1502                                         PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1503                         continue;
1504                 }
1505                 atomic_set_int(&mreq->flags, PG_REFERENCED);
1506                 mycpu->gd_cnt.v_intrans++;
1507                 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1508                         kprintf(
1509                             "swap_pager: indefinite wait buffer: "
1510                                 " bp %p offset: %lld, size: %ld\n",
1511                             bp,
1512                             (long long)bio->bio_offset,
1513                             (long)bp->b_bcount
1514                         );
1515                 }
1516         }
1517
1518         /*
1519          * Disallow speculative reads prior to the SWAPINPROG test.
1520          */
1521         cpu_lfence();
1522
1523         /*
1524          * mreq is left busied after completion, but all the other pages
1525          * are freed.  If we had an unrecoverable read error the page will
1526          * not be valid.
1527          */
1528         vm_object_drop(object);
1529         if (mreq->valid != VM_PAGE_BITS_ALL)
1530                 return(VM_PAGER_ERROR);
1531         else
1532                 return(VM_PAGER_OK);
1533
1534         /*
1535          * A final note: in a low swap situation, we cannot deallocate swap
1536          * and mark a page dirty here because the caller is likely to mark
1537          * the page clean when we return, causing the page to possibly revert 
1538          * to all-zero's later.
1539          */
1540 }
1541
1542 /*
1543  *      swap_pager_putpages: 
1544  *
1545  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1546  *
1547  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1548  *      are automatically converted to SWAP objects.
1549  *
1550  *      In a low memory situation we may block in vn_strategy(), but the new 
1551  *      vm_page reservation system coupled with properly written VFS devices 
1552  *      should ensure that no low-memory deadlock occurs.  This is an area
1553  *      which needs work.
1554  *
1555  *      The parent has N vm_object_pip_add() references prior to
1556  *      calling us and will remove references for rtvals[] that are
1557  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1558  *      completion.
1559  *
1560  *      The parent has soft-busy'd the pages it passes us and will unbusy
1561  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1562  *      We need to unbusy the rest on I/O completion.
1563  *
1564  * No requirements.
1565  */
1566 void
1567 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1568                     int flags, int *rtvals)
1569 {
1570         int i;
1571         int n = 0;
1572
1573         vm_object_hold(object);
1574
1575         if (count && m[0]->object != object) {
1576                 panic("swap_pager_getpages: object mismatch %p/%p", 
1577                     object, 
1578                     m[0]->object
1579                 );
1580         }
1581
1582         /*
1583          * Step 1
1584          *
1585          * Turn object into OBJT_SWAP
1586          * Check for bogus sysops
1587          *
1588          * Force sync if not pageout process, we don't want any single
1589          * non-pageout process to be able to hog the I/O subsystem!  This
1590          * can be overridden by setting.
1591          */
1592         if (object->type == OBJT_DEFAULT) {
1593                 if (object->type == OBJT_DEFAULT)
1594                         swp_pager_meta_convert(object);
1595         }
1596
1597         /*
1598          * Normally we force synchronous swap I/O if this is not the
1599          * pageout daemon to prevent any single user process limited
1600          * via RLIMIT_RSS from hogging swap write bandwidth.
1601          */
1602         if (curthread != pagethread &&
1603             curthread != emergpager &&
1604             swap_user_async == 0) {
1605                 flags |= VM_PAGER_PUT_SYNC;
1606         }
1607
1608         /*
1609          * Step 2
1610          *
1611          * Update nsw parameters from swap_async_max sysctl values.  
1612          * Do not let the sysop crash the machine with bogus numbers.
1613          */
1614         if (swap_async_max != nsw_wcount_async_max) {
1615                 int n;
1616
1617                 /*
1618                  * limit range
1619                  */
1620                 if ((n = swap_async_max) > nswbuf_kva / 2)
1621                         n = nswbuf_kva / 2;
1622                 if (n < 1)
1623                         n = 1;
1624                 swap_async_max = n;
1625
1626                 /*
1627                  * Adjust difference ( if possible ).  If the current async
1628                  * count is too low, we may not be able to make the adjustment
1629                  * at this time.
1630                  *
1631                  * vm_token needed for nsw_wcount sleep interlock
1632                  */
1633                 lwkt_gettoken(&vm_token);
1634                 n -= nsw_wcount_async_max;
1635                 if (nsw_wcount_async + n >= 0) {
1636                         nsw_wcount_async_max += n;
1637                         pbuf_adjcount(&nsw_wcount_async, n);
1638                 }
1639                 lwkt_reltoken(&vm_token);
1640         }
1641
1642         /*
1643          * Step 3
1644          *
1645          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1646          * The page is left dirty until the pageout operation completes
1647          * successfully.
1648          */
1649
1650         for (i = 0; i < count; i += n) {
1651                 struct buf *bp;
1652                 struct bio *bio;
1653                 swblk_t blk;
1654                 int j;
1655
1656                 /*
1657                  * Maximum I/O size is limited by a number of factors.
1658                  */
1659
1660                 n = min(BLIST_MAX_ALLOC, count - i);
1661                 n = min(n, nsw_cluster_max);
1662
1663                 lwkt_gettoken(&vm_token);
1664
1665                 /*
1666                  * Get biggest block of swap we can.  If we fail, fall
1667                  * back and try to allocate a smaller block.  Don't go
1668                  * overboard trying to allocate space if it would overly
1669                  * fragment swap.
1670                  */
1671                 while (
1672                     (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1673                     n > 4
1674                 ) {
1675                         n >>= 1;
1676                 }
1677                 if (blk == SWAPBLK_NONE) {
1678                         for (j = 0; j < n; ++j)
1679                                 rtvals[i+j] = VM_PAGER_FAIL;
1680                         lwkt_reltoken(&vm_token);
1681                         continue;
1682                 }
1683                 if (vm_report_swap_allocs > 0) {
1684                         kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1685                         --vm_report_swap_allocs;
1686                 }
1687
1688                 /*
1689                  * The I/O we are constructing cannot cross a physical
1690                  * disk boundry in the swap stripe.
1691                  */
1692                 if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1693                         j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1694                         swp_pager_freeswapspace(object, blk + j, n - j);
1695                         n = j;
1696                 }
1697
1698                 /*
1699                  * All I/O parameters have been satisfied, build the I/O
1700                  * request and assign the swap space.
1701                  *
1702                  * Use the KVABIO API to avoid synchronizing the pmap.
1703                  */
1704                 if ((flags & VM_PAGER_PUT_SYNC))
1705                         bp = getpbuf_kva(&nsw_wcount_sync);
1706                 else
1707                         bp = getpbuf_kva(&nsw_wcount_async);
1708                 bio = &bp->b_bio1;
1709
1710                 lwkt_reltoken(&vm_token);
1711
1712                 pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1713
1714                 bp->b_flags |= B_KVABIO;
1715                 bp->b_bcount = PAGE_SIZE * n;
1716                 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1717
1718                 for (j = 0; j < n; ++j) {
1719                         vm_page_t mreq = m[i+j];
1720
1721                         swp_pager_meta_build(mreq->object, mreq->pindex,
1722                                              blk + j);
1723                         if (object->type == OBJT_SWAP)
1724                                 vm_page_dirty(mreq);
1725                         rtvals[i+j] = VM_PAGER_OK;
1726
1727                         atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1728                         bp->b_xio.xio_pages[j] = mreq;
1729                 }
1730                 bp->b_xio.xio_npages = n;
1731
1732                 mycpu->gd_cnt.v_swapout++;
1733                 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1734
1735                 bp->b_dirtyoff = 0;             /* req'd for NFS */
1736                 bp->b_dirtyend = bp->b_bcount;  /* req'd for NFS */
1737                 bp->b_cmd = BUF_CMD_WRITE;
1738                 bio->bio_caller_info1.index = SWBIO_WRITE;
1739
1740                 /*
1741                  * asynchronous
1742                  */
1743                 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1744                         bio->bio_done = swp_pager_async_iodone;
1745                         BUF_KERNPROC(bp);
1746                         vn_strategy(swapdev_vp, bio);
1747
1748                         for (j = 0; j < n; ++j)
1749                                 rtvals[i+j] = VM_PAGER_PEND;
1750                         continue;
1751                 }
1752
1753                 /*
1754                  * Issue synchrnously.
1755                  *
1756                  * Wait for the sync I/O to complete, then update rtvals.
1757                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
1758                  * our async completion routine at the end, thus avoiding a
1759                  * double-free.
1760                  */
1761                 bio->bio_caller_info1.index |= SWBIO_SYNC;
1762                 if (flags & VM_PAGER_TRY_TO_CACHE)
1763                         bio->bio_caller_info1.index |= SWBIO_TTC;
1764                 bio->bio_done = biodone_sync;
1765                 bio->bio_flags |= BIO_SYNC;
1766                 vn_strategy(swapdev_vp, bio);
1767                 biowait(bio, "swwrt");
1768
1769                 for (j = 0; j < n; ++j)
1770                         rtvals[i+j] = VM_PAGER_PEND;
1771
1772                 /*
1773                  * Now that we are through with the bp, we can call the
1774                  * normal async completion, which frees everything up.
1775                  */
1776                 swp_pager_async_iodone(bio);
1777         }
1778         vm_object_drop(object);
1779 }
1780
1781 /*
1782  * No requirements.
1783  *
1784  * Recalculate the low and high-water marks.
1785  */
1786 void
1787 swap_pager_newswap(void)
1788 {
1789         /*
1790          * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1791          *       limitation imposed by the blist code.  Remember that this
1792          *       will be divided by NSWAP_MAX (4), so each swap device is
1793          *       limited to around a terrabyte.
1794          */
1795         if (vm_swap_max) {
1796                 nswap_lowat = (int64_t)vm_swap_max * 4 / 100;   /* 4% left */
1797                 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;   /* 6% left */
1798                 kprintf("swap low/high-water marks set to %d/%d\n",
1799                         nswap_lowat, nswap_hiwat);
1800         } else {
1801                 nswap_lowat = 128;
1802                 nswap_hiwat = 512;
1803         }
1804         swp_sizecheck();
1805 }
1806
1807 /*
1808  *      swp_pager_async_iodone:
1809  *
1810  *      Completion routine for asynchronous reads and writes from/to swap.
1811  *      Also called manually by synchronous code to finish up a bp.
1812  *
1813  *      For READ operations, the pages are BUSY'd.  For WRITE operations,
1814  *      the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1815  *      unbusy all pages except the 'main' request page.  For WRITE 
1816  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
1817  *      because we marked them all VM_PAGER_PEND on return from putpages ).
1818  *
1819  *      This routine may not block.
1820  *
1821  * No requirements.
1822  */
1823 static void
1824 swp_pager_async_iodone(struct bio *bio)
1825 {
1826         struct buf *bp = bio->bio_buf;
1827         vm_object_t object = NULL;
1828         int i;
1829         int *nswptr;
1830
1831         /*
1832          * report error
1833          */
1834         if (bp->b_flags & B_ERROR) {
1835                 kprintf(
1836                     "swap_pager: I/O error - %s failed; offset %lld,"
1837                         "size %ld, error %d\n",
1838                     ((bio->bio_caller_info1.index & SWBIO_READ) ?
1839                         "pagein" : "pageout"),
1840                     (long long)bio->bio_offset,
1841                     (long)bp->b_bcount,
1842                     bp->b_error
1843                 );
1844         }
1845
1846         /*
1847          * set object.
1848          */
1849         if (bp->b_xio.xio_npages)
1850                 object = bp->b_xio.xio_pages[0]->object;
1851
1852 #if 0
1853         /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1854         if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1855                 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1856                         kprintf("SWAPOUT: BADCRC %08x %08x\n",
1857                                 bio->bio_crc,
1858                                 iscsi_crc32(bp->b_data, bp->b_bcount));
1859                         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1860                                 vm_page_t m = bp->b_xio.xio_pages[i];
1861                                 if (m->flags & PG_WRITEABLE)
1862                                         kprintf("SWAPOUT: "
1863                                                 "%d/%d %p writable\n",
1864                                                 i, bp->b_xio.xio_npages, m);
1865                         }
1866                 }
1867         }
1868 #endif
1869
1870         /*
1871          * remove the mapping for kernel virtual
1872          */
1873         pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1874
1875         /*
1876          * cleanup pages.  If an error occurs writing to swap, we are in
1877          * very serious trouble.  If it happens to be a disk error, though,
1878          * we may be able to recover by reassigning the swap later on.  So
1879          * in this case we remove the m->swapblk assignment for the page 
1880          * but do not free it in the rlist.  The errornous block(s) are thus
1881          * never reallocated as swap.  Redirty the page and continue.
1882          */
1883         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1884                 vm_page_t m = bp->b_xio.xio_pages[i];
1885
1886                 if (bp->b_flags & B_ERROR) {
1887                         /*
1888                          * If an error occurs I'd love to throw the swapblk
1889                          * away without freeing it back to swapspace, so it
1890                          * can never be used again.  But I can't from an 
1891                          * interrupt.
1892                          */
1893
1894                         if (bio->bio_caller_info1.index & SWBIO_READ) {
1895                                 /*
1896                                  * When reading, reqpage needs to stay
1897                                  * locked for the parent, but all other
1898                                  * pages can be freed.  We still want to
1899                                  * wakeup the parent waiting on the page,
1900                                  * though.  ( also: pg_reqpage can be -1 and 
1901                                  * not match anything ).
1902                                  *
1903                                  * We have to wake specifically requested pages
1904                                  * up too because we cleared SWAPINPROG and
1905                                  * someone may be waiting for that.
1906                                  *
1907                                  * NOTE: For reads, m->dirty will probably
1908                                  *       be overridden by the original caller
1909                                  *       of getpages so don't play cute tricks
1910                                  *       here.
1911                                  *
1912                                  * NOTE: We can't actually free the page from
1913                                  *       here, because this is an interrupt.
1914                                  *       It is not legal to mess with
1915                                  *       object->memq from an interrupt.
1916                                  *       Deactivate the page instead.
1917                                  *
1918                                  * WARNING! The instant SWAPINPROG is
1919                                  *          cleared another cpu may start
1920                                  *          using the mreq page (it will
1921                                  *          check m->valid immediately).
1922                                  */
1923
1924                                 m->valid = 0;
1925                                 atomic_clear_int(&m->busy_count,
1926                                                  PBUSY_SWAPINPROG);
1927
1928                                 /*
1929                                  * bio_driver_info holds the requested page
1930                                  * index.
1931                                  */
1932                                 if (i != (int)(intptr_t)bio->bio_driver_info) {
1933                                         vm_page_deactivate(m);
1934                                         vm_page_wakeup(m);
1935                                 } else {
1936                                         vm_page_flash(m);
1937                                 }
1938                                 /*
1939                                  * If i == bp->b_pager.pg_reqpage, do not wake 
1940                                  * the page up.  The caller needs to.
1941                                  */
1942                         } else {
1943                                 /*
1944                                  * If a write error occurs remove the swap
1945                                  * assignment (note that PG_SWAPPED may or
1946                                  * may not be set depending on prior activity).
1947                                  *
1948                                  * Re-dirty OBJT_SWAP pages as there is no
1949                                  * other backing store, we can't throw the
1950                                  * page away.
1951                                  *
1952                                  * Non-OBJT_SWAP pages (aka swapcache) must
1953                                  * not be dirtied since they may not have
1954                                  * been dirty in the first place, and they
1955                                  * do have backing store (the vnode).
1956                                  */
1957                                 vm_page_busy_wait(m, FALSE, "swadpg");
1958                                 vm_object_hold(m->object);
1959                                 swp_pager_meta_ctl(m->object, m->pindex,
1960                                                    SWM_FREE);
1961                                 vm_page_flag_clear(m, PG_SWAPPED);
1962                                 vm_object_drop(m->object);
1963                                 if (m->object->type == OBJT_SWAP) {
1964                                         vm_page_dirty(m);
1965                                         vm_page_activate(m);
1966                                 }
1967                                 vm_page_io_finish(m);
1968                                 atomic_clear_int(&m->busy_count,
1969                                                  PBUSY_SWAPINPROG);
1970                                 vm_page_wakeup(m);
1971                         }
1972                 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1973                         /*
1974                          * NOTE: for reads, m->dirty will probably be 
1975                          * overridden by the original caller of getpages so
1976                          * we cannot set them in order to free the underlying
1977                          * swap in a low-swap situation.  I don't think we'd
1978                          * want to do that anyway, but it was an optimization
1979                          * that existed in the old swapper for a time before
1980                          * it got ripped out due to precisely this problem.
1981                          *
1982                          * If not the requested page then deactivate it.
1983                          *
1984                          * Note that the requested page, reqpage, is left
1985                          * busied, but we still have to wake it up.  The
1986                          * other pages are released (unbusied) by 
1987                          * vm_page_wakeup().  We do not set reqpage's
1988                          * valid bits here, it is up to the caller.
1989                          */
1990
1991                         /* 
1992                          * NOTE: Can't call pmap_clear_modify(m) from an
1993                          *       interrupt thread, the pmap code may have to
1994                          *       map non-kernel pmaps and currently asserts
1995                          *       the case.
1996                          *
1997                          * WARNING! The instant SWAPINPROG is
1998                          *          cleared another cpu may start
1999                          *          using the mreq page (it will
2000                          *          check m->valid immediately).
2001                          */
2002                         /*pmap_clear_modify(m);*/
2003                         m->valid = VM_PAGE_BITS_ALL;
2004                         vm_page_undirty(m);
2005                         vm_page_flag_set(m, PG_SWAPPED);
2006                         atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2007
2008                         /*
2009                          * We have to wake specifically requested pages
2010                          * up too because we cleared SWAPINPROG and
2011                          * could be waiting for it in getpages.  However,
2012                          * be sure to not unbusy getpages specifically
2013                          * requested page - getpages expects it to be 
2014                          * left busy.
2015                          *
2016                          * bio_driver_info holds the requested page
2017                          */
2018                         if (i != (int)(intptr_t)bio->bio_driver_info) {
2019                                 vm_page_deactivate(m);
2020                                 vm_page_wakeup(m);
2021                         } else {
2022                                 vm_page_flash(m);
2023                         }
2024                 } else {
2025                         /*
2026                          * Mark the page clean but do not mess with the
2027                          * pmap-layer's modified state.  That state should
2028                          * also be clear since the caller protected the
2029                          * page VM_PROT_READ, but allow the case.
2030                          *
2031                          * We are in an interrupt, avoid pmap operations.
2032                          *
2033                          * If we have a severe page deficit, deactivate the
2034                          * page.  Do not try to cache it (which would also
2035                          * involve a pmap op), because the page might still
2036                          * be read-heavy.
2037                          *
2038                          * When using the swap to cache clean vnode pages
2039                          * we do not mess with the page dirty bits.
2040                          *
2041                          * NOTE! Nobody is waiting for the key mreq page
2042                          *       on write completion.
2043                          */
2044                         vm_page_busy_wait(m, FALSE, "swadpg");
2045                         if (m->object->type == OBJT_SWAP)
2046                                 vm_page_undirty(m);
2047                         vm_page_flag_set(m, PG_SWAPPED);
2048                         atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2049                         if (vm_page_count_severe())
2050                                 vm_page_deactivate(m);
2051                         vm_page_io_finish(m);
2052                         if (bio->bio_caller_info1.index & SWBIO_TTC)
2053                                 vm_page_try_to_cache(m);
2054                         else
2055                                 vm_page_wakeup(m);
2056                 }
2057         }
2058
2059         /*
2060          * adjust pip.  NOTE: the original parent may still have its own
2061          * pip refs on the object.
2062          */
2063
2064         if (object)
2065                 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2066
2067         /*
2068          * Release the physical I/O buffer.
2069          *
2070          * NOTE: Due to synchronous operations in the write case b_cmd may
2071          *       already be set to BUF_CMD_DONE and BIO_SYNC may have already
2072          *       been cleared.
2073          *
2074          * Use vm_token to interlock nsw_rcount/wcount wakeup?
2075          */
2076         lwkt_gettoken(&vm_token);
2077         if (bio->bio_caller_info1.index & SWBIO_READ)
2078                 nswptr = &nsw_rcount;
2079         else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2080                 nswptr = &nsw_wcount_sync;
2081         else
2082                 nswptr = &nsw_wcount_async;
2083         bp->b_cmd = BUF_CMD_DONE;
2084         relpbuf(bp, nswptr);
2085         lwkt_reltoken(&vm_token);
2086 }
2087
2088 /*
2089  * Fault-in a potentially swapped page and remove the swap reference.
2090  * (used by swapoff code)
2091  *
2092  * object must be held.
2093  */
2094 static __inline void
2095 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2096 {
2097         struct vnode *vp;
2098         vm_page_t m;
2099         int error;
2100
2101         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2102
2103         if (object->type == OBJT_VNODE) {
2104                 /*
2105                  * Any swap related to a vnode is due to swapcache.  We must
2106                  * vget() the vnode in case it is not active (otherwise
2107                  * vref() will panic).  Calling vm_object_page_remove() will
2108                  * ensure that any swap ref is removed interlocked with the
2109                  * page.  clean_only is set to TRUE so we don't throw away
2110                  * dirty pages.
2111                  */
2112                 vp = object->handle;
2113                 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2114                 if (error == 0) {
2115                         vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2116                         vput(vp);
2117                 }
2118         } else {
2119                 /*
2120                  * Otherwise it is a normal OBJT_SWAP object and we can
2121                  * fault the page in and remove the swap.
2122                  */
2123                 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2124                                          VM_PROT_NONE,
2125                                          VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2126                                          sharedp, &error);
2127                 if (m)
2128                         vm_page_unhold(m);
2129         }
2130 }
2131
2132 /*
2133  * This removes all swap blocks related to a particular device.  We have
2134  * to be careful of ripups during the scan.
2135  */
2136 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2137
2138 int
2139 swap_pager_swapoff(int devidx)
2140 {
2141         struct vm_object_hash *hash;
2142         struct swswapoffinfo info;
2143         struct vm_object marker;
2144         vm_object_t object;
2145         int n;
2146
2147         bzero(&marker, sizeof(marker));
2148         marker.type = OBJT_MARKER;
2149
2150         for (n = 0; n < VMOBJ_HSIZE; ++n) {
2151                 hash = &vm_object_hash[n];
2152
2153                 lwkt_gettoken(&hash->token);
2154                 TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2155
2156                 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2157                         if (object->type == OBJT_MARKER)
2158                                 goto skip;
2159                         if (object->type != OBJT_SWAP &&
2160                             object->type != OBJT_VNODE)
2161                                 goto skip;
2162                         vm_object_hold(object);
2163                         if (object->type != OBJT_SWAP &&
2164                             object->type != OBJT_VNODE) {
2165                                 vm_object_drop(object);
2166                                 goto skip;
2167                         }
2168
2169                         /*
2170                          * Object is special in that we can't just pagein
2171                          * into vm_page's in it (tmpfs, vn).
2172                          */
2173                         if ((object->flags & OBJ_NOPAGEIN) &&
2174                             RB_ROOT(&object->swblock_root)) {
2175                                 vm_object_drop(object);
2176                                 goto skip;
2177                         }
2178
2179                         info.object = object;
2180                         info.shared = 0;
2181                         info.devidx = devidx;
2182                         swblock_rb_tree_RB_SCAN(&object->swblock_root,
2183                                             NULL, swp_pager_swapoff_callback,
2184                                             &info);
2185                         vm_object_drop(object);
2186 skip:
2187                         if (object == TAILQ_NEXT(&marker, object_list)) {
2188                                 TAILQ_REMOVE(&hash->list, &marker, object_list);
2189                                 TAILQ_INSERT_AFTER(&hash->list, object,
2190                                                    &marker, object_list);
2191                         }
2192                 }
2193                 TAILQ_REMOVE(&hash->list, &marker, object_list);
2194                 lwkt_reltoken(&hash->token);
2195         }
2196
2197         /*
2198          * If we fail to locate all swblocks we just fail gracefully and
2199          * do not bother to restore paging on the swap device.  If the
2200          * user wants to retry the user can retry.
2201          */
2202         if (swdevt[devidx].sw_nused)
2203                 return (1);
2204         else
2205                 return (0);
2206 }
2207
2208 static
2209 int
2210 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2211 {
2212         struct swswapoffinfo *info = data;
2213         vm_object_t object = info->object;
2214         vm_pindex_t index;
2215         swblk_t v;
2216         int i;
2217
2218         index = swap->swb_index;
2219         for (i = 0; i < SWAP_META_PAGES; ++i) {
2220                 /*
2221                  * Make sure we don't race a dying object.  This will
2222                  * kill the scan of the object's swap blocks entirely.
2223                  */
2224                 if (object->flags & OBJ_DEAD)
2225                         return(-1);
2226
2227                 /*
2228                  * Fault the page, which can obviously block.  If the swap
2229                  * structure disappears break out.
2230                  */
2231                 v = swap->swb_pages[i];
2232                 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2233                         swp_pager_fault_page(object, &info->shared,
2234                                              swap->swb_index + i);
2235                         /* swap ptr might go away */
2236                         if (RB_LOOKUP(swblock_rb_tree,
2237                                       &object->swblock_root, index) != swap) {
2238                                 break;
2239                         }
2240                 }
2241         }
2242         return(0);
2243 }
2244
2245 /************************************************************************
2246  *                              SWAP META DATA                          *
2247  ************************************************************************
2248  *
2249  *      These routines manipulate the swap metadata stored in the 
2250  *      OBJT_SWAP object.
2251  *
2252  *      Swap metadata is implemented with a global hash and not directly
2253  *      linked into the object.  Instead the object simply contains
2254  *      appropriate tracking counters.
2255  */
2256
2257 /*
2258  * Lookup the swblock containing the specified swap block index.
2259  *
2260  * The caller must hold the object.
2261  */
2262 static __inline
2263 struct swblock *
2264 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2265 {
2266         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2267         index &= ~(vm_pindex_t)SWAP_META_MASK;
2268         return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2269 }
2270
2271 /*
2272  * Remove a swblock from the RB tree.
2273  *
2274  * The caller must hold the object.
2275  */
2276 static __inline
2277 void
2278 swp_pager_remove(vm_object_t object, struct swblock *swap)
2279 {
2280         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2281         RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2282 }
2283
2284 /*
2285  * Convert default object to swap object if necessary
2286  *
2287  * The caller must hold the object.
2288  */
2289 static void
2290 swp_pager_meta_convert(vm_object_t object)
2291 {
2292         if (object->type == OBJT_DEFAULT) {
2293                 object->type = OBJT_SWAP;
2294                 KKASSERT(object->swblock_count == 0);
2295         }
2296 }
2297
2298 /*
2299  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
2300  *
2301  *      We first convert the object to a swap object if it is a default
2302  *      object.  Vnode objects do not need to be converted.
2303  *
2304  *      The specified swapblk is added to the object's swap metadata.  If
2305  *      the swapblk is not valid, it is freed instead.  Any previously
2306  *      assigned swapblk is freed.
2307  *
2308  * The caller must hold the object.
2309  */
2310 static void
2311 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2312 {
2313         struct swblock *swap;
2314         struct swblock *oswap;
2315         vm_pindex_t v;
2316
2317         KKASSERT(swapblk != SWAPBLK_NONE);
2318         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2319
2320         /*
2321          * Convert object if necessary
2322          */
2323         if (object->type == OBJT_DEFAULT)
2324                 swp_pager_meta_convert(object);
2325         
2326         /*
2327          * Locate swblock.  If not found create, but if we aren't adding
2328          * anything just return.  If we run out of space in the map we wait
2329          * and, since the hash table may have changed, retry.
2330          */
2331 retry:
2332         swap = swp_pager_lookup(object, index);
2333
2334         if (swap == NULL) {
2335                 int i;
2336
2337                 swap = zalloc(swap_zone);
2338                 if (swap == NULL) {
2339                         vm_wait(0);
2340                         goto retry;
2341                 }
2342                 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2343                 swap->swb_count = 0;
2344
2345                 ++object->swblock_count;
2346
2347                 for (i = 0; i < SWAP_META_PAGES; ++i)
2348                         swap->swb_pages[i] = SWAPBLK_NONE;
2349                 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2350                 KKASSERT(oswap == NULL);
2351         }
2352
2353         /*
2354          * Delete prior contents of metadata.
2355          *
2356          * NOTE: Decrement swb_count after the freeing operation (which
2357          *       might block) to prevent racing destruction of the swblock.
2358          */
2359         index &= SWAP_META_MASK;
2360
2361         while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2362                 swap->swb_pages[index] = SWAPBLK_NONE;
2363                 /* can block */
2364                 swp_pager_freeswapspace(object, v, 1);
2365                 --swap->swb_count;
2366                 --mycpu->gd_vmtotal.t_vm;
2367         }
2368
2369         /*
2370          * Enter block into metadata
2371          */
2372         swap->swb_pages[index] = swapblk;
2373         if (swapblk != SWAPBLK_NONE) {
2374                 ++swap->swb_count;
2375                 ++mycpu->gd_vmtotal.t_vm;
2376         }
2377 }
2378
2379 /*
2380  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2381  *
2382  *      The requested range of blocks is freed, with any associated swap 
2383  *      returned to the swap bitmap.
2384  *
2385  *      This routine will free swap metadata structures as they are cleaned 
2386  *      out.  This routine does *NOT* operate on swap metadata associated
2387  *      with resident pages.
2388  *
2389  * The caller must hold the object.
2390  */
2391 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2392
2393 static void
2394 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2395 {
2396         struct swfreeinfo info;
2397
2398         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2399
2400         /*
2401          * Nothing to do
2402          */
2403         if (object->swblock_count == 0) {
2404                 KKASSERT(RB_EMPTY(&object->swblock_root));
2405                 return;
2406         }
2407         if (count == 0)
2408                 return;
2409
2410         /*
2411          * Setup for RB tree scan.  Note that the pindex range can be huge
2412          * due to the 64 bit page index space so we cannot safely iterate.
2413          */
2414         info.object = object;
2415         info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2416         info.begi = index;
2417         info.endi = index + count - 1;
2418         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2419                                 swp_pager_meta_free_callback, &info);
2420 }
2421
2422 /*
2423  * The caller must hold the object.
2424  */
2425 static
2426 int
2427 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2428 {
2429         struct swfreeinfo *info = data;
2430         vm_object_t object = info->object;
2431         int index;
2432         int eindex;
2433
2434         /*
2435          * Figure out the range within the swblock.  The wider scan may
2436          * return edge-case swap blocks when the start and/or end points
2437          * are in the middle of a block.
2438          */
2439         if (swap->swb_index < info->begi)
2440                 index = (int)info->begi & SWAP_META_MASK;
2441         else
2442                 index = 0;
2443
2444         if (swap->swb_index + SWAP_META_PAGES > info->endi)
2445                 eindex = (int)info->endi & SWAP_META_MASK;
2446         else
2447                 eindex = SWAP_META_MASK;
2448
2449         /*
2450          * Scan and free the blocks.  The loop terminates early
2451          * if (swap) runs out of blocks and could be freed.
2452          *
2453          * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2454          *       to deal with a zfree race.
2455          */
2456         while (index <= eindex) {
2457                 swblk_t v = swap->swb_pages[index];
2458
2459                 if (v != SWAPBLK_NONE) {
2460                         swap->swb_pages[index] = SWAPBLK_NONE;
2461                         /* can block */
2462                         swp_pager_freeswapspace(object, v, 1);
2463                         --mycpu->gd_vmtotal.t_vm;
2464                         if (--swap->swb_count == 0) {
2465                                 swp_pager_remove(object, swap);
2466                                 zfree(swap_zone, swap);
2467                                 --object->swblock_count;
2468                                 break;
2469                         }
2470                 }
2471                 ++index;
2472         }
2473
2474         /* swap may be invalid here due to zfree above */
2475         lwkt_yield();
2476
2477         return(0);
2478 }
2479
2480 /*
2481  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2482  *
2483  *      This routine locates and destroys all swap metadata associated with
2484  *      an object.
2485  *
2486  * NOTE: Decrement swb_count after the freeing operation (which
2487  *       might block) to prevent racing destruction of the swblock.
2488  *
2489  * The caller must hold the object.
2490  */
2491 static void
2492 swp_pager_meta_free_all(vm_object_t object)
2493 {
2494         struct swblock *swap;
2495         int i;
2496
2497         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2498
2499         while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2500                 swp_pager_remove(object, swap);
2501                 for (i = 0; i < SWAP_META_PAGES; ++i) {
2502                         swblk_t v = swap->swb_pages[i];
2503                         if (v != SWAPBLK_NONE) {
2504                                 /* can block */
2505                                 swp_pager_freeswapspace(object, v, 1);
2506                                 --swap->swb_count;
2507                                 --mycpu->gd_vmtotal.t_vm;
2508                         }
2509                 }
2510                 if (swap->swb_count != 0)
2511                         panic("swap_pager_meta_free_all: swb_count != 0");
2512                 zfree(swap_zone, swap);
2513                 --object->swblock_count;
2514                 lwkt_yield();
2515         }
2516         KKASSERT(object->swblock_count == 0);
2517 }
2518
2519 /*
2520  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2521  *
2522  *      This routine is capable of looking up, popping, or freeing
2523  *      swapblk assignments in the swap meta data or in the vm_page_t.
2524  *      The routine typically returns the swapblk being looked-up, or popped,
2525  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2526  *      was invalid.  This routine will automatically free any invalid 
2527  *      meta-data swapblks.
2528  *
2529  *      It is not possible to store invalid swapblks in the swap meta data
2530  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2531  *
2532  *      When acting on a busy resident page and paging is in progress, we 
2533  *      have to wait until paging is complete but otherwise can act on the 
2534  *      busy page.
2535  *
2536  *      SWM_FREE        remove and free swap block from metadata
2537  *      SWM_POP         remove from meta data but do not free.. pop it out
2538  *
2539  * The caller must hold the object.
2540  */
2541 static swblk_t
2542 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2543 {
2544         struct swblock *swap;
2545         swblk_t r1;
2546
2547         if (object->swblock_count == 0)
2548                 return(SWAPBLK_NONE);
2549
2550         r1 = SWAPBLK_NONE;
2551         swap = swp_pager_lookup(object, index);
2552
2553         if (swap != NULL) {
2554                 index &= SWAP_META_MASK;
2555                 r1 = swap->swb_pages[index];
2556
2557                 if (r1 != SWAPBLK_NONE) {
2558                         if (flags & (SWM_FREE|SWM_POP)) {
2559                                 swap->swb_pages[index] = SWAPBLK_NONE;
2560                                 --mycpu->gd_vmtotal.t_vm;
2561                                 if (--swap->swb_count == 0) {
2562                                         swp_pager_remove(object, swap);
2563                                         zfree(swap_zone, swap);
2564                                         --object->swblock_count;
2565                                 }
2566                         } 
2567                         /* swap ptr may be invalid */
2568                         if (flags & SWM_FREE) {
2569                                 swp_pager_freeswapspace(object, r1, 1);
2570                                 r1 = SWAPBLK_NONE;
2571                         }
2572                 }
2573                 /* swap ptr may be invalid */
2574         }
2575         return(r1);
2576 }