Upgrade GDB from 7.3 to 7.4.1 on the vendor branch
[dragonfly.git] / contrib / gdb-7 / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3    Copyright (C) 1986-2000, 2002-2012 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44
45 /* Prototypes for exported functions.  */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function.  */
50 struct internal_function
51 {
52   /* The name of the function.  It is a bit odd to have this in the
53      function itself -- the user might use a differently-named
54      convenience variable to hold the function.  */
55   char *name;
56
57   /* The handler.  */
58   internal_function_fn handler;
59
60   /* User data for the handler.  */
61   void *cookie;
62 };
63
64 /* Defines an [OFFSET, OFFSET + LENGTH) range.  */
65
66 struct range
67 {
68   /* Lowest offset in the range.  */
69   int offset;
70
71   /* Length of the range.  */
72   int length;
73 };
74
75 typedef struct range range_s;
76
77 DEF_VEC_O(range_s);
78
79 /* Returns true if the ranges defined by [offset1, offset1+len1) and
80    [offset2, offset2+len2) overlap.  */
81
82 static int
83 ranges_overlap (int offset1, int len1,
84                 int offset2, int len2)
85 {
86   ULONGEST h, l;
87
88   l = max (offset1, offset2);
89   h = min (offset1 + len1, offset2 + len2);
90   return (l < h);
91 }
92
93 /* Returns true if the first argument is strictly less than the
94    second, useful for VEC_lower_bound.  We keep ranges sorted by
95    offset and coalesce overlapping and contiguous ranges, so this just
96    compares the starting offset.  */
97
98 static int
99 range_lessthan (const range_s *r1, const range_s *r2)
100 {
101   return r1->offset < r2->offset;
102 }
103
104 /* Returns true if RANGES contains any range that overlaps [OFFSET,
105    OFFSET+LENGTH).  */
106
107 static int
108 ranges_contain (VEC(range_s) *ranges, int offset, int length)
109 {
110   range_s what;
111   int i;
112
113   what.offset = offset;
114   what.length = length;
115
116   /* We keep ranges sorted by offset and coalesce overlapping and
117      contiguous ranges, so to check if a range list contains a given
118      range, we can do a binary search for the position the given range
119      would be inserted if we only considered the starting OFFSET of
120      ranges.  We call that position I.  Since we also have LENGTH to
121      care for (this is a range afterall), we need to check if the
122      _previous_ range overlaps the I range.  E.g.,
123
124          R
125          |---|
126        |---|    |---|  |------| ... |--|
127        0        1      2            N
128
129        I=1
130
131      In the case above, the binary search would return `I=1', meaning,
132      this OFFSET should be inserted at position 1, and the current
133      position 1 should be pushed further (and before 2).  But, `0'
134      overlaps with R.
135
136      Then we need to check if the I range overlaps the I range itself.
137      E.g.,
138
139               R
140               |---|
141        |---|    |---|  |-------| ... |--|
142        0        1      2             N
143
144        I=1
145   */
146
147   i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
148
149   if (i > 0)
150     {
151       struct range *bef = VEC_index (range_s, ranges, i - 1);
152
153       if (ranges_overlap (bef->offset, bef->length, offset, length))
154         return 1;
155     }
156
157   if (i < VEC_length (range_s, ranges))
158     {
159       struct range *r = VEC_index (range_s, ranges, i);
160
161       if (ranges_overlap (r->offset, r->length, offset, length))
162         return 1;
163     }
164
165   return 0;
166 }
167
168 static struct cmd_list_element *functionlist;
169
170 struct value
171 {
172   /* Type of value; either not an lval, or one of the various
173      different possible kinds of lval.  */
174   enum lval_type lval;
175
176   /* Is it modifiable?  Only relevant if lval != not_lval.  */
177   int modifiable;
178
179   /* Location of value (if lval).  */
180   union
181   {
182     /* If lval == lval_memory, this is the address in the inferior.
183        If lval == lval_register, this is the byte offset into the
184        registers structure.  */
185     CORE_ADDR address;
186
187     /* Pointer to internal variable.  */
188     struct internalvar *internalvar;
189
190     /* If lval == lval_computed, this is a set of function pointers
191        to use to access and describe the value, and a closure pointer
192        for them to use.  */
193     struct
194     {
195       /* Functions to call.  */
196       const struct lval_funcs *funcs;
197
198       /* Closure for those functions to use.  */
199       void *closure;
200     } computed;
201   } location;
202
203   /* Describes offset of a value within lval of a structure in bytes.
204      If lval == lval_memory, this is an offset to the address.  If
205      lval == lval_register, this is a further offset from
206      location.address within the registers structure.  Note also the
207      member embedded_offset below.  */
208   int offset;
209
210   /* Only used for bitfields; number of bits contained in them.  */
211   int bitsize;
212
213   /* Only used for bitfields; position of start of field.  For
214      gdbarch_bits_big_endian=0 targets, it is the position of the LSB.  For
215      gdbarch_bits_big_endian=1 targets, it is the position of the MSB.  */
216   int bitpos;
217
218   /* Only used for bitfields; the containing value.  This allows a
219      single read from the target when displaying multiple
220      bitfields.  */
221   struct value *parent;
222
223   /* Frame register value is relative to.  This will be described in
224      the lval enum above as "lval_register".  */
225   struct frame_id frame_id;
226
227   /* Type of the value.  */
228   struct type *type;
229
230   /* If a value represents a C++ object, then the `type' field gives
231      the object's compile-time type.  If the object actually belongs
232      to some class derived from `type', perhaps with other base
233      classes and additional members, then `type' is just a subobject
234      of the real thing, and the full object is probably larger than
235      `type' would suggest.
236
237      If `type' is a dynamic class (i.e. one with a vtable), then GDB
238      can actually determine the object's run-time type by looking at
239      the run-time type information in the vtable.  When this
240      information is available, we may elect to read in the entire
241      object, for several reasons:
242
243      - When printing the value, the user would probably rather see the
244      full object, not just the limited portion apparent from the
245      compile-time type.
246
247      - If `type' has virtual base classes, then even printing `type'
248      alone may require reaching outside the `type' portion of the
249      object to wherever the virtual base class has been stored.
250
251      When we store the entire object, `enclosing_type' is the run-time
252      type -- the complete object -- and `embedded_offset' is the
253      offset of `type' within that larger type, in bytes.  The
254      value_contents() macro takes `embedded_offset' into account, so
255      most GDB code continues to see the `type' portion of the value,
256      just as the inferior would.
257
258      If `type' is a pointer to an object, then `enclosing_type' is a
259      pointer to the object's run-time type, and `pointed_to_offset' is
260      the offset in bytes from the full object to the pointed-to object
261      -- that is, the value `embedded_offset' would have if we followed
262      the pointer and fetched the complete object.  (I don't really see
263      the point.  Why not just determine the run-time type when you
264      indirect, and avoid the special case?  The contents don't matter
265      until you indirect anyway.)
266
267      If we're not doing anything fancy, `enclosing_type' is equal to
268      `type', and `embedded_offset' is zero, so everything works
269      normally.  */
270   struct type *enclosing_type;
271   int embedded_offset;
272   int pointed_to_offset;
273
274   /* Values are stored in a chain, so that they can be deleted easily
275      over calls to the inferior.  Values assigned to internal
276      variables, put into the value history or exposed to Python are
277      taken off this list.  */
278   struct value *next;
279
280   /* Register number if the value is from a register.  */
281   short regnum;
282
283   /* If zero, contents of this value are in the contents field.  If
284      nonzero, contents are in inferior.  If the lval field is lval_memory,
285      the contents are in inferior memory at location.address plus offset.
286      The lval field may also be lval_register.
287
288      WARNING: This field is used by the code which handles watchpoints
289      (see breakpoint.c) to decide whether a particular value can be
290      watched by hardware watchpoints.  If the lazy flag is set for
291      some member of a value chain, it is assumed that this member of
292      the chain doesn't need to be watched as part of watching the
293      value itself.  This is how GDB avoids watching the entire struct
294      or array when the user wants to watch a single struct member or
295      array element.  If you ever change the way lazy flag is set and
296      reset, be sure to consider this use as well!  */
297   char lazy;
298
299   /* If nonzero, this is the value of a variable which does not
300      actually exist in the program.  */
301   char optimized_out;
302
303   /* If value is a variable, is it initialized or not.  */
304   int initialized;
305
306   /* If value is from the stack.  If this is set, read_stack will be
307      used instead of read_memory to enable extra caching.  */
308   int stack;
309
310   /* Actual contents of the value.  Target byte-order.  NULL or not
311      valid if lazy is nonzero.  */
312   gdb_byte *contents;
313
314   /* Unavailable ranges in CONTENTS.  We mark unavailable ranges,
315      rather than available, since the common and default case is for a
316      value to be available.  This is filled in at value read time.  */
317   VEC(range_s) *unavailable;
318
319   /* The number of references to this value.  When a value is created,
320      the value chain holds a reference, so REFERENCE_COUNT is 1.  If
321      release_value is called, this value is removed from the chain but
322      the caller of release_value now has a reference to this value.
323      The caller must arrange for a call to value_free later.  */
324   int reference_count;
325 };
326
327 int
328 value_bytes_available (const struct value *value, int offset, int length)
329 {
330   gdb_assert (!value->lazy);
331
332   return !ranges_contain (value->unavailable, offset, length);
333 }
334
335 int
336 value_entirely_available (struct value *value)
337 {
338   /* We can only tell whether the whole value is available when we try
339      to read it.  */
340   if (value->lazy)
341     value_fetch_lazy (value);
342
343   if (VEC_empty (range_s, value->unavailable))
344     return 1;
345   return 0;
346 }
347
348 void
349 mark_value_bytes_unavailable (struct value *value, int offset, int length)
350 {
351   range_s newr;
352   int i;
353
354   /* Insert the range sorted.  If there's overlap or the new range
355      would be contiguous with an existing range, merge.  */
356
357   newr.offset = offset;
358   newr.length = length;
359
360   /* Do a binary search for the position the given range would be
361      inserted if we only considered the starting OFFSET of ranges.
362      Call that position I.  Since we also have LENGTH to care for
363      (this is a range afterall), we need to check if the _previous_
364      range overlaps the I range.  E.g., calling R the new range:
365
366        #1 - overlaps with previous
367
368            R
369            |-...-|
370          |---|     |---|  |------| ... |--|
371          0         1      2            N
372
373          I=1
374
375      In the case #1 above, the binary search would return `I=1',
376      meaning, this OFFSET should be inserted at position 1, and the
377      current position 1 should be pushed further (and become 2).  But,
378      note that `0' overlaps with R, so we want to merge them.
379
380      A similar consideration needs to be taken if the new range would
381      be contiguous with the previous range:
382
383        #2 - contiguous with previous
384
385             R
386             |-...-|
387          |--|       |---|  |------| ... |--|
388          0          1      2            N
389
390          I=1
391
392      If there's no overlap with the previous range, as in:
393
394        #3 - not overlapping and not contiguous
395
396                R
397                |-...-|
398           |--|         |---|  |------| ... |--|
399           0            1      2            N
400
401          I=1
402
403      or if I is 0:
404
405        #4 - R is the range with lowest offset
406
407           R
408          |-...-|
409                  |--|       |---|  |------| ... |--|
410                  0          1      2            N
411
412          I=0
413
414      ... we just push the new range to I.
415
416      All the 4 cases above need to consider that the new range may
417      also overlap several of the ranges that follow, or that R may be
418      contiguous with the following range, and merge.  E.g.,
419
420        #5 - overlapping following ranges
421
422           R
423          |------------------------|
424                  |--|       |---|  |------| ... |--|
425                  0          1      2            N
426
427          I=0
428
429        or:
430
431             R
432             |-------|
433          |--|       |---|  |------| ... |--|
434          0          1      2            N
435
436          I=1
437
438   */
439
440   i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
441   if (i > 0)
442     {
443       struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
444
445       if (ranges_overlap (bef->offset, bef->length, offset, length))
446         {
447           /* #1 */
448           ULONGEST l = min (bef->offset, offset);
449           ULONGEST h = max (bef->offset + bef->length, offset + length);
450
451           bef->offset = l;
452           bef->length = h - l;
453           i--;
454         }
455       else if (offset == bef->offset + bef->length)
456         {
457           /* #2 */
458           bef->length += length;
459           i--;
460         }
461       else
462         {
463           /* #3 */
464           VEC_safe_insert (range_s, value->unavailable, i, &newr);
465         }
466     }
467   else
468     {
469       /* #4 */
470       VEC_safe_insert (range_s, value->unavailable, i, &newr);
471     }
472
473   /* Check whether the ranges following the one we've just added or
474      touched can be folded in (#5 above).  */
475   if (i + 1 < VEC_length (range_s, value->unavailable))
476     {
477       struct range *t;
478       struct range *r;
479       int removed = 0;
480       int next = i + 1;
481
482       /* Get the range we just touched.  */
483       t = VEC_index (range_s, value->unavailable, i);
484       removed = 0;
485
486       i = next;
487       for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
488         if (r->offset <= t->offset + t->length)
489           {
490             ULONGEST l, h;
491
492             l = min (t->offset, r->offset);
493             h = max (t->offset + t->length, r->offset + r->length);
494
495             t->offset = l;
496             t->length = h - l;
497
498             removed++;
499           }
500         else
501           {
502             /* If we couldn't merge this one, we won't be able to
503                merge following ones either, since the ranges are
504                always sorted by OFFSET.  */
505             break;
506           }
507
508       if (removed != 0)
509         VEC_block_remove (range_s, value->unavailable, next, removed);
510     }
511 }
512
513 /* Find the first range in RANGES that overlaps the range defined by
514    OFFSET and LENGTH, starting at element POS in the RANGES vector,
515    Returns the index into RANGES where such overlapping range was
516    found, or -1 if none was found.  */
517
518 static int
519 find_first_range_overlap (VEC(range_s) *ranges, int pos,
520                           int offset, int length)
521 {
522   range_s *r;
523   int i;
524
525   for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
526     if (ranges_overlap (r->offset, r->length, offset, length))
527       return i;
528
529   return -1;
530 }
531
532 int
533 value_available_contents_eq (const struct value *val1, int offset1,
534                              const struct value *val2, int offset2,
535                              int length)
536 {
537   int idx1 = 0, idx2 = 0;
538
539   /* This routine is used by printing routines, where we should
540      already have read the value.  Note that we only know whether a
541      value chunk is available if we've tried to read it.  */
542   gdb_assert (!val1->lazy && !val2->lazy);
543
544   while (length > 0)
545     {
546       range_s *r1, *r2;
547       ULONGEST l1, h1;
548       ULONGEST l2, h2;
549
550       idx1 = find_first_range_overlap (val1->unavailable, idx1,
551                                        offset1, length);
552       idx2 = find_first_range_overlap (val2->unavailable, idx2,
553                                        offset2, length);
554
555       /* The usual case is for both values to be completely available.  */
556       if (idx1 == -1 && idx2 == -1)
557         return (memcmp (val1->contents + offset1,
558                         val2->contents + offset2,
559                         length) == 0);
560       /* The contents only match equal if the available set matches as
561          well.  */
562       else if (idx1 == -1 || idx2 == -1)
563         return 0;
564
565       gdb_assert (idx1 != -1 && idx2 != -1);
566
567       r1 = VEC_index (range_s, val1->unavailable, idx1);
568       r2 = VEC_index (range_s, val2->unavailable, idx2);
569
570       /* Get the unavailable windows intersected by the incoming
571          ranges.  The first and last ranges that overlap the argument
572          range may be wider than said incoming arguments ranges.  */
573       l1 = max (offset1, r1->offset);
574       h1 = min (offset1 + length, r1->offset + r1->length);
575
576       l2 = max (offset2, r2->offset);
577       h2 = min (offset2 + length, r2->offset + r2->length);
578
579       /* Make them relative to the respective start offsets, so we can
580          compare them for equality.  */
581       l1 -= offset1;
582       h1 -= offset1;
583
584       l2 -= offset2;
585       h2 -= offset2;
586
587       /* Different availability, no match.  */
588       if (l1 != l2 || h1 != h2)
589         return 0;
590
591       /* Compare the _available_ contents.  */
592       if (memcmp (val1->contents + offset1,
593                   val2->contents + offset2,
594                   l1) != 0)
595         return 0;
596
597       length -= h1;
598       offset1 += h1;
599       offset2 += h1;
600     }
601
602   return 1;
603 }
604
605 /* Prototypes for local functions.  */
606
607 static void show_values (char *, int);
608
609 static void show_convenience (char *, int);
610
611
612 /* The value-history records all the values printed
613    by print commands during this session.  Each chunk
614    records 60 consecutive values.  The first chunk on
615    the chain records the most recent values.
616    The total number of values is in value_history_count.  */
617
618 #define VALUE_HISTORY_CHUNK 60
619
620 struct value_history_chunk
621   {
622     struct value_history_chunk *next;
623     struct value *values[VALUE_HISTORY_CHUNK];
624   };
625
626 /* Chain of chunks now in use.  */
627
628 static struct value_history_chunk *value_history_chain;
629
630 static int value_history_count; /* Abs number of last entry stored.  */
631
632 \f
633 /* List of all value objects currently allocated
634    (except for those released by calls to release_value)
635    This is so they can be freed after each command.  */
636
637 static struct value *all_values;
638
639 /* Allocate a lazy value for type TYPE.  Its actual content is
640    "lazily" allocated too: the content field of the return value is
641    NULL; it will be allocated when it is fetched from the target.  */
642
643 struct value *
644 allocate_value_lazy (struct type *type)
645 {
646   struct value *val;
647
648   /* Call check_typedef on our type to make sure that, if TYPE
649      is a TYPE_CODE_TYPEDEF, its length is set to the length
650      of the target type instead of zero.  However, we do not
651      replace the typedef type by the target type, because we want
652      to keep the typedef in order to be able to set the VAL's type
653      description correctly.  */
654   check_typedef (type);
655
656   val = (struct value *) xzalloc (sizeof (struct value));
657   val->contents = NULL;
658   val->next = all_values;
659   all_values = val;
660   val->type = type;
661   val->enclosing_type = type;
662   VALUE_LVAL (val) = not_lval;
663   val->location.address = 0;
664   VALUE_FRAME_ID (val) = null_frame_id;
665   val->offset = 0;
666   val->bitpos = 0;
667   val->bitsize = 0;
668   VALUE_REGNUM (val) = -1;
669   val->lazy = 1;
670   val->optimized_out = 0;
671   val->embedded_offset = 0;
672   val->pointed_to_offset = 0;
673   val->modifiable = 1;
674   val->initialized = 1;  /* Default to initialized.  */
675
676   /* Values start out on the all_values chain.  */
677   val->reference_count = 1;
678
679   return val;
680 }
681
682 /* Allocate the contents of VAL if it has not been allocated yet.  */
683
684 void
685 allocate_value_contents (struct value *val)
686 {
687   if (!val->contents)
688     val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
689 }
690
691 /* Allocate a  value  and its contents for type TYPE.  */
692
693 struct value *
694 allocate_value (struct type *type)
695 {
696   struct value *val = allocate_value_lazy (type);
697
698   allocate_value_contents (val);
699   val->lazy = 0;
700   return val;
701 }
702
703 /* Allocate a  value  that has the correct length
704    for COUNT repetitions of type TYPE.  */
705
706 struct value *
707 allocate_repeat_value (struct type *type, int count)
708 {
709   int low_bound = current_language->string_lower_bound;         /* ??? */
710   /* FIXME-type-allocation: need a way to free this type when we are
711      done with it.  */
712   struct type *array_type
713     = lookup_array_range_type (type, low_bound, count + low_bound - 1);
714
715   return allocate_value (array_type);
716 }
717
718 struct value *
719 allocate_computed_value (struct type *type,
720                          const struct lval_funcs *funcs,
721                          void *closure)
722 {
723   struct value *v = allocate_value_lazy (type);
724
725   VALUE_LVAL (v) = lval_computed;
726   v->location.computed.funcs = funcs;
727   v->location.computed.closure = closure;
728
729   return v;
730 }
731
732 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT.  */
733
734 struct value *
735 allocate_optimized_out_value (struct type *type)
736 {
737   struct value *retval = allocate_value_lazy (type);
738
739   set_value_optimized_out (retval, 1);
740
741   return retval;
742 }
743
744 /* Accessor methods.  */
745
746 struct value *
747 value_next (struct value *value)
748 {
749   return value->next;
750 }
751
752 struct type *
753 value_type (const struct value *value)
754 {
755   return value->type;
756 }
757 void
758 deprecated_set_value_type (struct value *value, struct type *type)
759 {
760   value->type = type;
761 }
762
763 int
764 value_offset (const struct value *value)
765 {
766   return value->offset;
767 }
768 void
769 set_value_offset (struct value *value, int offset)
770 {
771   value->offset = offset;
772 }
773
774 int
775 value_bitpos (const struct value *value)
776 {
777   return value->bitpos;
778 }
779 void
780 set_value_bitpos (struct value *value, int bit)
781 {
782   value->bitpos = bit;
783 }
784
785 int
786 value_bitsize (const struct value *value)
787 {
788   return value->bitsize;
789 }
790 void
791 set_value_bitsize (struct value *value, int bit)
792 {
793   value->bitsize = bit;
794 }
795
796 struct value *
797 value_parent (struct value *value)
798 {
799   return value->parent;
800 }
801
802 gdb_byte *
803 value_contents_raw (struct value *value)
804 {
805   allocate_value_contents (value);
806   return value->contents + value->embedded_offset;
807 }
808
809 gdb_byte *
810 value_contents_all_raw (struct value *value)
811 {
812   allocate_value_contents (value);
813   return value->contents;
814 }
815
816 struct type *
817 value_enclosing_type (struct value *value)
818 {
819   return value->enclosing_type;
820 }
821
822 static void
823 require_not_optimized_out (const struct value *value)
824 {
825   if (value->optimized_out)
826     error (_("value has been optimized out"));
827 }
828
829 static void
830 require_available (const struct value *value)
831 {
832   if (!VEC_empty (range_s, value->unavailable))
833     throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
834 }
835
836 const gdb_byte *
837 value_contents_for_printing (struct value *value)
838 {
839   if (value->lazy)
840     value_fetch_lazy (value);
841   return value->contents;
842 }
843
844 const gdb_byte *
845 value_contents_for_printing_const (const struct value *value)
846 {
847   gdb_assert (!value->lazy);
848   return value->contents;
849 }
850
851 const gdb_byte *
852 value_contents_all (struct value *value)
853 {
854   const gdb_byte *result = value_contents_for_printing (value);
855   require_not_optimized_out (value);
856   require_available (value);
857   return result;
858 }
859
860 /* Copy LENGTH bytes of SRC value's (all) contents
861    (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
862    contents, starting at DST_OFFSET.  If unavailable contents are
863    being copied from SRC, the corresponding DST contents are marked
864    unavailable accordingly.  Neither DST nor SRC may be lazy
865    values.
866
867    It is assumed the contents of DST in the [DST_OFFSET,
868    DST_OFFSET+LENGTH) range are wholly available.  */
869
870 void
871 value_contents_copy_raw (struct value *dst, int dst_offset,
872                          struct value *src, int src_offset, int length)
873 {
874   range_s *r;
875   int i;
876
877   /* A lazy DST would make that this copy operation useless, since as
878      soon as DST's contents were un-lazied (by a later value_contents
879      call, say), the contents would be overwritten.  A lazy SRC would
880      mean we'd be copying garbage.  */
881   gdb_assert (!dst->lazy && !src->lazy);
882
883   /* The overwritten DST range gets unavailability ORed in, not
884      replaced.  Make sure to remember to implement replacing if it
885      turns out actually necessary.  */
886   gdb_assert (value_bytes_available (dst, dst_offset, length));
887
888   /* Copy the data.  */
889   memcpy (value_contents_all_raw (dst) + dst_offset,
890           value_contents_all_raw (src) + src_offset,
891           length);
892
893   /* Copy the meta-data, adjusted.  */
894   for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
895     {
896       ULONGEST h, l;
897
898       l = max (r->offset, src_offset);
899       h = min (r->offset + r->length, src_offset + length);
900
901       if (l < h)
902         mark_value_bytes_unavailable (dst,
903                                       dst_offset + (l - src_offset),
904                                       h - l);
905     }
906 }
907
908 /* Copy LENGTH bytes of SRC value's (all) contents
909    (value_contents_all) starting at SRC_OFFSET byte, into DST value's
910    (all) contents, starting at DST_OFFSET.  If unavailable contents
911    are being copied from SRC, the corresponding DST contents are
912    marked unavailable accordingly.  DST must not be lazy.  If SRC is
913    lazy, it will be fetched now.  If SRC is not valid (is optimized
914    out), an error is thrown.
915
916    It is assumed the contents of DST in the [DST_OFFSET,
917    DST_OFFSET+LENGTH) range are wholly available.  */
918
919 void
920 value_contents_copy (struct value *dst, int dst_offset,
921                      struct value *src, int src_offset, int length)
922 {
923   require_not_optimized_out (src);
924
925   if (src->lazy)
926     value_fetch_lazy (src);
927
928   value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
929 }
930
931 int
932 value_lazy (struct value *value)
933 {
934   return value->lazy;
935 }
936
937 void
938 set_value_lazy (struct value *value, int val)
939 {
940   value->lazy = val;
941 }
942
943 int
944 value_stack (struct value *value)
945 {
946   return value->stack;
947 }
948
949 void
950 set_value_stack (struct value *value, int val)
951 {
952   value->stack = val;
953 }
954
955 const gdb_byte *
956 value_contents (struct value *value)
957 {
958   const gdb_byte *result = value_contents_writeable (value);
959   require_not_optimized_out (value);
960   require_available (value);
961   return result;
962 }
963
964 gdb_byte *
965 value_contents_writeable (struct value *value)
966 {
967   if (value->lazy)
968     value_fetch_lazy (value);
969   return value_contents_raw (value);
970 }
971
972 /* Return non-zero if VAL1 and VAL2 have the same contents.  Note that
973    this function is different from value_equal; in C the operator ==
974    can return 0 even if the two values being compared are equal.  */
975
976 int
977 value_contents_equal (struct value *val1, struct value *val2)
978 {
979   struct type *type1;
980   struct type *type2;
981   int len;
982
983   type1 = check_typedef (value_type (val1));
984   type2 = check_typedef (value_type (val2));
985   len = TYPE_LENGTH (type1);
986   if (len != TYPE_LENGTH (type2))
987     return 0;
988
989   return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
990 }
991
992 int
993 value_optimized_out (struct value *value)
994 {
995   return value->optimized_out;
996 }
997
998 void
999 set_value_optimized_out (struct value *value, int val)
1000 {
1001   value->optimized_out = val;
1002 }
1003
1004 int
1005 value_entirely_optimized_out (const struct value *value)
1006 {
1007   if (!value->optimized_out)
1008     return 0;
1009   if (value->lval != lval_computed
1010       || !value->location.computed.funcs->check_any_valid)
1011     return 1;
1012   return !value->location.computed.funcs->check_any_valid (value);
1013 }
1014
1015 int
1016 value_bits_valid (const struct value *value, int offset, int length)
1017 {
1018   if (!value->optimized_out)
1019     return 1;
1020   if (value->lval != lval_computed
1021       || !value->location.computed.funcs->check_validity)
1022     return 0;
1023   return value->location.computed.funcs->check_validity (value, offset,
1024                                                          length);
1025 }
1026
1027 int
1028 value_bits_synthetic_pointer (const struct value *value,
1029                               int offset, int length)
1030 {
1031   if (value->lval != lval_computed
1032       || !value->location.computed.funcs->check_synthetic_pointer)
1033     return 0;
1034   return value->location.computed.funcs->check_synthetic_pointer (value,
1035                                                                   offset,
1036                                                                   length);
1037 }
1038
1039 int
1040 value_embedded_offset (struct value *value)
1041 {
1042   return value->embedded_offset;
1043 }
1044
1045 void
1046 set_value_embedded_offset (struct value *value, int val)
1047 {
1048   value->embedded_offset = val;
1049 }
1050
1051 int
1052 value_pointed_to_offset (struct value *value)
1053 {
1054   return value->pointed_to_offset;
1055 }
1056
1057 void
1058 set_value_pointed_to_offset (struct value *value, int val)
1059 {
1060   value->pointed_to_offset = val;
1061 }
1062
1063 const struct lval_funcs *
1064 value_computed_funcs (const struct value *v)
1065 {
1066   gdb_assert (value_lval_const (v) == lval_computed);
1067
1068   return v->location.computed.funcs;
1069 }
1070
1071 void *
1072 value_computed_closure (const struct value *v)
1073 {
1074   gdb_assert (v->lval == lval_computed);
1075
1076   return v->location.computed.closure;
1077 }
1078
1079 enum lval_type *
1080 deprecated_value_lval_hack (struct value *value)
1081 {
1082   return &value->lval;
1083 }
1084
1085 enum lval_type
1086 value_lval_const (const struct value *value)
1087 {
1088   return value->lval;
1089 }
1090
1091 CORE_ADDR
1092 value_address (const struct value *value)
1093 {
1094   if (value->lval == lval_internalvar
1095       || value->lval == lval_internalvar_component)
1096     return 0;
1097   return value->location.address + value->offset;
1098 }
1099
1100 CORE_ADDR
1101 value_raw_address (struct value *value)
1102 {
1103   if (value->lval == lval_internalvar
1104       || value->lval == lval_internalvar_component)
1105     return 0;
1106   return value->location.address;
1107 }
1108
1109 void
1110 set_value_address (struct value *value, CORE_ADDR addr)
1111 {
1112   gdb_assert (value->lval != lval_internalvar
1113               && value->lval != lval_internalvar_component);
1114   value->location.address = addr;
1115 }
1116
1117 struct internalvar **
1118 deprecated_value_internalvar_hack (struct value *value)
1119 {
1120   return &value->location.internalvar;
1121 }
1122
1123 struct frame_id *
1124 deprecated_value_frame_id_hack (struct value *value)
1125 {
1126   return &value->frame_id;
1127 }
1128
1129 short *
1130 deprecated_value_regnum_hack (struct value *value)
1131 {
1132   return &value->regnum;
1133 }
1134
1135 int
1136 deprecated_value_modifiable (struct value *value)
1137 {
1138   return value->modifiable;
1139 }
1140 void
1141 deprecated_set_value_modifiable (struct value *value, int modifiable)
1142 {
1143   value->modifiable = modifiable;
1144 }
1145 \f
1146 /* Return a mark in the value chain.  All values allocated after the
1147    mark is obtained (except for those released) are subject to being freed
1148    if a subsequent value_free_to_mark is passed the mark.  */
1149 struct value *
1150 value_mark (void)
1151 {
1152   return all_values;
1153 }
1154
1155 /* Take a reference to VAL.  VAL will not be deallocated until all
1156    references are released.  */
1157
1158 void
1159 value_incref (struct value *val)
1160 {
1161   val->reference_count++;
1162 }
1163
1164 /* Release a reference to VAL, which was acquired with value_incref.
1165    This function is also called to deallocate values from the value
1166    chain.  */
1167
1168 void
1169 value_free (struct value *val)
1170 {
1171   if (val)
1172     {
1173       gdb_assert (val->reference_count > 0);
1174       val->reference_count--;
1175       if (val->reference_count > 0)
1176         return;
1177
1178       /* If there's an associated parent value, drop our reference to
1179          it.  */
1180       if (val->parent != NULL)
1181         value_free (val->parent);
1182
1183       if (VALUE_LVAL (val) == lval_computed)
1184         {
1185           const struct lval_funcs *funcs = val->location.computed.funcs;
1186
1187           if (funcs->free_closure)
1188             funcs->free_closure (val);
1189         }
1190
1191       xfree (val->contents);
1192       VEC_free (range_s, val->unavailable);
1193     }
1194   xfree (val);
1195 }
1196
1197 /* Free all values allocated since MARK was obtained by value_mark
1198    (except for those released).  */
1199 void
1200 value_free_to_mark (struct value *mark)
1201 {
1202   struct value *val;
1203   struct value *next;
1204
1205   for (val = all_values; val && val != mark; val = next)
1206     {
1207       next = val->next;
1208       value_free (val);
1209     }
1210   all_values = val;
1211 }
1212
1213 /* Free all the values that have been allocated (except for those released).
1214    Call after each command, successful or not.
1215    In practice this is called before each command, which is sufficient.  */
1216
1217 void
1218 free_all_values (void)
1219 {
1220   struct value *val;
1221   struct value *next;
1222
1223   for (val = all_values; val; val = next)
1224     {
1225       next = val->next;
1226       value_free (val);
1227     }
1228
1229   all_values = 0;
1230 }
1231
1232 /* Frees all the elements in a chain of values.  */
1233
1234 void
1235 free_value_chain (struct value *v)
1236 {
1237   struct value *next;
1238
1239   for (; v; v = next)
1240     {
1241       next = value_next (v);
1242       value_free (v);
1243     }
1244 }
1245
1246 /* Remove VAL from the chain all_values
1247    so it will not be freed automatically.  */
1248
1249 void
1250 release_value (struct value *val)
1251 {
1252   struct value *v;
1253
1254   if (all_values == val)
1255     {
1256       all_values = val->next;
1257       val->next = NULL;
1258       return;
1259     }
1260
1261   for (v = all_values; v; v = v->next)
1262     {
1263       if (v->next == val)
1264         {
1265           v->next = val->next;
1266           val->next = NULL;
1267           break;
1268         }
1269     }
1270 }
1271
1272 /* Release all values up to mark  */
1273 struct value *
1274 value_release_to_mark (struct value *mark)
1275 {
1276   struct value *val;
1277   struct value *next;
1278
1279   for (val = next = all_values; next; next = next->next)
1280     if (next->next == mark)
1281       {
1282         all_values = next->next;
1283         next->next = NULL;
1284         return val;
1285       }
1286   all_values = 0;
1287   return val;
1288 }
1289
1290 /* Return a copy of the value ARG.
1291    It contains the same contents, for same memory address,
1292    but it's a different block of storage.  */
1293
1294 struct value *
1295 value_copy (struct value *arg)
1296 {
1297   struct type *encl_type = value_enclosing_type (arg);
1298   struct value *val;
1299
1300   if (value_lazy (arg))
1301     val = allocate_value_lazy (encl_type);
1302   else
1303     val = allocate_value (encl_type);
1304   val->type = arg->type;
1305   VALUE_LVAL (val) = VALUE_LVAL (arg);
1306   val->location = arg->location;
1307   val->offset = arg->offset;
1308   val->bitpos = arg->bitpos;
1309   val->bitsize = arg->bitsize;
1310   VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1311   VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1312   val->lazy = arg->lazy;
1313   val->optimized_out = arg->optimized_out;
1314   val->embedded_offset = value_embedded_offset (arg);
1315   val->pointed_to_offset = arg->pointed_to_offset;
1316   val->modifiable = arg->modifiable;
1317   if (!value_lazy (val))
1318     {
1319       memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1320               TYPE_LENGTH (value_enclosing_type (arg)));
1321
1322     }
1323   val->unavailable = VEC_copy (range_s, arg->unavailable);
1324   val->parent = arg->parent;
1325   if (val->parent)
1326     value_incref (val->parent);
1327   if (VALUE_LVAL (val) == lval_computed)
1328     {
1329       const struct lval_funcs *funcs = val->location.computed.funcs;
1330
1331       if (funcs->copy_closure)
1332         val->location.computed.closure = funcs->copy_closure (val);
1333     }
1334   return val;
1335 }
1336
1337 /* Return a version of ARG that is non-lvalue.  */
1338
1339 struct value *
1340 value_non_lval (struct value *arg)
1341 {
1342   if (VALUE_LVAL (arg) != not_lval)
1343     {
1344       struct type *enc_type = value_enclosing_type (arg);
1345       struct value *val = allocate_value (enc_type);
1346
1347       memcpy (value_contents_all_raw (val), value_contents_all (arg),
1348               TYPE_LENGTH (enc_type));
1349       val->type = arg->type;
1350       set_value_embedded_offset (val, value_embedded_offset (arg));
1351       set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1352       return val;
1353     }
1354    return arg;
1355 }
1356
1357 void
1358 set_value_component_location (struct value *component,
1359                               const struct value *whole)
1360 {
1361   if (whole->lval == lval_internalvar)
1362     VALUE_LVAL (component) = lval_internalvar_component;
1363   else
1364     VALUE_LVAL (component) = whole->lval;
1365
1366   component->location = whole->location;
1367   if (whole->lval == lval_computed)
1368     {
1369       const struct lval_funcs *funcs = whole->location.computed.funcs;
1370
1371       if (funcs->copy_closure)
1372         component->location.computed.closure = funcs->copy_closure (whole);
1373     }
1374 }
1375
1376 \f
1377 /* Access to the value history.  */
1378
1379 /* Record a new value in the value history.
1380    Returns the absolute history index of the entry.
1381    Result of -1 indicates the value was not saved; otherwise it is the
1382    value history index of this new item.  */
1383
1384 int
1385 record_latest_value (struct value *val)
1386 {
1387   int i;
1388
1389   /* We don't want this value to have anything to do with the inferior anymore.
1390      In particular, "set $1 = 50" should not affect the variable from which
1391      the value was taken, and fast watchpoints should be able to assume that
1392      a value on the value history never changes.  */
1393   if (value_lazy (val))
1394     value_fetch_lazy (val);
1395   /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1396      from.  This is a bit dubious, because then *&$1 does not just return $1
1397      but the current contents of that location.  c'est la vie...  */
1398   val->modifiable = 0;
1399   release_value (val);
1400
1401   /* Here we treat value_history_count as origin-zero
1402      and applying to the value being stored now.  */
1403
1404   i = value_history_count % VALUE_HISTORY_CHUNK;
1405   if (i == 0)
1406     {
1407       struct value_history_chunk *new
1408         = (struct value_history_chunk *)
1409
1410       xmalloc (sizeof (struct value_history_chunk));
1411       memset (new->values, 0, sizeof new->values);
1412       new->next = value_history_chain;
1413       value_history_chain = new;
1414     }
1415
1416   value_history_chain->values[i] = val;
1417
1418   /* Now we regard value_history_count as origin-one
1419      and applying to the value just stored.  */
1420
1421   return ++value_history_count;
1422 }
1423
1424 /* Return a copy of the value in the history with sequence number NUM.  */
1425
1426 struct value *
1427 access_value_history (int num)
1428 {
1429   struct value_history_chunk *chunk;
1430   int i;
1431   int absnum = num;
1432
1433   if (absnum <= 0)
1434     absnum += value_history_count;
1435
1436   if (absnum <= 0)
1437     {
1438       if (num == 0)
1439         error (_("The history is empty."));
1440       else if (num == 1)
1441         error (_("There is only one value in the history."));
1442       else
1443         error (_("History does not go back to $$%d."), -num);
1444     }
1445   if (absnum > value_history_count)
1446     error (_("History has not yet reached $%d."), absnum);
1447
1448   absnum--;
1449
1450   /* Now absnum is always absolute and origin zero.  */
1451
1452   chunk = value_history_chain;
1453   for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1454          - absnum / VALUE_HISTORY_CHUNK;
1455        i > 0; i--)
1456     chunk = chunk->next;
1457
1458   return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1459 }
1460
1461 static void
1462 show_values (char *num_exp, int from_tty)
1463 {
1464   int i;
1465   struct value *val;
1466   static int num = 1;
1467
1468   if (num_exp)
1469     {
1470       /* "show values +" should print from the stored position.
1471          "show values <exp>" should print around value number <exp>.  */
1472       if (num_exp[0] != '+' || num_exp[1] != '\0')
1473         num = parse_and_eval_long (num_exp) - 5;
1474     }
1475   else
1476     {
1477       /* "show values" means print the last 10 values.  */
1478       num = value_history_count - 9;
1479     }
1480
1481   if (num <= 0)
1482     num = 1;
1483
1484   for (i = num; i < num + 10 && i <= value_history_count; i++)
1485     {
1486       struct value_print_options opts;
1487
1488       val = access_value_history (i);
1489       printf_filtered (("$%d = "), i);
1490       get_user_print_options (&opts);
1491       value_print (val, gdb_stdout, &opts);
1492       printf_filtered (("\n"));
1493     }
1494
1495   /* The next "show values +" should start after what we just printed.  */
1496   num += 10;
1497
1498   /* Hitting just return after this command should do the same thing as
1499      "show values +".  If num_exp is null, this is unnecessary, since
1500      "show values +" is not useful after "show values".  */
1501   if (from_tty && num_exp)
1502     {
1503       num_exp[0] = '+';
1504       num_exp[1] = '\0';
1505     }
1506 }
1507 \f
1508 /* Internal variables.  These are variables within the debugger
1509    that hold values assigned by debugger commands.
1510    The user refers to them with a '$' prefix
1511    that does not appear in the variable names stored internally.  */
1512
1513 struct internalvar
1514 {
1515   struct internalvar *next;
1516   char *name;
1517
1518   /* We support various different kinds of content of an internal variable.
1519      enum internalvar_kind specifies the kind, and union internalvar_data
1520      provides the data associated with this particular kind.  */
1521
1522   enum internalvar_kind
1523     {
1524       /* The internal variable is empty.  */
1525       INTERNALVAR_VOID,
1526
1527       /* The value of the internal variable is provided directly as
1528          a GDB value object.  */
1529       INTERNALVAR_VALUE,
1530
1531       /* A fresh value is computed via a call-back routine on every
1532          access to the internal variable.  */
1533       INTERNALVAR_MAKE_VALUE,
1534
1535       /* The internal variable holds a GDB internal convenience function.  */
1536       INTERNALVAR_FUNCTION,
1537
1538       /* The variable holds an integer value.  */
1539       INTERNALVAR_INTEGER,
1540
1541       /* The variable holds a GDB-provided string.  */
1542       INTERNALVAR_STRING,
1543
1544     } kind;
1545
1546   union internalvar_data
1547     {
1548       /* A value object used with INTERNALVAR_VALUE.  */
1549       struct value *value;
1550
1551       /* The call-back routine used with INTERNALVAR_MAKE_VALUE.  */
1552       internalvar_make_value make_value;
1553
1554       /* The internal function used with INTERNALVAR_FUNCTION.  */
1555       struct
1556         {
1557           struct internal_function *function;
1558           /* True if this is the canonical name for the function.  */
1559           int canonical;
1560         } fn;
1561
1562       /* An integer value used with INTERNALVAR_INTEGER.  */
1563       struct
1564         {
1565           /* If type is non-NULL, it will be used as the type to generate
1566              a value for this internal variable.  If type is NULL, a default
1567              integer type for the architecture is used.  */
1568           struct type *type;
1569           LONGEST val;
1570         } integer;
1571
1572       /* A string value used with INTERNALVAR_STRING.  */
1573       char *string;
1574     } u;
1575 };
1576
1577 static struct internalvar *internalvars;
1578
1579 /* If the variable does not already exist create it and give it the
1580    value given.  If no value is given then the default is zero.  */
1581 static void
1582 init_if_undefined_command (char* args, int from_tty)
1583 {
1584   struct internalvar* intvar;
1585
1586   /* Parse the expression - this is taken from set_command().  */
1587   struct expression *expr = parse_expression (args);
1588   register struct cleanup *old_chain =
1589     make_cleanup (free_current_contents, &expr);
1590
1591   /* Validate the expression.
1592      Was the expression an assignment?
1593      Or even an expression at all?  */
1594   if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1595     error (_("Init-if-undefined requires an assignment expression."));
1596
1597   /* Extract the variable from the parsed expression.
1598      In the case of an assign the lvalue will be in elts[1] and elts[2].  */
1599   if (expr->elts[1].opcode != OP_INTERNALVAR)
1600     error (_("The first parameter to init-if-undefined "
1601              "should be a GDB variable."));
1602   intvar = expr->elts[2].internalvar;
1603
1604   /* Only evaluate the expression if the lvalue is void.
1605      This may still fail if the expresssion is invalid.  */
1606   if (intvar->kind == INTERNALVAR_VOID)
1607     evaluate_expression (expr);
1608
1609   do_cleanups (old_chain);
1610 }
1611
1612
1613 /* Look up an internal variable with name NAME.  NAME should not
1614    normally include a dollar sign.
1615
1616    If the specified internal variable does not exist,
1617    the return value is NULL.  */
1618
1619 struct internalvar *
1620 lookup_only_internalvar (const char *name)
1621 {
1622   struct internalvar *var;
1623
1624   for (var = internalvars; var; var = var->next)
1625     if (strcmp (var->name, name) == 0)
1626       return var;
1627
1628   return NULL;
1629 }
1630
1631
1632 /* Create an internal variable with name NAME and with a void value.
1633    NAME should not normally include a dollar sign.  */
1634
1635 struct internalvar *
1636 create_internalvar (const char *name)
1637 {
1638   struct internalvar *var;
1639
1640   var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1641   var->name = concat (name, (char *)NULL);
1642   var->kind = INTERNALVAR_VOID;
1643   var->next = internalvars;
1644   internalvars = var;
1645   return var;
1646 }
1647
1648 /* Create an internal variable with name NAME and register FUN as the
1649    function that value_of_internalvar uses to create a value whenever
1650    this variable is referenced.  NAME should not normally include a
1651    dollar sign.  */
1652
1653 struct internalvar *
1654 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1655 {
1656   struct internalvar *var = create_internalvar (name);
1657
1658   var->kind = INTERNALVAR_MAKE_VALUE;
1659   var->u.make_value = fun;
1660   return var;
1661 }
1662
1663 /* Look up an internal variable with name NAME.  NAME should not
1664    normally include a dollar sign.
1665
1666    If the specified internal variable does not exist,
1667    one is created, with a void value.  */
1668
1669 struct internalvar *
1670 lookup_internalvar (const char *name)
1671 {
1672   struct internalvar *var;
1673
1674   var = lookup_only_internalvar (name);
1675   if (var)
1676     return var;
1677
1678   return create_internalvar (name);
1679 }
1680
1681 /* Return current value of internal variable VAR.  For variables that
1682    are not inherently typed, use a value type appropriate for GDBARCH.  */
1683
1684 struct value *
1685 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1686 {
1687   struct value *val;
1688   struct trace_state_variable *tsv;
1689
1690   /* If there is a trace state variable of the same name, assume that
1691      is what we really want to see.  */
1692   tsv = find_trace_state_variable (var->name);
1693   if (tsv)
1694     {
1695       tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1696                                                                 &(tsv->value));
1697       if (tsv->value_known)
1698         val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1699                                   tsv->value);
1700       else
1701         val = allocate_value (builtin_type (gdbarch)->builtin_void);
1702       return val;
1703     }
1704
1705   switch (var->kind)
1706     {
1707     case INTERNALVAR_VOID:
1708       val = allocate_value (builtin_type (gdbarch)->builtin_void);
1709       break;
1710
1711     case INTERNALVAR_FUNCTION:
1712       val = allocate_value (builtin_type (gdbarch)->internal_fn);
1713       break;
1714
1715     case INTERNALVAR_INTEGER:
1716       if (!var->u.integer.type)
1717         val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1718                                   var->u.integer.val);
1719       else
1720         val = value_from_longest (var->u.integer.type, var->u.integer.val);
1721       break;
1722
1723     case INTERNALVAR_STRING:
1724       val = value_cstring (var->u.string, strlen (var->u.string),
1725                            builtin_type (gdbarch)->builtin_char);
1726       break;
1727
1728     case INTERNALVAR_VALUE:
1729       val = value_copy (var->u.value);
1730       if (value_lazy (val))
1731         value_fetch_lazy (val);
1732       break;
1733
1734     case INTERNALVAR_MAKE_VALUE:
1735       val = (*var->u.make_value) (gdbarch, var);
1736       break;
1737
1738     default:
1739       internal_error (__FILE__, __LINE__, _("bad kind"));
1740     }
1741
1742   /* Change the VALUE_LVAL to lval_internalvar so that future operations
1743      on this value go back to affect the original internal variable.
1744
1745      Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1746      no underlying modifyable state in the internal variable.
1747
1748      Likewise, if the variable's value is a computed lvalue, we want
1749      references to it to produce another computed lvalue, where
1750      references and assignments actually operate through the
1751      computed value's functions.
1752
1753      This means that internal variables with computed values
1754      behave a little differently from other internal variables:
1755      assignments to them don't just replace the previous value
1756      altogether.  At the moment, this seems like the behavior we
1757      want.  */
1758
1759   if (var->kind != INTERNALVAR_MAKE_VALUE
1760       && val->lval != lval_computed)
1761     {
1762       VALUE_LVAL (val) = lval_internalvar;
1763       VALUE_INTERNALVAR (val) = var;
1764     }
1765
1766   return val;
1767 }
1768
1769 int
1770 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1771 {
1772   if (var->kind == INTERNALVAR_INTEGER)
1773     {
1774       *result = var->u.integer.val;
1775       return 1;
1776     }
1777
1778   if (var->kind == INTERNALVAR_VALUE)
1779     {
1780       struct type *type = check_typedef (value_type (var->u.value));
1781
1782       if (TYPE_CODE (type) == TYPE_CODE_INT)
1783         {
1784           *result = value_as_long (var->u.value);
1785           return 1;
1786         }
1787     }
1788
1789   return 0;
1790 }
1791
1792 static int
1793 get_internalvar_function (struct internalvar *var,
1794                           struct internal_function **result)
1795 {
1796   switch (var->kind)
1797     {
1798     case INTERNALVAR_FUNCTION:
1799       *result = var->u.fn.function;
1800       return 1;
1801
1802     default:
1803       return 0;
1804     }
1805 }
1806
1807 void
1808 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1809                            int bitsize, struct value *newval)
1810 {
1811   gdb_byte *addr;
1812
1813   switch (var->kind)
1814     {
1815     case INTERNALVAR_VALUE:
1816       addr = value_contents_writeable (var->u.value);
1817
1818       if (bitsize)
1819         modify_field (value_type (var->u.value), addr + offset,
1820                       value_as_long (newval), bitpos, bitsize);
1821       else
1822         memcpy (addr + offset, value_contents (newval),
1823                 TYPE_LENGTH (value_type (newval)));
1824       break;
1825
1826     default:
1827       /* We can never get a component of any other kind.  */
1828       internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1829     }
1830 }
1831
1832 void
1833 set_internalvar (struct internalvar *var, struct value *val)
1834 {
1835   enum internalvar_kind new_kind;
1836   union internalvar_data new_data = { 0 };
1837
1838   if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1839     error (_("Cannot overwrite convenience function %s"), var->name);
1840
1841   /* Prepare new contents.  */
1842   switch (TYPE_CODE (check_typedef (value_type (val))))
1843     {
1844     case TYPE_CODE_VOID:
1845       new_kind = INTERNALVAR_VOID;
1846       break;
1847
1848     case TYPE_CODE_INTERNAL_FUNCTION:
1849       gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1850       new_kind = INTERNALVAR_FUNCTION;
1851       get_internalvar_function (VALUE_INTERNALVAR (val),
1852                                 &new_data.fn.function);
1853       /* Copies created here are never canonical.  */
1854       break;
1855
1856     default:
1857       new_kind = INTERNALVAR_VALUE;
1858       new_data.value = value_copy (val);
1859       new_data.value->modifiable = 1;
1860
1861       /* Force the value to be fetched from the target now, to avoid problems
1862          later when this internalvar is referenced and the target is gone or
1863          has changed.  */
1864       if (value_lazy (new_data.value))
1865        value_fetch_lazy (new_data.value);
1866
1867       /* Release the value from the value chain to prevent it from being
1868          deleted by free_all_values.  From here on this function should not
1869          call error () until new_data is installed into the var->u to avoid
1870          leaking memory.  */
1871       release_value (new_data.value);
1872       break;
1873     }
1874
1875   /* Clean up old contents.  */
1876   clear_internalvar (var);
1877
1878   /* Switch over.  */
1879   var->kind = new_kind;
1880   var->u = new_data;
1881   /* End code which must not call error().  */
1882 }
1883
1884 void
1885 set_internalvar_integer (struct internalvar *var, LONGEST l)
1886 {
1887   /* Clean up old contents.  */
1888   clear_internalvar (var);
1889
1890   var->kind = INTERNALVAR_INTEGER;
1891   var->u.integer.type = NULL;
1892   var->u.integer.val = l;
1893 }
1894
1895 void
1896 set_internalvar_string (struct internalvar *var, const char *string)
1897 {
1898   /* Clean up old contents.  */
1899   clear_internalvar (var);
1900
1901   var->kind = INTERNALVAR_STRING;
1902   var->u.string = xstrdup (string);
1903 }
1904
1905 static void
1906 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1907 {
1908   /* Clean up old contents.  */
1909   clear_internalvar (var);
1910
1911   var->kind = INTERNALVAR_FUNCTION;
1912   var->u.fn.function = f;
1913   var->u.fn.canonical = 1;
1914   /* Variables installed here are always the canonical version.  */
1915 }
1916
1917 void
1918 clear_internalvar (struct internalvar *var)
1919 {
1920   /* Clean up old contents.  */
1921   switch (var->kind)
1922     {
1923     case INTERNALVAR_VALUE:
1924       value_free (var->u.value);
1925       break;
1926
1927     case INTERNALVAR_STRING:
1928       xfree (var->u.string);
1929       break;
1930
1931     default:
1932       break;
1933     }
1934
1935   /* Reset to void kind.  */
1936   var->kind = INTERNALVAR_VOID;
1937 }
1938
1939 char *
1940 internalvar_name (struct internalvar *var)
1941 {
1942   return var->name;
1943 }
1944
1945 static struct internal_function *
1946 create_internal_function (const char *name,
1947                           internal_function_fn handler, void *cookie)
1948 {
1949   struct internal_function *ifn = XNEW (struct internal_function);
1950
1951   ifn->name = xstrdup (name);
1952   ifn->handler = handler;
1953   ifn->cookie = cookie;
1954   return ifn;
1955 }
1956
1957 char *
1958 value_internal_function_name (struct value *val)
1959 {
1960   struct internal_function *ifn;
1961   int result;
1962
1963   gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1964   result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1965   gdb_assert (result);
1966
1967   return ifn->name;
1968 }
1969
1970 struct value *
1971 call_internal_function (struct gdbarch *gdbarch,
1972                         const struct language_defn *language,
1973                         struct value *func, int argc, struct value **argv)
1974 {
1975   struct internal_function *ifn;
1976   int result;
1977
1978   gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1979   result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1980   gdb_assert (result);
1981
1982   return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1983 }
1984
1985 /* The 'function' command.  This does nothing -- it is just a
1986    placeholder to let "help function NAME" work.  This is also used as
1987    the implementation of the sub-command that is created when
1988    registering an internal function.  */
1989 static void
1990 function_command (char *command, int from_tty)
1991 {
1992   /* Do nothing.  */
1993 }
1994
1995 /* Clean up if an internal function's command is destroyed.  */
1996 static void
1997 function_destroyer (struct cmd_list_element *self, void *ignore)
1998 {
1999   xfree (self->name);
2000   xfree (self->doc);
2001 }
2002
2003 /* Add a new internal function.  NAME is the name of the function; DOC
2004    is a documentation string describing the function.  HANDLER is
2005    called when the function is invoked.  COOKIE is an arbitrary
2006    pointer which is passed to HANDLER and is intended for "user
2007    data".  */
2008 void
2009 add_internal_function (const char *name, const char *doc,
2010                        internal_function_fn handler, void *cookie)
2011 {
2012   struct cmd_list_element *cmd;
2013   struct internal_function *ifn;
2014   struct internalvar *var = lookup_internalvar (name);
2015
2016   ifn = create_internal_function (name, handler, cookie);
2017   set_internalvar_function (var, ifn);
2018
2019   cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2020                  &functionlist);
2021   cmd->destroyer = function_destroyer;
2022 }
2023
2024 /* Update VALUE before discarding OBJFILE.  COPIED_TYPES is used to
2025    prevent cycles / duplicates.  */
2026
2027 void
2028 preserve_one_value (struct value *value, struct objfile *objfile,
2029                     htab_t copied_types)
2030 {
2031   if (TYPE_OBJFILE (value->type) == objfile)
2032     value->type = copy_type_recursive (objfile, value->type, copied_types);
2033
2034   if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2035     value->enclosing_type = copy_type_recursive (objfile,
2036                                                  value->enclosing_type,
2037                                                  copied_types);
2038 }
2039
2040 /* Likewise for internal variable VAR.  */
2041
2042 static void
2043 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2044                           htab_t copied_types)
2045 {
2046   switch (var->kind)
2047     {
2048     case INTERNALVAR_INTEGER:
2049       if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2050         var->u.integer.type
2051           = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2052       break;
2053
2054     case INTERNALVAR_VALUE:
2055       preserve_one_value (var->u.value, objfile, copied_types);
2056       break;
2057     }
2058 }
2059
2060 /* Update the internal variables and value history when OBJFILE is
2061    discarded; we must copy the types out of the objfile.  New global types
2062    will be created for every convenience variable which currently points to
2063    this objfile's types, and the convenience variables will be adjusted to
2064    use the new global types.  */
2065
2066 void
2067 preserve_values (struct objfile *objfile)
2068 {
2069   htab_t copied_types;
2070   struct value_history_chunk *cur;
2071   struct internalvar *var;
2072   int i;
2073
2074   /* Create the hash table.  We allocate on the objfile's obstack, since
2075      it is soon to be deleted.  */
2076   copied_types = create_copied_types_hash (objfile);
2077
2078   for (cur = value_history_chain; cur; cur = cur->next)
2079     for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2080       if (cur->values[i])
2081         preserve_one_value (cur->values[i], objfile, copied_types);
2082
2083   for (var = internalvars; var; var = var->next)
2084     preserve_one_internalvar (var, objfile, copied_types);
2085
2086   preserve_python_values (objfile, copied_types);
2087
2088   htab_delete (copied_types);
2089 }
2090
2091 static void
2092 show_convenience (char *ignore, int from_tty)
2093 {
2094   struct gdbarch *gdbarch = get_current_arch ();
2095   struct internalvar *var;
2096   int varseen = 0;
2097   struct value_print_options opts;
2098
2099   get_user_print_options (&opts);
2100   for (var = internalvars; var; var = var->next)
2101     {
2102       volatile struct gdb_exception ex;
2103
2104       if (!varseen)
2105         {
2106           varseen = 1;
2107         }
2108       printf_filtered (("$%s = "), var->name);
2109
2110       TRY_CATCH (ex, RETURN_MASK_ERROR)
2111         {
2112           struct value *val;
2113
2114           val = value_of_internalvar (gdbarch, var);
2115           value_print (val, gdb_stdout, &opts);
2116         }
2117       if (ex.reason < 0)
2118         fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2119       printf_filtered (("\n"));
2120     }
2121   if (!varseen)
2122     printf_unfiltered (_("No debugger convenience variables now defined.\n"
2123                          "Convenience variables have "
2124                          "names starting with \"$\";\n"
2125                          "use \"set\" as in \"set "
2126                          "$foo = 5\" to define them.\n"));
2127 }
2128 \f
2129 /* Extract a value as a C number (either long or double).
2130    Knows how to convert fixed values to double, or
2131    floating values to long.
2132    Does not deallocate the value.  */
2133
2134 LONGEST
2135 value_as_long (struct value *val)
2136 {
2137   /* This coerces arrays and functions, which is necessary (e.g.
2138      in disassemble_command).  It also dereferences references, which
2139      I suspect is the most logical thing to do.  */
2140   val = coerce_array (val);
2141   return unpack_long (value_type (val), value_contents (val));
2142 }
2143
2144 DOUBLEST
2145 value_as_double (struct value *val)
2146 {
2147   DOUBLEST foo;
2148   int inv;
2149
2150   foo = unpack_double (value_type (val), value_contents (val), &inv);
2151   if (inv)
2152     error (_("Invalid floating value found in program."));
2153   return foo;
2154 }
2155
2156 /* Extract a value as a C pointer.  Does not deallocate the value.
2157    Note that val's type may not actually be a pointer; value_as_long
2158    handles all the cases.  */
2159 CORE_ADDR
2160 value_as_address (struct value *val)
2161 {
2162   struct gdbarch *gdbarch = get_type_arch (value_type (val));
2163
2164   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
2165      whether we want this to be true eventually.  */
2166 #if 0
2167   /* gdbarch_addr_bits_remove is wrong if we are being called for a
2168      non-address (e.g. argument to "signal", "info break", etc.), or
2169      for pointers to char, in which the low bits *are* significant.  */
2170   return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2171 #else
2172
2173   /* There are several targets (IA-64, PowerPC, and others) which
2174      don't represent pointers to functions as simply the address of
2175      the function's entry point.  For example, on the IA-64, a
2176      function pointer points to a two-word descriptor, generated by
2177      the linker, which contains the function's entry point, and the
2178      value the IA-64 "global pointer" register should have --- to
2179      support position-independent code.  The linker generates
2180      descriptors only for those functions whose addresses are taken.
2181
2182      On such targets, it's difficult for GDB to convert an arbitrary
2183      function address into a function pointer; it has to either find
2184      an existing descriptor for that function, or call malloc and
2185      build its own.  On some targets, it is impossible for GDB to
2186      build a descriptor at all: the descriptor must contain a jump
2187      instruction; data memory cannot be executed; and code memory
2188      cannot be modified.
2189
2190      Upon entry to this function, if VAL is a value of type `function'
2191      (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2192      value_address (val) is the address of the function.  This is what
2193      you'll get if you evaluate an expression like `main'.  The call
2194      to COERCE_ARRAY below actually does all the usual unary
2195      conversions, which includes converting values of type `function'
2196      to `pointer to function'.  This is the challenging conversion
2197      discussed above.  Then, `unpack_long' will convert that pointer
2198      back into an address.
2199
2200      So, suppose the user types `disassemble foo' on an architecture
2201      with a strange function pointer representation, on which GDB
2202      cannot build its own descriptors, and suppose further that `foo'
2203      has no linker-built descriptor.  The address->pointer conversion
2204      will signal an error and prevent the command from running, even
2205      though the next step would have been to convert the pointer
2206      directly back into the same address.
2207
2208      The following shortcut avoids this whole mess.  If VAL is a
2209      function, just return its address directly.  */
2210   if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2211       || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2212     return value_address (val);
2213
2214   val = coerce_array (val);
2215
2216   /* Some architectures (e.g. Harvard), map instruction and data
2217      addresses onto a single large unified address space.  For
2218      instance: An architecture may consider a large integer in the
2219      range 0x10000000 .. 0x1000ffff to already represent a data
2220      addresses (hence not need a pointer to address conversion) while
2221      a small integer would still need to be converted integer to
2222      pointer to address.  Just assume such architectures handle all
2223      integer conversions in a single function.  */
2224
2225   /* JimB writes:
2226
2227      I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2228      must admonish GDB hackers to make sure its behavior matches the
2229      compiler's, whenever possible.
2230
2231      In general, I think GDB should evaluate expressions the same way
2232      the compiler does.  When the user copies an expression out of
2233      their source code and hands it to a `print' command, they should
2234      get the same value the compiler would have computed.  Any
2235      deviation from this rule can cause major confusion and annoyance,
2236      and needs to be justified carefully.  In other words, GDB doesn't
2237      really have the freedom to do these conversions in clever and
2238      useful ways.
2239
2240      AndrewC pointed out that users aren't complaining about how GDB
2241      casts integers to pointers; they are complaining that they can't
2242      take an address from a disassembly listing and give it to `x/i'.
2243      This is certainly important.
2244
2245      Adding an architecture method like integer_to_address() certainly
2246      makes it possible for GDB to "get it right" in all circumstances
2247      --- the target has complete control over how things get done, so
2248      people can Do The Right Thing for their target without breaking
2249      anyone else.  The standard doesn't specify how integers get
2250      converted to pointers; usually, the ABI doesn't either, but
2251      ABI-specific code is a more reasonable place to handle it.  */
2252
2253   if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2254       && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2255       && gdbarch_integer_to_address_p (gdbarch))
2256     return gdbarch_integer_to_address (gdbarch, value_type (val),
2257                                        value_contents (val));
2258
2259   return unpack_long (value_type (val), value_contents (val));
2260 #endif
2261 }
2262 \f
2263 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2264    as a long, or as a double, assuming the raw data is described
2265    by type TYPE.  Knows how to convert different sizes of values
2266    and can convert between fixed and floating point.  We don't assume
2267    any alignment for the raw data.  Return value is in host byte order.
2268
2269    If you want functions and arrays to be coerced to pointers, and
2270    references to be dereferenced, call value_as_long() instead.
2271
2272    C++: It is assumed that the front-end has taken care of
2273    all matters concerning pointers to members.  A pointer
2274    to member which reaches here is considered to be equivalent
2275    to an INT (or some size).  After all, it is only an offset.  */
2276
2277 LONGEST
2278 unpack_long (struct type *type, const gdb_byte *valaddr)
2279 {
2280   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2281   enum type_code code = TYPE_CODE (type);
2282   int len = TYPE_LENGTH (type);
2283   int nosign = TYPE_UNSIGNED (type);
2284
2285   switch (code)
2286     {
2287     case TYPE_CODE_TYPEDEF:
2288       return unpack_long (check_typedef (type), valaddr);
2289     case TYPE_CODE_ENUM:
2290     case TYPE_CODE_FLAGS:
2291     case TYPE_CODE_BOOL:
2292     case TYPE_CODE_INT:
2293     case TYPE_CODE_CHAR:
2294     case TYPE_CODE_RANGE:
2295     case TYPE_CODE_MEMBERPTR:
2296       if (nosign)
2297         return extract_unsigned_integer (valaddr, len, byte_order);
2298       else
2299         return extract_signed_integer (valaddr, len, byte_order);
2300
2301     case TYPE_CODE_FLT:
2302       return extract_typed_floating (valaddr, type);
2303
2304     case TYPE_CODE_DECFLOAT:
2305       /* libdecnumber has a function to convert from decimal to integer, but
2306          it doesn't work when the decimal number has a fractional part.  */
2307       return decimal_to_doublest (valaddr, len, byte_order);
2308
2309     case TYPE_CODE_PTR:
2310     case TYPE_CODE_REF:
2311       /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
2312          whether we want this to be true eventually.  */
2313       return extract_typed_address (valaddr, type);
2314
2315     default:
2316       error (_("Value can't be converted to integer."));
2317     }
2318   return 0;                     /* Placate lint.  */
2319 }
2320
2321 /* Return a double value from the specified type and address.
2322    INVP points to an int which is set to 0 for valid value,
2323    1 for invalid value (bad float format).  In either case,
2324    the returned double is OK to use.  Argument is in target
2325    format, result is in host format.  */
2326
2327 DOUBLEST
2328 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2329 {
2330   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2331   enum type_code code;
2332   int len;
2333   int nosign;
2334
2335   *invp = 0;                    /* Assume valid.  */
2336   CHECK_TYPEDEF (type);
2337   code = TYPE_CODE (type);
2338   len = TYPE_LENGTH (type);
2339   nosign = TYPE_UNSIGNED (type);
2340   if (code == TYPE_CODE_FLT)
2341     {
2342       /* NOTE: cagney/2002-02-19: There was a test here to see if the
2343          floating-point value was valid (using the macro
2344          INVALID_FLOAT).  That test/macro have been removed.
2345
2346          It turns out that only the VAX defined this macro and then
2347          only in a non-portable way.  Fixing the portability problem
2348          wouldn't help since the VAX floating-point code is also badly
2349          bit-rotten.  The target needs to add definitions for the
2350          methods gdbarch_float_format and gdbarch_double_format - these
2351          exactly describe the target floating-point format.  The
2352          problem here is that the corresponding floatformat_vax_f and
2353          floatformat_vax_d values these methods should be set to are
2354          also not defined either.  Oops!
2355
2356          Hopefully someone will add both the missing floatformat
2357          definitions and the new cases for floatformat_is_valid ().  */
2358
2359       if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2360         {
2361           *invp = 1;
2362           return 0.0;
2363         }
2364
2365       return extract_typed_floating (valaddr, type);
2366     }
2367   else if (code == TYPE_CODE_DECFLOAT)
2368     return decimal_to_doublest (valaddr, len, byte_order);
2369   else if (nosign)
2370     {
2371       /* Unsigned -- be sure we compensate for signed LONGEST.  */
2372       return (ULONGEST) unpack_long (type, valaddr);
2373     }
2374   else
2375     {
2376       /* Signed -- we are OK with unpack_long.  */
2377       return unpack_long (type, valaddr);
2378     }
2379 }
2380
2381 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2382    as a CORE_ADDR, assuming the raw data is described by type TYPE.
2383    We don't assume any alignment for the raw data.  Return value is in
2384    host byte order.
2385
2386    If you want functions and arrays to be coerced to pointers, and
2387    references to be dereferenced, call value_as_address() instead.
2388
2389    C++: It is assumed that the front-end has taken care of
2390    all matters concerning pointers to members.  A pointer
2391    to member which reaches here is considered to be equivalent
2392    to an INT (or some size).  After all, it is only an offset.  */
2393
2394 CORE_ADDR
2395 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2396 {
2397   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
2398      whether we want this to be true eventually.  */
2399   return unpack_long (type, valaddr);
2400 }
2401
2402 \f
2403 /* Get the value of the FIELDNO'th field (which must be static) of
2404    TYPE.  Return NULL if the field doesn't exist or has been
2405    optimized out.  */
2406
2407 struct value *
2408 value_static_field (struct type *type, int fieldno)
2409 {
2410   struct value *retval;
2411
2412   switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2413     {
2414     case FIELD_LOC_KIND_PHYSADDR:
2415       retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2416                               TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2417       break;
2418     case FIELD_LOC_KIND_PHYSNAME:
2419     {
2420       const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2421       /* TYPE_FIELD_NAME (type, fieldno); */
2422       struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2423
2424       if (sym == NULL)
2425         {
2426           /* With some compilers, e.g. HP aCC, static data members are
2427              reported as non-debuggable symbols.  */
2428           struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2429                                                                NULL, NULL);
2430
2431           if (!msym)
2432             return NULL;
2433           else
2434             {
2435               retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2436                                       SYMBOL_VALUE_ADDRESS (msym));
2437             }
2438         }
2439       else
2440         retval = value_of_variable (sym, NULL);
2441       break;
2442     }
2443     default:
2444       gdb_assert_not_reached ("unexpected field location kind");
2445     }
2446
2447   return retval;
2448 }
2449
2450 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2451    You have to be careful here, since the size of the data area for the value
2452    is set by the length of the enclosing type.  So if NEW_ENCL_TYPE is bigger
2453    than the old enclosing type, you have to allocate more space for the
2454    data.  */
2455
2456 void
2457 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2458 {
2459   if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) 
2460     val->contents =
2461       (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2462
2463   val->enclosing_type = new_encl_type;
2464 }
2465
2466 /* Given a value ARG1 (offset by OFFSET bytes)
2467    of a struct or union type ARG_TYPE,
2468    extract and return the value of one of its (non-static) fields.
2469    FIELDNO says which field.  */
2470
2471 struct value *
2472 value_primitive_field (struct value *arg1, int offset,
2473                        int fieldno, struct type *arg_type)
2474 {
2475   struct value *v;
2476   struct type *type;
2477
2478   CHECK_TYPEDEF (arg_type);
2479   type = TYPE_FIELD_TYPE (arg_type, fieldno);
2480
2481   /* Call check_typedef on our type to make sure that, if TYPE
2482      is a TYPE_CODE_TYPEDEF, its length is set to the length
2483      of the target type instead of zero.  However, we do not
2484      replace the typedef type by the target type, because we want
2485      to keep the typedef in order to be able to print the type
2486      description correctly.  */
2487   check_typedef (type);
2488
2489   if (value_optimized_out (arg1))
2490     v = allocate_optimized_out_value (type);
2491   else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2492     {
2493       /* Handle packed fields.
2494
2495          Create a new value for the bitfield, with bitpos and bitsize
2496          set.  If possible, arrange offset and bitpos so that we can
2497          do a single aligned read of the size of the containing type.
2498          Otherwise, adjust offset to the byte containing the first
2499          bit.  Assume that the address, offset, and embedded offset
2500          are sufficiently aligned.  */
2501
2502       int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2503       int container_bitsize = TYPE_LENGTH (type) * 8;
2504
2505       v = allocate_value_lazy (type);
2506       v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2507       if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2508           && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2509         v->bitpos = bitpos % container_bitsize;
2510       else
2511         v->bitpos = bitpos % 8;
2512       v->offset = (value_embedded_offset (arg1)
2513                    + offset
2514                    + (bitpos - v->bitpos) / 8);
2515       v->parent = arg1;
2516       value_incref (v->parent);
2517       if (!value_lazy (arg1))
2518         value_fetch_lazy (v);
2519     }
2520   else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2521     {
2522       /* This field is actually a base subobject, so preserve the
2523          entire object's contents for later references to virtual
2524          bases, etc.  */
2525
2526       /* Lazy register values with offsets are not supported.  */
2527       if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2528         value_fetch_lazy (arg1);
2529
2530       if (value_lazy (arg1))
2531         v = allocate_value_lazy (value_enclosing_type (arg1));
2532       else
2533         {
2534           v = allocate_value (value_enclosing_type (arg1));
2535           value_contents_copy_raw (v, 0, arg1, 0,
2536                                    TYPE_LENGTH (value_enclosing_type (arg1)));
2537         }
2538       v->type = type;
2539       v->offset = value_offset (arg1);
2540       v->embedded_offset = (offset + value_embedded_offset (arg1)
2541                             + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2542     }
2543   else
2544     {
2545       /* Plain old data member */
2546       offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2547
2548       /* Lazy register values with offsets are not supported.  */
2549       if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2550         value_fetch_lazy (arg1);
2551
2552       if (value_lazy (arg1))
2553         v = allocate_value_lazy (type);
2554       else
2555         {
2556           v = allocate_value (type);
2557           value_contents_copy_raw (v, value_embedded_offset (v),
2558                                    arg1, value_embedded_offset (arg1) + offset,
2559                                    TYPE_LENGTH (type));
2560         }
2561       v->offset = (value_offset (arg1) + offset
2562                    + value_embedded_offset (arg1));
2563     }
2564   set_value_component_location (v, arg1);
2565   VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2566   VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2567   return v;
2568 }
2569
2570 /* Given a value ARG1 of a struct or union type,
2571    extract and return the value of one of its (non-static) fields.
2572    FIELDNO says which field.  */
2573
2574 struct value *
2575 value_field (struct value *arg1, int fieldno)
2576 {
2577   return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2578 }
2579
2580 /* Return a non-virtual function as a value.
2581    F is the list of member functions which contains the desired method.
2582    J is an index into F which provides the desired method.
2583
2584    We only use the symbol for its address, so be happy with either a
2585    full symbol or a minimal symbol.  */
2586
2587 struct value *
2588 value_fn_field (struct value **arg1p, struct fn_field *f,
2589                 int j, struct type *type,
2590                 int offset)
2591 {
2592   struct value *v;
2593   struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2594   const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2595   struct symbol *sym;
2596   struct minimal_symbol *msym;
2597
2598   sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2599   if (sym != NULL)
2600     {
2601       msym = NULL;
2602     }
2603   else
2604     {
2605       gdb_assert (sym == NULL);
2606       msym = lookup_minimal_symbol (physname, NULL, NULL);
2607       if (msym == NULL)
2608         return NULL;
2609     }
2610
2611   v = allocate_value (ftype);
2612   if (sym)
2613     {
2614       set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2615     }
2616   else
2617     {
2618       /* The minimal symbol might point to a function descriptor;
2619          resolve it to the actual code address instead.  */
2620       struct objfile *objfile = msymbol_objfile (msym);
2621       struct gdbarch *gdbarch = get_objfile_arch (objfile);
2622
2623       set_value_address (v,
2624         gdbarch_convert_from_func_ptr_addr
2625            (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2626     }
2627
2628   if (arg1p)
2629     {
2630       if (type != value_type (*arg1p))
2631         *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2632                                         value_addr (*arg1p)));
2633
2634       /* Move the `this' pointer according to the offset.
2635          VALUE_OFFSET (*arg1p) += offset; */
2636     }
2637
2638   return v;
2639 }
2640
2641 \f
2642
2643 /* Helper function for both unpack_value_bits_as_long and
2644    unpack_bits_as_long.  See those functions for more details on the
2645    interface; the only difference is that this function accepts either
2646    a NULL or a non-NULL ORIGINAL_VALUE.  */
2647
2648 static int
2649 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2650                              int embedded_offset, int bitpos, int bitsize,
2651                              const struct value *original_value,
2652                              LONGEST *result)
2653 {
2654   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2655   ULONGEST val;
2656   ULONGEST valmask;
2657   int lsbcount;
2658   int bytes_read;
2659   int read_offset;
2660
2661   /* Read the minimum number of bytes required; there may not be
2662      enough bytes to read an entire ULONGEST.  */
2663   CHECK_TYPEDEF (field_type);
2664   if (bitsize)
2665     bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2666   else
2667     bytes_read = TYPE_LENGTH (field_type);
2668
2669   read_offset = bitpos / 8;
2670
2671   if (original_value != NULL
2672       && !value_bytes_available (original_value, embedded_offset + read_offset,
2673                                  bytes_read))
2674     return 0;
2675
2676   val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2677                                   bytes_read, byte_order);
2678
2679   /* Extract bits.  See comment above.  */
2680
2681   if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2682     lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2683   else
2684     lsbcount = (bitpos % 8);
2685   val >>= lsbcount;
2686
2687   /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2688      If the field is signed, and is negative, then sign extend.  */
2689
2690   if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2691     {
2692       valmask = (((ULONGEST) 1) << bitsize) - 1;
2693       val &= valmask;
2694       if (!TYPE_UNSIGNED (field_type))
2695         {
2696           if (val & (valmask ^ (valmask >> 1)))
2697             {
2698               val |= ~valmask;
2699             }
2700         }
2701     }
2702
2703   *result = val;
2704   return 1;
2705 }
2706
2707 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2708    VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2709    VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2710    NULL.  The bitfield starts at BITPOS bits and contains BITSIZE
2711    bits.
2712
2713    Returns false if the value contents are unavailable, otherwise
2714    returns true, indicating a valid value has been stored in *RESULT.
2715
2716    Extracting bits depends on endianness of the machine.  Compute the
2717    number of least significant bits to discard.  For big endian machines,
2718    we compute the total number of bits in the anonymous object, subtract
2719    off the bit count from the MSB of the object to the MSB of the
2720    bitfield, then the size of the bitfield, which leaves the LSB discard
2721    count.  For little endian machines, the discard count is simply the
2722    number of bits from the LSB of the anonymous object to the LSB of the
2723    bitfield.
2724
2725    If the field is signed, we also do sign extension.  */
2726
2727 int
2728 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2729                            int embedded_offset, int bitpos, int bitsize,
2730                            const struct value *original_value,
2731                            LONGEST *result)
2732 {
2733   gdb_assert (original_value != NULL);
2734
2735   return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2736                                       bitpos, bitsize, original_value, result);
2737
2738 }
2739
2740 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2741    VALADDR + EMBEDDED_OFFSET.  VALADDR points to the contents of
2742    ORIGINAL_VALUE.  See unpack_value_bits_as_long for more
2743    details.  */
2744
2745 static int
2746 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2747                               int embedded_offset, int fieldno,
2748                               const struct value *val, LONGEST *result)
2749 {
2750   int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2751   int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2752   struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2753
2754   return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2755                                       bitpos, bitsize, val,
2756                                       result);
2757 }
2758
2759 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2760    VALADDR + EMBEDDED_OFFSET.  VALADDR points to the contents of
2761    ORIGINAL_VALUE, which must not be NULL.  See
2762    unpack_value_bits_as_long for more details.  */
2763
2764 int
2765 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2766                             int embedded_offset, int fieldno,
2767                             const struct value *val, LONGEST *result)
2768 {
2769   gdb_assert (val != NULL);
2770
2771   return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2772                                        fieldno, val, result);
2773 }
2774
2775 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2776    object at VALADDR.  See unpack_value_bits_as_long for more details.
2777    This function differs from unpack_value_field_as_long in that it
2778    operates without a struct value object.  */
2779
2780 LONGEST
2781 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2782 {
2783   LONGEST result;
2784
2785   unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2786   return result;
2787 }
2788
2789 /* Return a new value with type TYPE, which is FIELDNO field of the
2790    object at VALADDR + EMBEDDEDOFFSET.  VALADDR points to the contents
2791    of VAL.  If the VAL's contents required to extract the bitfield
2792    from are unavailable, the new value is correspondingly marked as
2793    unavailable.  */
2794
2795 struct value *
2796 value_field_bitfield (struct type *type, int fieldno,
2797                       const gdb_byte *valaddr,
2798                       int embedded_offset, const struct value *val)
2799 {
2800   LONGEST l;
2801
2802   if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2803                                    val, &l))
2804     {
2805       struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2806       struct value *retval = allocate_value (field_type);
2807       mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2808       return retval;
2809     }
2810   else
2811     {
2812       return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2813     }
2814 }
2815
2816 /* Modify the value of a bitfield.  ADDR points to a block of memory in
2817    target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
2818    is the desired value of the field, in host byte order.  BITPOS and BITSIZE
2819    indicate which bits (in target bit order) comprise the bitfield.
2820    Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2821    0 <= BITPOS, where lbits is the size of a LONGEST in bits.  */
2822
2823 void
2824 modify_field (struct type *type, gdb_byte *addr,
2825               LONGEST fieldval, int bitpos, int bitsize)
2826 {
2827   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2828   ULONGEST oword;
2829   ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2830   int bytesize;
2831
2832   /* Normalize BITPOS.  */
2833   addr += bitpos / 8;
2834   bitpos %= 8;
2835
2836   /* If a negative fieldval fits in the field in question, chop
2837      off the sign extension bits.  */
2838   if ((~fieldval & ~(mask >> 1)) == 0)
2839     fieldval &= mask;
2840
2841   /* Warn if value is too big to fit in the field in question.  */
2842   if (0 != (fieldval & ~mask))
2843     {
2844       /* FIXME: would like to include fieldval in the message, but
2845          we don't have a sprintf_longest.  */
2846       warning (_("Value does not fit in %d bits."), bitsize);
2847
2848       /* Truncate it, otherwise adjoining fields may be corrupted.  */
2849       fieldval &= mask;
2850     }
2851
2852   /* Ensure no bytes outside of the modified ones get accessed as it may cause
2853      false valgrind reports.  */
2854
2855   bytesize = (bitpos + bitsize + 7) / 8;
2856   oword = extract_unsigned_integer (addr, bytesize, byte_order);
2857
2858   /* Shifting for bit field depends on endianness of the target machine.  */
2859   if (gdbarch_bits_big_endian (get_type_arch (type)))
2860     bitpos = bytesize * 8 - bitpos - bitsize;
2861
2862   oword &= ~(mask << bitpos);
2863   oword |= fieldval << bitpos;
2864
2865   store_unsigned_integer (addr, bytesize, byte_order, oword);
2866 }
2867 \f
2868 /* Pack NUM into BUF using a target format of TYPE.  */
2869
2870 void
2871 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2872 {
2873   enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2874   int len;
2875
2876   type = check_typedef (type);
2877   len = TYPE_LENGTH (type);
2878
2879   switch (TYPE_CODE (type))
2880     {
2881     case TYPE_CODE_INT:
2882     case TYPE_CODE_CHAR:
2883     case TYPE_CODE_ENUM:
2884     case TYPE_CODE_FLAGS:
2885     case TYPE_CODE_BOOL:
2886     case TYPE_CODE_RANGE:
2887     case TYPE_CODE_MEMBERPTR:
2888       store_signed_integer (buf, len, byte_order, num);
2889       break;
2890
2891     case TYPE_CODE_REF:
2892     case TYPE_CODE_PTR:
2893       store_typed_address (buf, type, (CORE_ADDR) num);
2894       break;
2895
2896     default:
2897       error (_("Unexpected type (%d) encountered for integer constant."),
2898              TYPE_CODE (type));
2899     }
2900 }
2901
2902
2903 /* Pack NUM into BUF using a target format of TYPE.  */
2904
2905 void
2906 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2907 {
2908   int len;
2909   enum bfd_endian byte_order;
2910
2911   type = check_typedef (type);
2912   len = TYPE_LENGTH (type);
2913   byte_order = gdbarch_byte_order (get_type_arch (type));
2914
2915   switch (TYPE_CODE (type))
2916     {
2917     case TYPE_CODE_INT:
2918     case TYPE_CODE_CHAR:
2919     case TYPE_CODE_ENUM:
2920     case TYPE_CODE_FLAGS:
2921     case TYPE_CODE_BOOL:
2922     case TYPE_CODE_RANGE:
2923     case TYPE_CODE_MEMBERPTR:
2924       store_unsigned_integer (buf, len, byte_order, num);
2925       break;
2926
2927     case TYPE_CODE_REF:
2928     case TYPE_CODE_PTR:
2929       store_typed_address (buf, type, (CORE_ADDR) num);
2930       break;
2931
2932     default:
2933       error (_("Unexpected type (%d) encountered "
2934                "for unsigned integer constant."),
2935              TYPE_CODE (type));
2936     }
2937 }
2938
2939
2940 /* Convert C numbers into newly allocated values.  */
2941
2942 struct value *
2943 value_from_longest (struct type *type, LONGEST num)
2944 {
2945   struct value *val = allocate_value (type);
2946
2947   pack_long (value_contents_raw (val), type, num);
2948   return val;
2949 }
2950
2951
2952 /* Convert C unsigned numbers into newly allocated values.  */
2953
2954 struct value *
2955 value_from_ulongest (struct type *type, ULONGEST num)
2956 {
2957   struct value *val = allocate_value (type);
2958
2959   pack_unsigned_long (value_contents_raw (val), type, num);
2960
2961   return val;
2962 }
2963
2964
2965 /* Create a value representing a pointer of type TYPE to the address
2966    ADDR.  */
2967 struct value *
2968 value_from_pointer (struct type *type, CORE_ADDR addr)
2969 {
2970   struct value *val = allocate_value (type);
2971
2972   store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2973   return val;
2974 }
2975
2976
2977 /* Create a value of type TYPE whose contents come from VALADDR, if it
2978    is non-null, and whose memory address (in the inferior) is
2979    ADDRESS.  */
2980
2981 struct value *
2982 value_from_contents_and_address (struct type *type,
2983                                  const gdb_byte *valaddr,
2984                                  CORE_ADDR address)
2985 {
2986   struct value *v;
2987
2988   if (valaddr == NULL)
2989     v = allocate_value_lazy (type);
2990   else
2991     {
2992       v = allocate_value (type);
2993       memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2994     }
2995   set_value_address (v, address);
2996   VALUE_LVAL (v) = lval_memory;
2997   return v;
2998 }
2999
3000 /* Create a value of type TYPE holding the contents CONTENTS.
3001    The new value is `not_lval'.  */
3002
3003 struct value *
3004 value_from_contents (struct type *type, const gdb_byte *contents)
3005 {
3006   struct value *result;
3007
3008   result = allocate_value (type);
3009   memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3010   return result;
3011 }
3012
3013 struct value *
3014 value_from_double (struct type *type, DOUBLEST num)
3015 {
3016   struct value *val = allocate_value (type);
3017   struct type *base_type = check_typedef (type);
3018   enum type_code code = TYPE_CODE (base_type);
3019
3020   if (code == TYPE_CODE_FLT)
3021     {
3022       store_typed_floating (value_contents_raw (val), base_type, num);
3023     }
3024   else
3025     error (_("Unexpected type encountered for floating constant."));
3026
3027   return val;
3028 }
3029
3030 struct value *
3031 value_from_decfloat (struct type *type, const gdb_byte *dec)
3032 {
3033   struct value *val = allocate_value (type);
3034
3035   memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3036   return val;
3037 }
3038
3039 /* Extract a value from the history file.  Input will be of the form
3040    $digits or $$digits.  See block comment above 'write_dollar_variable'
3041    for details.  */
3042
3043 struct value *
3044 value_from_history_ref (char *h, char **endp)
3045 {
3046   int index, len;
3047
3048   if (h[0] == '$')
3049     len = 1;
3050   else
3051     return NULL;
3052
3053   if (h[1] == '$')
3054     len = 2;
3055
3056   /* Find length of numeral string.  */
3057   for (; isdigit (h[len]); len++)
3058     ;
3059
3060   /* Make sure numeral string is not part of an identifier.  */
3061   if (h[len] == '_' || isalpha (h[len]))
3062     return NULL;
3063
3064   /* Now collect the index value.  */
3065   if (h[1] == '$')
3066     {
3067       if (len == 2)
3068         {
3069           /* For some bizarre reason, "$$" is equivalent to "$$1", 
3070              rather than to "$$0" as it ought to be!  */
3071           index = -1;
3072           *endp += len;
3073         }
3074       else
3075         index = -strtol (&h[2], endp, 10);
3076     }
3077   else
3078     {
3079       if (len == 1)
3080         {
3081           /* "$" is equivalent to "$0".  */
3082           index = 0;
3083           *endp += len;
3084         }
3085       else
3086         index = strtol (&h[1], endp, 10);
3087     }
3088
3089   return access_value_history (index);
3090 }
3091
3092 struct value *
3093 coerce_ref_if_computed (const struct value *arg)
3094 {
3095   const struct lval_funcs *funcs;
3096
3097   if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3098     return NULL;
3099
3100   if (value_lval_const (arg) != lval_computed)
3101     return NULL;
3102
3103   funcs = value_computed_funcs (arg);
3104   if (funcs->coerce_ref == NULL)
3105     return NULL;
3106
3107   return funcs->coerce_ref (arg);
3108 }
3109
3110 struct value *
3111 coerce_ref (struct value *arg)
3112 {
3113   struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3114   struct value *retval;
3115
3116   retval = coerce_ref_if_computed (arg);
3117   if (retval)
3118     return retval;
3119
3120   if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3121     return arg;
3122
3123   return value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
3124                         unpack_pointer (value_type (arg),
3125                                         value_contents (arg)));
3126 }
3127
3128 struct value *
3129 coerce_array (struct value *arg)
3130 {
3131   struct type *type;
3132
3133   arg = coerce_ref (arg);
3134   type = check_typedef (value_type (arg));
3135
3136   switch (TYPE_CODE (type))
3137     {
3138     case TYPE_CODE_ARRAY:
3139       if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3140         arg = value_coerce_array (arg);
3141       break;
3142     case TYPE_CODE_FUNC:
3143       arg = value_coerce_function (arg);
3144       break;
3145     }
3146   return arg;
3147 }
3148 \f
3149
3150 /* Return true if the function returning the specified type is using
3151    the convention of returning structures in memory (passing in the
3152    address as a hidden first parameter).  */
3153
3154 int
3155 using_struct_return (struct gdbarch *gdbarch,
3156                      struct type *func_type, struct type *value_type)
3157 {
3158   enum type_code code = TYPE_CODE (value_type);
3159
3160   if (code == TYPE_CODE_ERROR)
3161     error (_("Function return type unknown."));
3162
3163   if (code == TYPE_CODE_VOID)
3164     /* A void return value is never in memory.  See also corresponding
3165        code in "print_return_value".  */
3166     return 0;
3167
3168   /* Probe the architecture for the return-value convention.  */
3169   return (gdbarch_return_value (gdbarch, func_type, value_type,
3170                                 NULL, NULL, NULL)
3171           != RETURN_VALUE_REGISTER_CONVENTION);
3172 }
3173
3174 /* Set the initialized field in a value struct.  */
3175
3176 void
3177 set_value_initialized (struct value *val, int status)
3178 {
3179   val->initialized = status;
3180 }
3181
3182 /* Return the initialized field in a value struct.  */
3183
3184 int
3185 value_initialized (struct value *val)
3186 {
3187   return val->initialized;
3188 }
3189
3190 void
3191 _initialize_values (void)
3192 {
3193   add_cmd ("convenience", no_class, show_convenience, _("\
3194 Debugger convenience (\"$foo\") variables.\n\
3195 These variables are created when you assign them values;\n\
3196 thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\
3197 \n\
3198 A few convenience variables are given values automatically:\n\
3199 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3200 \"$__\" holds the contents of the last address examined with \"x\"."),
3201            &showlist);
3202
3203   add_cmd ("values", no_set_class, show_values, _("\
3204 Elements of value history around item number IDX (or last ten)."),
3205            &showlist);
3206
3207   add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3208 Initialize a convenience variable if necessary.\n\
3209 init-if-undefined VARIABLE = EXPRESSION\n\
3210 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3211 exist or does not contain a value.  The EXPRESSION is not evaluated if the\n\
3212 VARIABLE is already initialized."));
3213
3214   add_prefix_cmd ("function", no_class, function_command, _("\
3215 Placeholder command for showing help on convenience functions."),
3216                   &functionlist, "function ", 0, &cmdlist);
3217 }