Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / sys / kern / sys_pipe.c
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/poll.h>
40 #include <sys/select.h>
41 #include <sys/signalvar.h>
42 #include <sys/sysproto.h>
43 #include <sys/pipe.h>
44 #include <sys/vnode.h>
45 #include <sys/uio.h>
46 #include <sys/event.h>
47 #include <sys/globaldata.h>
48 #include <sys/module.h>
49 #include <sys/malloc.h>
50 #include <sys/sysctl.h>
51 #include <sys/socket.h>
52
53 #include <vm/vm.h>
54 #include <vm/vm_param.h>
55 #include <sys/lock.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_extern.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_zone.h>
63
64 #include <sys/file2.h>
65 #include <sys/signal2.h>
66
67 #include <machine/cpufunc.h>
68
69 /*
70  * interfaces to the outside world
71  */
72 static int pipe_read (struct file *fp, struct uio *uio, 
73                 struct ucred *cred, int flags);
74 static int pipe_write (struct file *fp, struct uio *uio, 
75                 struct ucred *cred, int flags);
76 static int pipe_close (struct file *fp);
77 static int pipe_shutdown (struct file *fp, int how);
78 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
79 static int pipe_kqfilter (struct file *fp, struct knote *kn);
80 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
81 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
82                 struct ucred *cred, struct sysmsg *msg);
83
84 static struct fileops pipeops = {
85         .fo_read = pipe_read, 
86         .fo_write = pipe_write,
87         .fo_ioctl = pipe_ioctl,
88         .fo_poll = pipe_poll,
89         .fo_kqfilter = pipe_kqfilter,
90         .fo_stat = pipe_stat,
91         .fo_close = pipe_close,
92         .fo_shutdown = pipe_shutdown
93 };
94
95 static void     filt_pipedetach(struct knote *kn);
96 static int      filt_piperead(struct knote *kn, long hint);
97 static int      filt_pipewrite(struct knote *kn, long hint);
98
99 static struct filterops pipe_rfiltops =
100         { 1, NULL, filt_pipedetach, filt_piperead };
101 static struct filterops pipe_wfiltops =
102         { 1, NULL, filt_pipedetach, filt_pipewrite };
103
104 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
105
106 /*
107  * Default pipe buffer size(s), this can be kind-of large now because pipe
108  * space is pageable.  The pipe code will try to maintain locality of
109  * reference for performance reasons, so small amounts of outstanding I/O
110  * will not wipe the cache.
111  */
112 #define MINPIPESIZE (PIPE_SIZE/3)
113 #define MAXPIPESIZE (2*PIPE_SIZE/3)
114
115 /*
116  * Limit the number of "big" pipes
117  */
118 #define LIMITBIGPIPES   64
119 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
120
121 static int pipe_maxbig = LIMITBIGPIPES;
122 static int pipe_maxcache = PIPEQ_MAX_CACHE;
123 static int pipe_bigcount;
124 static int pipe_nbig;
125 static int pipe_bcache_alloc;
126 static int pipe_bkmem_alloc;
127 static int pipe_rblocked_count;
128 static int pipe_wblocked_count;
129
130 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
131 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
132         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
133 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
134         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
135 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
136         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
137 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
138         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
139 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
140         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
141 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
142         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
143 #ifdef SMP
144 static int pipe_delay = 5000;   /* 5uS default */
145 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
146         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
147 static int pipe_mpsafe = 1;
148 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
149         CTLFLAG_RW, &pipe_mpsafe, 0, "");
150 #endif
151 #if !defined(NO_PIPE_SYSCTL_STATS)
152 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
153         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
154 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
155         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
156 #endif
157
158 static void pipeclose (struct pipe *cpipe);
159 static void pipe_free_kmem (struct pipe *cpipe);
160 static int pipe_create (struct pipe **cpipep);
161 static __inline void pipeselwakeup (struct pipe *cpipe);
162 static int pipespace (struct pipe *cpipe, int size);
163
164 static __inline void
165 pipeselwakeup(struct pipe *cpipe)
166 {
167         if (cpipe->pipe_state & PIPE_SEL) {
168                 get_mplock();
169                 cpipe->pipe_state &= ~PIPE_SEL;
170                 selwakeup(&cpipe->pipe_sel);
171                 rel_mplock();
172         }
173         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
174                 get_mplock();
175                 pgsigio(cpipe->pipe_sigio, SIGIO, 0);
176                 rel_mplock();
177         }
178         if (SLIST_FIRST(&cpipe->pipe_sel.si_note)) {
179                 get_mplock();
180                 KNOTE(&cpipe->pipe_sel.si_note, 0);
181                 rel_mplock();
182         }
183 }
184
185 /*
186  * These routines are called before and after a UIO.  The UIO
187  * may block, causing our held tokens to be lost temporarily.
188  *
189  * We use these routines to serialize reads against other reads
190  * and writes against other writes.
191  *
192  * The read token is held on entry so *ipp does not race.
193  */
194 static __inline int
195 pipe_start_uio(struct pipe *cpipe, int *ipp)
196 {
197         int error;
198
199         while (*ipp) {
200                 *ipp = -1;
201                 error = tsleep(ipp, PCATCH, "pipexx", 0);
202                 if (error)
203                         return (error);
204         }
205         *ipp = 1;
206         return (0);
207 }
208
209 static __inline void
210 pipe_end_uio(struct pipe *cpipe, int *ipp)
211 {
212         if (*ipp < 0) {
213                 *ipp = 0;
214                 wakeup(ipp);
215         } else {
216                 KKASSERT(*ipp > 0);
217                 *ipp = 0;
218         }
219 }
220
221 static __inline void
222 pipe_get_mplock(int *save)
223 {
224 #ifdef SMP
225         if (pipe_mpsafe == 0) {
226                 get_mplock();
227                 *save = 1;
228         } else
229 #endif
230         {
231                 *save = 0;
232         }
233 }
234
235 static __inline void
236 pipe_rel_mplock(int *save)
237 {
238 #ifdef SMP
239         if (*save)
240                 rel_mplock();
241 #endif
242 }
243
244
245 /*
246  * The pipe system call for the DTYPE_PIPE type of pipes
247  *
248  * pipe_ARgs(int dummy)
249  */
250
251 /* ARGSUSED */
252 int
253 sys_pipe(struct pipe_args *uap)
254 {
255         struct thread *td = curthread;
256         struct proc *p = td->td_proc;
257         struct file *rf, *wf;
258         struct pipe *rpipe, *wpipe;
259         int fd1, fd2, error;
260
261         KKASSERT(p);
262
263         rpipe = wpipe = NULL;
264         if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
265                 pipeclose(rpipe); 
266                 pipeclose(wpipe); 
267                 return (ENFILE);
268         }
269         
270         error = falloc(p, &rf, &fd1);
271         if (error) {
272                 pipeclose(rpipe);
273                 pipeclose(wpipe);
274                 return (error);
275         }
276         uap->sysmsg_fds[0] = fd1;
277
278         /*
279          * Warning: once we've gotten past allocation of the fd for the
280          * read-side, we can only drop the read side via fdrop() in order
281          * to avoid races against processes which manage to dup() the read
282          * side while we are blocked trying to allocate the write side.
283          */
284         rf->f_type = DTYPE_PIPE;
285         rf->f_flag = FREAD | FWRITE;
286         rf->f_ops = &pipeops;
287         rf->f_data = rpipe;
288         error = falloc(p, &wf, &fd2);
289         if (error) {
290                 fsetfd(p, NULL, fd1);
291                 fdrop(rf);
292                 /* rpipe has been closed by fdrop(). */
293                 pipeclose(wpipe);
294                 return (error);
295         }
296         wf->f_type = DTYPE_PIPE;
297         wf->f_flag = FREAD | FWRITE;
298         wf->f_ops = &pipeops;
299         wf->f_data = wpipe;
300         uap->sysmsg_fds[1] = fd2;
301
302         rpipe->pipe_slock = kmalloc(sizeof(struct lock),
303                                     M_PIPE, M_WAITOK|M_ZERO);
304         wpipe->pipe_slock = rpipe->pipe_slock;
305         rpipe->pipe_peer = wpipe;
306         wpipe->pipe_peer = rpipe;
307         lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
308
309         /*
310          * Once activated the peer relationship remains valid until
311          * both sides are closed.
312          */
313         fsetfd(p, rf, fd1);
314         fsetfd(p, wf, fd2);
315         fdrop(rf);
316         fdrop(wf);
317
318         return (0);
319 }
320
321 /*
322  * Allocate kva for pipe circular buffer, the space is pageable
323  * This routine will 'realloc' the size of a pipe safely, if it fails
324  * it will retain the old buffer.
325  * If it fails it will return ENOMEM.
326  */
327 static int
328 pipespace(struct pipe *cpipe, int size)
329 {
330         struct vm_object *object;
331         caddr_t buffer;
332         int npages, error;
333
334         npages = round_page(size) / PAGE_SIZE;
335         object = cpipe->pipe_buffer.object;
336
337         /*
338          * [re]create the object if necessary and reserve space for it
339          * in the kernel_map.  The object and memory are pageable.  On
340          * success, free the old resources before assigning the new
341          * ones.
342          */
343         if (object == NULL || object->size != npages) {
344                 get_mplock();
345                 object = vm_object_allocate(OBJT_DEFAULT, npages);
346                 buffer = (caddr_t)vm_map_min(&kernel_map);
347
348                 error = vm_map_find(&kernel_map, object, 0,
349                                     (vm_offset_t *)&buffer, size,
350                                     1,
351                                     VM_MAPTYPE_NORMAL,
352                                     VM_PROT_ALL, VM_PROT_ALL,
353                                     0);
354
355                 if (error != KERN_SUCCESS) {
356                         vm_object_deallocate(object);
357                         rel_mplock();
358                         return (ENOMEM);
359                 }
360                 pipe_free_kmem(cpipe);
361                 rel_mplock();
362                 cpipe->pipe_buffer.object = object;
363                 cpipe->pipe_buffer.buffer = buffer;
364                 cpipe->pipe_buffer.size = size;
365                 ++pipe_bkmem_alloc;
366         } else {
367                 ++pipe_bcache_alloc;
368         }
369         cpipe->pipe_buffer.rindex = 0;
370         cpipe->pipe_buffer.windex = 0;
371         return (0);
372 }
373
374 /*
375  * Initialize and allocate VM and memory for pipe, pulling the pipe from
376  * our per-cpu cache if possible.  For now make sure it is sized for the
377  * smaller PIPE_SIZE default.
378  */
379 static int
380 pipe_create(struct pipe **cpipep)
381 {
382         globaldata_t gd = mycpu;
383         struct pipe *cpipe;
384         int error;
385
386         if ((cpipe = gd->gd_pipeq) != NULL) {
387                 gd->gd_pipeq = cpipe->pipe_peer;
388                 --gd->gd_pipeqcount;
389                 cpipe->pipe_peer = NULL;
390                 cpipe->pipe_wantwcnt = 0;
391         } else {
392                 cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
393         }
394         *cpipep = cpipe;
395         if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
396                 return (error);
397         vfs_timestamp(&cpipe->pipe_ctime);
398         cpipe->pipe_atime = cpipe->pipe_ctime;
399         cpipe->pipe_mtime = cpipe->pipe_ctime;
400         lwkt_token_init(&cpipe->pipe_rlock);
401         lwkt_token_init(&cpipe->pipe_wlock);
402         return (0);
403 }
404
405 /*
406  * MPALMOSTSAFE (acquires mplock)
407  */
408 static int
409 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
410 {
411         struct pipe *rpipe;
412         int error;
413         size_t nread = 0;
414         int nbio;
415         u_int size;     /* total bytes available */
416         u_int nsize;    /* total bytes to read */
417         u_int rindex;   /* contiguous bytes available */
418         int notify_writer;
419         lwkt_tokref rlock;
420         lwkt_tokref wlock;
421         int mpsave;
422         int bigread;
423         int bigcount;
424
425         if (uio->uio_resid == 0)
426                 return(0);
427
428         /*
429          * Setup locks, calculate nbio
430          */
431         pipe_get_mplock(&mpsave);
432         rpipe = (struct pipe *)fp->f_data;
433         lwkt_gettoken(&rlock, &rpipe->pipe_rlock);
434
435         if (fflags & O_FBLOCKING)
436                 nbio = 0;
437         else if (fflags & O_FNONBLOCKING)
438                 nbio = 1;
439         else if (fp->f_flag & O_NONBLOCK)
440                 nbio = 1;
441         else
442                 nbio = 0;
443
444         /*
445          * Reads are serialized.  Note howeverthat pipe_buffer.buffer and
446          * pipe_buffer.size can change out from under us when the number
447          * of bytes in the buffer are zero due to the write-side doing a
448          * pipespace().
449          */
450         error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
451         if (error) {
452                 pipe_rel_mplock(&mpsave);
453                 lwkt_reltoken(&rlock);
454                 return (error);
455         }
456         notify_writer = 0;
457
458         bigread = (uio->uio_resid > 10 * 1024 * 1024);
459         bigcount = 10;
460
461         while (uio->uio_resid) {
462                 /*
463                  * Don't hog the cpu.
464                  */
465                 if (bigread && --bigcount == 0) {
466                         lwkt_user_yield();
467                         bigcount = 10;
468                         if (CURSIG(curthread->td_lwp)) {
469                                 error = EINTR;
470                                 break;
471                         }
472                 }
473
474                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
475                 cpu_lfence();
476                 if (size) {
477                         rindex = rpipe->pipe_buffer.rindex &
478                                  (rpipe->pipe_buffer.size - 1);
479                         nsize = size;
480                         if (nsize > rpipe->pipe_buffer.size - rindex)
481                                 nsize = rpipe->pipe_buffer.size - rindex;
482                         nsize = szmin(nsize, uio->uio_resid);
483
484                         error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
485                                         nsize, uio);
486                         if (error)
487                                 break;
488                         cpu_mfence();
489                         rpipe->pipe_buffer.rindex += nsize;
490                         nread += nsize;
491
492                         /*
493                          * If the FIFO is still over half full just continue
494                          * and do not try to notify the writer yet.
495                          */
496                         if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
497                                 notify_writer = 0;
498                                 continue;
499                         }
500
501                         /*
502                          * When the FIFO is less then half full notify any
503                          * waiting writer.  WANTW can be checked while
504                          * holding just the rlock.
505                          */
506                         notify_writer = 1;
507                         if ((rpipe->pipe_state & PIPE_WANTW) == 0)
508                                 continue;
509                 }
510
511                 /*
512                  * If the "write-side" was blocked we wake it up.  This code
513                  * is reached either when the buffer is completely emptied
514                  * or if it becomes more then half-empty.
515                  *
516                  * Pipe_state can only be modified if both the rlock and
517                  * wlock are held.
518                  */
519                 if (rpipe->pipe_state & PIPE_WANTW) {
520                         lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
521                         if (rpipe->pipe_state & PIPE_WANTW) {
522                                 notify_writer = 0;
523                                 rpipe->pipe_state &= ~PIPE_WANTW;
524                                 lwkt_reltoken(&wlock);
525                                 wakeup(rpipe);
526                         } else {
527                                 lwkt_reltoken(&wlock);
528                         }
529                 }
530
531                 /*
532                  * Pick up our copy loop again if the writer sent data to
533                  * us while we were messing around.
534                  *
535                  * On a SMP box poll up to pipe_delay nanoseconds for new
536                  * data.  Typically a value of 2000 to 4000 is sufficient
537                  * to eradicate most IPIs/tsleeps/wakeups when a pipe
538                  * is used for synchronous communications with small packets,
539                  * and 8000 or so (8uS) will pipeline large buffer xfers
540                  * between cpus over a pipe.
541                  *
542                  * For synchronous communications a hit means doing a
543                  * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
544                  * where as miss requiring a tsleep/wakeup sequence
545                  * will take 7uS or more.
546                  */
547                 if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
548                         continue;
549
550 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
551                 if (pipe_delay) {
552                         int64_t tsc_target;
553                         int good = 0;
554
555                         tsc_target = tsc_get_target(pipe_delay);
556                         while (tsc_test_target(tsc_target) == 0) {
557                                 if (rpipe->pipe_buffer.windex !=
558                                     rpipe->pipe_buffer.rindex) {
559                                         good = 1;
560                                         break;
561                                 }
562                         }
563                         if (good)
564                                 continue;
565                 }
566 #endif
567
568                 /*
569                  * Detect EOF condition, do not set error.
570                  */
571                 if (rpipe->pipe_state & PIPE_REOF)
572                         break;
573
574                 /*
575                  * Break if some data was read, or if this was a non-blocking
576                  * read.
577                  */
578                 if (nread > 0)
579                         break;
580
581                 if (nbio) {
582                         error = EAGAIN;
583                         break;
584                 }
585
586                 /*
587                  * Last chance, interlock with WANTR.
588                  */
589                 lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
590                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
591                 if (size) {
592                         lwkt_reltoken(&wlock);
593                         continue;
594                 }
595
596                 /*
597                  * Retest EOF - acquiring a new token can temporarily release
598                  * tokens already held.
599                  */
600                 if (rpipe->pipe_state & PIPE_REOF)
601                         break;
602
603                 /*
604                  * If there is no more to read in the pipe, reset its
605                  * pointers to the beginning.  This improves cache hit
606                  * stats.
607                  *
608                  * We need both locks to modify both pointers, and there
609                  * must also not be a write in progress or the uiomove()
610                  * in the write might block and temporarily release
611                  * its wlock, then reacquire and update windex.  We are
612                  * only serialized against reads, not writes.
613                  *
614                  * XXX should we even bother resetting the indices?  It
615                  *     might actually be more cache efficient not to.
616                  */
617                 if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
618                     rpipe->pipe_wip == 0) {
619                         rpipe->pipe_buffer.rindex = 0;
620                         rpipe->pipe_buffer.windex = 0;
621                 }
622
623                 /*
624                  * Wait for more data.
625                  *
626                  * Pipe_state can only be set if both the rlock and wlock
627                  * are held.
628                  */
629                 rpipe->pipe_state |= PIPE_WANTR;
630                 tsleep_interlock(rpipe, PCATCH);
631                 lwkt_reltoken(&wlock);
632                 error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
633                 ++pipe_rblocked_count;
634                 if (error)
635                         break;
636         }
637         pipe_end_uio(rpipe, &rpipe->pipe_rip);
638
639         /*
640          * Uptime last access time
641          */
642         if (error == 0 && nread)
643                 vfs_timestamp(&rpipe->pipe_atime);
644
645         /*
646          * If we drained the FIFO more then half way then handle
647          * write blocking hysteresis.
648          *
649          * Note that PIPE_WANTW cannot be set by the writer without
650          * it holding both rlock and wlock, so we can test it
651          * while holding just rlock.
652          */
653         if (notify_writer) {
654                 if (rpipe->pipe_state & PIPE_WANTW) {
655                         lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
656                         if (rpipe->pipe_state & PIPE_WANTW) {
657                                 rpipe->pipe_state &= ~PIPE_WANTW;
658                                 lwkt_reltoken(&wlock);
659                                 wakeup(rpipe);
660                         } else {
661                                 lwkt_reltoken(&wlock);
662                         }
663                 }
664                 if (rpipe->pipe_state & PIPE_SEL) {
665                         lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
666                         pipeselwakeup(rpipe);
667                         lwkt_reltoken(&wlock);
668                 }
669         }
670         /*size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;*/
671         lwkt_reltoken(&rlock);
672
673         pipe_rel_mplock(&mpsave);
674         return (error);
675 }
676
677 /*
678  * MPALMOSTSAFE - acquires mplock
679  */
680 static int
681 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
682 {
683         int error;
684         int orig_resid;
685         int nbio;
686         struct pipe *wpipe, *rpipe;
687         lwkt_tokref rlock;
688         lwkt_tokref wlock;
689         u_int windex;
690         u_int space;
691         u_int wcount;
692         int mpsave;
693         int bigwrite;
694         int bigcount;
695
696         pipe_get_mplock(&mpsave);
697
698         /*
699          * Writes go to the peer.  The peer will always exist.
700          */
701         rpipe = (struct pipe *) fp->f_data;
702         wpipe = rpipe->pipe_peer;
703         lwkt_gettoken(&wlock, &wpipe->pipe_wlock);
704         if (wpipe->pipe_state & PIPE_WEOF) {
705                 pipe_rel_mplock(&mpsave);
706                 lwkt_reltoken(&wlock);
707                 return (EPIPE);
708         }
709
710         /*
711          * Degenerate case (EPIPE takes prec)
712          */
713         if (uio->uio_resid == 0) {
714                 pipe_rel_mplock(&mpsave);
715                 lwkt_reltoken(&wlock);
716                 return(0);
717         }
718
719         /*
720          * Writes are serialized (start_uio must be called with wlock)
721          */
722         error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
723         if (error) {
724                 pipe_rel_mplock(&mpsave);
725                 lwkt_reltoken(&wlock);
726                 return (error);
727         }
728
729         if (fflags & O_FBLOCKING)
730                 nbio = 0;
731         else if (fflags & O_FNONBLOCKING)
732                 nbio = 1;
733         else if (fp->f_flag & O_NONBLOCK)
734                 nbio = 1;
735         else
736                 nbio = 0;
737
738         /*
739          * If it is advantageous to resize the pipe buffer, do
740          * so.  We are write-serialized so we can block safely.
741          */
742         if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
743             (pipe_nbig < pipe_maxbig) &&
744             wpipe->pipe_wantwcnt > 4 &&
745             (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
746                 /* 
747                  * Recheck after lock.
748                  */
749                 lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
750                 if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
751                     (pipe_nbig < pipe_maxbig) &&
752                     (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
753                         atomic_add_int(&pipe_nbig, 1);
754                         if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
755                                 ++pipe_bigcount;
756                         else
757                                 atomic_subtract_int(&pipe_nbig, 1);
758                 }
759                 lwkt_reltoken(&rlock);
760         }
761
762         orig_resid = uio->uio_resid;
763         wcount = 0;
764
765         bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
766         bigcount = 10;
767
768         while (uio->uio_resid) {
769                 if (wpipe->pipe_state & PIPE_WEOF) {
770                         error = EPIPE;
771                         break;
772                 }
773
774                 /*
775                  * Don't hog the cpu.
776                  */
777                 if (bigwrite && --bigcount == 0) {
778                         lwkt_user_yield();
779                         bigcount = 10;
780                         if (CURSIG(curthread->td_lwp)) {
781                                 error = EINTR;
782                                 break;
783                         }
784                 }
785
786                 windex = wpipe->pipe_buffer.windex &
787                          (wpipe->pipe_buffer.size - 1);
788                 space = wpipe->pipe_buffer.size -
789                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
790                 cpu_lfence();
791
792                 /* Writes of size <= PIPE_BUF must be atomic. */
793                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
794                         space = 0;
795
796                 /* 
797                  * Write to fill, read size handles write hysteresis.  Also
798                  * additional restrictions can cause select-based non-blocking
799                  * writes to spin.
800                  */
801                 if (space > 0) {
802                         u_int segsize;
803
804                         /*
805                          * Transfer size is minimum of uio transfer
806                          * and free space in pipe buffer.
807                          *
808                          * Limit each uiocopy to no more then PIPE_SIZE
809                          * so we can keep the gravy train going on a
810                          * SMP box.  This doubles the performance for
811                          * write sizes > 16K.  Otherwise large writes
812                          * wind up doing an inefficient synchronous
813                          * ping-pong.
814                          */
815                         space = szmin(space, uio->uio_resid);
816                         if (space > PIPE_SIZE)
817                                 space = PIPE_SIZE;
818
819                         /*
820                          * First segment to transfer is minimum of
821                          * transfer size and contiguous space in
822                          * pipe buffer.  If first segment to transfer
823                          * is less than the transfer size, we've got
824                          * a wraparound in the buffer.
825                          */
826                         segsize = wpipe->pipe_buffer.size - windex;
827                         if (segsize > space)
828                                 segsize = space;
829
830 #ifdef SMP
831                         /*
832                          * If this is the first loop and the reader is
833                          * blocked, do a preemptive wakeup of the reader.
834                          *
835                          * On SMP the IPI latency plus the wlock interlock
836                          * on the reader side is the fastest way to get the
837                          * reader going.  (The scheduler will hard loop on
838                          * lock tokens).
839                          *
840                          * NOTE: We can't clear WANTR here without acquiring
841                          * the rlock, which we don't want to do here!
842                          */
843                         if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
844                                 wakeup(wpipe);
845 #endif
846
847                         /*
848                          * Transfer segment, which may include a wrap-around.
849                          * Update windex to account for both all in one go
850                          * so the reader can read() the data atomically.
851                          */
852                         error = uiomove(&wpipe->pipe_buffer.buffer[windex],
853                                         segsize, uio);
854                         if (error == 0 && segsize < space) {
855                                 segsize = space - segsize;
856                                 error = uiomove(&wpipe->pipe_buffer.buffer[0],
857                                                 segsize, uio);
858                         }
859                         if (error)
860                                 break;
861                         cpu_mfence();
862                         wpipe->pipe_buffer.windex += space;
863                         wcount += space;
864                         continue;
865                 }
866
867                 /*
868                  * We need both the rlock and the wlock to interlock against
869                  * the EOF, WANTW, and size checks, and to modify pipe_state.
870                  *
871                  * These are token locks so we do not have to worry about
872                  * deadlocks.
873                  */
874                 lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
875
876                 /*
877                  * If the "read-side" has been blocked, wake it up now
878                  * and yield to let it drain synchronously rather
879                  * then block.
880                  */
881                 if (wpipe->pipe_state & PIPE_WANTR) {
882                         wpipe->pipe_state &= ~PIPE_WANTR;
883                         wakeup(wpipe);
884                 }
885
886                 /*
887                  * don't block on non-blocking I/O
888                  */
889                 if (nbio) {
890                         lwkt_reltoken(&rlock);
891                         error = EAGAIN;
892                         break;
893                 }
894
895                 /*
896                  * re-test whether we have to block in the writer after
897                  * acquiring both locks, in case the reader opened up
898                  * some space.
899                  */
900                 space = wpipe->pipe_buffer.size -
901                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
902                 cpu_lfence();
903                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
904                         space = 0;
905
906                 /*
907                  * Retest EOF - acquiring a new token can temporarily release
908                  * tokens already held.
909                  */
910                 if (wpipe->pipe_state & PIPE_WEOF) {
911                         error = EPIPE;
912                         break;
913                 }
914
915                 /*
916                  * We have no more space and have something to offer,
917                  * wake up select/poll.
918                  */
919                 if (space == 0) {
920                         wpipe->pipe_state |= PIPE_WANTW;
921                         ++wpipe->pipe_wantwcnt;
922                         pipeselwakeup(wpipe);
923                         if (wpipe->pipe_state & PIPE_WANTW)
924                                 error = tsleep(wpipe, PCATCH, "pipewr", 0);
925                         ++pipe_wblocked_count;
926                 }
927                 lwkt_reltoken(&rlock);
928
929                 /*
930                  * Break out if we errored or the read side wants us to go
931                  * away.
932                  */
933                 if (error)
934                         break;
935                 if (wpipe->pipe_state & PIPE_WEOF) {
936                         error = EPIPE;
937                         break;
938                 }
939         }
940         pipe_end_uio(wpipe, &wpipe->pipe_wip);
941
942         /*
943          * If we have put any characters in the buffer, we wake up
944          * the reader.
945          *
946          * Both rlock and wlock are required to be able to modify pipe_state.
947          */
948         if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
949                 if (wpipe->pipe_state & PIPE_WANTR) {
950                         lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
951                         if (wpipe->pipe_state & PIPE_WANTR) {
952                                 wpipe->pipe_state &= ~PIPE_WANTR;
953                                 lwkt_reltoken(&rlock);
954                                 wakeup(wpipe);
955                         } else {
956                                 lwkt_reltoken(&rlock);
957                         }
958                 }
959                 if (wpipe->pipe_state & PIPE_SEL) {
960                         lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
961                         pipeselwakeup(wpipe);
962                         lwkt_reltoken(&rlock);
963                 }
964         }
965
966         /*
967          * Don't return EPIPE if I/O was successful
968          */
969         if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
970             (uio->uio_resid == 0) &&
971             (error == EPIPE)) {
972                 error = 0;
973         }
974
975         if (error == 0)
976                 vfs_timestamp(&wpipe->pipe_mtime);
977
978         /*
979          * We have something to offer,
980          * wake up select/poll.
981          */
982         /*space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;*/
983         lwkt_reltoken(&wlock);
984         pipe_rel_mplock(&mpsave);
985         return (error);
986 }
987
988 /*
989  * MPALMOSTSAFE - acquires mplock
990  *
991  * we implement a very minimal set of ioctls for compatibility with sockets.
992  */
993 int
994 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
995            struct ucred *cred, struct sysmsg *msg)
996 {
997         struct pipe *mpipe;
998         lwkt_tokref rlock;
999         lwkt_tokref wlock;
1000         int error;
1001         int mpsave;
1002
1003         pipe_get_mplock(&mpsave);
1004         mpipe = (struct pipe *)fp->f_data;
1005
1006         lwkt_gettoken(&rlock, &mpipe->pipe_rlock);
1007         lwkt_gettoken(&wlock, &mpipe->pipe_wlock);
1008
1009         switch (cmd) {
1010         case FIOASYNC:
1011                 if (*(int *)data) {
1012                         mpipe->pipe_state |= PIPE_ASYNC;
1013                 } else {
1014                         mpipe->pipe_state &= ~PIPE_ASYNC;
1015                 }
1016                 error = 0;
1017                 break;
1018         case FIONREAD:
1019                 *(int *)data = mpipe->pipe_buffer.windex -
1020                                 mpipe->pipe_buffer.rindex;
1021                 error = 0;
1022                 break;
1023         case FIOSETOWN:
1024                 get_mplock();
1025                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1026                 rel_mplock();
1027                 break;
1028         case FIOGETOWN:
1029                 *(int *)data = fgetown(mpipe->pipe_sigio);
1030                 error = 0;
1031                 break;
1032         case TIOCSPGRP:
1033                 /* This is deprecated, FIOSETOWN should be used instead. */
1034                 get_mplock();
1035                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1036                 rel_mplock();
1037                 break;
1038
1039         case TIOCGPGRP:
1040                 /* This is deprecated, FIOGETOWN should be used instead. */
1041                 *(int *)data = -fgetown(mpipe->pipe_sigio);
1042                 error = 0;
1043                 break;
1044         default:
1045                 error = ENOTTY;
1046                 break;
1047         }
1048         lwkt_reltoken(&rlock);
1049         lwkt_reltoken(&wlock);
1050         pipe_rel_mplock(&mpsave);
1051
1052         return (error);
1053 }
1054
1055 /*
1056  * MPALMOSTSAFE - acquires mplock
1057  *
1058  * poll for events (helper)
1059  */
1060 static int
1061 pipe_poll_events(struct pipe *rpipe, struct pipe *wpipe, int events)
1062 {
1063         int revents = 0;
1064         u_int space;
1065
1066         if (events & (POLLIN | POLLRDNORM)) {
1067                 if ((rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex) ||
1068                     (rpipe->pipe_state & PIPE_REOF)) {
1069                         revents |= events & (POLLIN | POLLRDNORM);
1070                 }
1071         }
1072
1073         if (events & (POLLOUT | POLLWRNORM)) {
1074                 if (wpipe == NULL || (wpipe->pipe_state & PIPE_WEOF)) {
1075                         revents |= events & (POLLOUT | POLLWRNORM);
1076                 } else {
1077                         space = wpipe->pipe_buffer.windex -
1078                                 wpipe->pipe_buffer.rindex;
1079                         space = wpipe->pipe_buffer.size - space;
1080                         if (space >= PIPE_BUF)
1081                                 revents |= events & (POLLOUT | POLLWRNORM);
1082                 }
1083         }
1084
1085         if ((rpipe->pipe_state & PIPE_REOF) ||
1086             (wpipe == NULL) ||
1087             (wpipe->pipe_state & PIPE_WEOF)) {
1088                 revents |= POLLHUP;
1089         }
1090         return (revents);
1091 }
1092
1093 /*
1094  * Poll for events from file pointer.
1095  */
1096 int
1097 pipe_poll(struct file *fp, int events, struct ucred *cred)
1098 {
1099         lwkt_tokref rpipe_rlock;
1100         lwkt_tokref rpipe_wlock;
1101         lwkt_tokref wpipe_rlock;
1102         lwkt_tokref wpipe_wlock;
1103         struct pipe *rpipe;
1104         struct pipe *wpipe;
1105         int revents = 0;
1106         int mpsave;
1107
1108         pipe_get_mplock(&mpsave);
1109         rpipe = (struct pipe *)fp->f_data;
1110         wpipe = rpipe->pipe_peer;
1111
1112         revents = pipe_poll_events(rpipe, wpipe, events);
1113         if (revents == 0) {
1114                 if (events & (POLLIN | POLLRDNORM)) {
1115                         lwkt_gettoken(&rpipe_rlock, &rpipe->pipe_rlock);
1116                         lwkt_gettoken(&rpipe_wlock, &rpipe->pipe_wlock);
1117                 }
1118                 if (events & (POLLOUT | POLLWRNORM)) {
1119                         lwkt_gettoken(&wpipe_rlock, &wpipe->pipe_rlock);
1120                         lwkt_gettoken(&wpipe_wlock, &wpipe->pipe_wlock);
1121                 }
1122                 revents = pipe_poll_events(rpipe, wpipe, events);
1123                 if (revents == 0) {
1124                         if (events & (POLLIN | POLLRDNORM)) {
1125                                 selrecord(curthread, &rpipe->pipe_sel);
1126                                 rpipe->pipe_state |= PIPE_SEL;
1127                         }
1128
1129                         if (events & (POLLOUT | POLLWRNORM)) {
1130                                 selrecord(curthread, &wpipe->pipe_sel);
1131                                 wpipe->pipe_state |= PIPE_SEL;
1132                         }
1133                 }
1134                 if (events & (POLLIN | POLLRDNORM)) {
1135                         lwkt_reltoken(&rpipe_rlock);
1136                         lwkt_reltoken(&rpipe_wlock);
1137                 }
1138                 if (events & (POLLOUT | POLLWRNORM)) {
1139                         lwkt_reltoken(&wpipe_rlock);
1140                         lwkt_reltoken(&wpipe_wlock);
1141                 }
1142         }
1143         pipe_rel_mplock(&mpsave);
1144         return (revents);
1145 }
1146
1147 /*
1148  * MPSAFE
1149  */
1150 static int
1151 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1152 {
1153         struct pipe *pipe;
1154         int mpsave;
1155
1156         pipe_get_mplock(&mpsave);
1157         pipe = (struct pipe *)fp->f_data;
1158
1159         bzero((caddr_t)ub, sizeof(*ub));
1160         ub->st_mode = S_IFIFO;
1161         ub->st_blksize = pipe->pipe_buffer.size;
1162         ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1163         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1164         ub->st_atimespec = pipe->pipe_atime;
1165         ub->st_mtimespec = pipe->pipe_mtime;
1166         ub->st_ctimespec = pipe->pipe_ctime;
1167         /*
1168          * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1169          * st_flags, st_gen.
1170          * XXX (st_dev, st_ino) should be unique.
1171          */
1172         pipe_rel_mplock(&mpsave);
1173         return (0);
1174 }
1175
1176 /*
1177  * MPALMOSTSAFE - acquires mplock
1178  */
1179 static int
1180 pipe_close(struct file *fp)
1181 {
1182         struct pipe *cpipe;
1183
1184         get_mplock();
1185         cpipe = (struct pipe *)fp->f_data;
1186         fp->f_ops = &badfileops;
1187         fp->f_data = NULL;
1188         funsetown(cpipe->pipe_sigio);
1189         pipeclose(cpipe);
1190         rel_mplock();
1191         return (0);
1192 }
1193
1194 /*
1195  * Shutdown one or both directions of a full-duplex pipe.
1196  *
1197  * MPALMOSTSAFE - acquires mplock
1198  */
1199 static int
1200 pipe_shutdown(struct file *fp, int how)
1201 {
1202         struct pipe *rpipe;
1203         struct pipe *wpipe;
1204         int error = EPIPE;
1205         lwkt_tokref rpipe_rlock;
1206         lwkt_tokref rpipe_wlock;
1207         lwkt_tokref wpipe_rlock;
1208         lwkt_tokref wpipe_wlock;
1209         int mpsave;
1210
1211         pipe_get_mplock(&mpsave);
1212         rpipe = (struct pipe *)fp->f_data;
1213         wpipe = rpipe->pipe_peer;
1214
1215         /*
1216          * We modify pipe_state on both pipes, which means we need
1217          * all four tokens!
1218          */
1219         lwkt_gettoken(&rpipe_rlock, &rpipe->pipe_rlock);
1220         lwkt_gettoken(&rpipe_wlock, &rpipe->pipe_wlock);
1221         lwkt_gettoken(&wpipe_rlock, &wpipe->pipe_rlock);
1222         lwkt_gettoken(&wpipe_wlock, &wpipe->pipe_wlock);
1223
1224         switch(how) {
1225         case SHUT_RDWR:
1226         case SHUT_RD:
1227                 rpipe->pipe_state |= PIPE_REOF;         /* my reads */
1228                 rpipe->pipe_state |= PIPE_WEOF;         /* peer writes */
1229                 if (rpipe->pipe_state & PIPE_WANTR) {
1230                         rpipe->pipe_state &= ~PIPE_WANTR;
1231                         wakeup(rpipe);
1232                 }
1233                 if (rpipe->pipe_state & PIPE_WANTW) {
1234                         rpipe->pipe_state &= ~PIPE_WANTW;
1235                         wakeup(rpipe);
1236                 }
1237                 error = 0;
1238                 if (how == SHUT_RD)
1239                         break;
1240                 /* fall through */
1241         case SHUT_WR:
1242                 wpipe->pipe_state |= PIPE_REOF;         /* peer reads */
1243                 wpipe->pipe_state |= PIPE_WEOF;         /* my writes */
1244                 if (wpipe->pipe_state & PIPE_WANTR) {
1245                         wpipe->pipe_state &= ~PIPE_WANTR;
1246                         wakeup(wpipe);
1247                 }
1248                 if (wpipe->pipe_state & PIPE_WANTW) {
1249                         wpipe->pipe_state &= ~PIPE_WANTW;
1250                         wakeup(wpipe);
1251                 }
1252                 error = 0;
1253                 break;
1254         }
1255         pipeselwakeup(rpipe);
1256         pipeselwakeup(wpipe);
1257
1258         lwkt_reltoken(&rpipe_rlock);
1259         lwkt_reltoken(&rpipe_wlock);
1260         lwkt_reltoken(&wpipe_rlock);
1261         lwkt_reltoken(&wpipe_wlock);
1262
1263         pipe_rel_mplock(&mpsave);
1264         return (error);
1265 }
1266
1267 static void
1268 pipe_free_kmem(struct pipe *cpipe)
1269 {
1270         if (cpipe->pipe_buffer.buffer != NULL) {
1271                 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1272                         atomic_subtract_int(&pipe_nbig, 1);
1273                 kmem_free(&kernel_map,
1274                         (vm_offset_t)cpipe->pipe_buffer.buffer,
1275                         cpipe->pipe_buffer.size);
1276                 cpipe->pipe_buffer.buffer = NULL;
1277                 cpipe->pipe_buffer.object = NULL;
1278         }
1279 }
1280
1281 /*
1282  * Close the pipe.  The slock must be held to interlock against simultanious
1283  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1284  */
1285 static void
1286 pipeclose(struct pipe *cpipe)
1287 {
1288         globaldata_t gd;
1289         struct pipe *ppipe;
1290         lwkt_tokref cpipe_rlock;
1291         lwkt_tokref cpipe_wlock;
1292         lwkt_tokref ppipe_rlock;
1293         lwkt_tokref ppipe_wlock;
1294
1295         if (cpipe == NULL)
1296                 return;
1297
1298         /*
1299          * The slock may not have been allocated yet (close during
1300          * initialization)
1301          *
1302          * We need both the read and write tokens to modify pipe_state.
1303          */
1304         if (cpipe->pipe_slock)
1305                 lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1306         lwkt_gettoken(&cpipe_rlock, &cpipe->pipe_rlock);
1307         lwkt_gettoken(&cpipe_wlock, &cpipe->pipe_wlock);
1308
1309         /*
1310          * Set our state, wakeup anyone waiting in select, and
1311          * wakeup anyone blocked on our pipe.
1312          */
1313         cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1314         pipeselwakeup(cpipe);
1315         if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1316                 cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1317                 wakeup(cpipe);
1318         }
1319
1320         /*
1321          * Disconnect from peer.
1322          */
1323         if ((ppipe = cpipe->pipe_peer) != NULL) {
1324                 lwkt_gettoken(&ppipe_rlock, &ppipe->pipe_rlock);
1325                 lwkt_gettoken(&ppipe_wlock, &ppipe->pipe_wlock);
1326                 ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1327                 pipeselwakeup(ppipe);
1328                 if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1329                         ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1330                         wakeup(ppipe);
1331                 }
1332                 if (SLIST_FIRST(&ppipe->pipe_sel.si_note)) {
1333                         get_mplock();
1334                         KNOTE(&ppipe->pipe_sel.si_note, 0);
1335                         rel_mplock();
1336                 }
1337                 lwkt_reltoken(&ppipe_rlock);
1338                 lwkt_reltoken(&ppipe_wlock);
1339         }
1340
1341         /*
1342          * If the peer is also closed we can free resources for both
1343          * sides, otherwise we leave our side intact to deal with any
1344          * races (since we only have the slock).
1345          */
1346         if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1347                 cpipe->pipe_peer = NULL;
1348                 ppipe->pipe_peer = NULL;
1349                 ppipe->pipe_slock = NULL;       /* we will free the slock */
1350                 pipeclose(ppipe);
1351                 ppipe = NULL;
1352         }
1353
1354         lwkt_reltoken(&cpipe_rlock);
1355         lwkt_reltoken(&cpipe_wlock);
1356         if (cpipe->pipe_slock)
1357                 lockmgr(cpipe->pipe_slock, LK_RELEASE);
1358
1359         /*
1360          * If we disassociated from our peer we can free resources
1361          */
1362         if (ppipe == NULL) {
1363                 gd = mycpu;
1364                 if (cpipe->pipe_slock) {
1365                         kfree(cpipe->pipe_slock, M_PIPE);
1366                         cpipe->pipe_slock = NULL;
1367                 }
1368                 if (gd->gd_pipeqcount >= pipe_maxcache ||
1369                     cpipe->pipe_buffer.size != PIPE_SIZE
1370                 ) {
1371                         pipe_free_kmem(cpipe);
1372                         kfree(cpipe, M_PIPE);
1373                 } else {
1374                         cpipe->pipe_state = 0;
1375                         cpipe->pipe_peer = gd->gd_pipeq;
1376                         gd->gd_pipeq = cpipe;
1377                         ++gd->gd_pipeqcount;
1378                 }
1379         }
1380 }
1381
1382 /*
1383  * MPALMOSTSAFE - acquires mplock
1384  */
1385 static int
1386 pipe_kqfilter(struct file *fp, struct knote *kn)
1387 {
1388         struct pipe *cpipe;
1389
1390         get_mplock();
1391         cpipe = (struct pipe *)kn->kn_fp->f_data;
1392
1393         switch (kn->kn_filter) {
1394         case EVFILT_READ:
1395                 kn->kn_fop = &pipe_rfiltops;
1396                 break;
1397         case EVFILT_WRITE:
1398                 kn->kn_fop = &pipe_wfiltops;
1399                 cpipe = cpipe->pipe_peer;
1400                 if (cpipe == NULL) {
1401                         /* other end of pipe has been closed */
1402                         rel_mplock();
1403                         return (EPIPE);
1404                 }
1405                 break;
1406         default:
1407                 return (1);
1408         }
1409         kn->kn_hook = (caddr_t)cpipe;
1410
1411         SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1412         rel_mplock();
1413         return (0);
1414 }
1415
1416 static void
1417 filt_pipedetach(struct knote *kn)
1418 {
1419         struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1420
1421         SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1422 }
1423
1424 /*ARGSUSED*/
1425 static int
1426 filt_piperead(struct knote *kn, long hint)
1427 {
1428         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1429
1430         kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1431
1432         /* XXX RACE */
1433         if (rpipe->pipe_state & PIPE_REOF) {
1434                 kn->kn_flags |= EV_EOF; 
1435                 return (1);
1436         }
1437         return (kn->kn_data > 0);
1438 }
1439
1440 /*ARGSUSED*/
1441 static int
1442 filt_pipewrite(struct knote *kn, long hint)
1443 {
1444         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1445         struct pipe *wpipe = rpipe->pipe_peer;
1446         u_int32_t space;
1447
1448         /* XXX RACE */
1449         if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1450                 kn->kn_data = 0;
1451                 kn->kn_flags |= EV_EOF; 
1452                 return (1);
1453         }
1454         space = wpipe->pipe_buffer.windex -
1455                 wpipe->pipe_buffer.rindex;
1456         space = wpipe->pipe_buffer.size - space;
1457         kn->kn_data = space;
1458         return (kn->kn_data >= PIPE_BUF);
1459 }