9a49defdf6d3c01e0dfc1dfb5222bb292833c5bf
[dragonfly.git] / sys / kern / usched_dfly.c
1 /*
2  * Copyright (c) 2012 The DragonFly Project.  All rights reserved.
3  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Matthew Dillon <dillon@backplane.com>,
7  * by Mihai Carabas <mihai.carabas@gmail.com>
8  * and many others.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/queue.h>
42 #include <sys/proc.h>
43 #include <sys/rtprio.h>
44 #include <sys/uio.h>
45 #include <sys/sysctl.h>
46 #include <sys/resourcevar.h>
47 #include <sys/spinlock.h>
48 #include <sys/cpu_topology.h>
49 #include <sys/thread2.h>
50 #include <sys/spinlock2.h>
51 #include <sys/mplock2.h>
52
53 #include <sys/ktr.h>
54
55 #include <machine/cpu.h>
56 #include <machine/smp.h>
57
58 /*
59  * Priorities.  Note that with 32 run queues per scheduler each queue
60  * represents four priority levels.
61  */
62
63 int dfly_rebalanced;
64
65 #define MAXPRI                  128
66 #define PRIMASK                 (MAXPRI - 1)
67 #define PRIBASE_REALTIME        0
68 #define PRIBASE_NORMAL          MAXPRI
69 #define PRIBASE_IDLE            (MAXPRI * 2)
70 #define PRIBASE_THREAD          (MAXPRI * 3)
71 #define PRIBASE_NULL            (MAXPRI * 4)
72
73 #define NQS     32                      /* 32 run queues. */
74 #define PPQ     (MAXPRI / NQS)          /* priorities per queue */
75 #define PPQMASK (PPQ - 1)
76
77 /*
78  * NICEPPQ      - number of nice units per priority queue
79  * ESTCPUPPQ    - number of estcpu units per priority queue
80  * ESTCPUMAX    - number of estcpu units
81  */
82 #define NICEPPQ         2
83 #define ESTCPUPPQ       512
84 #define ESTCPUMAX       (ESTCPUPPQ * NQS)
85 #define BATCHMAX        (ESTCPUFREQ * 30)
86 #define PRIO_RANGE      (PRIO_MAX - PRIO_MIN + 1)
87
88 #define ESTCPULIM(v)    min((v), ESTCPUMAX)
89
90 TAILQ_HEAD(rq, lwp);
91
92 #define lwp_priority    lwp_usdata.dfly.priority
93 #define lwp_forked      lwp_usdata.dfly.forked
94 #define lwp_rqindex     lwp_usdata.dfly.rqindex
95 #define lwp_estcpu      lwp_usdata.dfly.estcpu
96 #define lwp_estfast     lwp_usdata.dfly.estfast
97 #define lwp_uload       lwp_usdata.dfly.uload
98 #define lwp_rqtype      lwp_usdata.dfly.rqtype
99 #define lwp_qcpu        lwp_usdata.dfly.qcpu
100 #define lwp_rrcount     lwp_usdata.dfly.rrcount
101
102 struct usched_dfly_pcpu {
103         struct spinlock spin;
104         struct thread   helper_thread;
105         short           unusde01;
106         short           upri;
107         int             uload;
108         int             ucount;
109         struct lwp      *uschedcp;
110         struct rq       queues[NQS];
111         struct rq       rtqueues[NQS];
112         struct rq       idqueues[NQS];
113         u_int32_t       queuebits;
114         u_int32_t       rtqueuebits;
115         u_int32_t       idqueuebits;
116         int             runqcount;
117         int             cpuid;
118         cpumask_t       cpumask;
119         cpu_node_t      *cpunode;
120 };
121
122 typedef struct usched_dfly_pcpu *dfly_pcpu_t;
123
124 static void dfly_acquire_curproc(struct lwp *lp);
125 static void dfly_release_curproc(struct lwp *lp);
126 static void dfly_select_curproc(globaldata_t gd);
127 static void dfly_setrunqueue(struct lwp *lp);
128 static void dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp);
129 static void dfly_schedulerclock(struct lwp *lp, sysclock_t period,
130                                 sysclock_t cpstamp);
131 static void dfly_recalculate_estcpu(struct lwp *lp);
132 static void dfly_resetpriority(struct lwp *lp);
133 static void dfly_forking(struct lwp *plp, struct lwp *lp);
134 static void dfly_exiting(struct lwp *lp, struct proc *);
135 static void dfly_uload_update(struct lwp *lp);
136 static void dfly_yield(struct lwp *lp);
137 static void dfly_changeqcpu_locked(struct lwp *lp,
138                                 dfly_pcpu_t dd, dfly_pcpu_t rdd);
139 static dfly_pcpu_t dfly_choose_best_queue(struct lwp *lp);
140 static dfly_pcpu_t dfly_choose_worst_queue(dfly_pcpu_t dd);
141 static dfly_pcpu_t dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp);
142 static void dfly_need_user_resched_remote(void *dummy);
143 static struct lwp *dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
144                                           struct lwp *chklp, int worst);
145 static void dfly_remrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
146 static void dfly_setrunqueue_locked(dfly_pcpu_t dd, struct lwp *lp);
147 static void dfly_changedcpu(struct lwp *lp);
148
149 struct usched usched_dfly = {
150         { NULL },
151         "dfly", "Original DragonFly Scheduler",
152         NULL,                   /* default registration */
153         NULL,                   /* default deregistration */
154         dfly_acquire_curproc,
155         dfly_release_curproc,
156         dfly_setrunqueue,
157         dfly_schedulerclock,
158         dfly_recalculate_estcpu,
159         dfly_resetpriority,
160         dfly_forking,
161         dfly_exiting,
162         dfly_uload_update,
163         NULL,                   /* setcpumask not supported */
164         dfly_yield,
165         dfly_changedcpu
166 };
167
168 /*
169  * We have NQS (32) run queues per scheduling class.  For the normal
170  * class, there are 128 priorities scaled onto these 32 queues.  New
171  * processes are added to the last entry in each queue, and processes
172  * are selected for running by taking them from the head and maintaining
173  * a simple FIFO arrangement.  Realtime and Idle priority processes have
174  * and explicit 0-31 priority which maps directly onto their class queue
175  * index.  When a queue has something in it, the corresponding bit is
176  * set in the queuebits variable, allowing a single read to determine
177  * the state of all 32 queues and then a ffs() to find the first busy
178  * queue.
179  */
180                                         /* currently running a user process */
181 static cpumask_t dfly_curprocmask = CPUMASK_INITIALIZER_ALLONES;
182 static cpumask_t dfly_rdyprocmask;      /* ready to accept a user process */
183 static volatile int dfly_scancpu;
184 static volatile int dfly_ucount;        /* total running on whole system */
185 static struct usched_dfly_pcpu dfly_pcpu[MAXCPU];
186 static struct sysctl_ctx_list usched_dfly_sysctl_ctx;
187 static struct sysctl_oid *usched_dfly_sysctl_tree;
188
189 /* Debug info exposed through debug.* sysctl */
190
191 static int usched_dfly_debug = -1;
192 SYSCTL_INT(_debug, OID_AUTO, dfly_scdebug, CTLFLAG_RW,
193            &usched_dfly_debug, 0,
194            "Print debug information for this pid");
195
196 static int usched_dfly_pid_debug = -1;
197 SYSCTL_INT(_debug, OID_AUTO, dfly_pid_debug, CTLFLAG_RW,
198            &usched_dfly_pid_debug, 0,
199            "Print KTR debug information for this pid");
200
201 static int usched_dfly_chooser = 0;
202 SYSCTL_INT(_debug, OID_AUTO, dfly_chooser, CTLFLAG_RW,
203            &usched_dfly_chooser, 0,
204            "Print KTR debug information for this pid");
205
206 /*
207  * Tunning usched_dfly - configurable through kern.usched_dfly.
208  *
209  * weight1 - Tries to keep threads on their current cpu.  If you
210  *           make this value too large the scheduler will not be
211  *           able to load-balance large loads.
212  *
213  * weight2 - If non-zero, detects thread pairs undergoing synchronous
214  *           communications and tries to move them closer together.
215  *           Behavior is adjusted by bit 4 of features (0x10).
216  *
217  *           WARNING!  Weight2 is a ridiculously sensitive parameter,
218  *           a small value is recommended.
219  *
220  * weight3 - Weighting based on the number of recently runnable threads
221  *           on the userland scheduling queue (ignoring their loads).
222  *           A nominal value here prevents high-priority (low-load)
223  *           threads from accumulating on one cpu core when other
224  *           cores are available.
225  *
226  *           This value should be left fairly small relative to weight1
227  *           and weight4.
228  *
229  * weight4 - Weighting based on other cpu queues being available
230  *           or running processes with higher lwp_priority's.
231  *
232  *           This allows a thread to migrate to another nearby cpu if it
233  *           is unable to run on the current cpu based on the other cpu
234  *           being idle or running a lower priority (higher lwp_priority)
235  *           thread.  This value should be large enough to override weight1
236  *
237  * features - These flags can be set or cleared to enable or disable various
238  *            features.
239  *
240  *            0x01      Enable idle-cpu pulling                 (default)
241  *            0x02      Enable proactive pushing                (default)
242  *            0x04      Enable rebalancing rover                (default)
243  *            0x08      Enable more proactive pushing           (default)
244  *            0x10      (flip weight2 limit on same cpu)        (default)
245  *            0x20      choose best cpu for forked process
246  *            0x40      choose current cpu for forked process
247  *            0x80      choose random cpu for forked process    (default)
248  */
249 static int usched_dfly_smt = 0;
250 static int usched_dfly_cache_coherent = 0;
251 static int usched_dfly_weight1 = 200;   /* keep thread on current cpu */
252 static int usched_dfly_weight2 = 180;   /* synchronous peer's current cpu */
253 static int usched_dfly_weight3 = 40;    /* number of threads on queue */
254 static int usched_dfly_weight4 = 160;   /* availability of idle cores */
255 static int usched_dfly_features = 0x8F; /* allow pulls */
256 static int usched_dfly_fast_resched = 0;/* delta priority / resched */
257 static int usched_dfly_swmask = ~PPQMASK; /* allow pulls */
258 static int usched_dfly_rrinterval = (ESTCPUFREQ + 9) / 10;
259 static int usched_dfly_decay = 8;
260
261 /* KTR debug printings */
262
263 KTR_INFO_MASTER(usched);
264
265 #if !defined(KTR_USCHED_DFLY)
266 #define KTR_USCHED_DFLY KTR_ALL
267 #endif
268
269 KTR_INFO(KTR_USCHED_DFLY, usched, chooseproc, 0,
270     "USCHED_DFLY(chooseproc: pid %d, old_cpuid %d, curr_cpuid %d)",
271     pid_t pid, int old_cpuid, int curr);
272
273 /*
274  * This function is called when the kernel intends to return to userland.
275  * It is responsible for making the thread the current designated userland
276  * thread for this cpu, blocking if necessary.
277  *
278  * The kernel will not depress our LWKT priority until after we return,
279  * in case we have to shove over to another cpu.
280  *
281  * We must determine our thread's disposition before we switch away.  This
282  * is very sensitive code.
283  *
284  * WARNING! THIS FUNCTION IS ALLOWED TO CAUSE THE CURRENT THREAD TO MIGRATE
285  * TO ANOTHER CPU!  Because most of the kernel assumes that no migration will
286  * occur, this function is called only under very controlled circumstances.
287  */
288 static void
289 dfly_acquire_curproc(struct lwp *lp)
290 {
291         globaldata_t gd;
292         dfly_pcpu_t dd;
293         dfly_pcpu_t rdd;
294         thread_t td;
295         int force_resched;
296
297         /*
298          * Make sure we aren't sitting on a tsleep queue.
299          */
300         td = lp->lwp_thread;
301         crit_enter_quick(td);
302         if (td->td_flags & TDF_TSLEEPQ)
303                 tsleep_remove(td);
304         dfly_recalculate_estcpu(lp);
305
306         gd = mycpu;
307         dd = &dfly_pcpu[gd->gd_cpuid];
308
309         /*
310          * Process any pending interrupts/ipi's, then handle reschedule
311          * requests.  dfly_release_curproc() will try to assign a new
312          * uschedcp that isn't us and otherwise NULL it out.
313          */
314         force_resched = 0;
315         if ((td->td_mpflags & TDF_MP_BATCH_DEMARC) &&
316             lp->lwp_rrcount >= usched_dfly_rrinterval / 2) {
317                 force_resched = 1;
318         }
319
320         if (user_resched_wanted()) {
321                 if (dd->uschedcp == lp)
322                         force_resched = 1;
323                 clear_user_resched();
324                 dfly_release_curproc(lp);
325         }
326
327         /*
328          * Loop until we are the current user thread.
329          *
330          * NOTE: dd spinlock not held at top of loop.
331          */
332         if (dd->uschedcp == lp)
333                 lwkt_yield_quick();
334
335         while (dd->uschedcp != lp) {
336                 lwkt_yield_quick();
337
338                 spin_lock(&dd->spin);
339
340                 if (force_resched &&
341                    (usched_dfly_features & 0x08) &&
342                    (rdd = dfly_choose_best_queue(lp)) != dd) {
343                         /*
344                          * We are not or are no longer the current lwp and a
345                          * forced reschedule was requested.  Figure out the
346                          * best cpu to run on (our current cpu will be given
347                          * significant weight).
348                          *
349                          * (if a reschedule was not requested we want to
350                          *  move this step after the uschedcp tests).
351                          */
352                         dfly_changeqcpu_locked(lp, dd, rdd);
353                         spin_unlock(&dd->spin);
354                         lwkt_deschedule(lp->lwp_thread);
355                         dfly_setrunqueue_dd(rdd, lp);
356                         lwkt_switch();
357                         gd = mycpu;
358                         dd = &dfly_pcpu[gd->gd_cpuid];
359                         continue;
360                 }
361
362                 /*
363                  * Either no reschedule was requested or the best queue was
364                  * dd, and no current process has been selected.  We can
365                  * trivially become the current lwp on the current cpu.
366                  */
367                 if (dd->uschedcp == NULL) {
368                         atomic_clear_int(&lp->lwp_thread->td_mpflags,
369                                          TDF_MP_DIDYIELD);
370                         ATOMIC_CPUMASK_ORBIT(dfly_curprocmask, gd->gd_cpuid);
371                         dd->uschedcp = lp;
372                         dd->upri = lp->lwp_priority;
373                         KKASSERT(lp->lwp_qcpu == dd->cpuid);
374                         spin_unlock(&dd->spin);
375                         break;
376                 }
377
378                 /*
379                  * Put us back on the same run queue unconditionally.
380                  *
381                  * Set rrinterval to force placement at end of queue.
382                  * Select the worst queue to ensure we round-robin,
383                  * but do not change estcpu.
384                  */
385                 if (lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) {
386                         u_int32_t tsqbits;
387
388                         switch(lp->lwp_rqtype) {
389                         case RTP_PRIO_NORMAL:
390                                 tsqbits = dd->queuebits;
391                                 spin_unlock(&dd->spin);
392
393                                 lp->lwp_rrcount = usched_dfly_rrinterval;
394                                 if (tsqbits)
395                                         lp->lwp_rqindex = bsrl(tsqbits);
396                                 break;
397                         default:
398                                 spin_unlock(&dd->spin);
399                                 break;
400                         }
401                         lwkt_deschedule(lp->lwp_thread);
402                         dfly_setrunqueue_dd(dd, lp);
403                         atomic_clear_int(&lp->lwp_thread->td_mpflags,
404                                          TDF_MP_DIDYIELD);
405                         lwkt_switch();
406                         gd = mycpu;
407                         dd = &dfly_pcpu[gd->gd_cpuid];
408                         continue;
409                 }
410
411                 /*
412                  * Can we steal the current designated user thread?
413                  *
414                  * If we do the other thread will stall when it tries to
415                  * return to userland, possibly rescheduling elsewhere.
416                  *
417                  * It is important to do a masked test to avoid the edge
418                  * case where two near-equal-priority threads are constantly
419                  * interrupting each other.
420                  *
421                  * In the exact match case another thread has already gained
422                  * uschedcp and lowered its priority, if we steal it the
423                  * other thread will stay stuck on the LWKT runq and not
424                  * push to another cpu.  So don't steal on equal-priority even
425                  * though it might appear to be more beneficial due to not
426                  * having to switch back to the other thread's context.
427                  *
428                  * usched_dfly_fast_resched requires that two threads be
429                  * significantly far apart in priority in order to interrupt.
430                  *
431                  * If better but not sufficiently far apart, the current
432                  * uschedcp will be interrupted at the next scheduler clock.
433                  */
434                 if (dd->uschedcp &&
435                    (dd->upri & ~PPQMASK) >
436                    (lp->lwp_priority & ~PPQMASK) + usched_dfly_fast_resched) {
437                         dd->uschedcp = lp;
438                         dd->upri = lp->lwp_priority;
439                         KKASSERT(lp->lwp_qcpu == dd->cpuid);
440                         spin_unlock(&dd->spin);
441                         break;
442                 }
443                 /*
444                  * We are not the current lwp, figure out the best cpu
445                  * to run on (our current cpu will be given significant
446                  * weight).  Loop on cpu change.
447                  */
448                 if ((usched_dfly_features & 0x02) &&
449                     force_resched == 0 &&
450                     (rdd = dfly_choose_best_queue(lp)) != dd) {
451                         dfly_changeqcpu_locked(lp, dd, rdd);
452                         spin_unlock(&dd->spin);
453                         lwkt_deschedule(lp->lwp_thread);
454                         dfly_setrunqueue_dd(rdd, lp);
455                         lwkt_switch();
456                         gd = mycpu;
457                         dd = &dfly_pcpu[gd->gd_cpuid];
458                         continue;
459                 }
460
461                 /*
462                  * We cannot become the current lwp, place the lp on the
463                  * run-queue of this or another cpu and deschedule ourselves.
464                  *
465                  * When we are reactivated we will have another chance.
466                  *
467                  * Reload after a switch or setrunqueue/switch possibly
468                  * moved us to another cpu.
469                  */
470                 spin_unlock(&dd->spin);
471                 lwkt_deschedule(lp->lwp_thread);
472                 dfly_setrunqueue_dd(dd, lp);
473                 lwkt_switch();
474                 gd = mycpu;
475                 dd = &dfly_pcpu[gd->gd_cpuid];
476         }
477
478         /*
479          * Make sure upri is synchronized, then yield to LWKT threads as
480          * needed before returning.  This could result in another reschedule.
481          * XXX
482          */
483         crit_exit_quick(td);
484
485         KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
486 }
487
488 /*
489  * DFLY_RELEASE_CURPROC
490  *
491  * This routine detaches the current thread from the userland scheduler,
492  * usually because the thread needs to run or block in the kernel (at
493  * kernel priority) for a while.
494  *
495  * This routine is also responsible for selecting a new thread to
496  * make the current thread.
497  *
498  * NOTE: This implementation differs from the dummy example in that
499  * dfly_select_curproc() is able to select the current process, whereas
500  * dummy_select_curproc() is not able to select the current process.
501  * This means we have to NULL out uschedcp.
502  *
503  * Additionally, note that we may already be on a run queue if releasing
504  * via the lwkt_switch() in dfly_setrunqueue().
505  */
506 static void
507 dfly_release_curproc(struct lwp *lp)
508 {
509         globaldata_t gd = mycpu;
510         dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
511
512         /*
513          * Make sure td_wakefromcpu is defaulted.  This will be overwritten
514          * by wakeup().
515          */
516         if (dd->uschedcp == lp) {
517                 KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
518                 spin_lock(&dd->spin);
519                 if (dd->uschedcp == lp) {
520                         dd->uschedcp = NULL;    /* don't let lp be selected */
521                         dd->upri = PRIBASE_NULL;
522                         ATOMIC_CPUMASK_NANDBIT(dfly_curprocmask, gd->gd_cpuid);
523                         spin_unlock(&dd->spin);
524                         dfly_select_curproc(gd);
525                 } else {
526                         spin_unlock(&dd->spin);
527                 }
528         }
529 }
530
531 /*
532  * DFLY_SELECT_CURPROC
533  *
534  * Select a new current process for this cpu and clear any pending user
535  * reschedule request.  The cpu currently has no current process.
536  *
537  * This routine is also responsible for equal-priority round-robining,
538  * typically triggered from dfly_schedulerclock().  In our dummy example
539  * all the 'user' threads are LWKT scheduled all at once and we just
540  * call lwkt_switch().
541  *
542  * The calling process is not on the queue and cannot be selected.
543  */
544 static
545 void
546 dfly_select_curproc(globaldata_t gd)
547 {
548         dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
549         struct lwp *nlp;
550         int cpuid = gd->gd_cpuid;
551
552         crit_enter_gd(gd);
553
554         spin_lock(&dd->spin);
555         nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
556
557         if (nlp) {
558                 ATOMIC_CPUMASK_ORBIT(dfly_curprocmask, cpuid);
559                 dd->upri = nlp->lwp_priority;
560                 dd->uschedcp = nlp;
561 #if 0
562                 dd->rrcount = 0;                /* reset round robin */
563 #endif
564                 spin_unlock(&dd->spin);
565                 lwkt_acquire(nlp->lwp_thread);
566                 lwkt_schedule(nlp->lwp_thread);
567         } else {
568                 spin_unlock(&dd->spin);
569         }
570         crit_exit_gd(gd);
571 }
572
573 /*
574  * Place the specified lwp on the user scheduler's run queue.  This routine
575  * must be called with the thread descheduled.  The lwp must be runnable.
576  * It must not be possible for anyone else to explicitly schedule this thread.
577  *
578  * The thread may be the current thread as a special case.
579  */
580 static void
581 dfly_setrunqueue(struct lwp *lp)
582 {
583         dfly_pcpu_t dd;
584         dfly_pcpu_t rdd;
585
586         /*
587          * First validate the process LWKT state.
588          */
589         KASSERT(lp->lwp_stat == LSRUN, ("setrunqueue: lwp not LSRUN"));
590         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0,
591             ("lwp %d/%d already on runq! flag %08x/%08x", lp->lwp_proc->p_pid,
592              lp->lwp_tid, lp->lwp_proc->p_flags, lp->lwp_flags));
593         KKASSERT((lp->lwp_thread->td_flags & TDF_RUNQ) == 0);
594
595         /*
596          * NOTE: dd/rdd do not necessarily represent the current cpu.
597          *       Instead they may represent the cpu the thread was last
598          *       scheduled on or inherited by its parent.
599          */
600         dd = &dfly_pcpu[lp->lwp_qcpu];
601         rdd = dd;
602
603         /*
604          * This process is not supposed to be scheduled anywhere or assigned
605          * as the current process anywhere.  Assert the condition.
606          */
607         KKASSERT(rdd->uschedcp != lp);
608
609         /*
610          * Ok, we have to setrunqueue some target cpu and request a reschedule
611          * if necessary.
612          *
613          * We have to choose the best target cpu.  It might not be the current
614          * target even if the current cpu has no running user thread (for
615          * example, because the current cpu might be a hyperthread and its
616          * sibling has a thread assigned).
617          *
618          * If we just forked it is most optimal to run the child on the same
619          * cpu just in case the parent decides to wait for it (thus getting
620          * off that cpu).  As long as there is nothing else runnable on the
621          * cpu, that is.  If we did this unconditionally a parent forking
622          * multiple children before waiting (e.g. make -j N) leaves other
623          * cpus idle that could be working.
624          */
625         if (lp->lwp_forked) {
626                 lp->lwp_forked = 0;
627                 if (usched_dfly_features & 0x20)
628                         rdd = dfly_choose_best_queue(lp);
629                 else if (usched_dfly_features & 0x40)
630                         rdd = &dfly_pcpu[lp->lwp_qcpu];
631                 else if (usched_dfly_features & 0x80)
632                         rdd = dfly_choose_queue_simple(rdd, lp);
633                 else if (dfly_pcpu[lp->lwp_qcpu].runqcount)
634                         rdd = dfly_choose_best_queue(lp);
635                 else
636                         rdd = &dfly_pcpu[lp->lwp_qcpu];
637         } else {
638                 rdd = dfly_choose_best_queue(lp);
639                 /* rdd = &dfly_pcpu[lp->lwp_qcpu]; */
640         }
641         if (lp->lwp_qcpu != rdd->cpuid) {
642                 spin_lock(&dd->spin);
643                 dfly_changeqcpu_locked(lp, dd, rdd);
644                 spin_unlock(&dd->spin);
645         }
646         dfly_setrunqueue_dd(rdd, lp);
647 }
648
649 /*
650  * Change qcpu to rdd->cpuid.  The dd the lp is CURRENTLY on must be
651  * spin-locked on-call.  rdd does not have to be.
652  */
653 static void
654 dfly_changeqcpu_locked(struct lwp *lp, dfly_pcpu_t dd, dfly_pcpu_t rdd)
655 {
656         if (lp->lwp_qcpu != rdd->cpuid) {
657                 if (lp->lwp_mpflags & LWP_MP_ULOAD) {
658                         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
659                         atomic_add_int(&dd->uload, -lp->lwp_uload);
660                         atomic_add_int(&dd->ucount, -1);
661                         atomic_add_int(&dfly_ucount, -1);
662                 }
663                 lp->lwp_qcpu = rdd->cpuid;
664         }
665 }
666
667 /*
668  * Place lp on rdd's runqueue.  Nothing is locked on call.  This function
669  * also performs all necessary ancillary notification actions.
670  */
671 static void
672 dfly_setrunqueue_dd(dfly_pcpu_t rdd, struct lwp *lp)
673 {
674         globaldata_t rgd;
675
676         /*
677          * We might be moving the lp to another cpu's run queue, and once
678          * on the runqueue (even if it is our cpu's), another cpu can rip
679          * it away from us.
680          *
681          * TDF_MIGRATING might already be set if this is part of a
682          * remrunqueue+setrunqueue sequence.
683          */
684         if ((lp->lwp_thread->td_flags & TDF_MIGRATING) == 0)
685                 lwkt_giveaway(lp->lwp_thread);
686
687         rgd = globaldata_find(rdd->cpuid);
688
689         /*
690          * We lose control of the lp the moment we release the spinlock
691          * after having placed it on the queue.  i.e. another cpu could pick
692          * it up, or it could exit, or its priority could be further
693          * adjusted, or something like that.
694          *
695          * WARNING! rdd can point to a foreign cpu!
696          */
697         spin_lock(&rdd->spin);
698         dfly_setrunqueue_locked(rdd, lp);
699
700         /*
701          * Potentially interrupt the currently-running thread
702          */
703         if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK)) {
704                 /*
705                  * Currently running thread is better or same, do not
706                  * interrupt.
707                  */
708                 spin_unlock(&rdd->spin);
709         } else if ((rdd->upri & ~PPQMASK) <= (lp->lwp_priority & ~PPQMASK) +
710                    usched_dfly_fast_resched) {
711                 /*
712                  * Currently running thread is not better, but not so bad
713                  * that we need to interrupt it.  Let it run for one more
714                  * scheduler tick.
715                  */
716                 if (rdd->uschedcp &&
717                     rdd->uschedcp->lwp_rrcount < usched_dfly_rrinterval) {
718                         rdd->uschedcp->lwp_rrcount = usched_dfly_rrinterval - 1;
719                 }
720                 spin_unlock(&rdd->spin);
721         } else if (rgd == mycpu) {
722                 /*
723                  * We should interrupt the currently running thread, which
724                  * is on the current cpu.  However, if DIDYIELD is set we
725                  * round-robin unconditionally and do not interrupt it.
726                  */
727                 spin_unlock(&rdd->spin);
728                 if (rdd->uschedcp == NULL)
729                         wakeup_mycpu(&rdd->helper_thread); /* XXX */
730                 if ((lp->lwp_thread->td_mpflags & TDF_MP_DIDYIELD) == 0)
731                         need_user_resched();
732         } else {
733                 /*
734                  * We should interrupt the currently running thread, which
735                  * is on a different cpu.
736                  */
737                 spin_unlock(&rdd->spin);
738                 lwkt_send_ipiq(rgd, dfly_need_user_resched_remote, NULL);
739         }
740 }
741
742 /*
743  * This routine is called from a systimer IPI.  It MUST be MP-safe and
744  * the BGL IS NOT HELD ON ENTRY.  This routine is called at ESTCPUFREQ on
745  * each cpu.
746  */
747 static
748 void
749 dfly_schedulerclock(struct lwp *lp, sysclock_t period, sysclock_t cpstamp)
750 {
751         globaldata_t gd = mycpu;
752         dfly_pcpu_t dd = &dfly_pcpu[gd->gd_cpuid];
753
754         /*
755          * Spinlocks also hold a critical section so there should not be
756          * any active.
757          */
758         KKASSERT(gd->gd_spinlocks == 0);
759
760         if (lp == NULL)
761                 return;
762
763         /*
764          * Do we need to round-robin?  We round-robin 10 times a second.
765          * This should only occur for cpu-bound batch processes.
766          */
767         if (++lp->lwp_rrcount >= usched_dfly_rrinterval) {
768                 lp->lwp_thread->td_wakefromcpu = -1;
769                 need_user_resched();
770         }
771
772         /*
773          * Adjust estcpu upward using a real time equivalent calculation,
774          * and recalculate lp's priority.
775          */
776         lp->lwp_estcpu = ESTCPULIM(lp->lwp_estcpu + ESTCPUMAX / ESTCPUFREQ + 1);
777         dfly_resetpriority(lp);
778
779         /*
780          * Rebalance two cpus every 8 ticks, pulling the worst thread
781          * from the worst cpu's queue into a rotating cpu number.
782          *
783          * This mechanic is needed because the push algorithms can
784          * steady-state in an non-optimal configuration.  We need to mix it
785          * up a little, even if it means breaking up a paired thread, so
786          * the push algorithms can rebalance the degenerate conditions.
787          * This portion of the algorithm exists to ensure stability at the
788          * selected weightings.
789          *
790          * Because we might be breaking up optimal conditions we do not want
791          * to execute this too quickly, hence we only rebalance approximately
792          * ~7-8 times per second.  The push's, on the otherhand, are capable
793          * moving threads to other cpus at a much higher rate.
794          *
795          * We choose the most heavily loaded thread from the worst queue
796          * in order to ensure that multiple heavy-weight threads on the same
797          * queue get broken up, and also because these threads are the most
798          * likely to be able to remain in place.  Hopefully then any pairings,
799          * if applicable, migrate to where these threads are.
800          */
801         if ((usched_dfly_features & 0x04) &&
802             ((u_int)sched_ticks & 7) == 0 &&
803             (u_int)sched_ticks / 8 % ncpus == gd->gd_cpuid) {
804                 /*
805                  * Our cpu is up.
806                  */
807                 struct lwp *nlp;
808                 dfly_pcpu_t rdd;
809
810                 rdd = dfly_choose_worst_queue(dd);
811                 if (rdd) {
812                         spin_lock(&dd->spin);
813                         if (spin_trylock(&rdd->spin)) {
814                                 nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
815                                 spin_unlock(&rdd->spin);
816                                 if (nlp == NULL)
817                                         spin_unlock(&dd->spin);
818                         } else {
819                                 spin_unlock(&dd->spin);
820                                 nlp = NULL;
821                         }
822                 } else {
823                         nlp = NULL;
824                 }
825                 /* dd->spin held if nlp != NULL */
826
827                 /*
828                  * Either schedule it or add it to our queue.
829                  */
830                 if (nlp &&
831                     (nlp->lwp_priority & ~PPQMASK) < (dd->upri & ~PPQMASK)) {
832                         ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, dd->cpumask);
833                         dd->upri = nlp->lwp_priority;
834                         dd->uschedcp = nlp;
835 #if 0
836                         dd->rrcount = 0;        /* reset round robin */
837 #endif
838                         spin_unlock(&dd->spin);
839                         lwkt_acquire(nlp->lwp_thread);
840                         lwkt_schedule(nlp->lwp_thread);
841                 } else if (nlp) {
842                         dfly_setrunqueue_locked(dd, nlp);
843                         spin_unlock(&dd->spin);
844                 }
845         }
846 }
847
848 /*
849  * Called from acquire and from kern_synch's one-second timer (one of the
850  * callout helper threads) with a critical section held.
851  *
852  * Adjust p_estcpu based on our single-cpu load, p_nice, and compensate for
853  * overall system load.
854  *
855  * Note that no recalculation occurs for a process which sleeps and wakes
856  * up in the same tick.  That is, a system doing thousands of context
857  * switches per second will still only do serious estcpu calculations
858  * ESTCPUFREQ times per second.
859  */
860 static
861 void
862 dfly_recalculate_estcpu(struct lwp *lp)
863 {
864         globaldata_t gd = mycpu;
865         sysclock_t cpbase;
866         sysclock_t ttlticks;
867         int estcpu;
868         int decay_factor;
869         int ucount;
870
871         /*
872          * We have to subtract periodic to get the last schedclock
873          * timeout time, otherwise we would get the upcoming timeout.
874          * Keep in mind that a process can migrate between cpus and
875          * while the scheduler clock should be very close, boundary
876          * conditions could lead to a small negative delta.
877          */
878         cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
879
880         if (lp->lwp_slptime > 1) {
881                 /*
882                  * Too much time has passed, do a coarse correction.
883                  */
884                 lp->lwp_estcpu = lp->lwp_estcpu >> 1;
885                 dfly_resetpriority(lp);
886                 lp->lwp_cpbase = cpbase;
887                 lp->lwp_cpticks = 0;
888                 lp->lwp_estfast = 0;
889         } else if (lp->lwp_cpbase != cpbase) {
890                 /*
891                  * Adjust estcpu if we are in a different tick.  Don't waste
892                  * time if we are in the same tick.
893                  *
894                  * First calculate the number of ticks in the measurement
895                  * interval.  The ttlticks calculation can wind up 0 due to
896                  * a bug in the handling of lwp_slptime  (as yet not found),
897                  * so make sure we do not get a divide by 0 panic.
898                  */
899                 ttlticks = (cpbase - lp->lwp_cpbase) /
900                            gd->gd_schedclock.periodic;
901                 if ((ssysclock_t)ttlticks < 0) {
902                         ttlticks = 0;
903                         lp->lwp_cpbase = cpbase;
904                 }
905                 if (ttlticks == 0)
906                         return;
907                 updatepcpu(lp, lp->lwp_cpticks, ttlticks);
908
909                 /*
910                  * Calculate the percentage of one cpu being used then
911                  * compensate for any system load in excess of ncpus.
912                  *
913                  * For example, if we have 8 cores and 16 running cpu-bound
914                  * processes then all things being equal each process will
915                  * get 50% of one cpu.  We need to pump this value back
916                  * up to 100% so the estcpu calculation properly adjusts
917                  * the process's dynamic priority.
918                  *
919                  * estcpu is scaled by ESTCPUMAX, pctcpu is scaled by FSCALE.
920                  */
921                 estcpu = (lp->lwp_pctcpu * ESTCPUMAX) >> FSHIFT;
922                 ucount = dfly_ucount;
923                 if (ucount > ncpus) {
924                         estcpu += estcpu * (ucount - ncpus) / ncpus;
925                 }
926
927                 if (usched_dfly_debug == lp->lwp_proc->p_pid) {
928                         kprintf("pid %d lwp %p estcpu %3d %3d cp %d/%d",
929                                 lp->lwp_proc->p_pid, lp,
930                                 estcpu, lp->lwp_estcpu,
931                                 lp->lwp_cpticks, ttlticks);
932                 }
933
934                 /*
935                  * Adjust lp->lwp_esetcpu.  The decay factor determines how
936                  * quickly lwp_estcpu collapses to its realtime calculation.
937                  * A slower collapse gives us a more accurate number over
938                  * the long term but can create problems with bursty threads
939                  * or threads which become cpu hogs.
940                  *
941                  * To solve this problem, newly started lwps and lwps which
942                  * are restarting after having been asleep for a while are
943                  * given a much, much faster decay in order to quickly
944                  * detect whether they become cpu-bound.
945                  *
946                  * NOTE: p_nice is accounted for in dfly_resetpriority(),
947                  *       and not here, but we must still ensure that a
948                  *       cpu-bound nice -20 process does not completely
949                  *       override a cpu-bound nice +20 process.
950                  *
951                  * NOTE: We must use ESTCPULIM() here to deal with any
952                  *       overshoot.
953                  */
954                 decay_factor = usched_dfly_decay;
955                 if (decay_factor < 1)
956                         decay_factor = 1;
957                 if (decay_factor > 1024)
958                         decay_factor = 1024;
959
960                 if (lp->lwp_estfast < usched_dfly_decay) {
961                         ++lp->lwp_estfast;
962                         lp->lwp_estcpu = ESTCPULIM(
963                                 (lp->lwp_estcpu * lp->lwp_estfast + estcpu) /
964                                 (lp->lwp_estfast + 1));
965                 } else {
966                         lp->lwp_estcpu = ESTCPULIM(
967                                 (lp->lwp_estcpu * decay_factor + estcpu) /
968                                 (decay_factor + 1));
969                 }
970
971                 if (usched_dfly_debug == lp->lwp_proc->p_pid)
972                         kprintf(" finalestcpu %d\n", lp->lwp_estcpu);
973                 dfly_resetpriority(lp);
974                 lp->lwp_cpbase += ttlticks * gd->gd_schedclock.periodic;
975                 lp->lwp_cpticks = 0;
976         }
977 }
978
979 /*
980  * Compute the priority of a process when running in user mode.
981  * Arrange to reschedule if the resulting priority is better
982  * than that of the current process.
983  *
984  * This routine may be called with any process.
985  *
986  * This routine is called by fork1() for initial setup with the process
987  * of the run queue, and also may be called normally with the process on or
988  * off the run queue.
989  */
990 static void
991 dfly_resetpriority(struct lwp *lp)
992 {
993         dfly_pcpu_t rdd;
994         int newpriority;
995         u_short newrqtype;
996         int rcpu;
997         int checkpri;
998         int estcpu;
999         int delta_uload;
1000
1001         crit_enter();
1002
1003         /*
1004          * Lock the scheduler (lp) belongs to.  This can be on a different
1005          * cpu.  Handle races.  This loop breaks out with the appropriate
1006          * rdd locked.
1007          */
1008         for (;;) {
1009                 rcpu = lp->lwp_qcpu;
1010                 cpu_ccfence();
1011                 rdd = &dfly_pcpu[rcpu];
1012                 spin_lock(&rdd->spin);
1013                 if (rcpu == lp->lwp_qcpu)
1014                         break;
1015                 spin_unlock(&rdd->spin);
1016         }
1017
1018         /*
1019          * Calculate the new priority and queue type
1020          */
1021         newrqtype = lp->lwp_rtprio.type;
1022
1023         switch(newrqtype) {
1024         case RTP_PRIO_REALTIME:
1025         case RTP_PRIO_FIFO:
1026                 newpriority = PRIBASE_REALTIME +
1027                              (lp->lwp_rtprio.prio & PRIMASK);
1028                 break;
1029         case RTP_PRIO_NORMAL:
1030                 /*
1031                  *
1032                  */
1033                 estcpu = lp->lwp_estcpu;
1034
1035                 /*
1036                  * p_nice piece         Adds (0-40) * 2         0-80
1037                  * estcpu               Adds 16384  * 4 / 512   0-128
1038                  */
1039                 newpriority = (lp->lwp_proc->p_nice - PRIO_MIN) * PPQ / NICEPPQ;
1040                 newpriority += estcpu * PPQ / ESTCPUPPQ;
1041                 newpriority = newpriority * MAXPRI / (PRIO_RANGE * PPQ /
1042                               NICEPPQ + ESTCPUMAX * PPQ / ESTCPUPPQ);
1043                 newpriority = PRIBASE_NORMAL + (newpriority & PRIMASK);
1044                 break;
1045         case RTP_PRIO_IDLE:
1046                 newpriority = PRIBASE_IDLE + (lp->lwp_rtprio.prio & PRIMASK);
1047                 break;
1048         case RTP_PRIO_THREAD:
1049                 newpriority = PRIBASE_THREAD + (lp->lwp_rtprio.prio & PRIMASK);
1050                 break;
1051         default:
1052                 panic("Bad RTP_PRIO %d", newrqtype);
1053                 /* NOT REACHED */
1054         }
1055
1056         /*
1057          * The LWKT scheduler doesn't dive usched structures, give it a hint
1058          * on the relative priority of user threads running in the kernel.
1059          * The LWKT scheduler will always ensure that a user thread running
1060          * in the kernel will get cpu some time, regardless of its upri,
1061          * but can decide not to instantly switch from one kernel or user
1062          * mode user thread to a kernel-mode user thread when it has a less
1063          * desireable user priority.
1064          *
1065          * td_upri has normal sense (higher values are more desireable), so
1066          * negate it.
1067          */
1068         lp->lwp_thread->td_upri = -(newpriority & usched_dfly_swmask);
1069
1070         /*
1071          * The newpriority incorporates the queue type so do a simple masked
1072          * check to determine if the process has moved to another queue.  If
1073          * it has, and it is currently on a run queue, then move it.
1074          *
1075          * Since uload is ~PPQMASK masked, no modifications are necessary if
1076          * we end up in the same run queue.
1077          */
1078         if ((lp->lwp_priority ^ newpriority) & ~PPQMASK) {
1079                 if (lp->lwp_mpflags & LWP_MP_ONRUNQ) {
1080                         dfly_remrunqueue_locked(rdd, lp);
1081                         lp->lwp_priority = newpriority;
1082                         lp->lwp_rqtype = newrqtype;
1083                         lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1084                         dfly_setrunqueue_locked(rdd, lp);
1085                         checkpri = 1;
1086                 } else {
1087                         lp->lwp_priority = newpriority;
1088                         lp->lwp_rqtype = newrqtype;
1089                         lp->lwp_rqindex = (newpriority & PRIMASK) / PPQ;
1090                         checkpri = 0;
1091                 }
1092         } else {
1093                 /*
1094                  * In the same PPQ, uload cannot change.
1095                  */
1096                 lp->lwp_priority = newpriority;
1097                 checkpri = 1;
1098                 rcpu = -1;
1099         }
1100
1101         /*
1102          * Adjust effective load.
1103          *
1104          * Calculate load then scale up or down geometrically based on p_nice.
1105          * Processes niced up (positive) are less important, and processes
1106          * niced downard (negative) are more important.  The higher the uload,
1107          * the more important the thread.
1108          */
1109         /* 0-511, 0-100% cpu */
1110         delta_uload = lp->lwp_estcpu / NQS;
1111         delta_uload -= delta_uload * lp->lwp_proc->p_nice / (PRIO_MAX + 1);
1112
1113
1114         delta_uload -= lp->lwp_uload;
1115         lp->lwp_uload += delta_uload;
1116         if (lp->lwp_mpflags & LWP_MP_ULOAD)
1117                 atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, delta_uload);
1118
1119         /*
1120          * Determine if we need to reschedule the target cpu.  This only
1121          * occurs if the LWP is already on a scheduler queue, which means
1122          * that idle cpu notification has already occured.  At most we
1123          * need only issue a need_user_resched() on the appropriate cpu.
1124          *
1125          * The LWP may be owned by a CPU different from the current one,
1126          * in which case dd->uschedcp may be modified without an MP lock
1127          * or a spinlock held.  The worst that happens is that the code
1128          * below causes a spurious need_user_resched() on the target CPU
1129          * and dd->pri to be wrong for a short period of time, both of
1130          * which are harmless.
1131          *
1132          * If checkpri is 0 we are adjusting the priority of the current
1133          * process, possibly higher (less desireable), so ignore the upri
1134          * check which will fail in that case.
1135          */
1136         if (rcpu >= 0) {
1137                 if (CPUMASK_TESTBIT(dfly_rdyprocmask, rcpu) &&
1138                     (checkpri == 0 ||
1139                      (rdd->upri & ~PRIMASK) >
1140                      (lp->lwp_priority & ~PRIMASK))) {
1141                         if (rcpu == mycpu->gd_cpuid) {
1142                                 spin_unlock(&rdd->spin);
1143                                 need_user_resched();
1144                         } else {
1145                                 spin_unlock(&rdd->spin);
1146                                 lwkt_send_ipiq(globaldata_find(rcpu),
1147                                                dfly_need_user_resched_remote,
1148                                                NULL);
1149                         }
1150                 } else {
1151                         spin_unlock(&rdd->spin);
1152                 }
1153         } else {
1154                 spin_unlock(&rdd->spin);
1155         }
1156         crit_exit();
1157 }
1158
1159 static
1160 void
1161 dfly_yield(struct lwp *lp)
1162 {
1163         if (lp->lwp_qcpu != mycpu->gd_cpuid)
1164                 return;
1165         KKASSERT(lp == curthread->td_lwp);
1166
1167         /*
1168          * Don't set need_user_resched() or mess with rrcount or anything.
1169          * the TDF flag will override everything as long as we release.
1170          */
1171         atomic_set_int(&lp->lwp_thread->td_mpflags, TDF_MP_DIDYIELD);
1172         dfly_release_curproc(lp);
1173 }
1174
1175 /*
1176  * Thread was forcefully migrated to another cpu.  Normally forced migrations
1177  * are used for iterations and the kernel returns to the original cpu before
1178  * returning and this is not needed.  However, if the kernel migrates a
1179  * thread to another cpu and wants to leave it there, it has to call this
1180  * scheduler helper.
1181  *
1182  * Note that the lwkt_migratecpu() function also released the thread, so
1183  * we don't have to worry about that.
1184  */
1185 static
1186 void
1187 dfly_changedcpu(struct lwp *lp)
1188 {
1189         dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1190         dfly_pcpu_t rdd = &dfly_pcpu[mycpu->gd_cpuid];
1191
1192         if (dd != rdd) {
1193                 spin_lock(&dd->spin);
1194                 dfly_changeqcpu_locked(lp, dd, rdd);
1195                 spin_unlock(&dd->spin);
1196         }
1197 }
1198
1199 /*
1200  * Called from fork1() when a new child process is being created.
1201  *
1202  * Give the child process an initial estcpu that is more batch then
1203  * its parent and dock the parent for the fork (but do not
1204  * reschedule the parent).
1205  *
1206  * fast
1207  *
1208  * XXX lwp should be "spawning" instead of "forking"
1209  */
1210 static void
1211 dfly_forking(struct lwp *plp, struct lwp *lp)
1212 {
1213         /*
1214          * Put the child 4 queue slots (out of 32) higher than the parent
1215          * (less desireable than the parent).
1216          */
1217         lp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ * 4);
1218         lp->lwp_forked = 1;
1219         lp->lwp_estfast = 0;
1220
1221         /*
1222          * Dock the parent a cost for the fork, protecting us from fork
1223          * bombs.  If the parent is forking quickly make the child more
1224          * batchy.
1225          */
1226         plp->lwp_estcpu = ESTCPULIM(plp->lwp_estcpu + ESTCPUPPQ / 16);
1227 }
1228
1229 /*
1230  * Called when a lwp is being removed from this scheduler, typically
1231  * during lwp_exit().  We have to clean out any ULOAD accounting before
1232  * we can let the lp go.  The dd->spin lock is not needed for uload
1233  * updates.
1234  *
1235  * Scheduler dequeueing has already occurred, no further action in that
1236  * regard is needed.
1237  */
1238 static void
1239 dfly_exiting(struct lwp *lp, struct proc *child_proc)
1240 {
1241         dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1242
1243         if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1244                 atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1245                 atomic_add_int(&dd->uload, -lp->lwp_uload);
1246                 atomic_add_int(&dd->ucount, -1);
1247                 atomic_add_int(&dfly_ucount, -1);
1248         }
1249 }
1250
1251 /*
1252  * This function cannot block in any way, but spinlocks are ok.
1253  *
1254  * Update the uload based on the state of the thread (whether it is going
1255  * to sleep or running again).  The uload is meant to be a longer-term
1256  * load and not an instantanious load.
1257  */
1258 static void
1259 dfly_uload_update(struct lwp *lp)
1260 {
1261         dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1262
1263         if (lp->lwp_thread->td_flags & TDF_RUNQ) {
1264                 if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1265                         spin_lock(&dd->spin);
1266                         if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1267                                 atomic_set_int(&lp->lwp_mpflags,
1268                                                LWP_MP_ULOAD);
1269                                 atomic_add_int(&dd->uload, lp->lwp_uload);
1270                                 atomic_add_int(&dd->ucount, 1);
1271                                 atomic_add_int(&dfly_ucount, 1);
1272                         }
1273                         spin_unlock(&dd->spin);
1274                 }
1275         } else if (lp->lwp_slptime > 0) {
1276                 if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1277                         spin_lock(&dd->spin);
1278                         if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1279                                 atomic_clear_int(&lp->lwp_mpflags,
1280                                                  LWP_MP_ULOAD);
1281                                 atomic_add_int(&dd->uload, -lp->lwp_uload);
1282                                 atomic_add_int(&dd->ucount, -1);
1283                                 atomic_add_int(&dfly_ucount, -1);
1284                         }
1285                         spin_unlock(&dd->spin);
1286                 }
1287         }
1288 }
1289
1290 /*
1291  * chooseproc() is called when a cpu needs a user process to LWKT schedule,
1292  * it selects a user process and returns it.  If chklp is non-NULL and chklp
1293  * has a better or equal priority then the process that would otherwise be
1294  * chosen, NULL is returned.
1295  *
1296  * Until we fix the RUNQ code the chklp test has to be strict or we may
1297  * bounce between processes trying to acquire the current process designation.
1298  *
1299  * Must be called with rdd->spin locked.  The spinlock is left intact through
1300  * the entire routine.  dd->spin does not have to be locked.
1301  *
1302  * If worst is non-zero this function finds the worst thread instead of the
1303  * best thread (used by the schedulerclock-based rover).
1304  */
1305 static
1306 struct lwp *
1307 dfly_chooseproc_locked(dfly_pcpu_t rdd, dfly_pcpu_t dd,
1308                        struct lwp *chklp, int worst)
1309 {
1310         struct lwp *lp;
1311         struct rq *q;
1312         u_int32_t *which;
1313         u_int32_t pri;
1314         u_int32_t rtqbits;
1315         u_int32_t tsqbits;
1316         u_int32_t idqbits;
1317
1318         rtqbits = rdd->rtqueuebits;
1319         tsqbits = rdd->queuebits;
1320         idqbits = rdd->idqueuebits;
1321
1322         if (worst) {
1323                 if (idqbits) {
1324                         pri = bsrl(idqbits);
1325                         q = &rdd->idqueues[pri];
1326                         which = &rdd->idqueuebits;
1327                 } else if (tsqbits) {
1328                         pri = bsrl(tsqbits);
1329                         q = &rdd->queues[pri];
1330                         which = &rdd->queuebits;
1331                 } else if (rtqbits) {
1332                         pri = bsrl(rtqbits);
1333                         q = &rdd->rtqueues[pri];
1334                         which = &rdd->rtqueuebits;
1335                 } else {
1336                         return (NULL);
1337                 }
1338                 lp = TAILQ_LAST(q, rq);
1339         } else {
1340                 if (rtqbits) {
1341                         pri = bsfl(rtqbits);
1342                         q = &rdd->rtqueues[pri];
1343                         which = &rdd->rtqueuebits;
1344                 } else if (tsqbits) {
1345                         pri = bsfl(tsqbits);
1346                         q = &rdd->queues[pri];
1347                         which = &rdd->queuebits;
1348                 } else if (idqbits) {
1349                         pri = bsfl(idqbits);
1350                         q = &rdd->idqueues[pri];
1351                         which = &rdd->idqueuebits;
1352                 } else {
1353                         return (NULL);
1354                 }
1355                 lp = TAILQ_FIRST(q);
1356         }
1357         KASSERT(lp, ("chooseproc: no lwp on busy queue"));
1358
1359         /*
1360          * If the passed lwp <chklp> is reasonably close to the selected
1361          * lwp <lp>, return NULL (indicating that <chklp> should be kept).
1362          *
1363          * Note that we must error on the side of <chklp> to avoid bouncing
1364          * between threads in the acquire code.
1365          */
1366         if (chklp) {
1367                 if (chklp->lwp_priority < lp->lwp_priority + PPQ)
1368                         return(NULL);
1369         }
1370
1371         KTR_COND_LOG(usched_chooseproc,
1372             lp->lwp_proc->p_pid == usched_dfly_pid_debug,
1373             lp->lwp_proc->p_pid,
1374             lp->lwp_thread->td_gd->gd_cpuid,
1375             mycpu->gd_cpuid);
1376
1377         KASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) != 0, ("not on runq6!"));
1378         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1379         TAILQ_REMOVE(q, lp, lwp_procq);
1380         --rdd->runqcount;
1381         if (TAILQ_EMPTY(q))
1382                 *which &= ~(1 << pri);
1383
1384         /*
1385          * If we are choosing a process from rdd with the intent to
1386          * move it to dd, lwp_qcpu must be adjusted while rdd's spinlock
1387          * is still held.
1388          */
1389         if (rdd != dd) {
1390                 if (lp->lwp_mpflags & LWP_MP_ULOAD) {
1391                         atomic_add_int(&rdd->uload, -lp->lwp_uload);
1392                         atomic_add_int(&rdd->ucount, -1);
1393                         atomic_add_int(&dfly_ucount, -1);
1394                 }
1395                 lp->lwp_qcpu = dd->cpuid;
1396                 atomic_add_int(&dd->uload, lp->lwp_uload);
1397                 atomic_add_int(&dd->ucount, 1);
1398                 atomic_add_int(&dfly_ucount, 1);
1399                 atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1400         }
1401         return lp;
1402 }
1403
1404 /*
1405  * USED TO PUSH RUNNABLE LWPS TO THE LEAST LOADED CPU.
1406  *
1407  * Choose a cpu node to schedule lp on, hopefully nearby its current
1408  * node.
1409  *
1410  * We give the current node a modest advantage for obvious reasons.
1411  *
1412  * We also give the node the thread was woken up FROM a slight advantage
1413  * in order to try to schedule paired threads which synchronize/block waiting
1414  * for each other fairly close to each other.  Similarly in a network setting
1415  * this feature will also attempt to place a user process near the kernel
1416  * protocol thread that is feeding it data.  THIS IS A CRITICAL PART of the
1417  * algorithm as it heuristically groups synchronizing processes for locality
1418  * of reference in multi-socket systems.
1419  *
1420  * We check against running processes and give a big advantage if there
1421  * are none running.
1422  *
1423  * The caller will normally dfly_setrunqueue() lp on the returned queue.
1424  *
1425  * When the topology is known choose a cpu whos group has, in aggregate,
1426  * has the lowest weighted load.
1427  */
1428 static
1429 dfly_pcpu_t
1430 dfly_choose_best_queue(struct lwp *lp)
1431 {
1432         cpumask_t wakemask;
1433         cpumask_t mask;
1434         cpu_node_t *cpup;
1435         cpu_node_t *cpun;
1436         cpu_node_t *cpub;
1437         dfly_pcpu_t dd = &dfly_pcpu[lp->lwp_qcpu];
1438         dfly_pcpu_t rdd;
1439         int wakecpu;
1440         int cpuid;
1441         int n;
1442         int count;
1443         int load;
1444         int lowest_load;
1445
1446         /*
1447          * When the topology is unknown choose a random cpu that is hopefully
1448          * idle.
1449          */
1450         if (dd->cpunode == NULL)
1451                 return (dfly_choose_queue_simple(dd, lp));
1452
1453         /*
1454          * Pairing mask
1455          */
1456         if ((wakecpu = lp->lwp_thread->td_wakefromcpu) >= 0)
1457                 wakemask = dfly_pcpu[wakecpu].cpumask;
1458         else
1459                 CPUMASK_ASSZERO(wakemask);
1460
1461         /*
1462          * When the topology is known choose a cpu whos group has, in
1463          * aggregate, has the lowest weighted load.
1464          */
1465         cpup = root_cpu_node;
1466         rdd = dd;
1467
1468         while (cpup) {
1469                 /*
1470                  * Degenerate case super-root
1471                  */
1472                 if (cpup->child_no == 1) {
1473                         cpup = cpup->child_node[0];
1474                         continue;
1475                 }
1476
1477                 /*
1478                  * Terminal cpunode
1479                  */
1480                 if (cpup->child_no == 0) {
1481                         rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1482                         break;
1483                 }
1484
1485                 cpub = NULL;
1486                 lowest_load = 0x7FFFFFFF;
1487
1488                 for (n = 0; n < cpup->child_no; ++n) {
1489                         /*
1490                          * Accumulate load information for all cpus
1491                          * which are members of this node.
1492                          */
1493                         cpun = cpup->child_node[n];
1494                         mask = cpun->members;
1495                         CPUMASK_ANDMASK(mask, usched_global_cpumask);
1496                         CPUMASK_ANDMASK(mask, smp_active_mask);
1497                         CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1498                         if (CPUMASK_TESTZERO(mask))
1499                                 continue;
1500
1501                         count = 0;
1502                         load = 0;
1503
1504                         while (CPUMASK_TESTNZERO(mask)) {
1505                                 cpuid = BSFCPUMASK(mask);
1506                                 rdd = &dfly_pcpu[cpuid];
1507                                 load += rdd->uload;
1508                                 load += rdd->ucount * usched_dfly_weight3;
1509
1510                                 if (rdd->uschedcp == NULL &&
1511                                     rdd->runqcount == 0 &&
1512                                     globaldata_find(cpuid)->gd_tdrunqcount == 0
1513                                 ) {
1514                                         load -= usched_dfly_weight4;
1515                                 }
1516 #if 0
1517                                 else if (rdd->upri > lp->lwp_priority + PPQ) {
1518                                         load -= usched_dfly_weight4 / 2;
1519                                 }
1520 #endif
1521                                 CPUMASK_NANDBIT(mask, cpuid);
1522                                 ++count;
1523                         }
1524
1525                         /*
1526                          * Compensate if the lp is already accounted for in
1527                          * the aggregate uload for this mask set.  We want
1528                          * to calculate the loads as if lp were not present,
1529                          * otherwise the calculation is bogus.
1530                          */
1531                         if ((lp->lwp_mpflags & LWP_MP_ULOAD) &&
1532                             CPUMASK_TESTMASK(dd->cpumask, cpun->members)) {
1533                                 load -= lp->lwp_uload;
1534                                 load -= usched_dfly_weight3;
1535                         }
1536
1537                         load /= count;
1538
1539                         /*
1540                          * Advantage the cpu group (lp) is already on.
1541                          */
1542                         if (CPUMASK_TESTMASK(cpun->members, dd->cpumask))
1543                                 load -= usched_dfly_weight1;
1544
1545                         /*
1546                          * Advantage the cpu group we want to pair (lp) to,
1547                          * but don't let it go to the exact same cpu as
1548                          * the wakecpu target.
1549                          *
1550                          * We do this by checking whether cpun is a
1551                          * terminal node or not.  All cpun's at the same
1552                          * level will either all be terminal or all not
1553                          * terminal.
1554                          *
1555                          * If it is and we match we disadvantage the load.
1556                          * If it is and we don't match we advantage the load.
1557                          *
1558                          * Also note that we are effectively disadvantaging
1559                          * all-but-one by the same amount, so it won't effect
1560                          * the weight1 factor for the all-but-one nodes.
1561                          */
1562                         if (CPUMASK_TESTMASK(cpun->members, wakemask)) {
1563                                 if (cpun->child_no != 0) {
1564                                         /* advantage */
1565                                         load -= usched_dfly_weight2;
1566                                 } else {
1567                                         if (usched_dfly_features & 0x10)
1568                                                 load += usched_dfly_weight2;
1569                                         else
1570                                                 load -= usched_dfly_weight2;
1571                                 }
1572                         }
1573
1574                         /*
1575                          * Calculate the best load
1576                          */
1577                         if (cpub == NULL || lowest_load > load ||
1578                             (lowest_load == load &&
1579                              CPUMASK_TESTMASK(cpun->members, dd->cpumask))
1580                         ) {
1581                                 lowest_load = load;
1582                                 cpub = cpun;
1583                         }
1584                 }
1585                 cpup = cpub;
1586         }
1587         if (usched_dfly_chooser)
1588                 kprintf("lp %02d->%02d %s\n",
1589                         lp->lwp_qcpu, rdd->cpuid, lp->lwp_proc->p_comm);
1590         return (rdd);
1591 }
1592
1593 /*
1594  * USED TO PULL RUNNABLE LWPS FROM THE MOST LOADED CPU.
1595  *
1596  * Choose the worst queue close to dd's cpu node with a non-empty runq
1597  * that is NOT dd.  Also require that the moving of the highest-load thread
1598  * from rdd to dd does not cause the uload's to cross each other.
1599  *
1600  * This is used by the thread chooser when the current cpu's queues are
1601  * empty to steal a thread from another cpu's queue.  We want to offload
1602  * the most heavily-loaded queue.
1603  */
1604 static
1605 dfly_pcpu_t
1606 dfly_choose_worst_queue(dfly_pcpu_t dd)
1607 {
1608         cpumask_t mask;
1609         cpu_node_t *cpup;
1610         cpu_node_t *cpun;
1611         cpu_node_t *cpub;
1612         dfly_pcpu_t rdd;
1613         int cpuid;
1614         int n;
1615         int count;
1616         int load;
1617 #if 0
1618         int pri;
1619         int hpri;
1620 #endif
1621         int highest_load;
1622
1623         /*
1624          * When the topology is unknown choose a random cpu that is hopefully
1625          * idle.
1626          */
1627         if (dd->cpunode == NULL) {
1628                 return (NULL);
1629         }
1630
1631         /*
1632          * When the topology is known choose a cpu whos group has, in
1633          * aggregate, has the lowest weighted load.
1634          */
1635         cpup = root_cpu_node;
1636         rdd = dd;
1637         while (cpup) {
1638                 /*
1639                  * Degenerate case super-root
1640                  */
1641                 if (cpup->child_no == 1) {
1642                         cpup = cpup->child_node[0];
1643                         continue;
1644                 }
1645
1646                 /*
1647                  * Terminal cpunode
1648                  */
1649                 if (cpup->child_no == 0) {
1650                         rdd = &dfly_pcpu[BSFCPUMASK(cpup->members)];
1651                         break;
1652                 }
1653
1654                 cpub = NULL;
1655                 highest_load = 0;
1656
1657                 for (n = 0; n < cpup->child_no; ++n) {
1658                         /*
1659                          * Accumulate load information for all cpus
1660                          * which are members of this node.
1661                          */
1662                         cpun = cpup->child_node[n];
1663                         mask = cpun->members;
1664                         CPUMASK_ANDMASK(mask, usched_global_cpumask);
1665                         CPUMASK_ANDMASK(mask, smp_active_mask);
1666                         if (CPUMASK_TESTZERO(mask))
1667                                 continue;
1668                         count = 0;
1669                         load = 0;
1670
1671                         while (CPUMASK_TESTNZERO(mask)) {
1672                                 cpuid = BSFCPUMASK(mask);
1673                                 rdd = &dfly_pcpu[cpuid];
1674                                 load += rdd->uload;
1675                                 load += rdd->ucount * usched_dfly_weight3;
1676                                 if (rdd->uschedcp == NULL &&
1677                                     rdd->runqcount == 0 &&
1678                                     globaldata_find(cpuid)->gd_tdrunqcount == 0
1679                                 ) {
1680                                         load -= usched_dfly_weight4;
1681                                 }
1682 #if 0
1683                                 else if (rdd->upri > dd->upri + PPQ) {
1684                                         load -= usched_dfly_weight4 / 2;
1685                                 }
1686 #endif
1687                                 CPUMASK_NANDBIT(mask, cpuid);
1688                                 ++count;
1689                         }
1690                         load /= count;
1691
1692                         /*
1693                          * Prefer candidates which are somewhat closer to
1694                          * our cpu.
1695                          */
1696                         if (CPUMASK_TESTMASK(dd->cpumask, cpun->members))
1697                                 load += usched_dfly_weight1;
1698
1699                         /*
1700                          * The best candidate is the one with the worst
1701                          * (highest) load.
1702                          */
1703                         if (cpub == NULL || highest_load < load) {
1704                                 highest_load = load;
1705                                 cpub = cpun;
1706                         }
1707                 }
1708                 cpup = cpub;
1709         }
1710
1711         /*
1712          * We never return our own node (dd), and only return a remote
1713          * node if it's load is significantly worse than ours (i.e. where
1714          * stealing a thread would be considered reasonable).
1715          *
1716          * This also helps us avoid breaking paired threads apart which
1717          * can have disastrous effects on performance.
1718          */
1719         if (rdd == dd)
1720                 return(NULL);
1721
1722 #if 0
1723         hpri = 0;
1724         if (rdd->rtqueuebits && hpri < (pri = bsrl(rdd->rtqueuebits)))
1725                 hpri = pri;
1726         if (rdd->queuebits && hpri < (pri = bsrl(rdd->queuebits)))
1727                 hpri = pri;
1728         if (rdd->idqueuebits && hpri < (pri = bsrl(rdd->idqueuebits)))
1729                 hpri = pri;
1730         hpri *= PPQ;
1731         if (rdd->uload - hpri < dd->uload + hpri)
1732                 return(NULL);
1733 #endif
1734         return (rdd);
1735 }
1736
1737 static
1738 dfly_pcpu_t
1739 dfly_choose_queue_simple(dfly_pcpu_t dd, struct lwp *lp)
1740 {
1741         dfly_pcpu_t rdd;
1742         cpumask_t tmpmask;
1743         cpumask_t mask;
1744         int cpuid;
1745
1746         /*
1747          * Fallback to the original heuristic, select random cpu,
1748          * first checking cpus not currently running a user thread.
1749          */
1750         ++dfly_scancpu;
1751         cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1752         mask = dfly_rdyprocmask;
1753         CPUMASK_NANDMASK(mask, dfly_curprocmask);
1754         CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1755         CPUMASK_ANDMASK(mask, smp_active_mask);
1756         CPUMASK_ANDMASK(mask, usched_global_cpumask);
1757
1758         while (CPUMASK_TESTNZERO(mask)) {
1759                 CPUMASK_ASSNBMASK(tmpmask, cpuid);
1760                 if (CPUMASK_TESTMASK(tmpmask, mask)) {
1761                         CPUMASK_ANDMASK(tmpmask, mask);
1762                         cpuid = BSFCPUMASK(tmpmask);
1763                 } else {
1764                         cpuid = BSFCPUMASK(mask);
1765                 }
1766                 rdd = &dfly_pcpu[cpuid];
1767
1768                 if ((rdd->upri & ~PPQMASK) >= (lp->lwp_priority & ~PPQMASK))
1769                         goto found;
1770                 CPUMASK_NANDBIT(mask, cpuid);
1771         }
1772
1773         /*
1774          * Then cpus which might have a currently running lp
1775          */
1776         cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1777         mask = dfly_rdyprocmask;
1778         CPUMASK_ANDMASK(mask, dfly_curprocmask);
1779         CPUMASK_ANDMASK(mask, lp->lwp_cpumask);
1780         CPUMASK_ANDMASK(mask, smp_active_mask);
1781         CPUMASK_ANDMASK(mask, usched_global_cpumask);
1782
1783         while (CPUMASK_TESTNZERO(mask)) {
1784                 CPUMASK_ASSNBMASK(tmpmask, cpuid);
1785                 if (CPUMASK_TESTMASK(tmpmask, mask)) {
1786                         CPUMASK_ANDMASK(tmpmask, mask);
1787                         cpuid = BSFCPUMASK(tmpmask);
1788                 } else {
1789                         cpuid = BSFCPUMASK(mask);
1790                 }
1791                 rdd = &dfly_pcpu[cpuid];
1792
1793                 if ((rdd->upri & ~PPQMASK) > (lp->lwp_priority & ~PPQMASK))
1794                         goto found;
1795                 CPUMASK_NANDBIT(mask, cpuid);
1796         }
1797
1798         /*
1799          * If we cannot find a suitable cpu we reload from dfly_scancpu
1800          * and round-robin.  Other cpus will pickup as they release their
1801          * current lwps or become ready.
1802          *
1803          * Avoid a degenerate system lockup case if usched_global_cpumask
1804          * is set to 0 or otherwise does not cover lwp_cpumask.
1805          *
1806          * We only kick the target helper thread in this case, we do not
1807          * set the user resched flag because
1808          */
1809         cpuid = (dfly_scancpu & 0xFFFF) % ncpus;
1810         if (CPUMASK_TESTBIT(usched_global_cpumask, cpuid) == 0)
1811                 cpuid = 0;
1812         rdd = &dfly_pcpu[cpuid];
1813 found:
1814         return (rdd);
1815 }
1816
1817 static
1818 void
1819 dfly_need_user_resched_remote(void *dummy)
1820 {
1821         globaldata_t gd = mycpu;
1822         dfly_pcpu_t  dd = &dfly_pcpu[gd->gd_cpuid];
1823
1824         /*
1825          * Flag reschedule needed
1826          */
1827         need_user_resched();
1828
1829         /*
1830          * If no user thread is currently running we need to kick the helper
1831          * on our cpu to recover.  Otherwise the cpu will never schedule
1832          * anything again.
1833          *
1834          * We cannot schedule the process ourselves because this is an
1835          * IPI callback and we cannot acquire spinlocks in an IPI callback.
1836          *
1837          * Call wakeup_mycpu to avoid sending IPIs to other CPUs
1838          */
1839         if (dd->uschedcp == NULL &&
1840             CPUMASK_TESTBIT(dfly_rdyprocmask, gd->gd_cpuid)) {
1841                 ATOMIC_CPUMASK_NANDBIT(dfly_rdyprocmask, gd->gd_cpuid);
1842                 wakeup_mycpu(&dd->helper_thread);
1843         }
1844 }
1845
1846 /*
1847  * dfly_remrunqueue_locked() removes a given process from the run queue
1848  * that it is on, clearing the queue busy bit if it becomes empty.
1849  *
1850  * Note that user process scheduler is different from the LWKT schedule.
1851  * The user process scheduler only manages user processes but it uses LWKT
1852  * underneath, and a user process operating in the kernel will often be
1853  * 'released' from our management.
1854  *
1855  * uload is NOT adjusted here.  It is only adjusted if the lwkt_thread goes
1856  * to sleep or the lwp is moved to a different runq.
1857  */
1858 static void
1859 dfly_remrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1860 {
1861         struct rq *q;
1862         u_int32_t *which;
1863         u_int8_t pri;
1864
1865         KKASSERT(rdd->runqcount >= 0);
1866
1867         pri = lp->lwp_rqindex;
1868
1869         switch(lp->lwp_rqtype) {
1870         case RTP_PRIO_NORMAL:
1871                 q = &rdd->queues[pri];
1872                 which = &rdd->queuebits;
1873                 break;
1874         case RTP_PRIO_REALTIME:
1875         case RTP_PRIO_FIFO:
1876                 q = &rdd->rtqueues[pri];
1877                 which = &rdd->rtqueuebits;
1878                 break;
1879         case RTP_PRIO_IDLE:
1880                 q = &rdd->idqueues[pri];
1881                 which = &rdd->idqueuebits;
1882                 break;
1883         default:
1884                 panic("remrunqueue: invalid rtprio type");
1885                 /* NOT REACHED */
1886         }
1887         KKASSERT(lp->lwp_mpflags & LWP_MP_ONRUNQ);
1888         atomic_clear_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1889         TAILQ_REMOVE(q, lp, lwp_procq);
1890         --rdd->runqcount;
1891         if (TAILQ_EMPTY(q)) {
1892                 KASSERT((*which & (1 << pri)) != 0,
1893                         ("remrunqueue: remove from empty queue"));
1894                 *which &= ~(1 << pri);
1895         }
1896 }
1897
1898 /*
1899  * dfly_setrunqueue_locked()
1900  *
1901  * Add a process whos rqtype and rqindex had previously been calculated
1902  * onto the appropriate run queue.   Determine if the addition requires
1903  * a reschedule on a cpu and return the cpuid or -1.
1904  *
1905  * NOTE:          Lower priorities are better priorities.
1906  *
1907  * NOTE ON ULOAD: This variable specifies the aggregate load on a cpu, the
1908  *                sum of the rough lwp_priority for all running and runnable
1909  *                processes.  Lower priority processes (higher lwp_priority
1910  *                values) actually DO count as more load, not less, because
1911  *                these are the programs which require the most care with
1912  *                regards to cpu selection.
1913  */
1914 static void
1915 dfly_setrunqueue_locked(dfly_pcpu_t rdd, struct lwp *lp)
1916 {
1917         struct rq *q;
1918         u_int32_t *which;
1919         int pri;
1920
1921         KKASSERT(lp->lwp_qcpu == rdd->cpuid);
1922
1923         if ((lp->lwp_mpflags & LWP_MP_ULOAD) == 0) {
1924                 atomic_set_int(&lp->lwp_mpflags, LWP_MP_ULOAD);
1925                 atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].uload, lp->lwp_uload);
1926                 atomic_add_int(&dfly_pcpu[lp->lwp_qcpu].ucount, 1);
1927                 atomic_add_int(&dfly_ucount, 1);
1928         }
1929
1930         pri = lp->lwp_rqindex;
1931
1932         switch(lp->lwp_rqtype) {
1933         case RTP_PRIO_NORMAL:
1934                 q = &rdd->queues[pri];
1935                 which = &rdd->queuebits;
1936                 break;
1937         case RTP_PRIO_REALTIME:
1938         case RTP_PRIO_FIFO:
1939                 q = &rdd->rtqueues[pri];
1940                 which = &rdd->rtqueuebits;
1941                 break;
1942         case RTP_PRIO_IDLE:
1943                 q = &rdd->idqueues[pri];
1944                 which = &rdd->idqueuebits;
1945                 break;
1946         default:
1947                 panic("remrunqueue: invalid rtprio type");
1948                 /* NOT REACHED */
1949         }
1950
1951         /*
1952          * Place us on the selected queue.  Determine if we should be
1953          * placed at the head of the queue or at the end.
1954          *
1955          * We are placed at the tail if our round-robin count has expired,
1956          * or is about to expire and the system thinks its a good place to
1957          * round-robin, or there is already a next thread on the queue
1958          * (it might be trying to pick up where it left off and we don't
1959          * want to interfere).
1960          */
1961         KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
1962         atomic_set_int(&lp->lwp_mpflags, LWP_MP_ONRUNQ);
1963         ++rdd->runqcount;
1964
1965         if (lp->lwp_rrcount >= usched_dfly_rrinterval ||
1966             (lp->lwp_rrcount >= usched_dfly_rrinterval / 2 &&
1967              (lp->lwp_thread->td_mpflags & TDF_MP_BATCH_DEMARC)) ||
1968             !TAILQ_EMPTY(q)
1969         ) {
1970                 atomic_clear_int(&lp->lwp_thread->td_mpflags,
1971                                  TDF_MP_BATCH_DEMARC);
1972                 lp->lwp_rrcount = 0;
1973                 TAILQ_INSERT_TAIL(q, lp, lwp_procq);
1974         } else {
1975                 if (TAILQ_EMPTY(q))
1976                         lp->lwp_rrcount = 0;
1977                 TAILQ_INSERT_HEAD(q, lp, lwp_procq);
1978         }
1979         *which |= 1 << pri;
1980 }
1981
1982 /*
1983  * For SMP systems a user scheduler helper thread is created for each
1984  * cpu and is used to allow one cpu to wakeup another for the purposes of
1985  * scheduling userland threads from setrunqueue().
1986  *
1987  * UP systems do not need the helper since there is only one cpu.
1988  *
1989  * We can't use the idle thread for this because we might block.
1990  * Additionally, doing things this way allows us to HLT idle cpus
1991  * on MP systems.
1992  */
1993 static void
1994 dfly_helper_thread(void *dummy)
1995 {
1996     globaldata_t gd;
1997     dfly_pcpu_t dd;
1998     dfly_pcpu_t rdd;
1999     struct lwp *nlp;
2000     cpumask_t mask;
2001     int cpuid;
2002
2003     gd = mycpu;
2004     cpuid = gd->gd_cpuid;       /* doesn't change */
2005     mask = gd->gd_cpumask;      /* doesn't change */
2006     dd = &dfly_pcpu[cpuid];
2007
2008     /*
2009      * Since we only want to be woken up only when no user processes
2010      * are scheduled on a cpu, run at an ultra low priority.
2011      */
2012     lwkt_setpri_self(TDPRI_USER_SCHEDULER);
2013
2014     tsleep(&dd->helper_thread, 0, "schslp", 0);
2015
2016     for (;;) {
2017         /*
2018          * We use the LWKT deschedule-interlock trick to avoid racing
2019          * dfly_rdyprocmask.  This means we cannot block through to the
2020          * manual lwkt_switch() call we make below.
2021          */
2022         crit_enter_gd(gd);
2023         tsleep_interlock(&dd->helper_thread, 0);
2024
2025         spin_lock(&dd->spin);
2026
2027         ATOMIC_CPUMASK_ORMASK(dfly_rdyprocmask, mask);
2028         clear_user_resched();   /* This satisfied the reschedule request */
2029 #if 0
2030         dd->rrcount = 0;        /* Reset the round-robin counter */
2031 #endif
2032
2033         if (dd->runqcount || dd->uschedcp != NULL) {
2034                 /*
2035                  * Threads are available.  A thread may or may not be
2036                  * currently scheduled.  Get the best thread already queued
2037                  * to this cpu.
2038                  */
2039                 nlp = dfly_chooseproc_locked(dd, dd, dd->uschedcp, 0);
2040                 if (nlp) {
2041                         ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, mask);
2042                         dd->upri = nlp->lwp_priority;
2043                         dd->uschedcp = nlp;
2044 #if 0
2045                         dd->rrcount = 0;        /* reset round robin */
2046 #endif
2047                         spin_unlock(&dd->spin);
2048                         lwkt_acquire(nlp->lwp_thread);
2049                         lwkt_schedule(nlp->lwp_thread);
2050                 } else {
2051                         /*
2052                          * This situation should not occur because we had
2053                          * at least one thread available.
2054                          */
2055                         spin_unlock(&dd->spin);
2056                 }
2057         } else if (usched_dfly_features & 0x01) {
2058                 /*
2059                  * This cpu is devoid of runnable threads, steal a thread
2060                  * from another cpu.  Since we're stealing, might as well
2061                  * load balance at the same time.
2062                  *
2063                  * We choose the highest-loaded thread from the worst queue.
2064                  *
2065                  * NOTE! This function only returns a non-NULL rdd when
2066                  *       another cpu's queue is obviously overloaded.  We
2067                  *       do not want to perform the type of rebalancing
2068                  *       the schedclock does here because it would result
2069                  *       in insane process pulling when 'steady' state is
2070                  *       partially unbalanced (e.g. 6 runnables and only
2071                  *       4 cores).
2072                  */
2073                 rdd = dfly_choose_worst_queue(dd);
2074                 if (rdd && spin_trylock(&rdd->spin)) {
2075                         nlp = dfly_chooseproc_locked(rdd, dd, NULL, 1);
2076                         spin_unlock(&rdd->spin);
2077                 } else {
2078                         nlp = NULL;
2079                 }
2080                 if (nlp) {
2081                         ATOMIC_CPUMASK_ORMASK(dfly_curprocmask, mask);
2082                         dd->upri = nlp->lwp_priority;
2083                         dd->uschedcp = nlp;
2084 #if 0
2085                         dd->rrcount = 0;        /* reset round robin */
2086 #endif
2087                         spin_unlock(&dd->spin);
2088                         lwkt_acquire(nlp->lwp_thread);
2089                         lwkt_schedule(nlp->lwp_thread);
2090                 } else {
2091                         /*
2092                          * Leave the thread on our run queue.  Another
2093                          * scheduler will try to pull it later.
2094                          */
2095                         spin_unlock(&dd->spin);
2096                 }
2097         } else {
2098                 /*
2099                  * devoid of runnable threads and not allowed to steal
2100                  * any.
2101                  */
2102                 spin_unlock(&dd->spin);
2103         }
2104
2105         /*
2106          * We're descheduled unless someone scheduled us.  Switch away.
2107          * Exiting the critical section will cause splz() to be called
2108          * for us if interrupts and such are pending.
2109          */
2110         crit_exit_gd(gd);
2111         tsleep(&dd->helper_thread, PINTERLOCKED, "schslp", 0);
2112     }
2113 }
2114
2115 #if 0
2116 static int
2117 sysctl_usched_dfly_stick_to_level(SYSCTL_HANDLER_ARGS)
2118 {
2119         int error, new_val;
2120
2121         new_val = usched_dfly_stick_to_level;
2122
2123         error = sysctl_handle_int(oidp, &new_val, 0, req);
2124         if (error != 0 || req->newptr == NULL)
2125                 return (error);
2126         if (new_val > cpu_topology_levels_number - 1 || new_val < 0)
2127                 return (EINVAL);
2128         usched_dfly_stick_to_level = new_val;
2129         return (0);
2130 }
2131 #endif
2132
2133 /*
2134  * Setup the queues and scheduler helpers (scheduler helpers are SMP only).
2135  * Note that curprocmask bit 0 has already been cleared by rqinit() and
2136  * we should not mess with it further.
2137  */
2138 static void
2139 usched_dfly_cpu_init(void)
2140 {
2141         int i;
2142         int j;
2143         int cpuid;
2144         int smt_not_supported = 0;
2145         int cache_coherent_not_supported = 0;
2146
2147         if (bootverbose)
2148                 kprintf("Start scheduler helpers on cpus:\n");
2149
2150         sysctl_ctx_init(&usched_dfly_sysctl_ctx);
2151         usched_dfly_sysctl_tree =
2152                 SYSCTL_ADD_NODE(&usched_dfly_sysctl_ctx,
2153                                 SYSCTL_STATIC_CHILDREN(_kern), OID_AUTO,
2154                                 "usched_dfly", CTLFLAG_RD, 0, "");
2155
2156         for (i = 0; i < ncpus; ++i) {
2157                 dfly_pcpu_t dd = &dfly_pcpu[i];
2158                 cpumask_t mask;
2159
2160                 CPUMASK_ASSBIT(mask, i);
2161                 if (CPUMASK_TESTMASK(mask, smp_active_mask) == 0)
2162                     continue;
2163
2164                 spin_init(&dd->spin);
2165                 dd->cpunode = get_cpu_node_by_cpuid(i);
2166                 dd->cpuid = i;
2167                 CPUMASK_ASSBIT(dd->cpumask, i);
2168                 for (j = 0; j < NQS; j++) {
2169                         TAILQ_INIT(&dd->queues[j]);
2170                         TAILQ_INIT(&dd->rtqueues[j]);
2171                         TAILQ_INIT(&dd->idqueues[j]);
2172                 }
2173                 ATOMIC_CPUMASK_NANDBIT(dfly_curprocmask, 0);
2174
2175                 if (dd->cpunode == NULL) {
2176                         smt_not_supported = 1;
2177                         cache_coherent_not_supported = 1;
2178                         if (bootverbose)
2179                                 kprintf ("\tcpu%d - WARNING: No CPU NODE "
2180                                          "found for cpu\n", i);
2181                 } else {
2182                         switch (dd->cpunode->type) {
2183                         case THREAD_LEVEL:
2184                                 if (bootverbose)
2185                                         kprintf ("\tcpu%d - HyperThreading "
2186                                                  "available. Core siblings: ",
2187                                                  i);
2188                                 break;
2189                         case CORE_LEVEL:
2190                                 smt_not_supported = 1;
2191
2192                                 if (bootverbose)
2193                                         kprintf ("\tcpu%d - No HT available, "
2194                                                  "multi-core/physical "
2195                                                  "cpu. Physical siblings: ",
2196                                                  i);
2197                                 break;
2198                         case CHIP_LEVEL:
2199                                 smt_not_supported = 1;
2200
2201                                 if (bootverbose)
2202                                         kprintf ("\tcpu%d - No HT available, "
2203                                                  "single-core/physical cpu. "
2204                                                  "Package Siblings: ",
2205                                                  i);
2206                                 break;
2207                         default:
2208                                 /* Let's go for safe defaults here */
2209                                 smt_not_supported = 1;
2210                                 cache_coherent_not_supported = 1;
2211                                 if (bootverbose)
2212                                         kprintf ("\tcpu%d - Unknown cpunode->"
2213                                                  "type=%u. Siblings: ",
2214                                                  i,
2215                                                  (u_int)dd->cpunode->type);
2216                                 break;
2217                         }
2218
2219                         if (bootverbose) {
2220                                 if (dd->cpunode->parent_node != NULL) {
2221                                         CPUSET_FOREACH(cpuid, dd->cpunode->parent_node->members)
2222                                                 kprintf("cpu%d ", cpuid);
2223                                         kprintf("\n");
2224                                 } else {
2225                                         kprintf(" no siblings\n");
2226                                 }
2227                         }
2228                 }
2229
2230                 lwkt_create(dfly_helper_thread, NULL, NULL, &dd->helper_thread,
2231                             0, i, "usched %d", i);
2232
2233                 /*
2234                  * Allow user scheduling on the target cpu.  cpu #0 has already
2235                  * been enabled in rqinit().
2236                  */
2237                 if (i)
2238                         ATOMIC_CPUMASK_NANDMASK(dfly_curprocmask, mask);
2239                 ATOMIC_CPUMASK_ORMASK(dfly_rdyprocmask, mask);
2240                 dd->upri = PRIBASE_NULL;
2241
2242         }
2243
2244         /* usched_dfly sysctl configurable parameters */
2245
2246         SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2247                        SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2248                        OID_AUTO, "rrinterval", CTLFLAG_RW,
2249                        &usched_dfly_rrinterval, 0, "");
2250         SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2251                        SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2252                        OID_AUTO, "decay", CTLFLAG_RW,
2253                        &usched_dfly_decay, 0, "Extra decay when not running");
2254
2255         /* Add enable/disable option for SMT scheduling if supported */
2256         if (smt_not_supported) {
2257                 usched_dfly_smt = 0;
2258                 SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2259                                   SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2260                                   OID_AUTO, "smt", CTLFLAG_RD,
2261                                   "NOT SUPPORTED", 0, "SMT NOT SUPPORTED");
2262         } else {
2263                 usched_dfly_smt = 1;
2264                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2265                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2266                                OID_AUTO, "smt", CTLFLAG_RW,
2267                                &usched_dfly_smt, 0, "Enable SMT scheduling");
2268         }
2269
2270         /*
2271          * Add enable/disable option for cache coherent scheduling
2272          * if supported
2273          */
2274         if (cache_coherent_not_supported) {
2275                 usched_dfly_cache_coherent = 0;
2276                 SYSCTL_ADD_STRING(&usched_dfly_sysctl_ctx,
2277                                   SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2278                                   OID_AUTO, "cache_coherent", CTLFLAG_RD,
2279                                   "NOT SUPPORTED", 0,
2280                                   "Cache coherence NOT SUPPORTED");
2281         } else {
2282                 usched_dfly_cache_coherent = 1;
2283                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2284                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2285                                OID_AUTO, "cache_coherent", CTLFLAG_RW,
2286                                &usched_dfly_cache_coherent, 0,
2287                                "Enable/Disable cache coherent scheduling");
2288
2289                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2290                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2291                                OID_AUTO, "weight1", CTLFLAG_RW,
2292                                &usched_dfly_weight1, 200,
2293                                "Weight selection for current cpu");
2294
2295                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2296                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2297                                OID_AUTO, "weight2", CTLFLAG_RW,
2298                                &usched_dfly_weight2, 180,
2299                                "Weight selection for wakefrom cpu");
2300
2301                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2302                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2303                                OID_AUTO, "weight3", CTLFLAG_RW,
2304                                &usched_dfly_weight3, 40,
2305                                "Weight selection for num threads on queue");
2306
2307                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2308                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2309                                OID_AUTO, "weight4", CTLFLAG_RW,
2310                                &usched_dfly_weight4, 160,
2311                                "Availability of other idle cpus");
2312
2313                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2314                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2315                                OID_AUTO, "fast_resched", CTLFLAG_RW,
2316                                &usched_dfly_fast_resched, 0,
2317                                "Availability of other idle cpus");
2318
2319                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2320                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2321                                OID_AUTO, "features", CTLFLAG_RW,
2322                                &usched_dfly_features, 0x8F,
2323                                "Allow pulls into empty queues");
2324
2325                 SYSCTL_ADD_INT(&usched_dfly_sysctl_ctx,
2326                                SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2327                                OID_AUTO, "swmask", CTLFLAG_RW,
2328                                &usched_dfly_swmask, ~PPQMASK,
2329                                "Queue mask to force thread switch");
2330
2331 #if 0
2332                 SYSCTL_ADD_PROC(&usched_dfly_sysctl_ctx,
2333                                 SYSCTL_CHILDREN(usched_dfly_sysctl_tree),
2334                                 OID_AUTO, "stick_to_level",
2335                                 CTLTYPE_INT | CTLFLAG_RW,
2336                                 NULL, sizeof usched_dfly_stick_to_level,
2337                                 sysctl_usched_dfly_stick_to_level, "I",
2338                                 "Stick a process to this level. See sysctl"
2339                                 "paremter hw.cpu_topology.level_description");
2340 #endif
2341         }
2342 }
2343 SYSINIT(uschedtd, SI_BOOT2_USCHED, SI_ORDER_SECOND,
2344         usched_dfly_cpu_init, NULL)