2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011-2012 Matthew Dillon
10 * All rights reserved.
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45 * Manage physical address maps for x86-64 systems.
49 #include "opt_disable_pse.h"
52 #include "opt_msgbuf.h"
54 #include <sys/param.h>
55 #include <sys/kernel.h>
57 #include <sys/msgbuf.h>
58 #include <sys/vmmeter.h>
60 #include <sys/systm.h>
63 #include <vm/vm_param.h>
64 #include <sys/sysctl.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_pager.h>
73 #include <vm/vm_zone.h>
76 #include <sys/thread2.h>
77 #include <sys/sysref2.h>
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
81 #include <machine/cputypes.h>
82 #include <machine/md_var.h>
83 #include <machine/specialreg.h>
84 #include <machine/smp.h>
85 #include <machine_base/apic/apicreg.h>
86 #include <machine/globaldata.h>
87 #include <machine/pmap.h>
88 #include <machine/pmap_inval.h>
89 #include <machine/inttypes.h>
93 #define PMAP_KEEP_PDIRS
94 #ifndef PMAP_SHPGPERPROC
95 #define PMAP_SHPGPERPROC 2000
98 #if defined(DIAGNOSTIC)
99 #define PMAP_DIAGNOSTIC
105 * pmap debugging will report who owns a pv lock when blocking.
109 #define PMAP_DEBUG_DECL ,const char *func, int lineno
110 #define PMAP_DEBUG_ARGS , __func__, __LINE__
111 #define PMAP_DEBUG_COPY , func, lineno
113 #define pv_get(pmap, pindex) _pv_get(pmap, pindex \
115 #define pv_lock(pv) _pv_lock(pv \
117 #define pv_hold_try(pv) _pv_hold_try(pv \
119 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
124 #define PMAP_DEBUG_DECL
125 #define PMAP_DEBUG_ARGS
126 #define PMAP_DEBUG_COPY
128 #define pv_get(pmap, pindex) _pv_get(pmap, pindex)
129 #define pv_lock(pv) _pv_lock(pv)
130 #define pv_hold_try(pv) _pv_hold_try(pv)
131 #define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
136 * Get PDEs and PTEs for user/kernel address space
138 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
140 #define pmap_pde_v(pmap, pte) ((*(pd_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
141 #define pmap_pte_w(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_W_IDX]) != 0)
142 #define pmap_pte_m(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_M_IDX]) != 0)
143 #define pmap_pte_u(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_U_IDX]) != 0)
144 #define pmap_pte_v(pmap, pte) ((*(pt_entry_t *)pte & pmap->pmap_bits[PG_V_IDX]) != 0)
147 * Given a map and a machine independent protection code,
148 * convert to a vax protection code.
150 #define pte_prot(m, p) \
151 (m->protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152 static int protection_codes[PROTECTION_CODES_SIZE];
154 struct pmap kernel_pmap;
155 static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
157 MALLOC_DEFINE(M_OBJPMAP, "objpmap", "pmaps associated with VM objects");
159 vm_paddr_t avail_start; /* PA of first available physical page */
160 vm_paddr_t avail_end; /* PA of last available physical page */
161 vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
162 vm_offset_t virtual2_end;
163 vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
164 vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
165 vm_offset_t KvaStart; /* VA start of KVA space */
166 vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
167 vm_offset_t KvaSize; /* max size of kernel virtual address space */
168 static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
169 //static int pgeflag; /* PG_G or-in */
170 //static int pseflag; /* PG_PS or-in */
174 static vm_paddr_t dmaplimit;
176 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
178 static pt_entry_t pat_pte_index[PAT_INDEX_SIZE]; /* PAT -> PG_ bits */
179 /*static pt_entry_t pat_pde_index[PAT_INDEX_SIZE];*/ /* PAT -> PG_ bits */
181 static uint64_t KPTbase;
182 static uint64_t KPTphys;
183 static uint64_t KPDphys; /* phys addr of kernel level 2 */
184 static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
185 uint64_t KPDPphys; /* phys addr of kernel level 3 */
186 uint64_t KPML4phys; /* phys addr of kernel level 4 */
188 static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
189 static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
192 * Data for the pv entry allocation mechanism
194 static vm_zone_t pvzone;
195 static struct vm_zone pvzone_store;
196 static struct vm_object pvzone_obj;
197 static int pv_entry_max=0, pv_entry_high_water=0;
198 static int pmap_pagedaemon_waken = 0;
199 static struct pv_entry *pvinit;
202 * All those kernel PT submaps that BSD is so fond of
204 pt_entry_t *CMAP1 = NULL, *ptmmap;
205 caddr_t CADDR1 = NULL, ptvmmap = NULL;
206 static pt_entry_t *msgbufmap;
207 struct msgbuf *msgbufp=NULL;
210 * PMAP default PG_* bits. Needed to be able to add
211 * EPT/NPT pagetable pmap_bits for the VMM module
213 uint64_t pmap_bits_default[] = {
214 REGULAR_PMAP, /* TYPE_IDX 0 */
215 X86_PG_V, /* PG_V_IDX 1 */
216 X86_PG_RW, /* PG_RW_IDX 2 */
217 X86_PG_U, /* PG_U_IDX 3 */
218 X86_PG_A, /* PG_A_IDX 4 */
219 X86_PG_M, /* PG_M_IDX 5 */
220 X86_PG_PS, /* PG_PS_IDX3 6 */
221 X86_PG_G, /* PG_G_IDX 7 */
222 X86_PG_AVAIL1, /* PG_AVAIL1_IDX 8 */
223 X86_PG_AVAIL2, /* PG_AVAIL2_IDX 9 */
224 X86_PG_AVAIL3, /* PG_AVAIL3_IDX 10 */
225 X86_PG_NC_PWT | X86_PG_NC_PCD, /* PG_N_IDX 11 */
230 static pt_entry_t *pt_crashdumpmap;
231 static caddr_t crashdumpmap;
234 static int pmap_enter_debug = 0;
235 SYSCTL_INT(_machdep, OID_AUTO, pmap_enter_debug, CTLFLAG_RW,
236 &pmap_enter_debug, 0, "Debug pmap_enter's");
238 static int pmap_yield_count = 64;
239 SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
240 &pmap_yield_count, 0, "Yield during init_pt/release");
241 static int pmap_mmu_optimize = 0;
242 SYSCTL_INT(_machdep, OID_AUTO, pmap_mmu_optimize, CTLFLAG_RW,
243 &pmap_mmu_optimize, 0, "Share page table pages when possible");
247 /* Standard user access funtions */
248 extern int std_copyinstr (const void *udaddr, void *kaddr, size_t len,
250 extern int std_copyin (const void *udaddr, void *kaddr, size_t len);
251 extern int std_copyout (const void *kaddr, void *udaddr, size_t len);
252 extern int std_fubyte (const void *base);
253 extern int std_subyte (void *base, int byte);
254 extern long std_fuword (const void *base);
255 extern int std_suword (void *base, long word);
256 extern int std_suword32 (void *base, int word);
258 static void pv_hold(pv_entry_t pv);
259 static int _pv_hold_try(pv_entry_t pv
261 static void pv_drop(pv_entry_t pv);
262 static void _pv_lock(pv_entry_t pv
264 static void pv_unlock(pv_entry_t pv);
265 static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
267 static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
269 static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
270 static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
271 static void pv_put(pv_entry_t pv);
272 static void pv_free(pv_entry_t pv);
273 static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
274 static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
276 static pv_entry_t pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex,
277 pv_entry_t *pvpp, vm_map_entry_t entry, vm_offset_t va);
278 static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
279 struct pmap_inval_info *info);
280 static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
281 static int pmap_release_pv(pv_entry_t pv, pv_entry_t pvp);
283 struct pmap_scan_info;
284 static void pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
285 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
286 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
287 static void pmap_protect_callback(pmap_t pmap, struct pmap_scan_info *info,
288 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
289 vm_offset_t va, pt_entry_t *ptep, void *arg __unused);
291 static void i386_protection_init (void);
292 static void create_pagetables(vm_paddr_t *firstaddr);
293 static void pmap_remove_all (vm_page_t m);
294 static boolean_t pmap_testbit (vm_page_t m, int bit);
296 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
297 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
299 static void pmap_pinit_defaults(struct pmap *pmap);
301 static unsigned pdir4mb;
304 pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
306 if (pv1->pv_pindex < pv2->pv_pindex)
308 if (pv1->pv_pindex > pv2->pv_pindex)
313 RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
314 pv_entry_compare, vm_pindex_t, pv_pindex);
318 pmap_page_stats_adding(vm_page_t m)
320 globaldata_t gd = mycpu;
322 if (TAILQ_EMPTY(&m->md.pv_list)) {
323 ++gd->gd_vmtotal.t_arm;
324 } else if (TAILQ_FIRST(&m->md.pv_list) ==
325 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
326 ++gd->gd_vmtotal.t_armshr;
327 ++gd->gd_vmtotal.t_avmshr;
329 ++gd->gd_vmtotal.t_avmshr;
335 pmap_page_stats_deleting(vm_page_t m)
337 globaldata_t gd = mycpu;
339 if (TAILQ_EMPTY(&m->md.pv_list)) {
340 --gd->gd_vmtotal.t_arm;
341 } else if (TAILQ_FIRST(&m->md.pv_list) ==
342 TAILQ_LAST(&m->md.pv_list, md_page_pv_list)) {
343 --gd->gd_vmtotal.t_armshr;
344 --gd->gd_vmtotal.t_avmshr;
346 --gd->gd_vmtotal.t_avmshr;
351 * Move the kernel virtual free pointer to the next
352 * 2MB. This is used to help improve performance
353 * by using a large (2MB) page for much of the kernel
354 * (.text, .data, .bss)
358 pmap_kmem_choose(vm_offset_t addr)
360 vm_offset_t newaddr = addr;
362 newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
369 * Super fast pmap_pte routine best used when scanning the pv lists.
370 * This eliminates many course-grained invltlb calls. Note that many of
371 * the pv list scans are across different pmaps and it is very wasteful
372 * to do an entire invltlb when checking a single mapping.
374 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
378 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
380 return pmap_pte(pmap, va);
384 * Returns the pindex of a page table entry (representing a terminal page).
385 * There are NUPTE_TOTAL page table entries possible (a huge number)
387 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
388 * We want to properly translate negative KVAs.
392 pmap_pte_pindex(vm_offset_t va)
394 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
398 * Returns the pindex of a page table.
402 pmap_pt_pindex(vm_offset_t va)
404 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
408 * Returns the pindex of a page directory.
412 pmap_pd_pindex(vm_offset_t va)
414 return (NUPTE_TOTAL + NUPT_TOTAL +
415 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
420 pmap_pdp_pindex(vm_offset_t va)
422 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
423 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
428 pmap_pml4_pindex(void)
430 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
434 * Return various clipped indexes for a given VA
436 * Returns the index of a pte in a page table, representing a terminal
441 pmap_pte_index(vm_offset_t va)
443 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
447 * Returns the index of a pt in a page directory, representing a page
452 pmap_pt_index(vm_offset_t va)
454 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
458 * Returns the index of a pd in a page directory page, representing a page
463 pmap_pd_index(vm_offset_t va)
465 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
469 * Returns the index of a pdp in the pml4 table, representing a page
474 pmap_pdp_index(vm_offset_t va)
476 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
480 * Generic procedure to index a pte from a pt, pd, or pdp.
482 * NOTE: Normally passed pindex as pmap_xx_index(). pmap_xx_pindex() is NOT
483 * a page table page index but is instead of PV lookup index.
487 pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
491 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
492 return(&pte[pindex]);
496 * Return pointer to PDP slot in the PML4
500 pmap_pdp(pmap_t pmap, vm_offset_t va)
502 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
506 * Return pointer to PD slot in the PDP given a pointer to the PDP
510 pmap_pdp_to_pd(pml4_entry_t pdp_pte, vm_offset_t va)
514 pd = (pdp_entry_t *)PHYS_TO_DMAP(pdp_pte & PG_FRAME);
515 return (&pd[pmap_pd_index(va)]);
519 * Return pointer to PD slot in the PDP.
523 pmap_pd(pmap_t pmap, vm_offset_t va)
527 pdp = pmap_pdp(pmap, va);
528 if ((*pdp & pmap->pmap_bits[PG_V_IDX]) == 0)
530 return (pmap_pdp_to_pd(*pdp, va));
534 * Return pointer to PT slot in the PD given a pointer to the PD
538 pmap_pd_to_pt(pdp_entry_t pd_pte, vm_offset_t va)
542 pt = (pd_entry_t *)PHYS_TO_DMAP(pd_pte & PG_FRAME);
543 return (&pt[pmap_pt_index(va)]);
547 * Return pointer to PT slot in the PD
549 * SIMPLE PMAP NOTE: Simple pmaps (embedded in objects) do not have PDPs,
550 * so we cannot lookup the PD via the PDP. Instead we
551 * must look it up via the pmap.
555 pmap_pt(pmap_t pmap, vm_offset_t va)
559 vm_pindex_t pd_pindex;
561 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
562 pd_pindex = pmap_pd_pindex(va);
563 spin_lock(&pmap->pm_spin);
564 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pd_pindex);
565 spin_unlock(&pmap->pm_spin);
566 if (pv == NULL || pv->pv_m == NULL)
568 return (pmap_pd_to_pt(VM_PAGE_TO_PHYS(pv->pv_m), va));
570 pd = pmap_pd(pmap, va);
571 if (pd == NULL || (*pd & pmap->pmap_bits[PG_V_IDX]) == 0)
573 return (pmap_pd_to_pt(*pd, va));
578 * Return pointer to PTE slot in the PT given a pointer to the PT
582 pmap_pt_to_pte(pd_entry_t pt_pte, vm_offset_t va)
586 pte = (pt_entry_t *)PHYS_TO_DMAP(pt_pte & PG_FRAME);
587 return (&pte[pmap_pte_index(va)]);
591 * Return pointer to PTE slot in the PT
595 pmap_pte(pmap_t pmap, vm_offset_t va)
599 pt = pmap_pt(pmap, va);
600 if (pt == NULL || (*pt & pmap->pmap_bits[PG_V_IDX]) == 0)
602 if ((*pt & pmap->pmap_bits[PG_PS_IDX]) != 0)
603 return ((pt_entry_t *)pt);
604 return (pmap_pt_to_pte(*pt, va));
608 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
609 * the PT layer. This will speed up core pmap operations considerably.
611 * NOTE: The pmap spinlock does not need to be held but the passed-in pv
612 * must be in a known associated state (typically by being locked when
613 * the pmap spinlock isn't held). We allow the race for that case.
617 pv_cache(pv_entry_t pv, vm_pindex_t pindex)
619 if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
620 pv->pv_pmap->pm_pvhint = pv;
625 * Return address of PT slot in PD (KVM only)
627 * Cannot be used for user page tables because it might interfere with
628 * the shared page-table-page optimization (pmap_mmu_optimize).
632 vtopt(vm_offset_t va)
634 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
635 NPML4EPGSHIFT)) - 1);
637 return (PDmap + ((va >> PDRSHIFT) & mask));
641 * KVM - return address of PTE slot in PT
645 vtopte(vm_offset_t va)
647 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
648 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
650 return (PTmap + ((va >> PAGE_SHIFT) & mask));
654 allocpages(vm_paddr_t *firstaddr, long n)
659 bzero((void *)ret, n * PAGE_SIZE);
660 *firstaddr += n * PAGE_SIZE;
666 create_pagetables(vm_paddr_t *firstaddr)
668 long i; /* must be 64 bits */
674 * We are running (mostly) V=P at this point
676 * Calculate NKPT - number of kernel page tables. We have to
677 * accomodoate prealloction of the vm_page_array, dump bitmap,
678 * MSGBUF_SIZE, and other stuff. Be generous.
680 * Maxmem is in pages.
682 * ndmpdp is the number of 1GB pages we wish to map.
684 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
685 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
687 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
690 * Starting at the beginning of kvm (not KERNBASE).
692 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
693 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
694 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
695 ndmpdp) + 511) / 512;
699 * Starting at KERNBASE - map 2G worth of page table pages.
700 * KERNBASE is offset -2G from the end of kvm.
702 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
707 KPTbase = allocpages(firstaddr, nkpt_base);
708 KPTphys = allocpages(firstaddr, nkpt_phys);
709 KPML4phys = allocpages(firstaddr, 1);
710 KPDPphys = allocpages(firstaddr, NKPML4E);
711 KPDphys = allocpages(firstaddr, NKPDPE);
714 * Calculate the page directory base for KERNBASE,
715 * that is where we start populating the page table pages.
716 * Basically this is the end - 2.
718 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
720 DMPDPphys = allocpages(firstaddr, NDMPML4E);
721 if ((amd_feature & AMDID_PAGE1GB) == 0)
722 DMPDphys = allocpages(firstaddr, ndmpdp);
723 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
726 * Fill in the underlying page table pages for the area around
727 * KERNBASE. This remaps low physical memory to KERNBASE.
729 * Read-only from zero to physfree
730 * XXX not fully used, underneath 2M pages
732 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
733 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
734 ((pt_entry_t *)KPTbase)[i] |=
735 pmap_bits_default[PG_RW_IDX] |
736 pmap_bits_default[PG_V_IDX] |
737 pmap_bits_default[PG_G_IDX];
741 * Now map the initial kernel page tables. One block of page
742 * tables is placed at the beginning of kernel virtual memory,
743 * and another block is placed at KERNBASE to map the kernel binary,
744 * data, bss, and initial pre-allocations.
746 for (i = 0; i < nkpt_base; i++) {
747 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
748 ((pd_entry_t *)KPDbase)[i] |=
749 pmap_bits_default[PG_RW_IDX] |
750 pmap_bits_default[PG_V_IDX];
752 for (i = 0; i < nkpt_phys; i++) {
753 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
754 ((pd_entry_t *)KPDphys)[i] |=
755 pmap_bits_default[PG_RW_IDX] |
756 pmap_bits_default[PG_V_IDX];
760 * Map from zero to end of allocations using 2M pages as an
761 * optimization. This will bypass some of the KPTBase pages
762 * above in the KERNBASE area.
764 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
765 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
766 ((pd_entry_t *)KPDbase)[i] |=
767 pmap_bits_default[PG_RW_IDX] |
768 pmap_bits_default[PG_V_IDX] |
769 pmap_bits_default[PG_PS_IDX] |
770 pmap_bits_default[PG_G_IDX];
774 * And connect up the PD to the PDP. The kernel pmap is expected
775 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
777 for (i = 0; i < NKPDPE; i++) {
778 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
779 KPDphys + (i << PAGE_SHIFT);
780 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
781 pmap_bits_default[PG_RW_IDX] |
782 pmap_bits_default[PG_V_IDX] |
783 pmap_bits_default[PG_U_IDX];
787 * Now set up the direct map space using either 2MB or 1GB pages
788 * Preset PG_M and PG_A because demotion expects it.
790 * When filling in entries in the PD pages make sure any excess
791 * entries are set to zero as we allocated enough PD pages
793 if ((amd_feature & AMDID_PAGE1GB) == 0) {
794 for (i = 0; i < NPDEPG * ndmpdp; i++) {
795 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
796 ((pd_entry_t *)DMPDphys)[i] |=
797 pmap_bits_default[PG_RW_IDX] |
798 pmap_bits_default[PG_V_IDX] |
799 pmap_bits_default[PG_PS_IDX] |
800 pmap_bits_default[PG_G_IDX] |
801 pmap_bits_default[PG_M_IDX] |
802 pmap_bits_default[PG_A_IDX];
806 * And the direct map space's PDP
808 for (i = 0; i < ndmpdp; i++) {
809 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
811 ((pdp_entry_t *)DMPDPphys)[i] |=
812 pmap_bits_default[PG_RW_IDX] |
813 pmap_bits_default[PG_V_IDX] |
814 pmap_bits_default[PG_U_IDX];
817 for (i = 0; i < ndmpdp; i++) {
818 ((pdp_entry_t *)DMPDPphys)[i] =
819 (vm_paddr_t)i << PDPSHIFT;
820 ((pdp_entry_t *)DMPDPphys)[i] |=
821 pmap_bits_default[PG_RW_IDX] |
822 pmap_bits_default[PG_V_IDX] |
823 pmap_bits_default[PG_PS_IDX] |
824 pmap_bits_default[PG_G_IDX] |
825 pmap_bits_default[PG_M_IDX] |
826 pmap_bits_default[PG_A_IDX];
830 /* And recursively map PML4 to itself in order to get PTmap */
831 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
832 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |=
833 pmap_bits_default[PG_RW_IDX] |
834 pmap_bits_default[PG_V_IDX] |
835 pmap_bits_default[PG_U_IDX];
838 * Connect the Direct Map slots up to the PML4
840 for (j = 0; j < NDMPML4E; ++j) {
841 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
842 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
843 pmap_bits_default[PG_RW_IDX] |
844 pmap_bits_default[PG_V_IDX] |
845 pmap_bits_default[PG_U_IDX];
849 * Connect the KVA slot up to the PML4
851 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
852 ((pdp_entry_t *)KPML4phys)[KPML4I] |=
853 pmap_bits_default[PG_RW_IDX] |
854 pmap_bits_default[PG_V_IDX] |
855 pmap_bits_default[PG_U_IDX];
859 * Bootstrap the system enough to run with virtual memory.
861 * On the i386 this is called after mapping has already been enabled
862 * and just syncs the pmap module with what has already been done.
863 * [We can't call it easily with mapping off since the kernel is not
864 * mapped with PA == VA, hence we would have to relocate every address
865 * from the linked base (virtual) address "KERNBASE" to the actual
866 * (physical) address starting relative to 0]
869 pmap_bootstrap(vm_paddr_t *firstaddr)
874 KvaStart = VM_MIN_KERNEL_ADDRESS;
875 KvaEnd = VM_MAX_KERNEL_ADDRESS;
876 KvaSize = KvaEnd - KvaStart;
878 avail_start = *firstaddr;
881 * Create an initial set of page tables to run the kernel in.
883 create_pagetables(firstaddr);
885 virtual2_start = KvaStart;
886 virtual2_end = PTOV_OFFSET;
888 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
889 virtual_start = pmap_kmem_choose(virtual_start);
891 virtual_end = VM_MAX_KERNEL_ADDRESS;
893 /* XXX do %cr0 as well */
894 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
898 * Initialize protection array.
900 i386_protection_init();
903 * The kernel's pmap is statically allocated so we don't have to use
904 * pmap_create, which is unlikely to work correctly at this part of
905 * the boot sequence (XXX and which no longer exists).
907 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
908 kernel_pmap.pm_count = 1;
909 kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
910 RB_INIT(&kernel_pmap.pm_pvroot);
911 spin_init(&kernel_pmap.pm_spin);
912 lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
915 * Reserve some special page table entries/VA space for temporary
918 #define SYSMAP(c, p, v, n) \
919 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
925 * CMAP1/CMAP2 are used for zeroing and copying pages.
927 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
932 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
935 * ptvmmap is used for reading arbitrary physical pages via
938 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
941 * msgbufp is used to map the system message buffer.
942 * XXX msgbufmap is not used.
944 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
945 atop(round_page(MSGBUF_SIZE)))
952 * PG_G is terribly broken on SMP because we IPI invltlb's in some
953 * cases rather then invl1pg. Actually, I don't even know why it
954 * works under UP because self-referential page table mappings
959 * Initialize the 4MB page size flag
963 * The 4MB page version of the initial
964 * kernel page mapping.
968 #if !defined(DISABLE_PSE)
969 if (cpu_feature & CPUID_PSE) {
972 * Note that we have enabled PSE mode
974 // pseflag = kernel_pmap.pmap_bits[PG_PS_IDX];
975 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
976 ptditmp &= ~(NBPDR - 1);
977 ptditmp |= pmap_bits_default[PG_V_IDX] |
978 pmap_bits_default[PG_RW_IDX] |
979 pmap_bits_default[PG_PS_IDX] |
980 pmap_bits_default[PG_U_IDX];
987 /* Initialize the PAT MSR */
990 pmap_pinit_defaults(&kernel_pmap);
1003 * Default values mapping PATi,PCD,PWT bits at system reset.
1004 * The default values effectively ignore the PATi bit by
1005 * repeating the encodings for 0-3 in 4-7, and map the PCD
1006 * and PWT bit combinations to the expected PAT types.
1008 pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) | /* 000 */
1009 PAT_VALUE(1, PAT_WRITE_THROUGH) | /* 001 */
1010 PAT_VALUE(2, PAT_UNCACHED) | /* 010 */
1011 PAT_VALUE(3, PAT_UNCACHEABLE) | /* 011 */
1012 PAT_VALUE(4, PAT_WRITE_BACK) | /* 100 */
1013 PAT_VALUE(5, PAT_WRITE_THROUGH) | /* 101 */
1014 PAT_VALUE(6, PAT_UNCACHED) | /* 110 */
1015 PAT_VALUE(7, PAT_UNCACHEABLE); /* 111 */
1016 pat_pte_index[PAT_WRITE_BACK] = 0;
1017 pat_pte_index[PAT_WRITE_THROUGH]= 0 | X86_PG_NC_PWT;
1018 pat_pte_index[PAT_UNCACHED] = X86_PG_NC_PCD;
1019 pat_pte_index[PAT_UNCACHEABLE] = X86_PG_NC_PCD | X86_PG_NC_PWT;
1020 pat_pte_index[PAT_WRITE_PROTECTED] = pat_pte_index[PAT_UNCACHEABLE];
1021 pat_pte_index[PAT_WRITE_COMBINING] = pat_pte_index[PAT_UNCACHEABLE];
1023 if (cpu_feature & CPUID_PAT) {
1025 * If we support the PAT then set-up entries for
1026 * WRITE_PROTECTED and WRITE_COMBINING using bit patterns
1029 pat_msr = (pat_msr & ~PAT_MASK(4)) |
1030 PAT_VALUE(4, PAT_WRITE_PROTECTED);
1031 pat_msr = (pat_msr & ~PAT_MASK(5)) |
1032 PAT_VALUE(5, PAT_WRITE_COMBINING);
1033 pat_pte_index[PAT_WRITE_PROTECTED] = X86_PG_PTE_PAT | 0;
1034 pat_pte_index[PAT_WRITE_COMBINING] = X86_PG_PTE_PAT | X86_PG_NC_PWT;
1037 * Then enable the PAT
1042 load_cr4(cr4 & ~CR4_PGE);
1044 /* Disable caches (CD = 1, NW = 0). */
1046 load_cr0((cr0 & ~CR0_NW) | CR0_CD);
1048 /* Flushes caches and TLBs. */
1052 /* Update PAT and index table. */
1053 wrmsr(MSR_PAT, pat_msr);
1055 /* Flush caches and TLBs again. */
1059 /* Restore caches and PGE. */
1067 * Set 4mb pdir for mp startup
1072 if (cpu_feature & CPUID_PSE) {
1073 load_cr4(rcr4() | CR4_PSE);
1074 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
1081 * Initialize the pmap module.
1082 * Called by vm_init, to initialize any structures that the pmap
1083 * system needs to map virtual memory.
1084 * pmap_init has been enhanced to support in a fairly consistant
1085 * way, discontiguous physical memory.
1094 * Allocate memory for random pmap data structures. Includes the
1098 for (i = 0; i < vm_page_array_size; i++) {
1101 m = &vm_page_array[i];
1102 TAILQ_INIT(&m->md.pv_list);
1106 * init the pv free list
1108 initial_pvs = vm_page_array_size;
1109 if (initial_pvs < MINPV)
1110 initial_pvs = MINPV;
1111 pvzone = &pvzone_store;
1112 pvinit = (void *)kmem_alloc(&kernel_map,
1113 initial_pvs * sizeof (struct pv_entry));
1114 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
1115 pvinit, initial_pvs);
1118 * Now it is safe to enable pv_table recording.
1120 pmap_initialized = TRUE;
1124 * Initialize the address space (zone) for the pv_entries. Set a
1125 * high water mark so that the system can recover from excessive
1126 * numbers of pv entries.
1131 int shpgperproc = PMAP_SHPGPERPROC;
1134 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1135 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
1136 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1137 pv_entry_high_water = 9 * (pv_entry_max / 10);
1140 * Subtract out pages already installed in the zone (hack)
1142 entry_max = pv_entry_max - vm_page_array_size;
1146 zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
1150 * Typically used to initialize a fictitious page by vm/device_pager.c
1153 pmap_page_init(struct vm_page *m)
1156 TAILQ_INIT(&m->md.pv_list);
1159 /***************************************************
1160 * Low level helper routines.....
1161 ***************************************************/
1164 * this routine defines the region(s) of memory that should
1165 * not be tested for the modified bit.
1169 pmap_track_modified(vm_pindex_t pindex)
1171 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
1172 if ((va < clean_sva) || (va >= clean_eva))
1179 * Extract the physical page address associated with the map/VA pair.
1180 * The page must be wired for this to work reliably.
1182 * XXX for the moment we're using pv_find() instead of pv_get(), as
1183 * callers might be expecting non-blocking operation.
1186 pmap_extract(pmap_t pmap, vm_offset_t va)
1193 if (va >= VM_MAX_USER_ADDRESS) {
1195 * Kernel page directories might be direct-mapped and
1196 * there is typically no PV tracking of pte's
1200 pt = pmap_pt(pmap, va);
1201 if (pt && (*pt & pmap->pmap_bits[PG_V_IDX])) {
1202 if (*pt & pmap->pmap_bits[PG_PS_IDX]) {
1203 rtval = *pt & PG_PS_FRAME;
1204 rtval |= va & PDRMASK;
1206 ptep = pmap_pt_to_pte(*pt, va);
1207 if (*pt & pmap->pmap_bits[PG_V_IDX]) {
1208 rtval = *ptep & PG_FRAME;
1209 rtval |= va & PAGE_MASK;
1215 * User pages currently do not direct-map the page directory
1216 * and some pages might not used managed PVs. But all PT's
1219 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1221 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1222 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1223 rtval = *ptep & PG_FRAME;
1224 rtval |= va & PAGE_MASK;
1233 * Similar to extract but checks protections, SMP-friendly short-cut for
1234 * vm_fault_page[_quick](). Can return NULL to cause the caller to
1235 * fall-through to the real fault code.
1237 * The returned page, if not NULL, is held (and not busied).
1240 pmap_fault_page_quick(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1242 if (pmap && va < VM_MAX_USER_ADDRESS) {
1250 req = pmap->pmap_bits[PG_V_IDX] |
1251 pmap->pmap_bits[PG_U_IDX];
1252 if (prot & VM_PROT_WRITE)
1253 req |= pmap->pmap_bits[PG_RW_IDX];
1255 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1258 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1259 if ((*ptep & req) != req) {
1263 pte_pv = pv_get_try(pmap, pmap_pte_pindex(va), &error);
1264 if (pte_pv && error == 0) {
1267 if (prot & VM_PROT_WRITE)
1270 } else if (pte_pv) {
1284 * Extract the physical page address associated kernel virtual address.
1287 pmap_kextract(vm_offset_t va)
1289 pd_entry_t pt; /* pt entry in pd */
1292 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1293 pa = DMAP_TO_PHYS(va);
1296 if (pt & kernel_pmap.pmap_bits[PG_PS_IDX]) {
1297 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1300 * Beware of a concurrent promotion that changes the
1301 * PDE at this point! For example, vtopte() must not
1302 * be used to access the PTE because it would use the
1303 * new PDE. It is, however, safe to use the old PDE
1304 * because the page table page is preserved by the
1307 pa = *pmap_pt_to_pte(pt, va);
1308 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1314 /***************************************************
1315 * Low level mapping routines.....
1316 ***************************************************/
1319 * Routine: pmap_kenter
1321 * Add a wired page to the KVA
1322 * NOTE! note that in order for the mapping to take effect -- you
1323 * should do an invltlb after doing the pmap_kenter().
1326 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1330 pmap_inval_info info;
1332 pmap_inval_init(&info); /* XXX remove */
1334 kernel_pmap.pmap_bits[PG_RW_IDX] |
1335 kernel_pmap.pmap_bits[PG_V_IDX];
1338 pmap_inval_interlock(&info, &kernel_pmap, va); /* XXX remove */
1340 pmap_inval_deinterlock(&info, &kernel_pmap); /* XXX remove */
1341 pmap_inval_done(&info); /* XXX remove */
1345 * Routine: pmap_kenter_quick
1347 * Similar to pmap_kenter(), except we only invalidate the
1348 * mapping on the current CPU.
1351 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1357 kernel_pmap.pmap_bits[PG_RW_IDX] |
1358 kernel_pmap.pmap_bits[PG_V_IDX];
1362 cpu_invlpg((void *)va);
1366 pmap_kenter_sync(vm_offset_t va)
1368 pmap_inval_info info;
1370 pmap_inval_init(&info);
1371 pmap_inval_interlock(&info, &kernel_pmap, va);
1372 pmap_inval_deinterlock(&info, &kernel_pmap);
1373 pmap_inval_done(&info);
1377 pmap_kenter_sync_quick(vm_offset_t va)
1379 cpu_invlpg((void *)va);
1383 * remove a page from the kernel pagetables
1386 pmap_kremove(vm_offset_t va)
1389 pmap_inval_info info;
1391 pmap_inval_init(&info);
1393 pmap_inval_interlock(&info, &kernel_pmap, va);
1394 (void)pte_load_clear(pte);
1395 pmap_inval_deinterlock(&info, &kernel_pmap);
1396 pmap_inval_done(&info);
1400 pmap_kremove_quick(vm_offset_t va)
1404 (void)pte_load_clear(pte);
1405 cpu_invlpg((void *)va);
1409 * XXX these need to be recoded. They are not used in any critical path.
1412 pmap_kmodify_rw(vm_offset_t va)
1414 atomic_set_long(vtopte(va), kernel_pmap.pmap_bits[PG_RW_IDX]);
1415 cpu_invlpg((void *)va);
1420 pmap_kmodify_nc(vm_offset_t va)
1422 atomic_set_long(vtopte(va), PG_N);
1423 cpu_invlpg((void *)va);
1428 * Used to map a range of physical addresses into kernel virtual
1429 * address space during the low level boot, typically to map the
1430 * dump bitmap, message buffer, and vm_page_array.
1432 * These mappings are typically made at some pointer after the end of the
1435 * We could return PHYS_TO_DMAP(start) here and not allocate any
1436 * via (*virtp), but then kmem from userland and kernel dumps won't
1437 * have access to the related pointers.
1440 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1443 vm_offset_t va_start;
1445 /*return PHYS_TO_DMAP(start);*/
1450 while (start < end) {
1451 pmap_kenter_quick(va, start);
1459 #define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
1462 * Remove the specified set of pages from the data and instruction caches.
1464 * In contrast to pmap_invalidate_cache_range(), this function does not
1465 * rely on the CPU's self-snoop feature, because it is intended for use
1466 * when moving pages into a different cache domain.
1469 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1471 vm_offset_t daddr, eva;
1474 if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1475 (cpu_feature & CPUID_CLFSH) == 0)
1479 for (i = 0; i < count; i++) {
1480 daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
1481 eva = daddr + PAGE_SIZE;
1482 for (; daddr < eva; daddr += cpu_clflush_line_size)
1490 pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1492 KASSERT((sva & PAGE_MASK) == 0,
1493 ("pmap_invalidate_cache_range: sva not page-aligned"));
1494 KASSERT((eva & PAGE_MASK) == 0,
1495 ("pmap_invalidate_cache_range: eva not page-aligned"));
1497 if (cpu_feature & CPUID_SS) {
1498 ; /* If "Self Snoop" is supported, do nothing. */
1500 /* Globally invalidate caches */
1501 cpu_wbinvd_on_all_cpus();
1505 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1507 smp_invlpg_range(pmap->pm_active, sva, eva);
1511 * Add a list of wired pages to the kva
1512 * this routine is only used for temporary
1513 * kernel mappings that do not need to have
1514 * page modification or references recorded.
1515 * Note that old mappings are simply written
1516 * over. The page *must* be wired.
1519 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1523 end_va = va + count * PAGE_SIZE;
1525 while (va < end_va) {
1529 *pte = VM_PAGE_TO_PHYS(*m) |
1530 kernel_pmap.pmap_bits[PG_RW_IDX] |
1531 kernel_pmap.pmap_bits[PG_V_IDX] |
1532 kernel_pmap.pmap_cache_bits[(*m)->pat_mode];
1534 cpu_invlpg((void *)va);
1542 * This routine jerks page mappings from the
1543 * kernel -- it is meant only for temporary mappings.
1545 * MPSAFE, INTERRUPT SAFE (cluster callback)
1548 pmap_qremove(vm_offset_t va, int count)
1552 end_va = va + count * PAGE_SIZE;
1554 while (va < end_va) {
1558 (void)pte_load_clear(pte);
1559 cpu_invlpg((void *)va);
1566 * Create a new thread and optionally associate it with a (new) process.
1567 * NOTE! the new thread's cpu may not equal the current cpu.
1570 pmap_init_thread(thread_t td)
1572 /* enforce pcb placement & alignment */
1573 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1574 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1575 td->td_savefpu = &td->td_pcb->pcb_save;
1576 td->td_sp = (char *)td->td_pcb; /* no -16 */
1580 * This routine directly affects the fork perf for a process.
1583 pmap_init_proc(struct proc *p)
1588 pmap_pinit_defaults(struct pmap *pmap)
1590 bcopy(pmap_bits_default, pmap->pmap_bits,
1591 sizeof(pmap_bits_default));
1592 bcopy(protection_codes, pmap->protection_codes,
1593 sizeof(protection_codes));
1594 bcopy(pat_pte_index, pmap->pmap_cache_bits,
1595 sizeof(pat_pte_index));
1596 pmap->pmap_cache_mask = X86_PG_NC_PWT | X86_PG_NC_PCD | X86_PG_PTE_PAT;
1597 pmap->copyinstr = std_copyinstr;
1598 pmap->copyin = std_copyin;
1599 pmap->copyout = std_copyout;
1600 pmap->fubyte = std_fubyte;
1601 pmap->subyte = std_subyte;
1602 pmap->fuword = std_fuword;
1603 pmap->suword = std_suword;
1604 pmap->suword32 = std_suword32;
1607 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1608 * it, and IdlePTD, represents the template used to update all other pmaps.
1610 * On architectures where the kernel pmap is not integrated into the user
1611 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1612 * kernel_pmap should be used to directly access the kernel_pmap.
1615 pmap_pinit0(struct pmap *pmap)
1617 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1619 pmap->pm_active = 0;
1620 pmap->pm_pvhint = NULL;
1621 RB_INIT(&pmap->pm_pvroot);
1622 spin_init(&pmap->pm_spin);
1623 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1624 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1625 pmap_pinit_defaults(pmap);
1629 * Initialize a preallocated and zeroed pmap structure,
1630 * such as one in a vmspace structure.
1633 pmap_pinit_simple(struct pmap *pmap)
1636 * Misc initialization
1639 pmap->pm_active = 0;
1640 pmap->pm_pvhint = NULL;
1641 pmap->pm_flags = PMAP_FLAG_SIMPLE;
1643 pmap_pinit_defaults(pmap);
1646 * Don't blow up locks/tokens on re-use (XXX fix/use drop code
1649 if (pmap->pm_pmlpv == NULL) {
1650 RB_INIT(&pmap->pm_pvroot);
1651 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1652 spin_init(&pmap->pm_spin);
1653 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1658 pmap_pinit(struct pmap *pmap)
1663 if (pmap->pm_pmlpv) {
1664 if (pmap->pmap_bits[TYPE_IDX] != REGULAR_PMAP) {
1669 pmap_pinit_simple(pmap);
1670 pmap->pm_flags &= ~PMAP_FLAG_SIMPLE;
1673 * No need to allocate page table space yet but we do need a valid
1674 * page directory table.
1676 if (pmap->pm_pml4 == NULL) {
1678 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1682 * Allocate the page directory page, which wires it even though
1683 * it isn't being entered into some higher level page table (it
1684 * being the highest level). If one is already cached we don't
1685 * have to do anything.
1687 if ((pv = pmap->pm_pmlpv) == NULL) {
1688 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1689 pmap->pm_pmlpv = pv;
1690 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1691 VM_PAGE_TO_PHYS(pv->pv_m));
1695 * Install DMAP and KMAP.
1697 for (j = 0; j < NDMPML4E; ++j) {
1698 pmap->pm_pml4[DMPML4I + j] =
1699 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1700 pmap->pmap_bits[PG_RW_IDX] |
1701 pmap->pmap_bits[PG_V_IDX] |
1702 pmap->pmap_bits[PG_U_IDX];
1704 pmap->pm_pml4[KPML4I] = KPDPphys |
1705 pmap->pmap_bits[PG_RW_IDX] |
1706 pmap->pmap_bits[PG_V_IDX] |
1707 pmap->pmap_bits[PG_U_IDX];
1710 * install self-referential address mapping entry
1712 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1713 pmap->pmap_bits[PG_V_IDX] |
1714 pmap->pmap_bits[PG_RW_IDX] |
1715 pmap->pmap_bits[PG_A_IDX] |
1716 pmap->pmap_bits[PG_M_IDX];
1718 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1719 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1721 KKASSERT(pmap->pm_pml4[255] == 0);
1722 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1723 KKASSERT(pv->pv_entry.rbe_left == NULL);
1724 KKASSERT(pv->pv_entry.rbe_right == NULL);
1728 * Clean up a pmap structure so it can be physically freed. This routine
1729 * is called by the vmspace dtor function. A great deal of pmap data is
1730 * left passively mapped to improve vmspace management so we have a bit
1731 * of cleanup work to do here.
1734 pmap_puninit(pmap_t pmap)
1739 KKASSERT(pmap->pm_active == 0);
1740 if ((pv = pmap->pm_pmlpv) != NULL) {
1741 if (pv_hold_try(pv) == 0)
1743 KKASSERT(pv == pmap->pm_pmlpv);
1744 p = pmap_remove_pv_page(pv);
1746 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1747 vm_page_busy_wait(p, FALSE, "pgpun");
1748 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1749 vm_page_unwire(p, 0);
1750 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1753 * XXX eventually clean out PML4 static entries and
1754 * use vm_page_free_zero()
1757 pmap->pm_pmlpv = NULL;
1759 if (pmap->pm_pml4) {
1760 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1761 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1762 pmap->pm_pml4 = NULL;
1764 KKASSERT(pmap->pm_stats.resident_count == 0);
1765 KKASSERT(pmap->pm_stats.wired_count == 0);
1769 * Wire in kernel global address entries. To avoid a race condition
1770 * between pmap initialization and pmap_growkernel, this procedure
1771 * adds the pmap to the master list (which growkernel scans to update),
1772 * then copies the template.
1775 pmap_pinit2(struct pmap *pmap)
1777 spin_lock(&pmap_spin);
1778 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1779 spin_unlock(&pmap_spin);
1783 * This routine is called when various levels in the page table need to
1784 * be populated. This routine cannot fail.
1786 * This function returns two locked pv_entry's, one representing the
1787 * requested pv and one representing the requested pv's parent pv. If
1788 * the pv did not previously exist it will be mapped into its parent
1789 * and wired, otherwise no additional wire count will be added.
1793 pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1798 vm_pindex_t pt_pindex;
1804 * If the pv already exists and we aren't being asked for the
1805 * parent page table page we can just return it. A locked+held pv
1806 * is returned. The pv will also have a second hold related to the
1807 * pmap association that we don't have to worry about.
1810 pv = pv_alloc(pmap, ptepindex, &isnew);
1811 if (isnew == 0 && pvpp == NULL)
1815 * Special case terminal PVs. These are not page table pages so
1816 * no vm_page is allocated (the caller supplied the vm_page). If
1817 * pvpp is non-NULL we are being asked to also removed the pt_pv
1820 * Note that pt_pv's are only returned for user VAs. We assert that
1821 * a pt_pv is not being requested for kernel VAs.
1823 if (ptepindex < pmap_pt_pindex(0)) {
1824 if (ptepindex >= NUPTE_USER)
1825 KKASSERT(pvpp == NULL);
1827 KKASSERT(pvpp != NULL);
1829 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1830 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1832 vm_page_wire_quick(pvp->pv_m);
1841 * Non-terminal PVs allocate a VM page to represent the page table,
1842 * so we have to resolve pvp and calculate ptepindex for the pvp
1843 * and then for the page table entry index in the pvp for
1846 if (ptepindex < pmap_pd_pindex(0)) {
1848 * pv is PT, pvp is PD
1850 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1851 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1852 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1859 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1860 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1862 } else if (ptepindex < pmap_pdp_pindex(0)) {
1864 * pv is PD, pvp is PDP
1866 * SIMPLE PMAP NOTE: Simple pmaps do not allocate above
1869 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1870 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1872 if (pmap->pm_flags & PMAP_FLAG_SIMPLE) {
1873 KKASSERT(pvpp == NULL);
1876 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1884 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1885 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1886 } else if (ptepindex < pmap_pml4_pindex()) {
1888 * pv is PDP, pvp is the root pml4 table
1890 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1897 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1898 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1901 * pv represents the top-level PML4, there is no parent.
1909 * This code is only reached if isnew is TRUE and this is not a
1910 * terminal PV. We need to allocate a vm_page for the page table
1911 * at this level and enter it into the parent page table.
1913 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
1916 m = vm_page_alloc(NULL, pv->pv_pindex,
1917 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
1918 VM_ALLOC_INTERRUPT);
1923 vm_page_spin_lock(m);
1924 pmap_page_stats_adding(m);
1925 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1927 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1928 vm_page_spin_unlock(m);
1929 vm_page_unmanage(m); /* m must be spinunlocked */
1931 if ((m->flags & PG_ZERO) == 0) {
1932 pmap_zero_page(VM_PAGE_TO_PHYS(m));
1936 pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1939 m->valid = VM_PAGE_BITS_ALL;
1940 vm_page_flag_clear(m, PG_ZERO);
1941 vm_page_wire(m); /* wire for mapping in parent */
1944 * Wire the page into pvp, bump the wire-count for pvp's page table
1945 * page. Bump the resident_count for the pmap. There is no pvp
1946 * for the top level, address the pm_pml4[] array directly.
1948 * If the caller wants the parent we return it, otherwise
1949 * we just put it away.
1951 * No interlock is needed for pte 0 -> non-zero.
1953 * In the situation where *ptep is valid we might have an unmanaged
1954 * page table page shared from another page table which we need to
1955 * unshare before installing our private page table page.
1958 ptep = pv_pte_lookup(pvp, ptepindex);
1959 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
1961 pmap_inval_info info;
1964 panic("pmap_allocpte: unexpected pte %p/%d",
1965 pvp, (int)ptepindex);
1967 pmap_inval_init(&info);
1968 pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
1969 pte = pte_load_clear(ptep);
1970 pmap_inval_deinterlock(&info, pmap);
1971 pmap_inval_done(&info);
1972 if (vm_page_unwire_quick(
1973 PHYS_TO_VM_PAGE(pte & PG_FRAME))) {
1974 panic("pmap_allocpte: shared pgtable "
1975 "pg bad wirecount");
1977 atomic_add_long(&pmap->pm_stats.resident_count, -1);
1979 vm_page_wire_quick(pvp->pv_m);
1981 *ptep = VM_PAGE_TO_PHYS(m) |
1982 (pmap->pmap_bits[PG_U_IDX] |
1983 pmap->pmap_bits[PG_RW_IDX] |
1984 pmap->pmap_bits[PG_V_IDX] |
1985 pmap->pmap_bits[PG_A_IDX] |
1986 pmap->pmap_bits[PG_M_IDX]);
1998 * This version of pmap_allocpte() checks for possible segment optimizations
1999 * that would allow page-table sharing. It can be called for terminal
2000 * page or page table page ptepindex's.
2002 * The function is called with page table page ptepindex's for fictitious
2003 * and unmanaged terminal pages. That is, we don't want to allocate a
2004 * terminal pv, we just want the pt_pv. pvpp is usually passed as NULL
2007 * This function can return a pv and *pvpp associated with the passed in pmap
2008 * OR a pv and *pvpp associated with the shared pmap. In the latter case
2009 * an unmanaged page table page will be entered into the pass in pmap.
2013 pmap_allocpte_seg(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp,
2014 vm_map_entry_t entry, vm_offset_t va)
2016 struct pmap_inval_info info;
2021 pv_entry_t pte_pv; /* in original or shared pmap */
2022 pv_entry_t pt_pv; /* in original or shared pmap */
2023 pv_entry_t proc_pd_pv; /* in original pmap */
2024 pv_entry_t proc_pt_pv; /* in original pmap */
2025 pv_entry_t xpv; /* PT in shared pmap */
2026 pd_entry_t *pt; /* PT entry in PD of original pmap */
2027 pd_entry_t opte; /* contents of *pt */
2028 pd_entry_t npte; /* contents of *pt */
2033 * Basic tests, require a non-NULL vm_map_entry, require proper
2034 * alignment and type for the vm_map_entry, require that the
2035 * underlying object already be allocated.
2037 * We allow almost any type of object to use this optimization.
2038 * The object itself does NOT have to be sized to a multiple of the
2039 * segment size, but the memory mapping does.
2041 * XXX don't handle devices currently, because VM_PAGE_TO_PHYS()
2042 * won't work as expected.
2044 if (entry == NULL ||
2045 pmap_mmu_optimize == 0 || /* not enabled */
2046 ptepindex >= pmap_pd_pindex(0) || /* not terminal or pt */
2047 entry->inheritance != VM_INHERIT_SHARE || /* not shared */
2048 entry->maptype != VM_MAPTYPE_NORMAL || /* weird map type */
2049 entry->object.vm_object == NULL || /* needs VM object */
2050 entry->object.vm_object->type == OBJT_DEVICE || /* ick */
2051 entry->object.vm_object->type == OBJT_MGTDEVICE || /* ick */
2052 (entry->offset & SEG_MASK) || /* must be aligned */
2053 (entry->start & SEG_MASK)) {
2054 return(pmap_allocpte(pmap, ptepindex, pvpp));
2058 * Make sure the full segment can be represented.
2060 b = va & ~(vm_offset_t)SEG_MASK;
2061 if (b < entry->start || b + SEG_SIZE > entry->end)
2062 return(pmap_allocpte(pmap, ptepindex, pvpp));
2065 * If the full segment can be represented dive the VM object's
2066 * shared pmap, allocating as required.
2068 object = entry->object.vm_object;
2070 if (entry->protection & VM_PROT_WRITE)
2071 obpmapp = &object->md.pmap_rw;
2073 obpmapp = &object->md.pmap_ro;
2076 if (pmap_enter_debug > 0) {
2078 kprintf("pmap_allocpte_seg: va=%jx prot %08x o=%p "
2080 va, entry->protection, object,
2082 kprintf("pmap_allocpte_seg: entry %p %jx-%jx\n",
2083 entry, entry->start, entry->end);
2088 * We allocate what appears to be a normal pmap but because portions
2089 * of this pmap are shared with other unrelated pmaps we have to
2090 * set pm_active to point to all cpus.
2092 * XXX Currently using pmap_spin to interlock the update, can't use
2093 * vm_object_hold/drop because the token might already be held
2094 * shared OR exclusive and we don't know.
2096 while ((obpmap = *obpmapp) == NULL) {
2097 obpmap = kmalloc(sizeof(*obpmap), M_OBJPMAP, M_WAITOK|M_ZERO);
2098 pmap_pinit_simple(obpmap);
2099 pmap_pinit2(obpmap);
2100 spin_lock(&pmap_spin);
2101 if (*obpmapp != NULL) {
2105 spin_unlock(&pmap_spin);
2106 pmap_release(obpmap);
2107 pmap_puninit(obpmap);
2108 kfree(obpmap, M_OBJPMAP);
2109 obpmap = *obpmapp; /* safety */
2111 obpmap->pm_active = smp_active_mask;
2113 spin_unlock(&pmap_spin);
2118 * Layering is: PTE, PT, PD, PDP, PML4. We have to return the
2119 * pte/pt using the shared pmap from the object but also adjust
2120 * the process pmap's page table page as a side effect.
2124 * Resolve the terminal PTE and PT in the shared pmap. This is what
2125 * we will return. This is true if ptepindex represents a terminal
2126 * page, otherwise pte_pv is actually the PT and pt_pv is actually
2130 pte_pv = pmap_allocpte(obpmap, ptepindex, &pt_pv);
2131 if (ptepindex >= pmap_pt_pindex(0))
2137 * Resolve the PD in the process pmap so we can properly share the
2138 * page table page. Lock order is bottom-up (leaf first)!
2140 * NOTE: proc_pt_pv can be NULL.
2142 proc_pt_pv = pv_get(pmap, pmap_pt_pindex(b));
2143 proc_pd_pv = pmap_allocpte(pmap, pmap_pd_pindex(b), NULL);
2145 if (pmap_enter_debug > 0) {
2147 kprintf("proc_pt_pv %p (wc %d) pd_pv %p va=%jx\n",
2149 (proc_pt_pv ? proc_pt_pv->pv_m->wire_count : -1),
2156 * xpv is the page table page pv from the shared object
2157 * (for convenience), from above.
2159 * Calculate the pte value for the PT to load into the process PD.
2160 * If we have to change it we must properly dispose of the previous
2163 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2164 npte = VM_PAGE_TO_PHYS(xpv->pv_m) |
2165 (pmap->pmap_bits[PG_U_IDX] |
2166 pmap->pmap_bits[PG_RW_IDX] |
2167 pmap->pmap_bits[PG_V_IDX] |
2168 pmap->pmap_bits[PG_A_IDX] |
2169 pmap->pmap_bits[PG_M_IDX]);
2172 * Dispose of previous page table page if it was local to the
2173 * process pmap. If the old pt is not empty we cannot dispose of it
2174 * until we clean it out. This case should not arise very often so
2175 * it is not optimized.
2178 if (proc_pt_pv->pv_m->wire_count != 1) {
2184 va & ~(vm_offset_t)SEG_MASK,
2185 (va + SEG_SIZE) & ~(vm_offset_t)SEG_MASK);
2188 pmap_release_pv(proc_pt_pv, proc_pd_pv);
2191 pt = pv_pte_lookup(proc_pd_pv, pmap_pt_index(b));
2195 * Handle remaining cases.
2199 vm_page_wire_quick(xpv->pv_m);
2200 vm_page_wire_quick(proc_pd_pv->pv_m);
2201 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2202 } else if (*pt != npte) {
2203 pmap_inval_init(&info);
2204 pmap_inval_interlock(&info, pmap, (vm_offset_t)-1);
2206 opte = pte_load_clear(pt);
2207 KKASSERT(opte && opte != npte);
2210 vm_page_wire_quick(xpv->pv_m); /* pgtable pg that is npte */
2213 * Clean up opte, bump the wire_count for the process
2214 * PD page representing the new entry if it was
2217 * If the entry was not previously empty and we have
2218 * a PT in the proc pmap then opte must match that
2219 * pt. The proc pt must be retired (this is done
2220 * later on in this procedure).
2222 * NOTE: replacing valid pte, wire_count on proc_pd_pv
2225 KKASSERT(opte & pmap->pmap_bits[PG_V_IDX]);
2226 m = PHYS_TO_VM_PAGE(opte & PG_FRAME);
2227 if (vm_page_unwire_quick(m)) {
2228 panic("pmap_allocpte_seg: "
2229 "bad wire count %p",
2233 pmap_inval_deinterlock(&info, pmap);
2234 pmap_inval_done(&info);
2238 * The existing process page table was replaced and must be destroyed
2252 * Release any resources held by the given physical map.
2254 * Called when a pmap initialized by pmap_pinit is being released. Should
2255 * only be called if the map contains no valid mappings.
2257 * Caller must hold pmap->pm_token
2259 struct pmap_release_info {
2264 static int pmap_release_callback(pv_entry_t pv, void *data);
2267 pmap_release(struct pmap *pmap)
2269 struct pmap_release_info info;
2271 KASSERT(pmap->pm_active == 0,
2272 ("pmap still active! %016jx", (uintmax_t)pmap->pm_active));
2274 spin_lock(&pmap_spin);
2275 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
2276 spin_unlock(&pmap_spin);
2279 * Pull pv's off the RB tree in order from low to high and release
2285 spin_lock(&pmap->pm_spin);
2286 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
2287 pmap_release_callback, &info);
2288 spin_unlock(&pmap->pm_spin);
2289 } while (info.retry);
2293 * One resident page (the pml4 page) should remain.
2294 * No wired pages should remain.
2296 KKASSERT(pmap->pm_stats.resident_count ==
2297 ((pmap->pm_flags & PMAP_FLAG_SIMPLE) ? 0 : 1));
2299 KKASSERT(pmap->pm_stats.wired_count == 0);
2303 pmap_release_callback(pv_entry_t pv, void *data)
2305 struct pmap_release_info *info = data;
2306 pmap_t pmap = info->pmap;
2309 if (pv_hold_try(pv)) {
2310 spin_unlock(&pmap->pm_spin);
2312 spin_unlock(&pmap->pm_spin);
2315 if (pv->pv_pmap != pmap) {
2317 spin_lock(&pmap->pm_spin);
2321 r = pmap_release_pv(pv, NULL);
2322 spin_lock(&pmap->pm_spin);
2327 * Called with held (i.e. also locked) pv. This function will dispose of
2328 * the lock along with the pv.
2330 * If the caller already holds the locked parent page table for pv it
2331 * must pass it as pvp, allowing us to avoid a deadlock, else it can
2332 * pass NULL for pvp.
2335 pmap_release_pv(pv_entry_t pv, pv_entry_t pvp)
2340 * The pmap is currently not spinlocked, pv is held+locked.
2341 * Remove the pv's page from its parent's page table. The
2342 * parent's page table page's wire_count will be decremented.
2344 pmap_remove_pv_pte(pv, pvp, NULL);
2347 * Terminal pvs are unhooked from their vm_pages. Because
2348 * terminal pages aren't page table pages they aren't wired
2349 * by us, so we have to be sure not to unwire them either.
2351 if (pv->pv_pindex < pmap_pt_pindex(0)) {
2352 pmap_remove_pv_page(pv);
2357 * We leave the top-level page table page cached, wired, and
2358 * mapped in the pmap until the dtor function (pmap_puninit())
2361 * Since we are leaving the top-level pv intact we need
2362 * to break out of what would otherwise be an infinite loop.
2364 if (pv->pv_pindex == pmap_pml4_pindex()) {
2370 * For page table pages (other than the top-level page),
2371 * remove and free the vm_page. The representitive mapping
2372 * removed above by pmap_remove_pv_pte() did not undo the
2373 * last wire_count so we have to do that as well.
2375 p = pmap_remove_pv_page(pv);
2376 vm_page_busy_wait(p, FALSE, "pmaprl");
2377 if (p->wire_count != 1) {
2378 kprintf("p->wire_count was %016lx %d\n",
2379 pv->pv_pindex, p->wire_count);
2381 KKASSERT(p->wire_count == 1);
2382 KKASSERT(p->flags & PG_UNMANAGED);
2384 vm_page_unwire(p, 0);
2385 KKASSERT(p->wire_count == 0);
2388 * Theoretically this page, if not the pml4 page, should contain
2389 * all-zeros. But its just too dangerous to mark it PG_ZERO. Free
2399 * This function will remove the pte associated with a pv from its parent.
2400 * Terminal pv's are supported. The removal will be interlocked if info
2401 * is non-NULL. The caller must dispose of pv instead of just unlocking
2404 * The wire count will be dropped on the parent page table. The wire
2405 * count on the page being removed (pv->pv_m) from the parent page table
2406 * is NOT touched. Note that terminal pages will not have any additional
2407 * wire counts while page table pages will have at least one representing
2408 * the mapping, plus others representing sub-mappings.
2410 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
2411 * pages and user page table and terminal pages.
2413 * The pv must be locked.
2415 * XXX must lock parent pv's if they exist to remove pte XXX
2419 pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, struct pmap_inval_info *info)
2421 vm_pindex_t ptepindex = pv->pv_pindex;
2422 pmap_t pmap = pv->pv_pmap;
2428 if (ptepindex == pmap_pml4_pindex()) {
2430 * We are the top level pml4 table, there is no parent.
2432 p = pmap->pm_pmlpv->pv_m;
2433 } else if (ptepindex >= pmap_pdp_pindex(0)) {
2435 * Remove a PDP page from the pml4e. This can only occur
2436 * with user page tables. We do not have to lock the
2437 * pml4 PV so just ignore pvp.
2439 vm_pindex_t pml4_pindex;
2440 vm_pindex_t pdp_index;
2443 pdp_index = ptepindex - pmap_pdp_pindex(0);
2445 pml4_pindex = pmap_pml4_pindex();
2446 pvp = pv_get(pv->pv_pmap, pml4_pindex);
2450 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
2451 KKASSERT((*pdp & pmap->pmap_bits[PG_V_IDX]) != 0);
2452 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
2454 KKASSERT(info == NULL);
2455 } else if (ptepindex >= pmap_pd_pindex(0)) {
2457 * Remove a PD page from the pdp
2459 * SIMPLE PMAP NOTE: Non-existant pvp's are ok in the case
2460 * of a simple pmap because it stops at
2463 vm_pindex_t pdp_pindex;
2464 vm_pindex_t pd_index;
2467 pd_index = ptepindex - pmap_pd_pindex(0);
2470 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
2471 (pd_index >> NPML4EPGSHIFT);
2472 pvp = pv_get(pv->pv_pmap, pdp_pindex);
2477 pd = pv_pte_lookup(pvp, pd_index &
2478 ((1ul << NPDPEPGSHIFT) - 1));
2479 KKASSERT((*pd & pmap->pmap_bits[PG_V_IDX]) != 0);
2480 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
2483 KKASSERT(pmap->pm_flags & PMAP_FLAG_SIMPLE);
2484 p = pv->pv_m; /* degenerate test later */
2486 KKASSERT(info == NULL);
2487 } else if (ptepindex >= pmap_pt_pindex(0)) {
2489 * Remove a PT page from the pd
2491 vm_pindex_t pd_pindex;
2492 vm_pindex_t pt_index;
2495 pt_index = ptepindex - pmap_pt_pindex(0);
2498 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
2499 (pt_index >> NPDPEPGSHIFT);
2500 pvp = pv_get(pv->pv_pmap, pd_pindex);
2504 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
2505 KKASSERT((*pt & pmap->pmap_bits[PG_V_IDX]) != 0);
2506 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
2508 KKASSERT(info == NULL);
2511 * Remove a PTE from the PT page
2513 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
2514 * pv is a pte_pv so we can safely lock pt_pv.
2516 * NOTE: FICTITIOUS pages may have multiple physical mappings
2517 * so PHYS_TO_VM_PAGE() will not necessarily work for
2520 vm_pindex_t pt_pindex;
2525 pt_pindex = ptepindex >> NPTEPGSHIFT;
2526 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
2528 if (ptepindex >= NUPTE_USER) {
2529 ptep = vtopte(ptepindex << PAGE_SHIFT);
2530 KKASSERT(pvp == NULL);
2533 pt_pindex = NUPTE_TOTAL +
2534 (ptepindex >> NPDPEPGSHIFT);
2535 pvp = pv_get(pv->pv_pmap, pt_pindex);
2539 ptep = pv_pte_lookup(pvp, ptepindex &
2540 ((1ul << NPDPEPGSHIFT) - 1));
2544 pmap_inval_interlock(info, pmap, va);
2545 pte = pte_load_clear(ptep);
2547 pmap_inval_deinterlock(info, pmap);
2549 cpu_invlpg((void *)va);
2552 * Now update the vm_page_t
2554 if ((pte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) !=
2555 (pmap->pmap_bits[PG_MANAGED_IDX]|pmap->pmap_bits[PG_V_IDX])) {
2556 kprintf("remove_pte badpte %016lx %016lx %d\n",
2558 pv->pv_pindex < pmap_pt_pindex(0));
2560 /* PHYS_TO_VM_PAGE() will not work for FICTITIOUS pages */
2561 /*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
2562 if (pte & pmap->pmap_bits[PG_DEVICE_IDX])
2565 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
2568 if (pte & pmap->pmap_bits[PG_M_IDX]) {
2569 if (pmap_track_modified(ptepindex))
2572 if (pte & pmap->pmap_bits[PG_A_IDX]) {
2573 vm_page_flag_set(p, PG_REFERENCED);
2575 if (pte & pmap->pmap_bits[PG_W_IDX])
2576 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2577 if (pte & pmap->pmap_bits[PG_G_IDX])
2578 cpu_invlpg((void *)va);
2582 * Unwire the parent page table page. The wire_count cannot go below
2583 * 1 here because the parent page table page is itself still mapped.
2585 * XXX remove the assertions later.
2587 KKASSERT(pv->pv_m == p);
2588 if (pvp && vm_page_unwire_quick(pvp->pv_m))
2589 panic("pmap_remove_pv_pte: Insufficient wire_count");
2596 * Remove the vm_page association to a pv. The pv must be locked.
2600 pmap_remove_pv_page(pv_entry_t pv)
2606 vm_page_spin_lock(m);
2608 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2609 pmap_page_stats_deleting(m);
2612 atomic_add_int(&m->object->agg_pv_list_count, -1);
2614 if (TAILQ_EMPTY(&m->md.pv_list))
2615 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2616 vm_page_spin_unlock(m);
2621 * Grow the number of kernel page table entries, if needed.
2623 * This routine is always called to validate any address space
2624 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
2625 * space below KERNBASE.
2628 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
2631 vm_offset_t ptppaddr;
2633 pd_entry_t *pt, newpt;
2635 int update_kernel_vm_end;
2638 * bootstrap kernel_vm_end on first real VM use
2640 if (kernel_vm_end == 0) {
2641 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
2643 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2644 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
2645 ~(PAGE_SIZE * NPTEPG - 1);
2647 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
2648 kernel_vm_end = kernel_map.max_offset;
2655 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
2656 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
2657 * do not want to force-fill 128G worth of page tables.
2659 if (kstart < KERNBASE) {
2660 if (kstart > kernel_vm_end)
2661 kstart = kernel_vm_end;
2662 KKASSERT(kend <= KERNBASE);
2663 update_kernel_vm_end = 1;
2665 update_kernel_vm_end = 0;
2668 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
2669 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
2671 if (kend - 1 >= kernel_map.max_offset)
2672 kend = kernel_map.max_offset;
2674 while (kstart < kend) {
2675 pt = pmap_pt(&kernel_pmap, kstart);
2677 /* We need a new PDP entry */
2678 nkpg = vm_page_alloc(NULL, nkpt,
2681 VM_ALLOC_INTERRUPT);
2683 panic("pmap_growkernel: no memory to grow "
2686 paddr = VM_PAGE_TO_PHYS(nkpg);
2687 if ((nkpg->flags & PG_ZERO) == 0)
2688 pmap_zero_page(paddr);
2689 vm_page_flag_clear(nkpg, PG_ZERO);
2690 newpd = (pdp_entry_t)
2692 kernel_pmap.pmap_bits[PG_V_IDX] |
2693 kernel_pmap.pmap_bits[PG_RW_IDX] |
2694 kernel_pmap.pmap_bits[PG_A_IDX] |
2695 kernel_pmap.pmap_bits[PG_M_IDX]);
2696 *pmap_pd(&kernel_pmap, kstart) = newpd;
2698 continue; /* try again */
2700 if ((*pt & kernel_pmap.pmap_bits[PG_V_IDX]) != 0) {
2701 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2702 ~(PAGE_SIZE * NPTEPG - 1);
2703 if (kstart - 1 >= kernel_map.max_offset) {
2704 kstart = kernel_map.max_offset;
2711 * This index is bogus, but out of the way
2713 nkpg = vm_page_alloc(NULL, nkpt,
2716 VM_ALLOC_INTERRUPT);
2718 panic("pmap_growkernel: no memory to grow kernel");
2721 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2722 pmap_zero_page(ptppaddr);
2723 vm_page_flag_clear(nkpg, PG_ZERO);
2724 newpt = (pd_entry_t) (ptppaddr |
2725 kernel_pmap.pmap_bits[PG_V_IDX] |
2726 kernel_pmap.pmap_bits[PG_RW_IDX] |
2727 kernel_pmap.pmap_bits[PG_A_IDX] |
2728 kernel_pmap.pmap_bits[PG_M_IDX]);
2729 *pmap_pt(&kernel_pmap, kstart) = newpt;
2732 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2733 ~(PAGE_SIZE * NPTEPG - 1);
2735 if (kstart - 1 >= kernel_map.max_offset) {
2736 kstart = kernel_map.max_offset;
2742 * Only update kernel_vm_end for areas below KERNBASE.
2744 if (update_kernel_vm_end && kernel_vm_end < kstart)
2745 kernel_vm_end = kstart;
2749 * Add a reference to the specified pmap.
2752 pmap_reference(pmap_t pmap)
2755 lwkt_gettoken(&pmap->pm_token);
2757 lwkt_reltoken(&pmap->pm_token);
2761 /***************************************************
2762 * page management routines.
2763 ***************************************************/
2766 * Hold a pv without locking it
2769 pv_hold(pv_entry_t pv)
2771 atomic_add_int(&pv->pv_hold, 1);
2775 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
2776 * was successfully locked, FALSE if it wasn't. The caller must dispose of
2779 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2780 * pv list via its page) must be held by the caller.
2783 _pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2788 * Critical path shortcut expects pv to already have one ref
2789 * (for the pv->pv_pmap).
2791 if (atomic_cmpset_int(&pv->pv_hold, 1, PV_HOLD_LOCKED | 2)) {
2794 pv->pv_line = lineno;
2800 count = pv->pv_hold;
2802 if ((count & PV_HOLD_LOCKED) == 0) {
2803 if (atomic_cmpset_int(&pv->pv_hold, count,
2804 (count + 1) | PV_HOLD_LOCKED)) {
2807 pv->pv_line = lineno;
2812 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2820 * Drop a previously held pv_entry which could not be locked, allowing its
2823 * Must not be called with a spinlock held as we might zfree() the pv if it
2824 * is no longer associated with a pmap and this was the last hold count.
2827 pv_drop(pv_entry_t pv)
2832 count = pv->pv_hold;
2834 KKASSERT((count & PV_HOLD_MASK) > 0);
2835 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2836 (PV_HOLD_LOCKED | 1));
2837 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2838 if ((count & PV_HOLD_MASK) == 1) {
2840 if (pmap_enter_debug > 0) {
2842 kprintf("pv_drop: free pv %p\n", pv);
2845 KKASSERT(count == 1);
2846 KKASSERT(pv->pv_pmap == NULL);
2856 * Find or allocate the requested PV entry, returning a locked, held pv.
2858 * If (*isnew) is non-zero, the returned pv will have two hold counts, one
2859 * for the caller and one representing the pmap and vm_page association.
2861 * If (*isnew) is zero, the returned pv will have only one hold count.
2863 * Since both associations can only be adjusted while the pv is locked,
2864 * together they represent just one additional hold.
2868 _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2871 pv_entry_t pnew = NULL;
2873 spin_lock(&pmap->pm_spin);
2875 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2876 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2881 spin_unlock(&pmap->pm_spin);
2882 pnew = zalloc(pvzone);
2883 spin_lock(&pmap->pm_spin);
2886 pnew->pv_pmap = pmap;
2887 pnew->pv_pindex = pindex;
2888 pnew->pv_hold = PV_HOLD_LOCKED | 2;
2890 pnew->pv_func = func;
2891 pnew->pv_line = lineno;
2893 pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2894 ++pmap->pm_generation;
2895 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2896 spin_unlock(&pmap->pm_spin);
2901 spin_unlock(&pmap->pm_spin);
2902 zfree(pvzone, pnew);
2904 spin_lock(&pmap->pm_spin);
2907 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2908 spin_unlock(&pmap->pm_spin);
2910 spin_unlock(&pmap->pm_spin);
2911 _pv_lock(pv PMAP_DEBUG_COPY);
2913 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2918 spin_lock(&pmap->pm_spin);
2923 * Find the requested PV entry, returning a locked+held pv or NULL
2927 _pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
2931 spin_lock(&pmap->pm_spin);
2936 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2937 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2941 spin_unlock(&pmap->pm_spin);
2944 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2945 spin_unlock(&pmap->pm_spin);
2947 spin_unlock(&pmap->pm_spin);
2948 _pv_lock(pv PMAP_DEBUG_COPY);
2950 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2951 pv_cache(pv, pindex);
2955 spin_lock(&pmap->pm_spin);
2960 * Lookup, hold, and attempt to lock (pmap,pindex).
2962 * If the entry does not exist NULL is returned and *errorp is set to 0
2964 * If the entry exists and could be successfully locked it is returned and
2965 * errorp is set to 0.
2967 * If the entry exists but could NOT be successfully locked it is returned
2968 * held and *errorp is set to 1.
2972 pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
2976 spin_lock_shared(&pmap->pm_spin);
2977 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2978 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2980 spin_unlock_shared(&pmap->pm_spin);
2984 if (pv_hold_try(pv)) {
2985 pv_cache(pv, pindex);
2986 spin_unlock_shared(&pmap->pm_spin);
2988 KKASSERT(pv->pv_pmap == pmap && pv->pv_pindex == pindex);
2989 return(pv); /* lock succeeded */
2991 spin_unlock_shared(&pmap->pm_spin);
2993 return (pv); /* lock failed */
2997 * Find the requested PV entry, returning a held pv or NULL
3001 pv_find(pmap_t pmap, vm_pindex_t pindex)
3005 spin_lock_shared(&pmap->pm_spin);
3007 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
3008 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
3010 spin_unlock_shared(&pmap->pm_spin);
3014 pv_cache(pv, pindex);
3015 spin_unlock_shared(&pmap->pm_spin);
3020 * Lock a held pv, keeping the hold count
3024 _pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
3029 count = pv->pv_hold;
3031 if ((count & PV_HOLD_LOCKED) == 0) {
3032 if (atomic_cmpset_int(&pv->pv_hold, count,
3033 count | PV_HOLD_LOCKED)) {
3036 pv->pv_line = lineno;
3042 tsleep_interlock(pv, 0);
3043 if (atomic_cmpset_int(&pv->pv_hold, count,
3044 count | PV_HOLD_WAITING)) {
3046 kprintf("pv waiting on %s:%d\n",
3047 pv->pv_func, pv->pv_line);
3049 tsleep(pv, PINTERLOCKED, "pvwait", hz);
3056 * Unlock a held and locked pv, keeping the hold count.
3060 pv_unlock(pv_entry_t pv)
3065 count = pv->pv_hold;
3067 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) >=
3068 (PV_HOLD_LOCKED | 1));
3069 if (atomic_cmpset_int(&pv->pv_hold, count,
3071 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
3072 if (count & PV_HOLD_WAITING)
3080 * Unlock and drop a pv. If the pv is no longer associated with a pmap
3081 * and the hold count drops to zero we will free it.
3083 * Caller should not hold any spin locks. We are protected from hold races
3084 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
3085 * lock held. A pv cannot be located otherwise.
3089 pv_put(pv_entry_t pv)
3092 if (pmap_enter_debug > 0) {
3094 kprintf("pv_put pv=%p hold=%08x\n", pv, pv->pv_hold);
3099 * Fast - shortcut most common condition
3101 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 1))
3112 * Remove the pmap association from a pv, require that pv_m already be removed,
3113 * then unlock and drop the pv. Any pte operations must have already been
3114 * completed. This call may result in a last-drop which will physically free
3117 * Removing the pmap association entails an additional drop.
3119 * pv must be exclusively locked on call and will be disposed of on return.
3123 pv_free(pv_entry_t pv)
3127 KKASSERT(pv->pv_m == NULL);
3128 KKASSERT((pv->pv_hold & PV_HOLD_MASK) >= 2);
3129 if ((pmap = pv->pv_pmap) != NULL) {
3130 spin_lock(&pmap->pm_spin);
3131 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
3132 ++pmap->pm_generation;
3133 if (pmap->pm_pvhint == pv)
3134 pmap->pm_pvhint = NULL;
3135 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3138 spin_unlock(&pmap->pm_spin);
3141 * Try to shortcut three atomic ops, otherwise fall through
3142 * and do it normally. Drop two refs and the lock all in
3145 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 2, 0)) {
3147 if (pmap_enter_debug > 0) {
3149 kprintf("pv_free: free pv %p\n", pv);
3155 pv_drop(pv); /* ref for pv_pmap */
3161 * This routine is very drastic, but can save the system
3169 static int warningdone=0;
3171 if (pmap_pagedaemon_waken == 0)
3173 pmap_pagedaemon_waken = 0;
3174 if (warningdone < 5) {
3175 kprintf("pmap_collect: collecting pv entries -- "
3176 "suggest increasing PMAP_SHPGPERPROC\n");
3180 for (i = 0; i < vm_page_array_size; i++) {
3181 m = &vm_page_array[i];
3182 if (m->wire_count || m->hold_count)
3184 if (vm_page_busy_try(m, TRUE) == 0) {
3185 if (m->wire_count == 0 && m->hold_count == 0) {
3194 * Scan the pmap for active page table entries and issue a callback.
3195 * The callback must dispose of pte_pv, whos PTE entry is at *ptep in
3196 * its parent page table.
3198 * pte_pv will be NULL if the page or page table is unmanaged.
3199 * pt_pv will point to the page table page containing the pte for the page.
3201 * NOTE! If we come across an unmanaged page TABLE (verses an unmanaged page),
3202 * we pass a NULL pte_pv and we pass a pt_pv pointing to the passed
3203 * process pmap's PD and page to the callback function. This can be
3204 * confusing because the pt_pv is really a pd_pv, and the target page
3205 * table page is simply aliased by the pmap and not owned by it.
3207 * It is assumed that the start and end are properly rounded to the page size.
3209 * It is assumed that PD pages and above are managed and thus in the RB tree,
3210 * allowing us to use RB_SCAN from the PD pages down for ranged scans.
3212 struct pmap_scan_info {
3216 vm_pindex_t sva_pd_pindex;
3217 vm_pindex_t eva_pd_pindex;
3218 void (*func)(pmap_t, struct pmap_scan_info *,
3219 pv_entry_t, pv_entry_t, int, vm_offset_t,
3220 pt_entry_t *, void *);
3223 struct pmap_inval_info inval;
3226 static int pmap_scan_cmp(pv_entry_t pv, void *data);
3227 static int pmap_scan_callback(pv_entry_t pv, void *data);
3230 pmap_scan(struct pmap_scan_info *info)
3232 struct pmap *pmap = info->pmap;
3233 pv_entry_t pd_pv; /* A page directory PV */
3234 pv_entry_t pt_pv; /* A page table PV */
3235 pv_entry_t pte_pv; /* A page table entry PV */
3238 struct pv_entry dummy_pv;
3245 * Hold the token for stability; if the pmap is empty we have nothing
3248 lwkt_gettoken(&pmap->pm_token);
3250 if (pmap->pm_stats.resident_count == 0) {
3251 lwkt_reltoken(&pmap->pm_token);
3256 pmap_inval_init(&info->inval);
3260 * Special handling for scanning one page, which is a very common
3261 * operation (it is?).
3263 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
3265 if (info->sva + PAGE_SIZE == info->eva) {
3266 generation = pmap->pm_generation;
3267 if (info->sva >= VM_MAX_USER_ADDRESS) {
3269 * Kernel mappings do not track wire counts on
3270 * page table pages and only maintain pd_pv and
3271 * pte_pv levels so pmap_scan() works.
3274 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3275 ptep = vtopte(info->sva);
3278 * User pages which are unmanaged will not have a
3279 * pte_pv. User page table pages which are unmanaged
3280 * (shared from elsewhere) will also not have a pt_pv.
3281 * The func() callback will pass both pte_pv and pt_pv
3282 * as NULL in that case.
3284 pte_pv = pv_get(pmap, pmap_pte_pindex(info->sva));
3285 pt_pv = pv_get(pmap, pmap_pt_pindex(info->sva));
3286 if (pt_pv == NULL) {
3287 KKASSERT(pte_pv == NULL);
3288 pd_pv = pv_get(pmap, pmap_pd_pindex(info->sva));
3290 ptep = pv_pte_lookup(pd_pv,
3291 pmap_pt_index(info->sva));
3293 info->func(pmap, info,
3302 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(info->sva));
3306 * NOTE: *ptep can't be ripped out from under us if we hold
3307 * pte_pv locked, but bits can change. However, there is
3308 * a race where another thread may be inserting pte_pv
3309 * and setting *ptep just after our pte_pv lookup fails.
3311 * In this situation we can end up with a NULL pte_pv
3312 * but find that we have a managed *ptep. We explicitly
3313 * check for this race.
3319 * Unlike the pv_find() case below we actually
3320 * acquired a locked pv in this case so any
3321 * race should have been resolved. It is expected
3324 KKASSERT(pte_pv == NULL);
3325 } else if (pte_pv) {
3326 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3327 pmap->pmap_bits[PG_V_IDX])) ==
3328 (pmap->pmap_bits[PG_MANAGED_IDX] |
3329 pmap->pmap_bits[PG_V_IDX]),
3330 ("badA *ptep %016lx/%016lx sva %016lx pte_pv %p"
3332 *ptep, oldpte, info->sva, pte_pv,
3333 generation, pmap->pm_generation));
3334 info->func(pmap, info, pte_pv, pt_pv, 0,
3335 info->sva, ptep, info->arg);
3338 * Check for insertion race
3340 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3342 pte_pv = pv_find(pmap,
3343 pmap_pte_pindex(info->sva));
3347 kprintf("pmap_scan: RACE1 "
3357 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] |
3358 pmap->pmap_bits[PG_V_IDX])) ==
3359 pmap->pmap_bits[PG_V_IDX],
3360 ("badB *ptep %016lx/%016lx sva %016lx pte_pv NULL"
3362 *ptep, oldpte, info->sva,
3363 generation, pmap->pm_generation));
3364 info->func(pmap, info, NULL, pt_pv, 0,
3365 info->sva, ptep, info->arg);
3370 pmap_inval_done(&info->inval);
3371 lwkt_reltoken(&pmap->pm_token);
3376 * Nominal scan case, RB_SCAN() for PD pages and iterate from
3379 info->sva_pd_pindex = pmap_pd_pindex(info->sva);
3380 info->eva_pd_pindex = pmap_pd_pindex(info->eva + NBPDP - 1);
3382 if (info->sva >= VM_MAX_USER_ADDRESS) {
3384 * The kernel does not currently maintain any pv_entry's for
3385 * higher-level page tables.
3387 bzero(&dummy_pv, sizeof(dummy_pv));
3388 dummy_pv.pv_pindex = info->sva_pd_pindex;
3389 spin_lock(&pmap->pm_spin);
3390 while (dummy_pv.pv_pindex < info->eva_pd_pindex) {
3391 pmap_scan_callback(&dummy_pv, info);
3392 ++dummy_pv.pv_pindex;
3394 spin_unlock(&pmap->pm_spin);
3397 * User page tables maintain local PML4, PDP, and PD
3398 * pv_entry's at the very least. PT pv's might be
3399 * unmanaged and thus not exist. PTE pv's might be
3400 * unmanaged and thus not exist.
3402 spin_lock(&pmap->pm_spin);
3403 pv_entry_rb_tree_RB_SCAN(&pmap->pm_pvroot,
3404 pmap_scan_cmp, pmap_scan_callback, info);
3405 spin_unlock(&pmap->pm_spin);
3407 pmap_inval_done(&info->inval);
3408 lwkt_reltoken(&pmap->pm_token);
3412 * WARNING! pmap->pm_spin held
3415 pmap_scan_cmp(pv_entry_t pv, void *data)
3417 struct pmap_scan_info *info = data;
3418 if (pv->pv_pindex < info->sva_pd_pindex)
3420 if (pv->pv_pindex >= info->eva_pd_pindex)
3426 * WARNING! pmap->pm_spin held
3429 pmap_scan_callback(pv_entry_t pv, void *data)
3431 struct pmap_scan_info *info = data;
3432 struct pmap *pmap = info->pmap;
3433 pv_entry_t pd_pv; /* A page directory PV */
3434 pv_entry_t pt_pv; /* A page table PV */
3435 pv_entry_t pte_pv; /* A page table entry PV */
3440 vm_offset_t va_next;
3441 vm_pindex_t pd_pindex;
3446 * Pull the PD pindex from the pv before releasing the spinlock.
3448 * WARNING: pv is faked for kernel pmap scans.
3450 pd_pindex = pv->pv_pindex;
3451 spin_unlock(&pmap->pm_spin);
3452 pv = NULL; /* invalid after spinlock unlocked */
3455 * Calculate the page range within the PD. SIMPLE pmaps are
3456 * direct-mapped for the entire 2^64 address space. Normal pmaps
3457 * reflect the user and kernel address space which requires
3458 * cannonicalization w/regards to converting pd_pindex's back
3461 sva = (pd_pindex - NUPTE_TOTAL - NUPT_TOTAL) << PDPSHIFT;
3462 if ((pmap->pm_flags & PMAP_FLAG_SIMPLE) == 0 &&
3463 (sva & PML4_SIGNMASK)) {
3464 sva |= PML4_SIGNMASK;
3466 eva = sva + NBPDP; /* can overflow */
3467 if (sva < info->sva)
3469 if (eva < info->sva || eva > info->eva)
3473 * NOTE: kernel mappings do not track page table pages, only
3476 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
3477 * However, for the scan to be efficient we try to
3478 * cache items top-down.
3483 for (; sva < eva; sva = va_next) {
3484 if (sva >= VM_MAX_USER_ADDRESS) {
3493 * PD cache (degenerate case if we skip). It is possible
3494 * for the PD to not exist due to races. This is ok.
3496 if (pd_pv == NULL) {
3497 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3498 } else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
3500 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3502 if (pd_pv == NULL) {
3503 va_next = (sva + NBPDP) & ~PDPMASK;
3512 if (pt_pv == NULL) {
3517 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3518 } else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
3524 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
3528 * If pt_pv is NULL we either have an shared page table
3529 * page and must issue a callback specific to that case,
3530 * or there is no page table page.
3532 * Either way we can skip the page table page.
3534 if (pt_pv == NULL) {
3536 * Possible unmanaged (shared from another pmap)
3540 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
3541 KKASSERT(pd_pv != NULL);
3542 ptep = pv_pte_lookup(pd_pv, pmap_pt_index(sva));
3543 if (*ptep & pmap->pmap_bits[PG_V_IDX]) {
3544 info->func(pmap, info, NULL, pd_pv, 1,
3545 sva, ptep, info->arg);
3549 * Done, move to next page table page.
3551 va_next = (sva + NBPDR) & ~PDRMASK;
3558 * From this point in the loop testing pt_pv for non-NULL
3559 * means we are in UVM, else if it is NULL we are in KVM.
3561 * Limit our scan to either the end of the va represented
3562 * by the current page table page, or to the end of the
3563 * range being removed.
3566 va_next = (sva + NBPDR) & ~PDRMASK;
3573 * Scan the page table for pages. Some pages may not be
3574 * managed (might not have a pv_entry).
3576 * There is no page table management for kernel pages so
3577 * pt_pv will be NULL in that case, but otherwise pt_pv
3578 * is non-NULL, locked, and referenced.
3582 * At this point a non-NULL pt_pv means a UVA, and a NULL
3583 * pt_pv means a KVA.
3586 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
3590 while (sva < va_next) {
3592 * Acquire the related pte_pv, if any. If *ptep == 0
3593 * the related pte_pv should not exist, but if *ptep
3594 * is not zero the pte_pv may or may not exist (e.g.
3595 * will not exist for an unmanaged page).
3597 * However a multitude of races are possible here.
3599 * In addition, the (pt_pv, pte_pv) lock order is
3600 * backwards, so we have to be careful in aquiring
3601 * a properly locked pte_pv.
3603 generation = pmap->pm_generation;
3605 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
3612 pv_put(pt_pv); /* must be non-NULL */
3614 pv_lock(pte_pv); /* safe to block now */
3617 pt_pv = pv_get(pmap,
3618 pmap_pt_pindex(sva));
3620 * pt_pv reloaded, need new ptep
3622 KKASSERT(pt_pv != NULL);
3623 ptep = pv_pte_lookup(pt_pv,
3624 pmap_pte_index(sva));
3628 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
3632 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
3637 kprintf("Unexpected non-NULL pte_pv "
3639 "*ptep = %016lx/%016lx\n",
3640 pte_pv, pt_pv, *ptep, oldpte);
3641 panic("Unexpected non-NULL pte_pv");
3649 * Ready for the callback. The locked pte_pv (if any)
3650 * is consumed by the callback. pte_pv will exist if
3651 * the page is managed, and will not exist if it
3655 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3656 (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX]),
3657 ("badC *ptep %016lx/%016lx sva %016lx "
3658 "pte_pv %p pm_generation %d/%d",
3659 *ptep, oldpte, sva, pte_pv,
3660 generation, pmap->pm_generation));
3661 info->func(pmap, info, pte_pv, pt_pv, 0,
3662 sva, ptep, info->arg);
3665 * Check for insertion race. Since there is no
3666 * pte_pv to guard us it is possible for us
3667 * to race another thread doing an insertion.
3668 * Our lookup misses the pte_pv but our *ptep
3669 * check sees the inserted pte.
3671 * XXX panic case seems to occur within a
3672 * vm_fork() of /bin/sh, which frankly
3673 * shouldn't happen since no other threads
3674 * should be inserting to our pmap in that
3675 * situation. Removing, possibly. Inserting,
3678 if ((oldpte & pmap->pmap_bits[PG_MANAGED_IDX]) &&
3680 pte_pv = pv_find(pmap,
3681 pmap_pte_pindex(sva));
3684 kprintf("pmap_scan: RACE2 "
3694 KASSERT((oldpte & (pmap->pmap_bits[PG_MANAGED_IDX] | pmap->pmap_bits[PG_V_IDX])) ==
3695 pmap->pmap_bits[PG_V_IDX],
3696 ("badD *ptep %016lx/%016lx sva %016lx "
3697 "pte_pv NULL pm_generation %d/%d",
3699 generation, pmap->pm_generation));
3700 info->func(pmap, info, NULL, pt_pv, 0,
3701 sva, ptep, info->arg);
3720 * Relock before returning.
3722 spin_lock(&pmap->pm_spin);
3727 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3729 struct pmap_scan_info info;
3734 info.func = pmap_remove_callback;
3736 info.doinval = 1; /* normal remove requires pmap inval */
3741 pmap_remove_noinval(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
3743 struct pmap_scan_info info;
3748 info.func = pmap_remove_callback;
3750 info.doinval = 0; /* normal remove requires pmap inval */
3755 pmap_remove_callback(pmap_t pmap, struct pmap_scan_info *info,
3756 pv_entry_t pte_pv, pv_entry_t pt_pv, int sharept,
3757 vm_offset_t va, pt_entry_t *ptep, void *arg __unused)
3763 * This will also drop pt_pv's wire_count. Note that
3764 * terminal pages are not wired based on mmu presence.
3767 pmap_remove_pv_pte(pte_pv, pt_pv, &info->inval);
3769 pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3770 pmap_remove_pv_page(pte_pv);
3772 } else if (sharept == 0) {
3776 * pt_pv's wire_count is still bumped by unmanaged pages
3777 * so we must decrement it manually.
3780 pmap_inval_interlock(&info->inval, pmap, va);
3781 pte = pte_load_clear(ptep);
3783 pmap_inval_deinterlock(&info->inval, pmap);
3784 if (pte & pmap->pmap_bits[PG_W_IDX])
3785 atomic_add_long(&pmap->pm_stats.wired_count, -1);
3786 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3787 if (vm_page_unwire_quick(pt_pv->pv_m))
3788 panic("pmap_remove: insufficient wirecount");
3791 * Unmanaged page table, pt_pv is actually the pd_pv
3792 * for our pmap (not the share object pmap).
3794 * We have to unwire the target page table page and we
3795 * have to unwire our page directory page.
3798 pmap_inval_interlock(&info->inval, pmap, va);
3799 pte = pte_load_clear(ptep);
3801 pmap_inval_deinterlock(&info->inval, pmap);
3802 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3803 KKASSERT((pte & pmap->pmap_bits[PG_DEVICE_IDX]) == 0);
3804 if (vm_page_unwire_quick(PHYS_TO_VM_PAGE(pte & PG_FRAME)))
3805 panic("pmap_remove: shared pgtable1 bad wirecount");
3806 if (vm_page_unwire_quick(pt_pv->pv_m))
3807 panic("pmap_remove: shared pgtable2 bad wirecount");
3812 * Removes this physical page from all physical maps in which it resides.
3813 * Reflects back modify bits to the pager.
3815 * This routine may not be called from an interrupt.
3819 pmap_remove_all(vm_page_t m)
3821 struct pmap_inval_info info;
3824 if (!pmap_initialized /* || (m->flags & PG_FICTITIOUS)*/)
3827 pmap_inval_init(&info);
3828 vm_page_spin_lock(m);
3829 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3830 KKASSERT(pv->pv_m == m);
3831 if (pv_hold_try(pv)) {
3832 vm_page_spin_unlock(m);
3834 vm_page_spin_unlock(m);
3837 if (pv->pv_m != m) {
3839 vm_page_spin_lock(m);
3843 * Holding no spinlocks, pv is locked.
3845 pmap_remove_pv_pte(pv, NULL, &info);
3846 pmap_remove_pv_page(pv);
3848 vm_page_spin_lock(m);
3850 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
3851 vm_page_spin_unlock(m);
3852 pmap_inval_done(&info);
3856 * Set the physical protection on the specified range of this map
3857 * as requested. This function is typically only used for debug watchpoints
3860 * This function may not be called from an interrupt if the map is
3861 * not the kernel_pmap.
3863 * NOTE! For shared page table pages we just unmap the page.