nrelease - fix/improve livecd
[dragonfly.git] / contrib / gdb-7 / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3    Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5    Contributed by Cygnus Support.  Written by John Gilmore.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42    of the debugger, and the part which is target-specific, or
43    specific to the communications interface between us and the
44    target.
45
46    A TARGET is an interface between the debugger and a particular
47    kind of file or process.  Targets can be STACKED in STRATA,
48    so that more than one target can potentially respond to a request.
49    In particular, memory accesses will walk down the stack of targets
50    until they find a target that is interested in handling that particular
51    address.  STRATA are artificial boundaries on the stack, within
52    which particular kinds of targets live.  Strata exist so that
53    people don't get confused by pushing e.g. a process target and then
54    a file target, and wondering why they can't see the current values
55    of variables any more (the file target is handling them and they
56    never get to the process target).  So when you push a file target,
57    it goes into the file stratum, which is always below the process
58    stratum.  */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65 #include "btrace.h"
66
67 enum strata
68   {
69     dummy_stratum,              /* The lowest of the low */
70     file_stratum,               /* Executable files, etc */
71     process_stratum,            /* Executing processes or core dump files */
72     thread_stratum,             /* Executing threads */
73     record_stratum,             /* Support record debugging */
74     arch_stratum                /* Architecture overrides */
75   };
76
77 enum thread_control_capabilities
78   {
79     tc_none = 0,                /* Default: can't control thread execution.  */
80     tc_schedlock = 1,           /* Can lock the thread scheduler.  */
81   };
82
83 /* Stuff for target_wait.  */
84
85 /* Generally, what has the program done?  */
86 enum target_waitkind
87   {
88     /* The program has exited.  The exit status is in value.integer.  */
89     TARGET_WAITKIND_EXITED,
90
91     /* The program has stopped with a signal.  Which signal is in
92        value.sig.  */
93     TARGET_WAITKIND_STOPPED,
94
95     /* The program has terminated with a signal.  Which signal is in
96        value.sig.  */
97     TARGET_WAITKIND_SIGNALLED,
98
99     /* The program is letting us know that it dynamically loaded something
100        (e.g. it called load(2) on AIX).  */
101     TARGET_WAITKIND_LOADED,
102
103     /* The program has forked.  A "related" process' PTID is in
104        value.related_pid.  I.e., if the child forks, value.related_pid
105        is the parent's ID.  */
106
107     TARGET_WAITKIND_FORKED,
108
109     /* The program has vforked.  A "related" process's PTID is in
110        value.related_pid.  */
111
112     TARGET_WAITKIND_VFORKED,
113
114     /* The program has exec'ed a new executable file.  The new file's
115        pathname is pointed to by value.execd_pathname.  */
116
117     TARGET_WAITKIND_EXECD,
118
119     /* The program had previously vforked, and now the child is done
120        with the shared memory region, because it exec'ed or exited.
121        Note that the event is reported to the vfork parent.  This is
122        only used if GDB did not stay attached to the vfork child,
123        otherwise, a TARGET_WAITKIND_EXECD or
124        TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125        has the same effect.  */
126     TARGET_WAITKIND_VFORK_DONE,
127
128     /* The program has entered or returned from a system call.  On
129        HP-UX, this is used in the hardware watchpoint implementation.
130        The syscall's unique integer ID number is in value.syscall_id.  */
131
132     TARGET_WAITKIND_SYSCALL_ENTRY,
133     TARGET_WAITKIND_SYSCALL_RETURN,
134
135     /* Nothing happened, but we stopped anyway.  This perhaps should be handled
136        within target_wait, but I'm not sure target_wait should be resuming the
137        inferior.  */
138     TARGET_WAITKIND_SPURIOUS,
139
140     /* An event has occured, but we should wait again.
141        Remote_async_wait() returns this when there is an event
142        on the inferior, but the rest of the world is not interested in
143        it.  The inferior has not stopped, but has just sent some output
144        to the console, for instance.  In this case, we want to go back
145        to the event loop and wait there for another event from the
146        inferior, rather than being stuck in the remote_async_wait()
147        function. sThis way the event loop is responsive to other events,
148        like for instance the user typing.  */
149     TARGET_WAITKIND_IGNORE,
150
151     /* The target has run out of history information,
152        and cannot run backward any further.  */
153     TARGET_WAITKIND_NO_HISTORY,
154
155     /* There are no resumed children left in the program.  */
156     TARGET_WAITKIND_NO_RESUMED
157   };
158
159 struct target_waitstatus
160   {
161     enum target_waitkind kind;
162
163     /* Forked child pid, execd pathname, exit status, signal number or
164        syscall number.  */
165     union
166       {
167         int integer;
168         enum gdb_signal sig;
169         ptid_t related_pid;
170         char *execd_pathname;
171         int syscall_number;
172       }
173     value;
174   };
175
176 /* Options that can be passed to target_wait.  */
177
178 /* Return immediately if there's no event already queued.  If this
179    options is not requested, target_wait blocks waiting for an
180    event.  */
181 #define TARGET_WNOHANG 1
182
183 /* The structure below stores information about a system call.
184    It is basically used in the "catch syscall" command, and in
185    every function that gives information about a system call.
186    
187    It's also good to mention that its fields represent everything
188    that we currently know about a syscall in GDB.  */
189 struct syscall
190   {
191     /* The syscall number.  */
192     int number;
193
194     /* The syscall name.  */
195     const char *name;
196   };
197
198 /* Return a pretty printed form of target_waitstatus.
199    Space for the result is malloc'd, caller must free.  */
200 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
201
202 /* Return a pretty printed form of TARGET_OPTIONS.
203    Space for the result is malloc'd, caller must free.  */
204 extern char *target_options_to_string (int target_options);
205
206 /* Possible types of events that the inferior handler will have to
207    deal with.  */
208 enum inferior_event_type
209   {
210     /* Process a normal inferior event which will result in target_wait
211        being called.  */
212     INF_REG_EVENT,
213     /* We are called because a timer went off.  */
214     INF_TIMER,
215     /* We are called to do stuff after the inferior stops.  */
216     INF_EXEC_COMPLETE,
217     /* We are called to do some stuff after the inferior stops, but we
218        are expected to reenter the proceed() and
219        handle_inferior_event() functions.  This is used only in case of
220        'step n' like commands.  */
221     INF_EXEC_CONTINUE
222   };
223 \f
224 /* Target objects which can be transfered using target_read,
225    target_write, et cetera.  */
226
227 enum target_object
228 {
229   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
230   TARGET_OBJECT_AVR,
231   /* SPU target specific transfer.  See "spu-tdep.c".  */
232   TARGET_OBJECT_SPU,
233   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
234   TARGET_OBJECT_MEMORY,
235   /* Memory, avoiding GDB's data cache and trusting the executable.
236      Target implementations of to_xfer_partial never need to handle
237      this object, and most callers should not use it.  */
238   TARGET_OBJECT_RAW_MEMORY,
239   /* Memory known to be part of the target's stack.  This is cached even
240      if it is not in a region marked as such, since it is known to be
241      "normal" RAM.  */
242   TARGET_OBJECT_STACK_MEMORY,
243   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
244   TARGET_OBJECT_UNWIND_TABLE,
245   /* Transfer auxilliary vector.  */
246   TARGET_OBJECT_AUXV,
247   /* StackGhost cookie.  See "sparc-tdep.c".  */
248   TARGET_OBJECT_WCOOKIE,
249   /* Target memory map in XML format.  */
250   TARGET_OBJECT_MEMORY_MAP,
251   /* Flash memory.  This object can be used to write contents to
252      a previously erased flash memory.  Using it without erasing
253      flash can have unexpected results.  Addresses are physical
254      address on target, and not relative to flash start.  */
255   TARGET_OBJECT_FLASH,
256   /* Available target-specific features, e.g. registers and coprocessors.
257      See "target-descriptions.c".  ANNEX should never be empty.  */
258   TARGET_OBJECT_AVAILABLE_FEATURES,
259   /* Currently loaded libraries, in XML format.  */
260   TARGET_OBJECT_LIBRARIES,
261   /* Currently loaded libraries specific for SVR4 systems, in XML format.  */
262   TARGET_OBJECT_LIBRARIES_SVR4,
263   /* Get OS specific data.  The ANNEX specifies the type (running
264      processes, etc.).  The data being transfered is expected to follow
265      the DTD specified in features/osdata.dtd.  */
266   TARGET_OBJECT_OSDATA,
267   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
268      platforms.  */
269   TARGET_OBJECT_SIGNAL_INFO,
270   /* The list of threads that are being debugged.  */
271   TARGET_OBJECT_THREADS,
272   /* Collected static trace data.  */
273   TARGET_OBJECT_STATIC_TRACE_DATA,
274   /* The HP-UX registers (those that can be obtained or modified by using
275      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
276   TARGET_OBJECT_HPUX_UREGS,
277   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
278      image of the code address whose linkage pointer we are looking for.
279
280      The size of the data transfered is always 8 bytes (the size of an
281      address on ia64).  */
282   TARGET_OBJECT_HPUX_SOLIB_GOT,
283   /* Traceframe info, in XML format.  */
284   TARGET_OBJECT_TRACEFRAME_INFO,
285   /* Load maps for FDPIC systems.  */
286   TARGET_OBJECT_FDPIC,
287   /* Darwin dynamic linker info data.  */
288   TARGET_OBJECT_DARWIN_DYLD_INFO,
289   /* OpenVMS Unwind Information Block.  */
290   TARGET_OBJECT_OPENVMS_UIB,
291   /* Branch trace data, in XML format.  */
292   TARGET_OBJECT_BTRACE
293   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
294 };
295
296 /* Enumeration of the kinds of traceframe searches that a target may
297    be able to perform.  */
298
299 enum trace_find_type
300   {
301     tfind_number,
302     tfind_pc,
303     tfind_tp,
304     tfind_range,
305     tfind_outside,
306   };
307
308 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
309 DEF_VEC_P(static_tracepoint_marker_p);
310
311 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
312    OBJECT.  The OFFSET, for a seekable object, specifies the
313    starting point.  The ANNEX can be used to provide additional
314    data-specific information to the target.
315
316    Return the number of bytes actually transfered, or -1 if the
317    transfer is not supported or otherwise fails.  Return of a positive
318    value less than LEN indicates that no further transfer is possible.
319    Unlike the raw to_xfer_partial interface, callers of these
320    functions do not need to retry partial transfers.  */
321
322 extern LONGEST target_read (struct target_ops *ops,
323                             enum target_object object,
324                             const char *annex, gdb_byte *buf,
325                             ULONGEST offset, LONGEST len);
326
327 struct memory_read_result
328   {
329     /* First address that was read.  */
330     ULONGEST begin;
331     /* Past-the-end address.  */
332     ULONGEST end;
333     /* The data.  */
334     gdb_byte *data;
335 };
336 typedef struct memory_read_result memory_read_result_s;
337 DEF_VEC_O(memory_read_result_s);
338
339 extern void free_memory_read_result_vector (void *);
340
341 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
342                                                       ULONGEST offset,
343                                                       LONGEST len);
344   
345 extern LONGEST target_write (struct target_ops *ops,
346                              enum target_object object,
347                              const char *annex, const gdb_byte *buf,
348                              ULONGEST offset, LONGEST len);
349
350 /* Similar to target_write, except that it also calls PROGRESS with
351    the number of bytes written and the opaque BATON after every
352    successful partial write (and before the first write).  This is
353    useful for progress reporting and user interaction while writing
354    data.  To abort the transfer, the progress callback can throw an
355    exception.  */
356
357 LONGEST target_write_with_progress (struct target_ops *ops,
358                                     enum target_object object,
359                                     const char *annex, const gdb_byte *buf,
360                                     ULONGEST offset, LONGEST len,
361                                     void (*progress) (ULONGEST, void *),
362                                     void *baton);
363
364 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
365    be read using OPS.  The return value will be -1 if the transfer
366    fails or is not supported; 0 if the object is empty; or the length
367    of the object otherwise.  If a positive value is returned, a
368    sufficiently large buffer will be allocated using xmalloc and
369    returned in *BUF_P containing the contents of the object.
370
371    This method should be used for objects sufficiently small to store
372    in a single xmalloc'd buffer, when no fixed bound on the object's
373    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
374    through this function.  */
375
376 extern LONGEST target_read_alloc (struct target_ops *ops,
377                                   enum target_object object,
378                                   const char *annex, gdb_byte **buf_p);
379
380 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
381    returned as a string, allocated using xmalloc.  If an error occurs
382    or the transfer is unsupported, NULL is returned.  Empty objects
383    are returned as allocated but empty strings.  A warning is issued
384    if the result contains any embedded NUL bytes.  */
385
386 extern char *target_read_stralloc (struct target_ops *ops,
387                                    enum target_object object,
388                                    const char *annex);
389
390 /* Wrappers to target read/write that perform memory transfers.  They
391    throw an error if the memory transfer fails.
392
393    NOTE: cagney/2003-10-23: The naming schema is lifted from
394    "frame.h".  The parameter order is lifted from get_frame_memory,
395    which in turn lifted it from read_memory.  */
396
397 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
398                                gdb_byte *buf, LONGEST len);
399 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
400                                             CORE_ADDR addr, int len,
401                                             enum bfd_endian byte_order);
402 \f
403 struct thread_info;             /* fwd decl for parameter list below: */
404
405 struct target_ops
406   {
407     struct target_ops *beneath; /* To the target under this one.  */
408     char *to_shortname;         /* Name this target type */
409     char *to_longname;          /* Name for printing */
410     char *to_doc;               /* Documentation.  Does not include trailing
411                                    newline, and starts with a one-line descrip-
412                                    tion (probably similar to to_longname).  */
413     /* Per-target scratch pad.  */
414     void *to_data;
415     /* The open routine takes the rest of the parameters from the
416        command, and (if successful) pushes a new target onto the
417        stack.  Targets should supply this routine, if only to provide
418        an error message.  */
419     void (*to_open) (char *, int);
420     /* Old targets with a static target vector provide "to_close".
421        New re-entrant targets provide "to_xclose" and that is expected
422        to xfree everything (including the "struct target_ops").  */
423     void (*to_xclose) (struct target_ops *targ, int quitting);
424     void (*to_close) (int);
425     void (*to_attach) (struct target_ops *ops, char *, int);
426     void (*to_post_attach) (int);
427     void (*to_detach) (struct target_ops *ops, char *, int);
428     void (*to_disconnect) (struct target_ops *, char *, int);
429     void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
430     ptid_t (*to_wait) (struct target_ops *,
431                        ptid_t, struct target_waitstatus *, int);
432     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
433     void (*to_store_registers) (struct target_ops *, struct regcache *, int);
434     void (*to_prepare_to_store) (struct regcache *);
435
436     /* Transfer LEN bytes of memory between GDB address MYADDR and
437        target address MEMADDR.  If WRITE, transfer them to the target, else
438        transfer them from the target.  TARGET is the target from which we
439        get this function.
440
441        Return value, N, is one of the following:
442
443        0 means that we can't handle this.  If errno has been set, it is the
444        error which prevented us from doing it (FIXME: What about bfd_error?).
445
446        positive (call it N) means that we have transferred N bytes
447        starting at MEMADDR.  We might be able to handle more bytes
448        beyond this length, but no promises.
449
450        negative (call its absolute value N) means that we cannot
451        transfer right at MEMADDR, but we could transfer at least
452        something at MEMADDR + N.
453
454        NOTE: cagney/2004-10-01: This has been entirely superseeded by
455        to_xfer_partial and inferior inheritance.  */
456
457     int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
458                                    int len, int write,
459                                    struct mem_attrib *attrib,
460                                    struct target_ops *target);
461
462     void (*to_files_info) (struct target_ops *);
463     int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
464     int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
465     int (*to_can_use_hw_breakpoint) (int, int, int);
466     int (*to_ranged_break_num_registers) (struct target_ops *);
467     int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
468     int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
469
470     /* Documentation of what the two routines below are expected to do is
471        provided with the corresponding target_* macros.  */
472     int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
473     int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
474
475     int (*to_insert_mask_watchpoint) (struct target_ops *,
476                                       CORE_ADDR, CORE_ADDR, int);
477     int (*to_remove_mask_watchpoint) (struct target_ops *,
478                                       CORE_ADDR, CORE_ADDR, int);
479     int (*to_stopped_by_watchpoint) (void);
480     int to_have_steppable_watchpoint;
481     int to_have_continuable_watchpoint;
482     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
483     int (*to_watchpoint_addr_within_range) (struct target_ops *,
484                                             CORE_ADDR, CORE_ADDR, int);
485
486     /* Documentation of this routine is provided with the corresponding
487        target_* macro.  */
488     int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
489
490     int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
491                                               struct expression *);
492     int (*to_masked_watch_num_registers) (struct target_ops *,
493                                           CORE_ADDR, CORE_ADDR);
494     void (*to_terminal_init) (void);
495     void (*to_terminal_inferior) (void);
496     void (*to_terminal_ours_for_output) (void);
497     void (*to_terminal_ours) (void);
498     void (*to_terminal_save_ours) (void);
499     void (*to_terminal_info) (char *, int);
500     void (*to_kill) (struct target_ops *);
501     void (*to_load) (char *, int);
502     void (*to_create_inferior) (struct target_ops *, 
503                                 char *, char *, char **, int);
504     void (*to_post_startup_inferior) (ptid_t);
505     int (*to_insert_fork_catchpoint) (int);
506     int (*to_remove_fork_catchpoint) (int);
507     int (*to_insert_vfork_catchpoint) (int);
508     int (*to_remove_vfork_catchpoint) (int);
509     int (*to_follow_fork) (struct target_ops *, int);
510     int (*to_insert_exec_catchpoint) (int);
511     int (*to_remove_exec_catchpoint) (int);
512     int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
513     int (*to_has_exited) (int, int, int *);
514     void (*to_mourn_inferior) (struct target_ops *);
515     int (*to_can_run) (void);
516
517     /* Documentation of this routine is provided with the corresponding
518        target_* macro.  */
519     void (*to_pass_signals) (int, unsigned char *);
520
521     /* Documentation of this routine is provided with the
522        corresponding target_* function.  */
523     void (*to_program_signals) (int, unsigned char *);
524
525     int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
526     void (*to_find_new_threads) (struct target_ops *);
527     char *(*to_pid_to_str) (struct target_ops *, ptid_t);
528     char *(*to_extra_thread_info) (struct thread_info *);
529     char *(*to_thread_name) (struct thread_info *);
530     void (*to_stop) (ptid_t);
531     void (*to_rcmd) (char *command, struct ui_file *output);
532     char *(*to_pid_to_exec_file) (int pid);
533     void (*to_log_command) (const char *);
534     struct target_section_table *(*to_get_section_table) (struct target_ops *);
535     enum strata to_stratum;
536     int (*to_has_all_memory) (struct target_ops *);
537     int (*to_has_memory) (struct target_ops *);
538     int (*to_has_stack) (struct target_ops *);
539     int (*to_has_registers) (struct target_ops *);
540     int (*to_has_execution) (struct target_ops *, ptid_t);
541     int to_has_thread_control;  /* control thread execution */
542     int to_attach_no_wait;
543     /* ASYNC target controls */
544     int (*to_can_async_p) (void);
545     int (*to_is_async_p) (void);
546     void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
547     int (*to_supports_non_stop) (void);
548     /* find_memory_regions support method for gcore */
549     int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
550     /* make_corefile_notes support method for gcore */
551     char * (*to_make_corefile_notes) (bfd *, int *);
552     /* get_bookmark support method for bookmarks */
553     gdb_byte * (*to_get_bookmark) (char *, int);
554     /* goto_bookmark support method for bookmarks */
555     void (*to_goto_bookmark) (gdb_byte *, int);
556     /* Return the thread-local address at OFFSET in the
557        thread-local storage for the thread PTID and the shared library
558        or executable file given by OBJFILE.  If that block of
559        thread-local storage hasn't been allocated yet, this function
560        may return an error.  */
561     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
562                                               ptid_t ptid,
563                                               CORE_ADDR load_module_addr,
564                                               CORE_ADDR offset);
565
566     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
567        OBJECT.  The OFFSET, for a seekable object, specifies the
568        starting point.  The ANNEX can be used to provide additional
569        data-specific information to the target.
570
571        Return the number of bytes actually transfered, zero when no
572        further transfer is possible, and -1 when the transfer is not
573        supported.  Return of a positive value smaller than LEN does
574        not indicate the end of the object, only the end of the
575        transfer; higher level code should continue transferring if
576        desired.  This is handled in target.c.
577
578        The interface does not support a "retry" mechanism.  Instead it
579        assumes that at least one byte will be transfered on each
580        successful call.
581
582        NOTE: cagney/2003-10-17: The current interface can lead to
583        fragmented transfers.  Lower target levels should not implement
584        hacks, such as enlarging the transfer, in an attempt to
585        compensate for this.  Instead, the target stack should be
586        extended so that it implements supply/collect methods and a
587        look-aside object cache.  With that available, the lowest
588        target can safely and freely "push" data up the stack.
589
590        See target_read and target_write for more information.  One,
591        and only one, of readbuf or writebuf must be non-NULL.  */
592
593     LONGEST (*to_xfer_partial) (struct target_ops *ops,
594                                 enum target_object object, const char *annex,
595                                 gdb_byte *readbuf, const gdb_byte *writebuf,
596                                 ULONGEST offset, LONGEST len);
597
598     /* Returns the memory map for the target.  A return value of NULL
599        means that no memory map is available.  If a memory address
600        does not fall within any returned regions, it's assumed to be
601        RAM.  The returned memory regions should not overlap.
602
603        The order of regions does not matter; target_memory_map will
604        sort regions by starting address.  For that reason, this
605        function should not be called directly except via
606        target_memory_map.
607
608        This method should not cache data; if the memory map could
609        change unexpectedly, it should be invalidated, and higher
610        layers will re-fetch it.  */
611     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
612
613     /* Erases the region of flash memory starting at ADDRESS, of
614        length LENGTH.
615
616        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
617        on flash block boundaries, as reported by 'to_memory_map'.  */
618     void (*to_flash_erase) (struct target_ops *,
619                            ULONGEST address, LONGEST length);
620
621     /* Finishes a flash memory write sequence.  After this operation
622        all flash memory should be available for writing and the result
623        of reading from areas written by 'to_flash_write' should be
624        equal to what was written.  */
625     void (*to_flash_done) (struct target_ops *);
626
627     /* Describe the architecture-specific features of this target.
628        Returns the description found, or NULL if no description
629        was available.  */
630     const struct target_desc *(*to_read_description) (struct target_ops *ops);
631
632     /* Build the PTID of the thread on which a given task is running,
633        based on LWP and THREAD.  These values are extracted from the
634        task Private_Data section of the Ada Task Control Block, and
635        their interpretation depends on the target.  */
636     ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
637
638     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
639        Return 0 if *READPTR is already at the end of the buffer.
640        Return -1 if there is insufficient buffer for a whole entry.
641        Return 1 if an entry was read into *TYPEP and *VALP.  */
642     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
643                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
644
645     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
646        sequence of bytes in PATTERN with length PATTERN_LEN.
647
648        The result is 1 if found, 0 if not found, and -1 if there was an error
649        requiring halting of the search (e.g. memory read error).
650        If the pattern is found the address is recorded in FOUND_ADDRP.  */
651     int (*to_search_memory) (struct target_ops *ops,
652                              CORE_ADDR start_addr, ULONGEST search_space_len,
653                              const gdb_byte *pattern, ULONGEST pattern_len,
654                              CORE_ADDR *found_addrp);
655
656     /* Can target execute in reverse?  */
657     int (*to_can_execute_reverse) (void);
658
659     /* The direction the target is currently executing.  Must be
660        implemented on targets that support reverse execution and async
661        mode.  The default simply returns forward execution.  */
662     enum exec_direction_kind (*to_execution_direction) (void);
663
664     /* Does this target support debugging multiple processes
665        simultaneously?  */
666     int (*to_supports_multi_process) (void);
667
668     /* Does this target support enabling and disabling tracepoints while a trace
669        experiment is running?  */
670     int (*to_supports_enable_disable_tracepoint) (void);
671
672     /* Does this target support disabling address space randomization?  */
673     int (*to_supports_disable_randomization) (void);
674
675     /* Does this target support the tracenz bytecode for string collection?  */
676     int (*to_supports_string_tracing) (void);
677
678     /* Does this target support evaluation of breakpoint conditions on its
679        end?  */
680     int (*to_supports_evaluation_of_breakpoint_conditions) (void);
681
682     /* Does this target support evaluation of breakpoint commands on its
683        end?  */
684     int (*to_can_run_breakpoint_commands) (void);
685
686     /* Determine current architecture of thread PTID.
687
688        The target is supposed to determine the architecture of the code where
689        the target is currently stopped at (on Cell, if a target is in spu_run,
690        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
691        This is architecture used to perform decr_pc_after_break adjustment,
692        and also determines the frame architecture of the innermost frame.
693        ptrace operations need to operate according to target_gdbarch ().
694
695        The default implementation always returns target_gdbarch ().  */
696     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
697
698     /* Determine current address space of thread PTID.
699
700        The default implementation always returns the inferior's
701        address space.  */
702     struct address_space *(*to_thread_address_space) (struct target_ops *,
703                                                       ptid_t);
704
705     /* Target file operations.  */
706
707     /* Open FILENAME on the target, using FLAGS and MODE.  Return a
708        target file descriptor, or -1 if an error occurs (and set
709        *TARGET_ERRNO).  */
710     int (*to_fileio_open) (const char *filename, int flags, int mode,
711                            int *target_errno);
712
713     /* Write up to LEN bytes from WRITE_BUF to FD on the target.
714        Return the number of bytes written, or -1 if an error occurs
715        (and set *TARGET_ERRNO).  */
716     int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
717                              ULONGEST offset, int *target_errno);
718
719     /* Read up to LEN bytes FD on the target into READ_BUF.
720        Return the number of bytes read, or -1 if an error occurs
721        (and set *TARGET_ERRNO).  */
722     int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
723                             ULONGEST offset, int *target_errno);
724
725     /* Close FD on the target.  Return 0, or -1 if an error occurs
726        (and set *TARGET_ERRNO).  */
727     int (*to_fileio_close) (int fd, int *target_errno);
728
729     /* Unlink FILENAME on the target.  Return 0, or -1 if an error
730        occurs (and set *TARGET_ERRNO).  */
731     int (*to_fileio_unlink) (const char *filename, int *target_errno);
732
733     /* Read value of symbolic link FILENAME on the target.  Return a
734        null-terminated string allocated via xmalloc, or NULL if an error
735        occurs (and set *TARGET_ERRNO).  */
736     char *(*to_fileio_readlink) (const char *filename, int *target_errno);
737
738
739     /* Implement the "info proc" command.  */
740     void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
741
742     /* Tracepoint-related operations.  */
743
744     /* Prepare the target for a tracing run.  */
745     void (*to_trace_init) (void);
746
747     /* Send full details of a tracepoint location to the target.  */
748     void (*to_download_tracepoint) (struct bp_location *location);
749
750     /* Is the target able to download tracepoint locations in current
751        state?  */
752     int (*to_can_download_tracepoint) (void);
753
754     /* Send full details of a trace state variable to the target.  */
755     void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
756
757     /* Enable a tracepoint on the target.  */
758     void (*to_enable_tracepoint) (struct bp_location *location);
759
760     /* Disable a tracepoint on the target.  */
761     void (*to_disable_tracepoint) (struct bp_location *location);
762
763     /* Inform the target info of memory regions that are readonly
764        (such as text sections), and so it should return data from
765        those rather than look in the trace buffer.  */
766     void (*to_trace_set_readonly_regions) (void);
767
768     /* Start a trace run.  */
769     void (*to_trace_start) (void);
770
771     /* Get the current status of a tracing run.  */
772     int (*to_get_trace_status) (struct trace_status *ts);
773
774     void (*to_get_tracepoint_status) (struct breakpoint *tp,
775                                       struct uploaded_tp *utp);
776
777     /* Stop a trace run.  */
778     void (*to_trace_stop) (void);
779
780    /* Ask the target to find a trace frame of the given type TYPE,
781       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
782       number of the trace frame, and also the tracepoint number at
783       TPP.  If no trace frame matches, return -1.  May throw if the
784       operation fails.  */
785     int (*to_trace_find) (enum trace_find_type type, int num,
786                           ULONGEST addr1, ULONGEST addr2, int *tpp);
787
788     /* Get the value of the trace state variable number TSV, returning
789        1 if the value is known and writing the value itself into the
790        location pointed to by VAL, else returning 0.  */
791     int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
792
793     int (*to_save_trace_data) (const char *filename);
794
795     int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
796
797     int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
798
799     LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
800                                       ULONGEST offset, LONGEST len);
801
802     /* Get the minimum length of instruction on which a fast tracepoint
803        may be set on the target.  If this operation is unsupported,
804        return -1.  If for some reason the minimum length cannot be
805        determined, return 0.  */
806     int (*to_get_min_fast_tracepoint_insn_len) (void);
807
808     /* Set the target's tracing behavior in response to unexpected
809        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
810     void (*to_set_disconnected_tracing) (int val);
811     void (*to_set_circular_trace_buffer) (int val);
812     /* Set the size of trace buffer in the target.  */
813     void (*to_set_trace_buffer_size) (LONGEST val);
814
815     /* Add/change textual notes about the trace run, returning 1 if
816        successful, 0 otherwise.  */
817     int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
818
819     /* Return the processor core that thread PTID was last seen on.
820        This information is updated only when:
821        - update_thread_list is called
822        - thread stops
823        If the core cannot be determined -- either for the specified
824        thread, or right now, or in this debug session, or for this
825        target -- return -1.  */
826     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
827
828     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
829        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
830        a match, 0 if there's a mismatch, and -1 if an error is
831        encountered while reading memory.  */
832     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
833                              CORE_ADDR memaddr, ULONGEST size);
834
835     /* Return the address of the start of the Thread Information Block
836        a Windows OS specific feature.  */
837     int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
838
839     /* Send the new settings of write permission variables.  */
840     void (*to_set_permissions) (void);
841
842     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
843        with its details.  Return 1 on success, 0 on failure.  */
844     int (*to_static_tracepoint_marker_at) (CORE_ADDR,
845                                            struct static_tracepoint_marker *marker);
846
847     /* Return a vector of all tracepoints markers string id ID, or all
848        markers if ID is NULL.  */
849     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
850       (const char *id);
851
852     /* Return a traceframe info object describing the current
853        traceframe's contents.  This method should not cache data;
854        higher layers take care of caching, invalidating, and
855        re-fetching when necessary.  */
856     struct traceframe_info *(*to_traceframe_info) (void);
857
858     /* Ask the target to use or not to use agent according to USE.  Return 1
859        successful, 0 otherwise.  */
860     int (*to_use_agent) (int use);
861
862     /* Is the target able to use agent in current state?  */
863     int (*to_can_use_agent) (void);
864
865     /* Check whether the target supports branch tracing.  */
866     int (*to_supports_btrace) (void);
867
868     /* Enable branch tracing for PTID and allocate a branch trace target
869        information struct for reading and for disabling branch trace.  */
870     struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
871
872     /* Disable branch tracing and deallocate TINFO.  */
873     void (*to_disable_btrace) (struct btrace_target_info *tinfo);
874
875     /* Disable branch tracing and deallocate TINFO.  This function is similar
876        to to_disable_btrace, except that it is called during teardown and is
877        only allowed to perform actions that are safe.  A counter-example would
878        be attempting to talk to a remote target.  */
879     void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
880
881     /* Read branch trace data.  */
882     VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
883                                              enum btrace_read_type);
884
885     /* Stop trace recording.  */
886     void (*to_stop_recording) (void);
887
888     /* Print information about the recording.  */
889     void (*to_info_record) (void);
890
891     /* Save the recorded execution trace into a file.  */
892     void (*to_save_record) (char *filename);
893
894     /* Delete the recorded execution trace from the current position onwards.  */
895     void (*to_delete_record) (void);
896
897     /* Query if the record target is currently replaying.  */
898     int (*to_record_is_replaying) (void);
899
900     /* Go to the begin of the execution trace.  */
901     void (*to_goto_record_begin) (void);
902
903     /* Go to the end of the execution trace.  */
904     void (*to_goto_record_end) (void);
905
906     /* Go to a specific location in the recorded execution trace.  */
907     void (*to_goto_record) (ULONGEST insn);
908
909     /* Disassemble SIZE instructions in the recorded execution trace from
910        the current position.
911        If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
912        disassemble SIZE succeeding instructions.  */
913     void (*to_insn_history) (int size, int flags);
914
915     /* Disassemble SIZE instructions in the recorded execution trace around
916        FROM.
917        If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
918        disassemble SIZE instructions after FROM.  */
919     void (*to_insn_history_from) (ULONGEST from, int size, int flags);
920
921     /* Disassemble a section of the recorded execution trace from instruction
922        BEGIN (inclusive) to instruction END (exclusive).  */
923     void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
924
925     /* Print a function trace of the recorded execution trace.
926        If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
927        succeeding functions.  */
928     void (*to_call_history) (int size, int flags);
929
930     /* Print a function trace of the recorded execution trace starting
931        at function FROM.
932        If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
933        SIZE functions after FROM.  */
934     void (*to_call_history_from) (ULONGEST begin, int size, int flags);
935
936     /* Print a function trace of an execution trace section from function BEGIN
937        (inclusive) to function END (exclusive).  */
938     void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
939
940     int to_magic;
941     /* Need sub-structure for target machine related rather than comm related?
942      */
943   };
944
945 /* Magic number for checking ops size.  If a struct doesn't end with this
946    number, somebody changed the declaration but didn't change all the
947    places that initialize one.  */
948
949 #define OPS_MAGIC       3840
950
951 /* The ops structure for our "current" target process.  This should
952    never be NULL.  If there is no target, it points to the dummy_target.  */
953
954 extern struct target_ops current_target;
955
956 /* Define easy words for doing these operations on our current target.  */
957
958 #define target_shortname        (current_target.to_shortname)
959 #define target_longname         (current_target.to_longname)
960
961 /* Does whatever cleanup is required for a target that we are no
962    longer going to be calling.  QUITTING indicates that GDB is exiting
963    and should not get hung on an error (otherwise it is important to
964    perform clean termination, even if it takes a while).  This routine
965    is automatically always called after popping the target off the
966    target stack - the target's own methods are no longer available
967    through the target vector.  Closing file descriptors and freeing all
968    memory allocated memory are typical things it should do.  */
969
970 void target_close (struct target_ops *targ, int quitting);
971
972 /* Attaches to a process on the target side.  Arguments are as passed
973    to the `attach' command by the user.  This routine can be called
974    when the target is not on the target-stack, if the target_can_run
975    routine returns 1; in that case, it must push itself onto the stack.
976    Upon exit, the target should be ready for normal operations, and
977    should be ready to deliver the status of the process immediately
978    (without waiting) to an upcoming target_wait call.  */
979
980 void target_attach (char *, int);
981
982 /* Some targets don't generate traps when attaching to the inferior,
983    or their target_attach implementation takes care of the waiting.
984    These targets must set to_attach_no_wait.  */
985
986 #define target_attach_no_wait \
987      (current_target.to_attach_no_wait)
988
989 /* The target_attach operation places a process under debugger control,
990    and stops the process.
991
992    This operation provides a target-specific hook that allows the
993    necessary bookkeeping to be performed after an attach completes.  */
994 #define target_post_attach(pid) \
995      (*current_target.to_post_attach) (pid)
996
997 /* Takes a program previously attached to and detaches it.
998    The program may resume execution (some targets do, some don't) and will
999    no longer stop on signals, etc.  We better not have left any breakpoints
1000    in the program or it'll die when it hits one.  ARGS is arguments
1001    typed by the user (e.g. a signal to send the process).  FROM_TTY
1002    says whether to be verbose or not.  */
1003
1004 extern void target_detach (char *, int);
1005
1006 /* Disconnect from the current target without resuming it (leaving it
1007    waiting for a debugger).  */
1008
1009 extern void target_disconnect (char *, int);
1010
1011 /* Resume execution of the target process PTID (or a group of
1012    threads).  STEP says whether to single-step or to run free; SIGGNAL
1013    is the signal to be given to the target, or GDB_SIGNAL_0 for no
1014    signal.  The caller may not pass GDB_SIGNAL_DEFAULT.  A specific
1015    PTID means `step/resume only this process id'.  A wildcard PTID
1016    (all threads, or all threads of process) means `step/resume
1017    INFERIOR_PTID, and let other threads (for which the wildcard PTID
1018    matches) resume with their 'thread->suspend.stop_signal' signal
1019    (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1020    if in "no pass" state.  */
1021
1022 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1023
1024 /* Wait for process pid to do something.  PTID = -1 to wait for any
1025    pid to do something.  Return pid of child, or -1 in case of error;
1026    store status through argument pointer STATUS.  Note that it is
1027    _NOT_ OK to throw_exception() out of target_wait() without popping
1028    the debugging target from the stack; GDB isn't prepared to get back
1029    to the prompt with a debugging target but without the frame cache,
1030    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
1031    options.  */
1032
1033 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1034                            int options);
1035
1036 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
1037
1038 extern void target_fetch_registers (struct regcache *regcache, int regno);
1039
1040 /* Store at least register REGNO, or all regs if REGNO == -1.
1041    It can store as many registers as it wants to, so target_prepare_to_store
1042    must have been previously called.  Calls error() if there are problems.  */
1043
1044 extern void target_store_registers (struct regcache *regcache, int regs);
1045
1046 /* Get ready to modify the registers array.  On machines which store
1047    individual registers, this doesn't need to do anything.  On machines
1048    which store all the registers in one fell swoop, this makes sure
1049    that REGISTERS contains all the registers from the program being
1050    debugged.  */
1051
1052 #define target_prepare_to_store(regcache)       \
1053      (*current_target.to_prepare_to_store) (regcache)
1054
1055 /* Determine current address space of thread PTID.  */
1056
1057 struct address_space *target_thread_address_space (ptid_t);
1058
1059 /* Implement the "info proc" command.  This returns one if the request
1060    was handled, and zero otherwise.  It can also throw an exception if
1061    an error was encountered while attempting to handle the
1062    request.  */
1063
1064 int target_info_proc (char *, enum info_proc_what);
1065
1066 /* Returns true if this target can debug multiple processes
1067    simultaneously.  */
1068
1069 #define target_supports_multi_process() \
1070      (*current_target.to_supports_multi_process) ()
1071
1072 /* Returns true if this target can disable address space randomization.  */
1073
1074 int target_supports_disable_randomization (void);
1075
1076 /* Returns true if this target can enable and disable tracepoints
1077    while a trace experiment is running.  */
1078
1079 #define target_supports_enable_disable_tracepoint() \
1080   (*current_target.to_supports_enable_disable_tracepoint) ()
1081
1082 #define target_supports_string_tracing() \
1083   (*current_target.to_supports_string_tracing) ()
1084
1085 /* Returns true if this target can handle breakpoint conditions
1086    on its end.  */
1087
1088 #define target_supports_evaluation_of_breakpoint_conditions() \
1089   (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1090
1091 /* Returns true if this target can handle breakpoint commands
1092    on its end.  */
1093
1094 #define target_can_run_breakpoint_commands() \
1095   (*current_target.to_can_run_breakpoint_commands) ()
1096
1097 /* Invalidate all target dcaches.  */
1098 extern void target_dcache_invalidate (void);
1099
1100 extern int target_read_string (CORE_ADDR, char **, int, int *);
1101
1102 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1103                                ssize_t len);
1104
1105 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1106
1107 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1108                                 ssize_t len);
1109
1110 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1111                                     ssize_t len);
1112
1113 /* Fetches the target's memory map.  If one is found it is sorted
1114    and returned, after some consistency checking.  Otherwise, NULL
1115    is returned.  */
1116 VEC(mem_region_s) *target_memory_map (void);
1117
1118 /* Erase the specified flash region.  */
1119 void target_flash_erase (ULONGEST address, LONGEST length);
1120
1121 /* Finish a sequence of flash operations.  */
1122 void target_flash_done (void);
1123
1124 /* Describes a request for a memory write operation.  */
1125 struct memory_write_request
1126   {
1127     /* Begining address that must be written.  */
1128     ULONGEST begin;
1129     /* Past-the-end address.  */
1130     ULONGEST end;
1131     /* The data to write.  */
1132     gdb_byte *data;
1133     /* A callback baton for progress reporting for this request.  */
1134     void *baton;
1135   };
1136 typedef struct memory_write_request memory_write_request_s;
1137 DEF_VEC_O(memory_write_request_s);
1138
1139 /* Enumeration specifying different flash preservation behaviour.  */
1140 enum flash_preserve_mode
1141   {
1142     flash_preserve,
1143     flash_discard
1144   };
1145
1146 /* Write several memory blocks at once.  This version can be more
1147    efficient than making several calls to target_write_memory, in
1148    particular because it can optimize accesses to flash memory.
1149
1150    Moreover, this is currently the only memory access function in gdb
1151    that supports writing to flash memory, and it should be used for
1152    all cases where access to flash memory is desirable.
1153
1154    REQUESTS is the vector (see vec.h) of memory_write_request.
1155    PRESERVE_FLASH_P indicates what to do with blocks which must be
1156      erased, but not completely rewritten.
1157    PROGRESS_CB is a function that will be periodically called to provide
1158      feedback to user.  It will be called with the baton corresponding
1159      to the request currently being written.  It may also be called
1160      with a NULL baton, when preserved flash sectors are being rewritten.
1161
1162    The function returns 0 on success, and error otherwise.  */
1163 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1164                                 enum flash_preserve_mode preserve_flash_p,
1165                                 void (*progress_cb) (ULONGEST, void *));
1166
1167 /* Print a line about the current target.  */
1168
1169 #define target_files_info()     \
1170      (*current_target.to_files_info) (&current_target)
1171
1172 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1173    machine.  Result is 0 for success, or an errno value.  */
1174
1175 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1176                                      struct bp_target_info *bp_tgt);
1177
1178 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1179    machine.  Result is 0 for success, or an errno value.  */
1180
1181 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1182                                      struct bp_target_info *bp_tgt);
1183
1184 /* Initialize the terminal settings we record for the inferior,
1185    before we actually run the inferior.  */
1186
1187 #define target_terminal_init() \
1188      (*current_target.to_terminal_init) ()
1189
1190 /* Put the inferior's terminal settings into effect.
1191    This is preparation for starting or resuming the inferior.  */
1192
1193 extern void target_terminal_inferior (void);
1194
1195 /* Put some of our terminal settings into effect,
1196    enough to get proper results from our output,
1197    but do not change into or out of RAW mode
1198    so that no input is discarded.
1199
1200    After doing this, either terminal_ours or terminal_inferior
1201    should be called to get back to a normal state of affairs.  */
1202
1203 #define target_terminal_ours_for_output() \
1204      (*current_target.to_terminal_ours_for_output) ()
1205
1206 /* Put our terminal settings into effect.
1207    First record the inferior's terminal settings
1208    so they can be restored properly later.  */
1209
1210 #define target_terminal_ours() \
1211      (*current_target.to_terminal_ours) ()
1212
1213 /* Save our terminal settings.
1214    This is called from TUI after entering or leaving the curses
1215    mode.  Since curses modifies our terminal this call is here
1216    to take this change into account.  */
1217
1218 #define target_terminal_save_ours() \
1219      (*current_target.to_terminal_save_ours) ()
1220
1221 /* Print useful information about our terminal status, if such a thing
1222    exists.  */
1223
1224 #define target_terminal_info(arg, from_tty) \
1225      (*current_target.to_terminal_info) (arg, from_tty)
1226
1227 /* Kill the inferior process.   Make it go away.  */
1228
1229 extern void target_kill (void);
1230
1231 /* Load an executable file into the target process.  This is expected
1232    to not only bring new code into the target process, but also to
1233    update GDB's symbol tables to match.
1234
1235    ARG contains command-line arguments, to be broken down with
1236    buildargv ().  The first non-switch argument is the filename to
1237    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1238    0)), which is an offset to apply to the load addresses of FILE's
1239    sections.  The target may define switches, or other non-switch
1240    arguments, as it pleases.  */
1241
1242 extern void target_load (char *arg, int from_tty);
1243
1244 /* Start an inferior process and set inferior_ptid to its pid.
1245    EXEC_FILE is the file to run.
1246    ALLARGS is a string containing the arguments to the program.
1247    ENV is the environment vector to pass.  Errors reported with error().
1248    On VxWorks and various standalone systems, we ignore exec_file.  */
1249
1250 void target_create_inferior (char *exec_file, char *args,
1251                              char **env, int from_tty);
1252
1253 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1254    notification of inferior events such as fork and vork immediately
1255    after the inferior is created.  (This because of how gdb gets an
1256    inferior created via invoking a shell to do it.  In such a scenario,
1257    if the shell init file has commands in it, the shell will fork and
1258    exec for each of those commands, and we will see each such fork
1259    event.  Very bad.)
1260
1261    Such targets will supply an appropriate definition for this function.  */
1262
1263 #define target_post_startup_inferior(ptid) \
1264      (*current_target.to_post_startup_inferior) (ptid)
1265
1266 /* On some targets, we can catch an inferior fork or vfork event when
1267    it occurs.  These functions insert/remove an already-created
1268    catchpoint for such events.  They return  0 for success, 1 if the
1269    catchpoint type is not supported and -1 for failure.  */
1270
1271 #define target_insert_fork_catchpoint(pid) \
1272      (*current_target.to_insert_fork_catchpoint) (pid)
1273
1274 #define target_remove_fork_catchpoint(pid) \
1275      (*current_target.to_remove_fork_catchpoint) (pid)
1276
1277 #define target_insert_vfork_catchpoint(pid) \
1278      (*current_target.to_insert_vfork_catchpoint) (pid)
1279
1280 #define target_remove_vfork_catchpoint(pid) \
1281      (*current_target.to_remove_vfork_catchpoint) (pid)
1282
1283 /* If the inferior forks or vforks, this function will be called at
1284    the next resume in order to perform any bookkeeping and fiddling
1285    necessary to continue debugging either the parent or child, as
1286    requested, and releasing the other.  Information about the fork
1287    or vfork event is available via get_last_target_status ().
1288    This function returns 1 if the inferior should not be resumed
1289    (i.e. there is another event pending).  */
1290
1291 int target_follow_fork (int follow_child);
1292
1293 /* On some targets, we can catch an inferior exec event when it
1294    occurs.  These functions insert/remove an already-created
1295    catchpoint for such events.  They return  0 for success, 1 if the
1296    catchpoint type is not supported and -1 for failure.  */
1297
1298 #define target_insert_exec_catchpoint(pid) \
1299      (*current_target.to_insert_exec_catchpoint) (pid)
1300
1301 #define target_remove_exec_catchpoint(pid) \
1302      (*current_target.to_remove_exec_catchpoint) (pid)
1303
1304 /* Syscall catch.
1305
1306    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1307    If NEEDED is zero, it means the target can disable the mechanism to
1308    catch system calls because there are no more catchpoints of this type.
1309
1310    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1311    being requested.  In this case, both TABLE_SIZE and TABLE should
1312    be ignored.
1313
1314    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1315    ANY_COUNT is zero.
1316
1317    TABLE is an array of ints, indexed by syscall number.  An element in
1318    this array is nonzero if that syscall should be caught.  This argument
1319    only matters if ANY_COUNT is zero.
1320
1321    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1322    for failure.  */
1323
1324 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1325      (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1326                                                   table_size, table)
1327
1328 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1329    exit code of PID, if any.  */
1330
1331 #define target_has_exited(pid,wait_status,exit_status) \
1332      (*current_target.to_has_exited) (pid,wait_status,exit_status)
1333
1334 /* The debugger has completed a blocking wait() call.  There is now
1335    some process event that must be processed.  This function should
1336    be defined by those targets that require the debugger to perform
1337    cleanup or internal state changes in response to the process event.  */
1338
1339 /* The inferior process has died.  Do what is right.  */
1340
1341 void target_mourn_inferior (void);
1342
1343 /* Does target have enough data to do a run or attach command? */
1344
1345 #define target_can_run(t) \
1346      ((t)->to_can_run) ()
1347
1348 /* Set list of signals to be handled in the target.
1349
1350    PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1351    (enum gdb_signal).  For every signal whose entry in this array is
1352    non-zero, the target is allowed -but not required- to skip reporting
1353    arrival of the signal to the GDB core by returning from target_wait,
1354    and to pass the signal directly to the inferior instead.
1355
1356    However, if the target is hardware single-stepping a thread that is
1357    about to receive a signal, it needs to be reported in any case, even
1358    if mentioned in a previous target_pass_signals call.   */
1359
1360 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1361
1362 /* Set list of signals the target may pass to the inferior.  This
1363    directly maps to the "handle SIGNAL pass/nopass" setting.
1364
1365    PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1366    number (enum gdb_signal).  For every signal whose entry in this
1367    array is non-zero, the target is allowed to pass the signal to the
1368    inferior.  Signals not present in the array shall be silently
1369    discarded.  This does not influence whether to pass signals to the
1370    inferior as a result of a target_resume call.  This is useful in
1371    scenarios where the target needs to decide whether to pass or not a
1372    signal to the inferior without GDB core involvement, such as for
1373    example, when detaching (as threads may have been suspended with
1374    pending signals not reported to GDB).  */
1375
1376 extern void target_program_signals (int nsig, unsigned char *program_signals);
1377
1378 /* Check to see if a thread is still alive.  */
1379
1380 extern int target_thread_alive (ptid_t ptid);
1381
1382 /* Query for new threads and add them to the thread list.  */
1383
1384 extern void target_find_new_threads (void);
1385
1386 /* Make target stop in a continuable fashion.  (For instance, under
1387    Unix, this should act like SIGSTOP).  This function is normally
1388    used by GUIs to implement a stop button.  */
1389
1390 extern void target_stop (ptid_t ptid);
1391
1392 /* Send the specified COMMAND to the target's monitor
1393    (shell,interpreter) for execution.  The result of the query is
1394    placed in OUTBUF.  */
1395
1396 #define target_rcmd(command, outbuf) \
1397      (*current_target.to_rcmd) (command, outbuf)
1398
1399
1400 /* Does the target include all of memory, or only part of it?  This
1401    determines whether we look up the target chain for other parts of
1402    memory if this target can't satisfy a request.  */
1403
1404 extern int target_has_all_memory_1 (void);
1405 #define target_has_all_memory target_has_all_memory_1 ()
1406
1407 /* Does the target include memory?  (Dummy targets don't.)  */
1408
1409 extern int target_has_memory_1 (void);
1410 #define target_has_memory target_has_memory_1 ()
1411
1412 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1413    we start a process.)  */
1414
1415 extern int target_has_stack_1 (void);
1416 #define target_has_stack target_has_stack_1 ()
1417
1418 /* Does the target have registers?  (Exec files don't.)  */
1419
1420 extern int target_has_registers_1 (void);
1421 #define target_has_registers target_has_registers_1 ()
1422
1423 /* Does the target have execution?  Can we make it jump (through
1424    hoops), or pop its stack a few times?  This means that the current
1425    target is currently executing; for some targets, that's the same as
1426    whether or not the target is capable of execution, but there are
1427    also targets which can be current while not executing.  In that
1428    case this will become true after target_create_inferior or
1429    target_attach.  */
1430
1431 extern int target_has_execution_1 (ptid_t);
1432
1433 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1434
1435 extern int target_has_execution_current (void);
1436
1437 #define target_has_execution target_has_execution_current ()
1438
1439 /* Default implementations for process_stratum targets.  Return true
1440    if there's a selected inferior, false otherwise.  */
1441
1442 extern int default_child_has_all_memory (struct target_ops *ops);
1443 extern int default_child_has_memory (struct target_ops *ops);
1444 extern int default_child_has_stack (struct target_ops *ops);
1445 extern int default_child_has_registers (struct target_ops *ops);
1446 extern int default_child_has_execution (struct target_ops *ops,
1447                                         ptid_t the_ptid);
1448
1449 /* Can the target support the debugger control of thread execution?
1450    Can it lock the thread scheduler?  */
1451
1452 #define target_can_lock_scheduler \
1453      (current_target.to_has_thread_control & tc_schedlock)
1454
1455 /* Should the target enable async mode if it is supported?  Temporary
1456    cludge until async mode is a strict superset of sync mode.  */
1457 extern int target_async_permitted;
1458
1459 /* Can the target support asynchronous execution?  */
1460 #define target_can_async_p() (current_target.to_can_async_p ())
1461
1462 /* Is the target in asynchronous execution mode?  */
1463 #define target_is_async_p() (current_target.to_is_async_p ())
1464
1465 int target_supports_non_stop (void);
1466
1467 /* Put the target in async mode with the specified callback function.  */
1468 #define target_async(CALLBACK,CONTEXT) \
1469      (current_target.to_async ((CALLBACK), (CONTEXT)))
1470
1471 #define target_execution_direction() \
1472   (current_target.to_execution_direction ())
1473
1474 /* Converts a process id to a string.  Usually, the string just contains
1475    `process xyz', but on some systems it may contain
1476    `process xyz thread abc'.  */
1477
1478 extern char *target_pid_to_str (ptid_t ptid);
1479
1480 extern char *normal_pid_to_str (ptid_t ptid);
1481
1482 /* Return a short string describing extra information about PID,
1483    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1484    is okay.  */
1485
1486 #define target_extra_thread_info(TP) \
1487      (current_target.to_extra_thread_info (TP))
1488
1489 /* Return the thread's name.  A NULL result means that the target
1490    could not determine this thread's name.  */
1491
1492 extern char *target_thread_name (struct thread_info *);
1493
1494 /* Attempts to find the pathname of the executable file
1495    that was run to create a specified process.
1496
1497    The process PID must be stopped when this operation is used.
1498
1499    If the executable file cannot be determined, NULL is returned.
1500
1501    Else, a pointer to a character string containing the pathname
1502    is returned.  This string should be copied into a buffer by
1503    the client if the string will not be immediately used, or if
1504    it must persist.  */
1505
1506 #define target_pid_to_exec_file(pid) \
1507      (current_target.to_pid_to_exec_file) (pid)
1508
1509 /* See the to_thread_architecture description in struct target_ops.  */
1510
1511 #define target_thread_architecture(ptid) \
1512      (current_target.to_thread_architecture (&current_target, ptid))
1513
1514 /*
1515  * Iterator function for target memory regions.
1516  * Calls a callback function once for each memory region 'mapped'
1517  * in the child process.  Defined as a simple macro rather than
1518  * as a function macro so that it can be tested for nullity.
1519  */
1520
1521 #define target_find_memory_regions(FUNC, DATA) \
1522      (current_target.to_find_memory_regions) (FUNC, DATA)
1523
1524 /*
1525  * Compose corefile .note section.
1526  */
1527
1528 #define target_make_corefile_notes(BFD, SIZE_P) \
1529      (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1530
1531 /* Bookmark interfaces.  */
1532 #define target_get_bookmark(ARGS, FROM_TTY) \
1533      (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1534
1535 #define target_goto_bookmark(ARG, FROM_TTY) \
1536      (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1537
1538 /* Hardware watchpoint interfaces.  */
1539
1540 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1541    write).  Only the INFERIOR_PTID task is being queried.  */
1542
1543 #define target_stopped_by_watchpoint \
1544    (*current_target.to_stopped_by_watchpoint)
1545
1546 /* Non-zero if we have steppable watchpoints  */
1547
1548 #define target_have_steppable_watchpoint \
1549    (current_target.to_have_steppable_watchpoint)
1550
1551 /* Non-zero if we have continuable watchpoints  */
1552
1553 #define target_have_continuable_watchpoint \
1554    (current_target.to_have_continuable_watchpoint)
1555
1556 /* Provide defaults for hardware watchpoint functions.  */
1557
1558 /* If the *_hw_beakpoint functions have not been defined
1559    elsewhere use the definitions in the target vector.  */
1560
1561 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1562    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1563    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1564    (including this one?).  OTHERTYPE is who knows what...  */
1565
1566 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1567  (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1568
1569 /* Returns the number of debug registers needed to watch the given
1570    memory region, or zero if not supported.  */
1571
1572 #define target_region_ok_for_hw_watchpoint(addr, len) \
1573     (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1574
1575
1576 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1577    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1578    COND is the expression for its condition, or NULL if there's none.
1579    Returns 0 for success, 1 if the watchpoint type is not supported,
1580    -1 for failure.  */
1581
1582 #define target_insert_watchpoint(addr, len, type, cond) \
1583      (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1584
1585 #define target_remove_watchpoint(addr, len, type, cond) \
1586      (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1587
1588 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1589    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1590    or hw_access for an access watchpoint.  Returns 0 for success, 1 if
1591    masked watchpoints are not supported, -1 for failure.  */
1592
1593 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1594
1595 /* Remove a masked watchpoint at ADDR with the mask MASK.
1596    RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1597    or hw_access for an access watchpoint.  Returns 0 for success, non-zero
1598    for failure.  */
1599
1600 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1601
1602 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1603      (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1604
1605 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1606      (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1607
1608 /* Return number of debug registers needed for a ranged breakpoint,
1609    or -1 if ranged breakpoints are not supported.  */
1610
1611 extern int target_ranged_break_num_registers (void);
1612
1613 /* Return non-zero if target knows the data address which triggered this
1614    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1615    INFERIOR_PTID task is being queried.  */
1616 #define target_stopped_data_address(target, addr_p) \
1617     (*target.to_stopped_data_address) (target, addr_p)
1618
1619 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1620    LENGTH bytes beginning at START.  */
1621 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1622   (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1623
1624 /* Return non-zero if the target is capable of using hardware to evaluate
1625    the condition expression.  In this case, if the condition is false when
1626    the watched memory location changes, execution may continue without the
1627    debugger being notified.
1628
1629    Due to limitations in the hardware implementation, it may be capable of
1630    avoiding triggering the watchpoint in some cases where the condition
1631    expression is false, but may report some false positives as well.
1632    For this reason, GDB will still evaluate the condition expression when
1633    the watchpoint triggers.  */
1634 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1635   (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1636
1637 /* Return number of debug registers needed for a masked watchpoint,
1638    -1 if masked watchpoints are not supported or -2 if the given address
1639    and mask combination cannot be used.  */
1640
1641 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1642
1643 /* Target can execute in reverse?  */
1644 #define target_can_execute_reverse \
1645      (current_target.to_can_execute_reverse ? \
1646       current_target.to_can_execute_reverse () : 0)
1647
1648 extern const struct target_desc *target_read_description (struct target_ops *);
1649
1650 #define target_get_ada_task_ptid(lwp, tid) \
1651      (*current_target.to_get_ada_task_ptid) (lwp,tid)
1652
1653 /* Utility implementation of searching memory.  */
1654 extern int simple_search_memory (struct target_ops* ops,
1655                                  CORE_ADDR start_addr,
1656                                  ULONGEST search_space_len,
1657                                  const gdb_byte *pattern,
1658                                  ULONGEST pattern_len,
1659                                  CORE_ADDR *found_addrp);
1660
1661 /* Main entry point for searching memory.  */
1662 extern int target_search_memory (CORE_ADDR start_addr,
1663                                  ULONGEST search_space_len,
1664                                  const gdb_byte *pattern,
1665                                  ULONGEST pattern_len,
1666                                  CORE_ADDR *found_addrp);
1667
1668 /* Target file operations.  */
1669
1670 /* Open FILENAME on the target, using FLAGS and MODE.  Return a
1671    target file descriptor, or -1 if an error occurs (and set
1672    *TARGET_ERRNO).  */
1673 extern int target_fileio_open (const char *filename, int flags, int mode,
1674                                int *target_errno);
1675
1676 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1677    Return the number of bytes written, or -1 if an error occurs
1678    (and set *TARGET_ERRNO).  */
1679 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1680                                  ULONGEST offset, int *target_errno);
1681
1682 /* Read up to LEN bytes FD on the target into READ_BUF.
1683    Return the number of bytes read, or -1 if an error occurs
1684    (and set *TARGET_ERRNO).  */
1685 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1686                                 ULONGEST offset, int *target_errno);
1687
1688 /* Close FD on the target.  Return 0, or -1 if an error occurs
1689    (and set *TARGET_ERRNO).  */
1690 extern int target_fileio_close (int fd, int *target_errno);
1691
1692 /* Unlink FILENAME on the target.  Return 0, or -1 if an error
1693    occurs (and set *TARGET_ERRNO).  */
1694 extern int target_fileio_unlink (const char *filename, int *target_errno);
1695
1696 /* Read value of symbolic link FILENAME on the target.  Return a
1697    null-terminated string allocated via xmalloc, or NULL if an error
1698    occurs (and set *TARGET_ERRNO).  */
1699 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1700
1701 /* Read target file FILENAME.  The return value will be -1 if the transfer
1702    fails or is not supported; 0 if the object is empty; or the length
1703    of the object otherwise.  If a positive value is returned, a
1704    sufficiently large buffer will be allocated using xmalloc and
1705    returned in *BUF_P containing the contents of the object.
1706
1707    This method should be used for objects sufficiently small to store
1708    in a single xmalloc'd buffer, when no fixed bound on the object's
1709    size is known in advance.  */
1710 extern LONGEST target_fileio_read_alloc (const char *filename,
1711                                          gdb_byte **buf_p);
1712
1713 /* Read target file FILENAME.  The result is NUL-terminated and
1714    returned as a string, allocated using xmalloc.  If an error occurs
1715    or the transfer is unsupported, NULL is returned.  Empty objects
1716    are returned as allocated but empty strings.  A warning is issued
1717    if the result contains any embedded NUL bytes.  */
1718 extern char *target_fileio_read_stralloc (const char *filename);
1719
1720
1721 /* Tracepoint-related operations.  */
1722
1723 #define target_trace_init() \
1724   (*current_target.to_trace_init) ()
1725
1726 #define target_download_tracepoint(t) \
1727   (*current_target.to_download_tracepoint) (t)
1728
1729 #define target_can_download_tracepoint() \
1730   (*current_target.to_can_download_tracepoint) ()
1731
1732 #define target_download_trace_state_variable(tsv) \
1733   (*current_target.to_download_trace_state_variable) (tsv)
1734
1735 #define target_enable_tracepoint(loc) \
1736   (*current_target.to_enable_tracepoint) (loc)
1737
1738 #define target_disable_tracepoint(loc) \
1739   (*current_target.to_disable_tracepoint) (loc)
1740
1741 #define target_trace_start() \
1742   (*current_target.to_trace_start) ()
1743
1744 #define target_trace_set_readonly_regions() \
1745   (*current_target.to_trace_set_readonly_regions) ()
1746
1747 #define target_get_trace_status(ts) \
1748   (*current_target.to_get_trace_status) (ts)
1749
1750 #define target_get_tracepoint_status(tp,utp)            \
1751   (*current_target.to_get_tracepoint_status) (tp, utp)
1752
1753 #define target_trace_stop() \
1754   (*current_target.to_trace_stop) ()
1755
1756 #define target_trace_find(type,num,addr1,addr2,tpp) \
1757   (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1758
1759 #define target_get_trace_state_variable_value(tsv,val) \
1760   (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1761
1762 #define target_save_trace_data(filename) \
1763   (*current_target.to_save_trace_data) (filename)
1764
1765 #define target_upload_tracepoints(utpp) \
1766   (*current_target.to_upload_tracepoints) (utpp)
1767
1768 #define target_upload_trace_state_variables(utsvp) \
1769   (*current_target.to_upload_trace_state_variables) (utsvp)
1770
1771 #define target_get_raw_trace_data(buf,offset,len) \
1772   (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1773
1774 #define target_get_min_fast_tracepoint_insn_len() \
1775   (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1776
1777 #define target_set_disconnected_tracing(val) \
1778   (*current_target.to_set_disconnected_tracing) (val)
1779
1780 #define target_set_circular_trace_buffer(val)   \
1781   (*current_target.to_set_circular_trace_buffer) (val)
1782
1783 #define target_set_trace_buffer_size(val)       \
1784   (*current_target.to_set_trace_buffer_size) (val)
1785
1786 #define target_set_trace_notes(user,notes,stopnotes)            \
1787   (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1788
1789 #define target_get_tib_address(ptid, addr) \
1790   (*current_target.to_get_tib_address) ((ptid), (addr))
1791
1792 #define target_set_permissions() \
1793   (*current_target.to_set_permissions) ()
1794
1795 #define target_static_tracepoint_marker_at(addr, marker) \
1796   (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1797
1798 #define target_static_tracepoint_markers_by_strid(marker_id) \
1799   (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1800
1801 #define target_traceframe_info() \
1802   (*current_target.to_traceframe_info) ()
1803
1804 #define target_use_agent(use) \
1805   (*current_target.to_use_agent) (use)
1806
1807 #define target_can_use_agent() \
1808   (*current_target.to_can_use_agent) ()
1809
1810 /* Command logging facility.  */
1811
1812 #define target_log_command(p)                                           \
1813   do                                                                    \
1814     if (current_target.to_log_command)                                  \
1815       (*current_target.to_log_command) (p);                             \
1816   while (0)
1817
1818
1819 extern int target_core_of_thread (ptid_t ptid);
1820
1821 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1822    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
1823    if there's a mismatch, and -1 if an error is encountered while
1824    reading memory.  Throws an error if the functionality is found not
1825    to be supported by the current target.  */
1826 int target_verify_memory (const gdb_byte *data,
1827                           CORE_ADDR memaddr, ULONGEST size);
1828
1829 /* Routines for maintenance of the target structures...
1830
1831    add_target:   Add a target to the list of all possible targets.
1832
1833    push_target:  Make this target the top of the stack of currently used
1834    targets, within its particular stratum of the stack.  Result
1835    is 0 if now atop the stack, nonzero if not on top (maybe
1836    should warn user).
1837
1838    unpush_target: Remove this from the stack of currently used targets,
1839    no matter where it is on the list.  Returns 0 if no
1840    change, 1 if removed from stack.
1841
1842    pop_target:   Remove the top thing on the stack of current targets.  */
1843
1844 extern void add_target (struct target_ops *);
1845
1846 /* Adds a command ALIAS for target T and marks it deprecated.  This is useful
1847    for maintaining backwards compatibility when renaming targets.  */
1848
1849 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1850
1851 extern void push_target (struct target_ops *);
1852
1853 extern int unpush_target (struct target_ops *);
1854
1855 extern void target_pre_inferior (int);
1856
1857 extern void target_preopen (int);
1858
1859 extern void pop_target (void);
1860
1861 /* Does whatever cleanup is required to get rid of all pushed targets.
1862    QUITTING is propagated to target_close; it indicates that GDB is
1863    exiting and should not get hung on an error (otherwise it is
1864    important to perform clean termination, even if it takes a
1865    while).  */
1866 extern void pop_all_targets (int quitting);
1867
1868 /* Like pop_all_targets, but pops only targets whose stratum is
1869    strictly above ABOVE_STRATUM.  */
1870 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1871
1872 extern int target_is_pushed (struct target_ops *t);
1873
1874 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1875                                                CORE_ADDR offset);
1876
1877 /* Struct target_section maps address ranges to file sections.  It is
1878    mostly used with BFD files, but can be used without (e.g. for handling
1879    raw disks, or files not in formats handled by BFD).  */
1880
1881 struct target_section
1882   {
1883     CORE_ADDR addr;             /* Lowest address in section */
1884     CORE_ADDR endaddr;          /* 1+highest address in section */
1885
1886     struct bfd_section *the_bfd_section;
1887
1888     /* A given BFD may appear multiple times in the target section
1889        list, so each BFD is associated with a given key.  The key is
1890        just some convenient pointer that can be used to differentiate
1891        the BFDs.  These are managed only by convention.  */
1892     void *key;
1893
1894     bfd *bfd;                   /* BFD file pointer */
1895   };
1896
1897 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
1898
1899 struct target_section_table
1900 {
1901   struct target_section *sections;
1902   struct target_section *sections_end;
1903 };
1904
1905 /* Return the "section" containing the specified address.  */
1906 struct target_section *target_section_by_addr (struct target_ops *target,
1907                                                CORE_ADDR addr);
1908
1909 /* Return the target section table this target (or the targets
1910    beneath) currently manipulate.  */
1911
1912 extern struct target_section_table *target_get_section_table
1913   (struct target_ops *target);
1914
1915 /* From mem-break.c */
1916
1917 extern int memory_remove_breakpoint (struct gdbarch *,
1918                                      struct bp_target_info *);
1919
1920 extern int memory_insert_breakpoint (struct gdbarch *,
1921                                      struct bp_target_info *);
1922
1923 extern int default_memory_remove_breakpoint (struct gdbarch *,
1924                                              struct bp_target_info *);
1925
1926 extern int default_memory_insert_breakpoint (struct gdbarch *,
1927                                              struct bp_target_info *);
1928
1929
1930 /* From target.c */
1931
1932 extern void initialize_targets (void);
1933
1934 extern void noprocess (void) ATTRIBUTE_NORETURN;
1935
1936 extern void target_require_runnable (void);
1937
1938 extern void find_default_attach (struct target_ops *, char *, int);
1939
1940 extern void find_default_create_inferior (struct target_ops *,
1941                                           char *, char *, char **, int);
1942
1943 extern struct target_ops *find_run_target (void);
1944
1945 extern struct target_ops *find_target_beneath (struct target_ops *);
1946
1947 /* Read OS data object of type TYPE from the target, and return it in
1948    XML format.  The result is NUL-terminated and returned as a string,
1949    allocated using xmalloc.  If an error occurs or the transfer is
1950    unsupported, NULL is returned.  Empty objects are returned as
1951    allocated but empty strings.  */
1952
1953 extern char *target_get_osdata (const char *type);
1954
1955 \f
1956 /* Stuff that should be shared among the various remote targets.  */
1957
1958 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1959    information (higher values, more information).  */
1960 extern int remote_debug;
1961
1962 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1963 extern int baud_rate;
1964 /* Timeout limit for response from target.  */
1965 extern int remote_timeout;
1966
1967 \f
1968
1969 /* Set the show memory breakpoints mode to show, and installs a cleanup
1970    to restore it back to the current value.  */
1971 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1972
1973 extern int may_write_registers;
1974 extern int may_write_memory;
1975 extern int may_insert_breakpoints;
1976 extern int may_insert_tracepoints;
1977 extern int may_insert_fast_tracepoints;
1978 extern int may_stop;
1979
1980 extern void update_target_permissions (void);
1981
1982 \f
1983 /* Imported from machine dependent code.  */
1984
1985 /* Blank target vector entries are initialized to target_ignore.  */
1986 void target_ignore (void);
1987
1988 /* See to_supports_btrace in struct target_ops.  */
1989 extern int target_supports_btrace (void);
1990
1991 /* See to_enable_btrace in struct target_ops.  */
1992 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1993
1994 /* See to_disable_btrace in struct target_ops.  */
1995 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1996
1997 /* See to_teardown_btrace in struct target_ops.  */
1998 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1999
2000 /* See to_read_btrace in struct target_ops.  */
2001 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
2002                                                  enum btrace_read_type);
2003
2004 /* See to_stop_recording in struct target_ops.  */
2005 extern void target_stop_recording (void);
2006
2007 /* See to_info_record in struct target_ops.  */
2008 extern void target_info_record (void);
2009
2010 /* See to_save_record in struct target_ops.  */
2011 extern void target_save_record (char *filename);
2012
2013 /* Query if the target supports deleting the execution log.  */
2014 extern int target_supports_delete_record (void);
2015
2016 /* See to_delete_record in struct target_ops.  */
2017 extern void target_delete_record (void);
2018
2019 /* See to_record_is_replaying in struct target_ops.  */
2020 extern int target_record_is_replaying (void);
2021
2022 /* See to_goto_record_begin in struct target_ops.  */
2023 extern void target_goto_record_begin (void);
2024
2025 /* See to_goto_record_end in struct target_ops.  */
2026 extern void target_goto_record_end (void);
2027
2028 /* See to_goto_record in struct target_ops.  */
2029 extern void target_goto_record (ULONGEST insn);
2030
2031 /* See to_insn_history.  */
2032 extern void target_insn_history (int size, int flags);
2033
2034 /* See to_insn_history_from.  */
2035 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2036
2037 /* See to_insn_history_range.  */
2038 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2039
2040 /* See to_call_history.  */
2041 extern void target_call_history (int size, int flags);
2042
2043 /* See to_call_history_from.  */
2044 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2045
2046 /* See to_call_history_range.  */
2047 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2048
2049 #endif /* !defined (TARGET_H) */