Merge from vendor branch LIBARCHIVE:
[dragonfly.git] / sys / dev / raid / aac / aac.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      $FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *      $DragonFly: src/sys/dev/raid/aac/aac.c,v 1.26 2006/09/10 01:26:35 dillon Exp $
31  */
32
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36
37 #include "opt_aac.h"
38
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52
53 #include "aac_compat.h"
54
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72
73 static void     aac_startup(void *arg);
74 static void     aac_add_container(struct aac_softc *sc,
75                                   struct aac_mntinforesp *mir, int f);
76 static void     aac_get_bus_info(struct aac_softc *sc);
77
78 /* Command Processing */
79 static void     aac_timeout(void *ssc);
80 static int      aac_start(struct aac_command *cm);
81 static void     aac_complete(void *context, int pending);
82 static int      aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void     aac_bio_complete(struct aac_command *cm);
84 static int      aac_wait_command(struct aac_command *cm, int timeout);
85 static void     aac_host_command(struct aac_softc *sc);
86 static void     aac_host_response(struct aac_softc *sc);
87
88 /* Command Buffer Management */
89 static void     aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90                                        int nseg, int error);
91 static int      aac_alloc_commands(struct aac_softc *sc);
92 static void     aac_free_commands(struct aac_softc *sc);
93 static void     aac_map_command(struct aac_command *cm);
94 static void     aac_unmap_command(struct aac_command *cm);
95
96 /* Hardware Interface */
97 static void     aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98                                int error);
99 static int      aac_check_firmware(struct aac_softc *sc);
100 static int      aac_init(struct aac_softc *sc);
101 static int      aac_sync_command(struct aac_softc *sc, u_int32_t command,
102                                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103                                  u_int32_t arg3, u_int32_t *sp);
104 static int      aac_enqueue_fib(struct aac_softc *sc, int queue,
105                                 struct aac_command *cm);
106 static int      aac_dequeue_fib(struct aac_softc *sc, int queue,
107                                 u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int      aac_enqueue_response(struct aac_softc *sc, int queue,
109                                      struct aac_fib *fib);
110
111 /* Falcon/PPC interface */
112 static int      aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void     aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int      aac_fa_get_istatus(struct aac_softc *sc);
115 static void     aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void     aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117                                    u_int32_t arg0, u_int32_t arg1,
118                                    u_int32_t arg2, u_int32_t arg3);
119 static int      aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void     aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121
122 struct aac_interface aac_fa_interface = {
123         aac_fa_get_fwstatus,
124         aac_fa_qnotify,
125         aac_fa_get_istatus,
126         aac_fa_clear_istatus,
127         aac_fa_set_mailbox,
128         aac_fa_get_mailbox,
129         aac_fa_set_interrupts
130 };
131
132 /* StrongARM interface */
133 static int      aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void     aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int      aac_sa_get_istatus(struct aac_softc *sc);
136 static void     aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void     aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138                                    u_int32_t arg0, u_int32_t arg1,
139                                    u_int32_t arg2, u_int32_t arg3);
140 static int      aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void     aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142
143 struct aac_interface aac_sa_interface = {
144         aac_sa_get_fwstatus,
145         aac_sa_qnotify,
146         aac_sa_get_istatus,
147         aac_sa_clear_istatus,
148         aac_sa_set_mailbox,
149         aac_sa_get_mailbox,
150         aac_sa_set_interrupts
151 };
152
153 /* i960Rx interface */  
154 static int      aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void     aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int      aac_rx_get_istatus(struct aac_softc *sc);
157 static void     aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void     aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159                                    u_int32_t arg0, u_int32_t arg1,
160                                    u_int32_t arg2, u_int32_t arg3);
161 static int      aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void     aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163
164 struct aac_interface aac_rx_interface = {
165         aac_rx_get_fwstatus,
166         aac_rx_qnotify,
167         aac_rx_get_istatus,
168         aac_rx_clear_istatus,
169         aac_rx_set_mailbox,
170         aac_rx_get_mailbox,
171         aac_rx_set_interrupts
172 };
173
174 /* Debugging and Diagnostics */
175 static void     aac_describe_controller(struct aac_softc *sc);
176 static char     *aac_describe_code(struct aac_code_lookup *table,
177                                    u_int32_t code);
178
179 /* Management Interface */
180 static d_open_t         aac_open;
181 static d_close_t        aac_close;
182 static d_ioctl_t        aac_ioctl;
183 static d_poll_t         aac_poll;
184 static int              aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void             aac_handle_aif(struct aac_softc *sc,
186                                            struct aac_fib *fib);
187 static int              aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int              aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int              aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int              aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191
192 #define AAC_CDEV_MAJOR  150
193
194 static struct dev_ops aac_ops = {
195         { "aac", AAC_CDEV_MAJOR, 0 },
196         .d_open =       aac_open,
197         .d_close =      aac_close,
198         .d_ioctl =      aac_ioctl,
199         .d_poll =       aac_poll,
200 };
201
202 DECLARE_DUMMY_MODULE(aac);
203
204 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
205
206 /* sysctl node */
207 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
208
209 /*
210  * Device Interface
211  */
212
213 /*
214  * Initialise the controller and softc
215  */
216 int
217 aac_attach(struct aac_softc *sc)
218 {
219         int error, unit;
220
221         debug_called(1);
222         callout_init(&sc->aac_watchdog);
223
224         /*
225          * Initialise per-controller queues.
226          */
227         aac_initq_free(sc);
228         aac_initq_ready(sc);
229         aac_initq_busy(sc);
230         aac_initq_complete(sc);
231         aac_initq_bio(sc);
232
233 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
234         /*
235          * Initialise command-completion task.
236          */
237         TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
238 #endif
239
240         /* disable interrupts before we enable anything */
241         AAC_MASK_INTERRUPTS(sc);
242
243         /* mark controller as suspended until we get ourselves organised */
244         sc->aac_state |= AAC_STATE_SUSPEND;
245
246         /*
247          * Check that the firmware on the card is supported.
248          */
249         if ((error = aac_check_firmware(sc)) != 0)
250                 return(error);
251
252         /* Init the sync fib lock */
253         AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
254
255         /*
256          * Initialise the adapter.
257          */
258         if ((error = aac_init(sc)) != 0)
259                 return(error);
260
261         /* 
262          * Print a little information about the controller.
263          */
264         aac_describe_controller(sc);
265
266         /*
267          * Register to probe our containers later.
268          */
269         TAILQ_INIT(&sc->aac_container_tqh);
270         AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
271
272         /*
273          * Lock for the AIF queue
274          */
275         AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
276
277         sc->aac_ich.ich_func = aac_startup;
278         sc->aac_ich.ich_arg = sc;
279         sc->aac_ich.ich_desc = "aac";
280         if (config_intrhook_establish(&sc->aac_ich) != 0) {
281                 device_printf(sc->aac_dev,
282                               "can't establish configuration hook\n");
283                 return(ENXIO);
284         }
285
286         /*
287          * Make the control device.
288          */
289         unit = device_get_unit(sc->aac_dev);
290         dev_ops_add(&aac_ops, -1, unit);
291         sc->aac_dev_t = make_dev(&aac_ops, unit, UID_ROOT, GID_WHEEL, 0644,
292                                  "aac%d", unit);
293 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
294         (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
295         (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
296 #endif
297         sc->aac_dev_t->si_drv1 = sc;
298         reference_dev(sc->aac_dev_t);
299
300         /* Create the AIF thread */
301 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
302         if (kthread_create((void(*)(void *))aac_host_command, sc,
303                            &sc->aifthread, 0, "aac%daif", unit))
304 #else
305         if (kthread_create((void(*)(void *))aac_host_command, sc,
306                            &sc->aifthread, "aac%daif", unit))
307 #endif
308                 panic("Could not create AIF thread\n");
309
310         /* Register the shutdown method to only be called post-dump */
311         if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
312                                    SHUTDOWN_PRI_DEFAULT)) == NULL)
313         device_printf(sc->aac_dev, "shutdown event registration failed\n");
314
315         /* Register with CAM for the non-DASD devices */
316         if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
317                 aac_get_bus_info(sc);
318
319         return(0);
320 }
321
322 /*
323  * Probe for containers, create disks.
324  */
325 static void
326 aac_startup(void *arg)
327 {
328         struct aac_softc *sc;
329         struct aac_fib *fib;
330         struct aac_mntinfo *mi;
331         struct aac_mntinforesp *mir = NULL;
332         int count = 0, i = 0;
333         
334         debug_called(1);
335
336         sc = (struct aac_softc *)arg;
337
338         /* disconnect ourselves from the intrhook chain */
339         config_intrhook_disestablish(&sc->aac_ich);
340
341         aac_alloc_sync_fib(sc, &fib, 0);
342         mi = (struct aac_mntinfo *)&fib->data[0];
343
344         /* loop over possible containers */
345         do {
346                 /* request information on this container */
347                 bzero(mi, sizeof(struct aac_mntinfo));
348                 mi->Command = VM_NameServe;
349                 mi->MntType = FT_FILESYS;
350                 mi->MntCount = i;
351                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
352                                  sizeof(struct aac_mntinfo))) {
353                         device_printf(sc->aac_dev,
354                             "error probing container %d", i);
355
356                         continue;
357                 }
358
359                 mir = (struct aac_mntinforesp *)&fib->data[0];
360                 /* XXX Need to check if count changed */
361                 count = mir->MntRespCount;
362                 aac_add_container(sc, mir, 0);
363                 i++;
364         } while ((i < count) && (i < AAC_MAX_CONTAINERS));
365
366         aac_release_sync_fib(sc);
367
368         /* poke the bus to actually attach the child devices */
369         if (bus_generic_attach(sc->aac_dev))
370                 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
371
372         /* mark the controller up */
373         sc->aac_state &= ~AAC_STATE_SUSPEND;
374
375         /* enable interrupts now */
376         AAC_UNMASK_INTERRUPTS(sc);
377
378         /* enable the timeout watchdog */
379         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
380                       aac_timeout, sc);
381 }
382
383 /*
384  * Create a device to respresent a new container
385  */
386 static void
387 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
388 {
389         struct aac_container *co;
390         device_t child;
391
392         /* 
393          * Check container volume type for validity.  Note that many of
394          * the possible types may never show up.
395          */
396         if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
397                 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
398                        M_INTWAIT);
399                 debug(1, "id %x  name '%.16s'  size %u  type %d", 
400                       mir->MntTable[0].ObjectId,
401                       mir->MntTable[0].FileSystemName,
402                       mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
403         
404                 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
405                         device_printf(sc->aac_dev, "device_add_child failed\n");
406                 else
407                         device_set_ivars(child, co);
408                 device_set_desc(child, aac_describe_code(aac_container_types,
409                                 mir->MntTable[0].VolType));
410                 co->co_disk = child;
411                 co->co_found = f;
412                 bcopy(&mir->MntTable[0], &co->co_mntobj,
413                       sizeof(struct aac_mntobj));
414                 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
415                 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
416                 AAC_LOCK_RELEASE(&sc->aac_container_lock);
417         }
418 }
419
420 /*
421  * Free all of the resources associated with (sc)
422  *
423  * Should not be called if the controller is active.
424  */
425 void
426 aac_free(struct aac_softc *sc)
427 {
428         debug_called(1);
429
430         /* remove the control device */
431         if (sc->aac_dev_t != NULL)
432                 destroy_dev(sc->aac_dev_t);
433
434         /* throw away any FIB buffers, discard the FIB DMA tag */
435         if (sc->aac_fibs != NULL)
436                 aac_free_commands(sc);
437         if (sc->aac_fib_dmat)
438                 bus_dma_tag_destroy(sc->aac_fib_dmat);
439
440         /* destroy the common area */
441         if (sc->aac_common) {
442                 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
443                 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
444                                 sc->aac_common_dmamap);
445         }
446         if (sc->aac_common_dmat)
447                 bus_dma_tag_destroy(sc->aac_common_dmat);
448
449         /* disconnect the interrupt handler */
450         if (sc->aac_intr)
451                 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
452         if (sc->aac_irq != NULL)
453                 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
454                                      sc->aac_irq);
455
456         /* destroy data-transfer DMA tag */
457         if (sc->aac_buffer_dmat)
458                 bus_dma_tag_destroy(sc->aac_buffer_dmat);
459
460         /* destroy the parent DMA tag */
461         if (sc->aac_parent_dmat)
462                 bus_dma_tag_destroy(sc->aac_parent_dmat);
463
464         /* release the register window mapping */
465         if (sc->aac_regs_resource != NULL) {
466                 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
467                                      sc->aac_regs_rid, sc->aac_regs_resource);
468         }
469         dev_ops_remove(&aac_ops, -1, device_get_unit(sc->aac_dev));
470 }
471
472 /*
473  * Disconnect from the controller completely, in preparation for unload.
474  */
475 int
476 aac_detach(device_t dev)
477 {
478         struct aac_softc *sc;
479 #if AAC_BROKEN
480         int error;
481 #endif
482
483         debug_called(1);
484
485         sc = device_get_softc(dev);
486
487         callout_stop(&sc->aac_watchdog);
488
489         if (sc->aac_state & AAC_STATE_OPEN)
490         return(EBUSY);
491
492 #if AAC_BROKEN
493         if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
494                 sc->aifflags |= AAC_AIFFLAGS_EXIT;
495                 wakeup(sc->aifthread);
496                 tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
497         }
498
499         if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
500                 panic("Cannot shutdown AIF thread\n");
501
502         if ((error = aac_shutdown(dev)))
503                 return(error);
504
505         aac_free(sc);
506
507         return(0);
508 #else
509         return (EBUSY);
510 #endif
511 }
512
513 /*
514  * Bring the controller down to a dormant state and detach all child devices.
515  *
516  * This function is called before detach or system shutdown.
517  *
518  * Note that we can assume that the bioq on the controller is empty, as we won't
519  * allow shutdown if any device is open.
520  */
521 int
522 aac_shutdown(device_t dev)
523 {
524         struct aac_softc *sc;
525         struct aac_fib *fib;
526         struct aac_close_command *cc;
527
528         debug_called(1);
529
530         sc = device_get_softc(dev);
531
532         crit_enter();
533
534         sc->aac_state |= AAC_STATE_SUSPEND;
535
536         /* 
537          * Send a Container shutdown followed by a HostShutdown FIB to the
538          * controller to convince it that we don't want to talk to it anymore.
539          * We've been closed and all I/O completed already
540          */
541         device_printf(sc->aac_dev, "shutting down controller...");
542
543         aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
544         cc = (struct aac_close_command *)&fib->data[0];
545
546         bzero(cc, sizeof(struct aac_close_command));
547         cc->Command = VM_CloseAll;
548         cc->ContainerId = 0xffffffff;
549         if (aac_sync_fib(sc, ContainerCommand, 0, fib,
550             sizeof(struct aac_close_command)))
551                 printf("FAILED.\n");
552         else {
553                 fib->data[0] = 0;
554                 /*
555                  * XXX Issuing this command to the controller makes it shut down
556                  * but also keeps it from coming back up without a reset of the
557                  * PCI bus.  This is not desirable if you are just unloading the
558                  * driver module with the intent to reload it later.
559                  */
560                 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
561                     fib, 1)) {
562                         printf("FAILED.\n");
563                 } else {
564                         printf("done.\n");
565                 }
566         }
567
568         AAC_MASK_INTERRUPTS(sc);
569
570         crit_exit();
571         return(0);
572 }
573
574 /*
575  * Bring the controller to a quiescent state, ready for system suspend.
576  */
577 int
578 aac_suspend(device_t dev)
579 {
580         struct aac_softc *sc;
581
582         debug_called(1);
583
584         sc = device_get_softc(dev);
585
586         crit_enter();
587
588         sc->aac_state |= AAC_STATE_SUSPEND;
589         
590         AAC_MASK_INTERRUPTS(sc);
591         crit_exit();
592         return(0);
593 }
594
595 /*
596  * Bring the controller back to a state ready for operation.
597  */
598 int
599 aac_resume(device_t dev)
600 {
601         struct aac_softc *sc;
602
603         debug_called(1);
604
605         sc = device_get_softc(dev);
606
607         sc->aac_state &= ~AAC_STATE_SUSPEND;
608         AAC_UNMASK_INTERRUPTS(sc);
609         return(0);
610 }
611
612 /*
613  * Take an interrupt.
614  */
615 void
616 aac_intr(void *arg)
617 {
618         struct aac_softc *sc;
619         u_int16_t reason;
620         u_int32_t *resp_queue;
621
622         debug_called(2);
623
624         sc = (struct aac_softc *)arg;
625
626         /*
627          * Optimize the common case of adapter response interrupts.
628          * We must read from the card prior to processing the responses
629          * to ensure the clear is flushed prior to accessing the queues.
630          * Reading the queues from local memory might save us a PCI read.
631          */
632         resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
633         if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
634                 reason = AAC_DB_RESPONSE_READY;
635         else 
636                 reason = AAC_GET_ISTATUS(sc);
637         AAC_CLEAR_ISTATUS(sc, reason);
638         (void)AAC_GET_ISTATUS(sc);
639
640         /* It's not ok to return here because of races with the previous step */
641         if (reason & AAC_DB_RESPONSE_READY)
642                 aac_host_response(sc);
643
644         /* controller wants to talk to the log */
645         if (reason & AAC_DB_PRINTF)
646                 aac_print_printf(sc);
647
648         /* controller has a message for us? */
649         if (reason & AAC_DB_COMMAND_READY) {
650                 /* XXX What happens if the thread is already awake? */
651                 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
652                         sc->aifflags |= AAC_AIFFLAGS_PENDING;
653                         wakeup(sc->aifthread);
654                 }
655         }
656 }
657
658 /*
659  * Command Processing
660  */
661
662 /*
663  * Start as much queued I/O as possible on the controller
664  */
665 void
666 aac_startio(struct aac_softc *sc)
667 {
668         struct aac_command *cm;
669
670         debug_called(2);
671
672         for (;;) {
673                 /*
674                  * Try to get a command that's been put off for lack of 
675                  * resources
676                  */
677                 cm = aac_dequeue_ready(sc);
678
679                 /*
680                  * Try to build a command off the bio queue (ignore error 
681                  * return)
682                  */
683                 if (cm == NULL)
684                         aac_bio_command(sc, &cm);
685
686                 /* nothing to do? */
687                 if (cm == NULL)
688                         break;
689
690                 /* try to give the command to the controller */
691                 if (aac_start(cm) == EBUSY) {
692                         /* put it on the ready queue for later */
693                         aac_requeue_ready(cm);
694                         break;
695                 }
696         }
697 }
698
699 /*
700  * Deliver a command to the controller; allocate controller resources at the
701  * last moment when possible.
702  */
703 static int
704 aac_start(struct aac_command *cm)
705 {
706         struct aac_softc *sc;
707         int error;
708
709         debug_called(2);
710
711         sc = cm->cm_sc;
712
713         /* get the command mapped */
714         aac_map_command(cm);
715
716         /* fix up the address values in the FIB */
717         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
718         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
719
720         /* save a pointer to the command for speedy reverse-lookup */
721         cm->cm_fib->Header.SenderData = (u_int32_t)cm;  /* XXX 64-bit physical
722                                                          * address issue */
723         /* put the FIB on the outbound queue */
724         error = aac_enqueue_fib(sc, cm->cm_queue, cm);
725         return(error);
726 }
727
728 /*
729  * Handle notification of one or more FIBs coming from the controller.
730  */
731 static void
732 aac_host_command(struct aac_softc *sc)
733 {
734         struct aac_fib *fib;
735         u_int32_t fib_size;
736         int size;
737
738         debug_called(2);
739
740         sc->aifflags |= AAC_AIFFLAGS_RUNNING;
741
742         while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
743                 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
744                         tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
745
746                 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
747                 for (;;) {
748                         if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
749                                             &fib_size, &fib))
750                                 break;  /* nothing to do */
751         
752                         AAC_PRINT_FIB(sc, fib);
753         
754                         switch (fib->Header.Command) {
755                         case AifRequest:
756                                 aac_handle_aif(sc, fib);
757                                 break;
758                         default:
759                                 device_printf(sc->aac_dev, "unknown command "
760                                               "from controller\n");
761                                 break;
762                         }
763
764                         /* Return the AIF to the controller. */
765                         if ((fib->Header.XferState == 0) ||
766                             (fib->Header.StructType != AAC_FIBTYPE_TFIB))
767                                 break;
768
769                         if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
770                                 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
771                                 *(AAC_FSAStatus*)fib->data = ST_OK;
772
773                                 /* XXX Compute the Size field? */
774                                 size = fib->Header.Size;
775                                 if (size > sizeof(struct aac_fib)) {
776                                         size = sizeof(struct aac_fib);
777                                         fib->Header.Size = size;
778                                 }
779                                 /*
780                                  * Since we did not generate this command, it
781                                  * cannot go through the normal
782                                  * enqueue->startio chain.
783                                  */
784                                 aac_enqueue_response(sc,
785                                                      AAC_ADAP_NORM_RESP_QUEUE,
786                                                      fib);
787                         }
788                 }
789         }
790         sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
791         wakeup(sc->aac_dev);
792
793 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
794         mtx_lock(&Giant);
795 #endif
796         kthread_exit();
797 }
798
799 /*
800  * Handle notification of one or more FIBs completed by the controller
801  */
802 static void
803 aac_host_response(struct aac_softc *sc)
804 {
805         struct aac_command *cm;
806         struct aac_fib *fib;
807         u_int32_t fib_size;
808
809         debug_called(2);
810
811         for (;;) {
812                 /* look for completed FIBs on our queue */
813                 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
814                                     &fib))
815                         break;  /* nothing to do */
816         
817                 /* get the command, unmap and queue for later processing */
818                 cm = (struct aac_command *)fib->Header.SenderData;
819                 if (cm == NULL) {
820                         AAC_PRINT_FIB(sc, fib);
821                 } else {
822                         aac_remove_busy(cm);
823                         aac_unmap_command(cm);          /* XXX defer? */
824                         aac_enqueue_complete(cm);
825                 }
826         }
827
828         /* handle completion processing */
829 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
830         taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
831 #else
832         aac_complete(sc, 0);
833 #endif
834 }
835
836 /*
837  * Process completed commands.
838  */
839 static void
840 aac_complete(void *context, int pending)
841 {
842         struct aac_softc *sc;
843         struct aac_command *cm;
844         
845         debug_called(2);
846
847         sc = (struct aac_softc *)context;
848
849         /* pull completed commands off the queue */
850         for (;;) {
851                 cm = aac_dequeue_complete(sc);
852                 if (cm == NULL)
853                         break;
854                 cm->cm_flags |= AAC_CMD_COMPLETED;
855
856                 /* is there a completion handler? */
857                 if (cm->cm_complete != NULL) {
858                         cm->cm_complete(cm);
859                 } else {
860                         /* assume that someone is sleeping on this command */
861                         wakeup(cm);
862                 }
863         }
864
865         /* see if we can start some more I/O */
866         aac_startio(sc);
867 }
868
869 /*
870  * Handle a bio submitted from a disk device.
871  */
872 void
873 aac_submit_bio(struct aac_disk *ad, struct bio *bio)
874 {
875         struct aac_softc *sc;
876
877         debug_called(2);
878
879         bio->bio_driver_info = ad;
880         sc = ad->ad_controller;
881
882         /* queue the BIO and try to get some work done */
883         aac_enqueue_bio(sc, bio);
884         aac_startio(sc);
885 }
886
887 /*
888  * Get a bio and build a command to go with it.
889  */
890 static int
891 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
892 {
893         struct aac_command *cm;
894         struct aac_fib *fib;
895         struct aac_blockread *br;
896         struct aac_blockwrite *bw;
897         struct aac_disk *ad;
898         struct bio *bio;
899         struct buf *bp;
900
901         debug_called(2);
902
903         /* get the resources we will need */
904         cm = NULL;
905         if ((bio = aac_dequeue_bio(sc)) == NULL)
906                 goto fail;
907         if (aac_alloc_command(sc, &cm)) /* get a command */
908                 goto fail;
909
910         /* fill out the command */
911         bp = bio->bio_buf;
912         cm->cm_data = (void *)bp->b_data;
913         cm->cm_datalen = bp->b_bcount;
914         cm->cm_complete = aac_bio_complete;
915         cm->cm_private = bio;
916         cm->cm_timestamp = time_second;
917         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
918
919         /* build the FIB */
920         fib = cm->cm_fib;
921         fib->Header.XferState =  
922                 AAC_FIBSTATE_HOSTOWNED   | 
923                 AAC_FIBSTATE_INITIALISED | 
924                 AAC_FIBSTATE_EMPTY       | 
925                 AAC_FIBSTATE_FROMHOST    |
926                 AAC_FIBSTATE_REXPECTED   |
927                 AAC_FIBSTATE_NORM        |
928                 AAC_FIBSTATE_ASYNC       |
929                 AAC_FIBSTATE_FAST_RESPONSE;
930         fib->Header.Command = ContainerCommand;
931         fib->Header.Size = sizeof(struct aac_fib_header);
932
933         /* build the read/write request */
934         ad = (struct aac_disk *)bio->bio_driver_info;
935         if (bp->b_cmd == BUF_CMD_READ) {
936                 br = (struct aac_blockread *)&fib->data[0];
937                 br->Command = VM_CtBlockRead;
938                 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
939                 br->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
940                 br->ByteCount = bp->b_bcount;
941                 fib->Header.Size += sizeof(struct aac_blockread);
942                 cm->cm_sgtable = &br->SgMap;
943                 cm->cm_flags |= AAC_CMD_DATAIN;
944         } else {
945                 bw = (struct aac_blockwrite *)&fib->data[0];
946                 bw->Command = VM_CtBlockWrite;
947                 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
948                 bw->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
949                 bw->ByteCount = bp->b_bcount;
950                 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
951                 fib->Header.Size += sizeof(struct aac_blockwrite);
952                 cm->cm_flags |= AAC_CMD_DATAOUT;
953                 cm->cm_sgtable = &bw->SgMap;
954         }
955
956         *cmp = cm;
957         return(0);
958
959 fail:
960         if (bio != NULL)
961                 aac_enqueue_bio(sc, bio);
962         if (cm != NULL)
963                 aac_release_command(cm);
964         return(ENOMEM);
965 }
966
967 /*
968  * Handle a bio-instigated command that has been completed.
969  */
970 static void
971 aac_bio_complete(struct aac_command *cm)
972 {
973         struct aac_blockread_response *brr;
974         struct aac_blockwrite_response *bwr;
975         struct bio *bio;
976         struct buf *bp;
977         const char *code;
978         AAC_FSAStatus status;
979
980         /* fetch relevant status and then release the command */
981         bio = (struct bio *)cm->cm_private;
982         bp = bio->bio_buf;
983         if (bp->b_cmd == BUF_CMD_READ) {
984                 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
985                 status = brr->Status;
986         } else {
987                 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
988                 status = bwr->Status;
989         }
990         aac_release_command(cm);
991
992         /* fix up the bio based on status */
993         if (status == ST_OK) {
994                 bp->b_resid = 0;
995                 code = 0;
996         } else {
997                 bp->b_error = EIO;
998                 bp->b_flags |= B_ERROR;
999                 /* pass an error string out to the disk layer */
1000                 code = aac_describe_code(aac_command_status_table, status);
1001         }
1002         aac_biodone(bio, code);
1003 }
1004
1005 /*
1006  * Dump a block of data to the controller.  If the queue is full, tell the
1007  * caller to hold off and wait for the queue to drain.
1008  */
1009 int
1010 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1011 {
1012         struct aac_softc *sc;
1013         struct aac_command *cm;
1014         struct aac_fib *fib;
1015         struct aac_blockwrite *bw;
1016
1017         sc = ad->ad_controller;
1018         cm = NULL;
1019
1020         if (aac_alloc_command(sc, &cm))
1021                 return (EBUSY);
1022
1023         /* fill out the command */
1024         cm->cm_data = data;
1025         cm->cm_datalen = dumppages * PAGE_SIZE;
1026         cm->cm_complete = NULL;
1027         cm->cm_private = NULL;
1028         cm->cm_timestamp = time_second;
1029         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1030
1031         /* build the FIB */
1032         fib = cm->cm_fib;
1033         fib->Header.XferState =  
1034         AAC_FIBSTATE_HOSTOWNED   | 
1035         AAC_FIBSTATE_INITIALISED | 
1036         AAC_FIBSTATE_FROMHOST    |
1037         AAC_FIBSTATE_REXPECTED   |
1038         AAC_FIBSTATE_NORM;
1039         fib->Header.Command = ContainerCommand;
1040         fib->Header.Size = sizeof(struct aac_fib_header);
1041
1042         bw = (struct aac_blockwrite *)&fib->data[0];
1043         bw->Command = VM_CtBlockWrite;
1044         bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1045         bw->BlockNumber = lba;
1046         bw->ByteCount = dumppages * PAGE_SIZE;
1047         bw->Stable = CUNSTABLE;         /* XXX what's appropriate here? */
1048         fib->Header.Size += sizeof(struct aac_blockwrite);
1049         cm->cm_flags |= AAC_CMD_DATAOUT;
1050         cm->cm_sgtable = &bw->SgMap;
1051
1052         return (aac_start(cm));
1053 }
1054
1055 /*
1056  * Wait for the card's queue to drain when dumping.  Also check for monitor
1057  * printf's
1058  */
1059 void
1060 aac_dump_complete(struct aac_softc *sc)
1061 {
1062         struct aac_fib *fib;
1063         struct aac_command *cm;
1064         u_int16_t reason;
1065         u_int32_t pi, ci, fib_size;
1066
1067         do {
1068                 reason = AAC_GET_ISTATUS(sc);
1069                 if (reason & AAC_DB_RESPONSE_READY) {
1070                         AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1071                         for (;;) {
1072                                 if (aac_dequeue_fib(sc,
1073                                                     AAC_HOST_NORM_RESP_QUEUE,
1074                                                     &fib_size, &fib))
1075                                         break;
1076                                 cm = (struct aac_command *)
1077                                         fib->Header.SenderData;
1078                                 if (cm == NULL)
1079                                         AAC_PRINT_FIB(sc, fib);
1080                                 else {
1081                                         aac_remove_busy(cm);
1082                                         aac_unmap_command(cm);
1083                                         aac_enqueue_complete(cm);
1084                                         aac_release_command(cm);
1085                                 }
1086                         }
1087                 }
1088                 if (reason & AAC_DB_PRINTF) {
1089                         AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1090                         aac_print_printf(sc);
1091                 }
1092                 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1093                         AAC_PRODUCER_INDEX];
1094                 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][        
1095                         AAC_CONSUMER_INDEX];
1096         } while (ci != pi);
1097
1098         return;
1099 }
1100
1101 /*
1102  * Submit a command to the controller, return when it completes.
1103  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1104  *     be stuck here forever.  At the same time, signals are not caught
1105  *     because there is a risk that a signal could wakeup the tsleep before
1106  *     the card has a chance to complete the command.  The passed in timeout
1107  *     is ignored for the same reason.  Since there is no way to cancel a
1108  *     command in progress, we should probably create a 'dead' queue where
1109  *     commands go that have been interrupted/timed-out/etc, that keeps them
1110  *     out of the free pool.  That way, if the card is just slow, it won't
1111  *     spam the memory of a command that has been recycled.
1112  */
1113 static int
1114 aac_wait_command(struct aac_command *cm, int timeout)
1115 {
1116         int error = 0;
1117
1118         debug_called(2);
1119
1120         /* Put the command on the ready queue and get things going */
1121         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1122         aac_enqueue_ready(cm);
1123         aac_startio(cm->cm_sc);
1124         crit_enter();
1125         while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1126                 error = tsleep(cm, 0, "aacwait", 0);
1127         }
1128         crit_exit();
1129         return(error);
1130 }
1131
1132 /*
1133  *Command Buffer Management
1134  */
1135
1136 /*
1137  * Allocate a command.
1138  */
1139 int
1140 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1141 {
1142         struct aac_command *cm;
1143
1144         debug_called(3);
1145
1146         if ((cm = aac_dequeue_free(sc)) == NULL)
1147                 return(ENOMEM);
1148
1149         *cmp = cm;
1150         return(0);
1151 }
1152
1153 /*
1154  * Release a command back to the freelist.
1155  */
1156 void
1157 aac_release_command(struct aac_command *cm)
1158 {
1159         debug_called(3);
1160
1161         /* (re)initialise the command/FIB */
1162         cm->cm_sgtable = NULL;
1163         cm->cm_flags = 0;
1164         cm->cm_complete = NULL;
1165         cm->cm_private = NULL;
1166         cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1167         cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1168         cm->cm_fib->Header.Flags = 0;
1169         cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1170
1171         /* 
1172          * These are duplicated in aac_start to cover the case where an
1173          * intermediate stage may have destroyed them.  They're left
1174          * initialised here for debugging purposes only.
1175          */
1176         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1177         cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1178         cm->cm_fib->Header.SenderData = 0;
1179
1180         aac_enqueue_free(cm);
1181 }
1182
1183 /*
1184  * Map helper for command/FIB allocation.
1185  */
1186 static void
1187 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1188 {
1189         struct aac_softc *sc;
1190
1191         sc = (struct aac_softc *)arg;
1192
1193         debug_called(3);
1194
1195         sc->aac_fibphys = segs[0].ds_addr;
1196 }
1197
1198 /*
1199  * Allocate and initialise commands/FIBs for this adapter.
1200  */
1201 static int
1202 aac_alloc_commands(struct aac_softc *sc)
1203 {
1204         struct aac_command *cm;
1205         int i;
1206  
1207         debug_called(1);
1208
1209         /* allocate the FIBs in DMAable memory and load them */
1210         if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1211                          BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1212                 return(ENOMEM);
1213         }
1214
1215         bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 
1216                         AAC_FIB_COUNT * sizeof(struct aac_fib),
1217                         aac_map_command_helper, sc, 0);
1218
1219         /* initialise constant fields in the command structure */
1220         bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1221         for (i = 0; i < AAC_FIB_COUNT; i++) {
1222                 cm = &sc->aac_command[i];
1223                 cm->cm_sc = sc;
1224                 cm->cm_fib = sc->aac_fibs + i;
1225                 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1226
1227                 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1228                         aac_release_command(cm);
1229         }
1230         return(0);
1231 }
1232
1233 /*
1234  * Free FIBs owned by this adapter.
1235  */
1236 static void
1237 aac_free_commands(struct aac_softc *sc)
1238 {
1239         int i;
1240
1241         debug_called(1);
1242
1243         for (i = 0; i < AAC_FIB_COUNT; i++)
1244                 bus_dmamap_destroy(sc->aac_buffer_dmat,
1245                                    sc->aac_command[i].cm_datamap);
1246
1247         bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1248         bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1249 }
1250
1251 /*
1252  * Command-mapping helper function - populate this command's s/g table.
1253  */
1254 static void
1255 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1256 {
1257         struct aac_command *cm;
1258         struct aac_fib *fib;
1259         struct aac_sg_table *sg;
1260         int i;
1261
1262         debug_called(3);
1263
1264         cm = (struct aac_command *)arg;
1265         fib = cm->cm_fib;
1266
1267         /* find the s/g table */
1268         sg = cm->cm_sgtable;
1269
1270         /* copy into the FIB */
1271         if (sg != NULL) {
1272                 sg->SgCount = nseg;
1273                 for (i = 0; i < nseg; i++) {
1274                         sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1275                         sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1276                 }
1277                 /* update the FIB size for the s/g count */
1278                 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1279         }
1280
1281 }
1282
1283 /*
1284  * Map a command into controller-visible space.
1285  */
1286 static void
1287 aac_map_command(struct aac_command *cm)
1288 {
1289         struct aac_softc *sc;
1290
1291         debug_called(2);
1292
1293         sc = cm->cm_sc;
1294
1295         /* don't map more than once */
1296         if (cm->cm_flags & AAC_CMD_MAPPED)
1297                 return;
1298
1299         if (cm->cm_datalen != 0) {
1300                 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1301                                 cm->cm_data, cm->cm_datalen,
1302                                 aac_map_command_sg, cm, 0);
1303
1304                 if (cm->cm_flags & AAC_CMD_DATAIN)
1305                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1306                                         BUS_DMASYNC_PREREAD);
1307                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1308                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1309                                         BUS_DMASYNC_PREWRITE);
1310         }
1311         cm->cm_flags |= AAC_CMD_MAPPED;
1312 }
1313
1314 /*
1315  * Unmap a command from controller-visible space.
1316  */
1317 static void
1318 aac_unmap_command(struct aac_command *cm)
1319 {
1320         struct aac_softc *sc;
1321
1322         debug_called(2);
1323
1324         sc = cm->cm_sc;
1325
1326         if (!(cm->cm_flags & AAC_CMD_MAPPED))
1327                 return;
1328
1329         if (cm->cm_datalen != 0) {
1330                 if (cm->cm_flags & AAC_CMD_DATAIN)
1331                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1332                                         BUS_DMASYNC_POSTREAD);
1333                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1334                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1335                                         BUS_DMASYNC_POSTWRITE);
1336
1337                 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1338         }
1339         cm->cm_flags &= ~AAC_CMD_MAPPED;
1340 }
1341
1342 /*
1343  * Hardware Interface
1344  */
1345
1346 /*
1347  * Initialise the adapter.
1348  */
1349 static void
1350 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1351 {
1352         struct aac_softc *sc;
1353
1354         debug_called(1);
1355
1356         sc = (struct aac_softc *)arg;
1357
1358         sc->aac_common_busaddr = segs[0].ds_addr;
1359 }
1360
1361 static int
1362 aac_check_firmware(struct aac_softc *sc)
1363 {
1364         u_int32_t major, minor, options;
1365
1366         debug_called(1);
1367
1368         /*
1369          * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1370          * firmware version 1.x are not compatible with this driver.
1371          */
1372         if (sc->flags & AAC_FLAGS_PERC2QC) {
1373                 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1374                                      NULL)) {
1375                         device_printf(sc->aac_dev,
1376                                       "Error reading firmware version\n");
1377                         return (EIO);
1378                 }
1379
1380                 /* These numbers are stored as ASCII! */
1381                 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1382                 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1383                 if (major == 1) {
1384                         device_printf(sc->aac_dev,
1385                             "Firmware version %d.%d is not supported.\n",
1386                             major, minor);
1387                         return (EINVAL);
1388                 }
1389         }
1390
1391         /*
1392          * Retrieve the capabilities/supported options word so we know what
1393          * work-arounds to enable.
1394          */
1395         if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1396                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1397                 return (EIO);
1398         }
1399         options = AAC_GET_MAILBOX(sc, 1);
1400         sc->supported_options = options;
1401
1402         if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1403             (sc->flags & AAC_FLAGS_NO4GB) == 0)
1404                 sc->flags |= AAC_FLAGS_4GB_WINDOW;
1405         if (options & AAC_SUPPORTED_NONDASD)
1406                 sc->flags |= AAC_FLAGS_ENABLE_CAM;
1407
1408         return (0);
1409 }
1410
1411 static int
1412 aac_init(struct aac_softc *sc)
1413 {
1414         struct aac_adapter_init *ip;
1415         time_t then;
1416         u_int32_t code;
1417         u_int8_t *qaddr;
1418         int error;
1419
1420         debug_called(1);
1421
1422         /*
1423          * First wait for the adapter to come ready.
1424          */
1425         then = time_second;
1426         do {
1427                 code = AAC_GET_FWSTATUS(sc);
1428                 if (code & AAC_SELF_TEST_FAILED) {
1429                         device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1430                         return(ENXIO);
1431                 }
1432                 if (code & AAC_KERNEL_PANIC) {
1433                         device_printf(sc->aac_dev,
1434                                       "FATAL: controller kernel panic\n");
1435                         return(ENXIO);
1436                 }
1437                 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1438                         device_printf(sc->aac_dev,
1439                                       "FATAL: controller not coming ready, "
1440                                            "status %x\n", code);
1441                         return(ENXIO);
1442                 }
1443         } while (!(code & AAC_UP_AND_RUNNING));
1444
1445         error = ENOMEM;
1446         /*
1447          * Create DMA tag for mapping buffers into controller-addressable space.
1448          */
1449         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1450                                1, 0,                    /* algnmnt, boundary */
1451                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1452                                BUS_SPACE_MAXADDR,       /* highaddr */
1453                                NULL, NULL,              /* filter, filterarg */
1454                                MAXBSIZE,                /* maxsize */
1455                                AAC_MAXSGENTRIES,        /* nsegments */
1456                                MAXBSIZE,                /* maxsegsize */
1457                                BUS_DMA_ALLOCNOW,        /* flags */
1458                                &sc->aac_buffer_dmat)) {
1459                 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1460                 goto out;
1461         }
1462  
1463         /*
1464          * Create DMA tag for mapping FIBs into controller-addressable space..
1465          */
1466         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1467                                1, 0,                    /* algnmnt, boundary */
1468                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1469                                BUS_SPACE_MAXADDR_32BIT :
1470                                0x7fffffff,              /* lowaddr */
1471                                BUS_SPACE_MAXADDR,       /* highaddr */
1472                                NULL, NULL,              /* filter, filterarg */
1473                                AAC_FIB_COUNT *
1474                                sizeof(struct aac_fib),  /* maxsize */
1475                                1,                       /* nsegments */
1476                                AAC_FIB_COUNT *
1477                                sizeof(struct aac_fib),  /* maxsegsize */
1478                                BUS_DMA_ALLOCNOW,        /* flags */
1479                                &sc->aac_fib_dmat)) {
1480                 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
1481                 goto out;
1482         }
1483  
1484         /*
1485          * Create DMA tag for the common structure and allocate it.
1486          */
1487         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1488                                1, 0,                    /* algnmnt, boundary */
1489                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1490                                BUS_SPACE_MAXADDR_32BIT :
1491                                0x7fffffff,              /* lowaddr */
1492                                BUS_SPACE_MAXADDR,       /* highaddr */
1493                                NULL, NULL,              /* filter, filterarg */
1494                                8192 + sizeof(struct aac_common), /* maxsize */
1495                                1,                       /* nsegments */
1496                                BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1497                                BUS_DMA_ALLOCNOW,        /* flags */
1498                                &sc->aac_common_dmat)) {
1499                 device_printf(sc->aac_dev,
1500                               "can't allocate common structure DMA tag\n");
1501                 goto out;
1502         }
1503         if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1504                              BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1505                 device_printf(sc->aac_dev, "can't allocate common structure\n");
1506                 goto out;
1507         }
1508         /*
1509          * Work around a bug in the 2120 and 2200 that cannot DMA commands
1510          * below address 8192 in physical memory.
1511          * XXX If the padding is not needed, can it be put to use instead
1512          * of ignored?
1513          */
1514         bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1515                         sc->aac_common, 8192 + sizeof(*sc->aac_common),
1516                         aac_common_map, sc, 0);
1517
1518         if (sc->aac_common_busaddr < 8192) {
1519                 sc->aac_common =
1520                     (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1521                 sc->aac_common_busaddr += 8192;
1522         }
1523         bzero(sc->aac_common, sizeof(*sc->aac_common));
1524
1525         /* Allocate some FIBs and associated command structs */
1526         if (aac_alloc_commands(sc) != 0)
1527                 goto out;
1528
1529         /*
1530          * Fill in the init structure.  This tells the adapter about the
1531          * physical location of various important shared data structures.
1532          */
1533         ip = &sc->aac_common->ac_init;
1534         ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1535         ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1536
1537         ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1538                                          offsetof(struct aac_common, ac_fibs);
1539         ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1540         ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1541         ip->AdapterFibAlign = sizeof(struct aac_fib);
1542
1543         ip->PrintfBufferAddress = sc->aac_common_busaddr +
1544                                   offsetof(struct aac_common, ac_printf);
1545         ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1546
1547         /* The adapter assumes that pages are 4K in size */
1548         ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1549         ip->HostElapsedSeconds = time_second;   /* reset later if invalid */
1550
1551         /*
1552          * Initialise FIB queues.  Note that it appears that the layout of the
1553          * indexes and the segmentation of the entries may be mandated by the
1554          * adapter, which is only told about the base of the queue index fields.
1555          *
1556          * The initial values of the indices are assumed to inform the adapter
1557          * of the sizes of the respective queues, and theoretically it could 
1558          * work out the entire layout of the queue structures from this.  We
1559          * take the easy route and just lay this area out like everyone else
1560          * does.
1561          *
1562          * The Linux driver uses a much more complex scheme whereby several 
1563          * header records are kept for each queue.  We use a couple of generic 
1564          * list manipulation functions which 'know' the size of each list by
1565          * virtue of a table.
1566          */
1567         qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1568         qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1569         sc->aac_queues = (struct aac_queue_table *)qaddr;
1570         ip->CommHeaderAddress = sc->aac_common_busaddr +
1571                                 ((u_int32_t)sc->aac_queues -
1572                                 (u_int32_t)sc->aac_common);
1573         bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1574
1575         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1576                 AAC_HOST_NORM_CMD_ENTRIES;
1577         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1578                 AAC_HOST_NORM_CMD_ENTRIES;
1579         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580                 AAC_HOST_HIGH_CMD_ENTRIES;
1581         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582                 AAC_HOST_HIGH_CMD_ENTRIES;
1583         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584                 AAC_ADAP_NORM_CMD_ENTRIES;
1585         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586                 AAC_ADAP_NORM_CMD_ENTRIES;
1587         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1588                 AAC_ADAP_HIGH_CMD_ENTRIES;
1589         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1590                 AAC_ADAP_HIGH_CMD_ENTRIES;
1591         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1592                 AAC_HOST_NORM_RESP_ENTRIES;
1593         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1594                 AAC_HOST_NORM_RESP_ENTRIES;
1595         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596                 AAC_HOST_HIGH_RESP_ENTRIES;
1597         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598                 AAC_HOST_HIGH_RESP_ENTRIES;
1599         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600                 AAC_ADAP_NORM_RESP_ENTRIES;
1601         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602                 AAC_ADAP_NORM_RESP_ENTRIES;
1603         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1604                 AAC_ADAP_HIGH_RESP_ENTRIES;
1605         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1606                 AAC_ADAP_HIGH_RESP_ENTRIES;
1607         sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1608                 &sc->aac_queues->qt_HostNormCmdQueue[0];
1609         sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1610                 &sc->aac_queues->qt_HostHighCmdQueue[0];
1611         sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1612                 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1613         sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1614                 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1615         sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1616                 &sc->aac_queues->qt_HostNormRespQueue[0];
1617         sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1618                 &sc->aac_queues->qt_HostHighRespQueue[0];
1619         sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1620                 &sc->aac_queues->qt_AdapNormRespQueue[0];
1621         sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1622                 &sc->aac_queues->qt_AdapHighRespQueue[0];
1623
1624         /*
1625          * Do controller-type-specific initialisation
1626          */
1627         switch (sc->aac_hwif) {
1628         case AAC_HWIF_I960RX:
1629                 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1630                 break;
1631         }
1632
1633         /*
1634          * Give the init structure to the controller.
1635          */
1636         if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 
1637                              sc->aac_common_busaddr +
1638                              offsetof(struct aac_common, ac_init), 0, 0, 0,
1639                              NULL)) {
1640                 device_printf(sc->aac_dev,
1641                               "error establishing init structure\n");
1642                 error = EIO;
1643                 goto out;
1644         }
1645
1646         error = 0;
1647 out:
1648         return(error);
1649 }
1650
1651 /*
1652  * Send a synchronous command to the controller and wait for a result.
1653  */
1654 static int
1655 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1656                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1657                  u_int32_t *sp)
1658 {
1659         time_t then;
1660         u_int32_t status;
1661
1662         debug_called(3);
1663
1664         /* populate the mailbox */
1665         AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1666
1667         /* ensure the sync command doorbell flag is cleared */
1668         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1669
1670         /* then set it to signal the adapter */
1671         AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1672
1673         /* spin waiting for the command to complete */
1674         then = time_second;
1675         do {
1676                 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1677                         debug(1, "timed out");
1678                         return(EIO);
1679                 }
1680         } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1681
1682         /* clear the completion flag */
1683         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1684
1685         /* get the command status */
1686         status = AAC_GET_MAILBOX(sc, 0);
1687         if (sp != NULL)
1688                 *sp = status;
1689         return(0);
1690 }
1691
1692 /*
1693  * Grab the sync fib area.
1694  */
1695 int
1696 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1697 {
1698
1699         /*
1700          * If the force flag is set, the system is shutting down, or in
1701          * trouble.  Ignore the mutex.
1702          */
1703         if (!(flags & AAC_SYNC_LOCK_FORCE))
1704                 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1705
1706         *fib = &sc->aac_common->ac_sync_fib;
1707
1708         return (1);
1709 }
1710
1711 /*
1712  * Release the sync fib area.
1713  */
1714 void
1715 aac_release_sync_fib(struct aac_softc *sc)
1716 {
1717
1718         AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1719 }
1720
1721 /*
1722  * Send a synchronous FIB to the controller and wait for a result.
1723  */
1724 int
1725 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 
1726                  struct aac_fib *fib, u_int16_t datasize)
1727 {
1728         debug_called(3);
1729
1730         if (datasize > AAC_FIB_DATASIZE)
1731                 return(EINVAL);
1732
1733         /*
1734          * Set up the sync FIB
1735          */
1736         fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1737                                 AAC_FIBSTATE_INITIALISED |
1738                                 AAC_FIBSTATE_EMPTY;
1739         fib->Header.XferState |= xferstate;
1740         fib->Header.Command = command;
1741         fib->Header.StructType = AAC_FIBTYPE_TFIB;
1742         fib->Header.Size = sizeof(struct aac_fib) + datasize;
1743         fib->Header.SenderSize = sizeof(struct aac_fib);
1744         fib->Header.SenderFibAddress = (u_int32_t)fib;
1745         fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1746                                          offsetof(struct aac_common,
1747                                                   ac_sync_fib);
1748
1749         /*
1750          * Give the FIB to the controller, wait for a response.
1751          */
1752         if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1753                              fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1754                 debug(2, "IO error");
1755                 return(EIO);
1756         }
1757
1758         return (0);
1759 }
1760
1761 /*
1762  * Adapter-space FIB queue manipulation
1763  *
1764  * Note that the queue implementation here is a little funky; neither the PI or
1765  * CI will ever be zero.  This behaviour is a controller feature.
1766  */
1767 static struct {
1768         int             size;
1769         int             notify;
1770 } aac_qinfo[] = {
1771         {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1772         {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1773         {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1774         {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1775         {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1776         {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1777         {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1778         {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1779 };
1780
1781 /*
1782  * Atomically insert an entry into the nominated queue, returns 0 on success or
1783  * EBUSY if the queue is full.
1784  *
1785  * Note: it would be more efficient to defer notifying the controller in
1786  *       the case where we may be inserting several entries in rapid succession,
1787  *       but implementing this usefully may be difficult (it would involve a
1788  *       separate queue/notify interface).
1789  */
1790 static int
1791 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1792 {
1793         u_int32_t pi, ci;
1794         int error;
1795         u_int32_t fib_size;
1796         u_int32_t fib_addr;
1797
1798         debug_called(3);
1799
1800         fib_size = cm->cm_fib->Header.Size; 
1801         fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1802
1803         crit_enter();
1804
1805         /* get the producer/consumer indices */
1806         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1807         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1808
1809         /* wrap the queue? */
1810         if (pi >= aac_qinfo[queue].size)
1811                 pi = 0;
1812
1813         /* check for queue full */
1814         if ((pi + 1) == ci) {
1815                 error = EBUSY;
1816                 goto out;
1817         }
1818         /*
1819          * To avoid a race with its completion interrupt, place this command on
1820          * the busy queue prior to advertising it to the controller.
1821          */
1822         aac_enqueue_busy(cm);
1823
1824
1825
1826         /* populate queue entry */
1827         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1828         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1829
1830         /* update producer index */
1831         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1832
1833         /* notify the adapter if we know how */
1834         if (aac_qinfo[queue].notify != 0)
1835                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1836
1837         error = 0;
1838
1839 out:
1840         crit_exit();
1841         return(error);
1842 }
1843
1844 /*
1845  * Atomically remove one entry from the nominated queue, returns 0 on
1846  * success or ENOENT if the queue is empty.
1847  */
1848 static int
1849 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1850                 struct aac_fib **fib_addr)
1851 {
1852         u_int32_t pi, ci;
1853         int error;
1854         int notify;
1855
1856         debug_called(3);
1857
1858         crit_enter();
1859
1860         /* get the producer/consumer indices */
1861         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1862         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1863
1864         /* check for queue empty */
1865         if (ci == pi) {
1866                 error = ENOENT;
1867                 goto out;
1868         }
1869
1870         /* wrap the pi so the following test works */
1871         if (pi >= aac_qinfo[queue].size)
1872                 pi = 0;
1873
1874         notify = 0;
1875         if (ci == pi + 1)
1876                 notify++;
1877
1878         /* wrap the queue? */
1879         if (ci >= aac_qinfo[queue].size)
1880                 ci = 0;
1881
1882         /* fetch the entry */
1883         *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1884         *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1885                                        ci)->aq_fib_addr;
1886
1887         /*
1888          * Is this a fast response? If it is, update the fib fields in
1889          * local memory so the whole fib doesn't have to be DMA'd back up.
1890          */
1891         if (*(uintptr_t *)fib_addr & 0x01) {
1892                 *(uintptr_t *)fib_addr &= ~0x01;
1893                 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1894                 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1895         }
1896         /* update consumer index */
1897         sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1898
1899         /* if we have made the queue un-full, notify the adapter */
1900         if (notify && (aac_qinfo[queue].notify != 0))
1901                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1902         error = 0;
1903
1904 out:
1905         crit_exit();
1906         return(error);
1907 }
1908
1909 /*
1910  * Put our response to an Adapter Initialed Fib on the response queue
1911  */
1912 static int
1913 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1914 {
1915         u_int32_t pi, ci;
1916         int error;
1917         u_int32_t fib_size;
1918         u_int32_t fib_addr;
1919
1920         debug_called(1);
1921
1922         /* Tell the adapter where the FIB is */
1923         fib_size = fib->Header.Size; 
1924         fib_addr = fib->Header.SenderFibAddress;
1925         fib->Header.ReceiverFibAddress = fib_addr;
1926
1927         crit_enter();
1928
1929         /* get the producer/consumer indices */
1930         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1931         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1932
1933         /* wrap the queue? */
1934         if (pi >= aac_qinfo[queue].size)
1935                 pi = 0;
1936
1937         /* check for queue full */
1938         if ((pi + 1) == ci) {
1939                 error = EBUSY;
1940                 goto out;
1941         }
1942
1943         /* populate queue entry */
1944         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1945         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1946
1947         /* update producer index */
1948         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1949
1950         /* notify the adapter if we know how */
1951         if (aac_qinfo[queue].notify != 0)
1952                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1953
1954         error = 0;
1955
1956 out:
1957         crit_exit();
1958         return(error);
1959 }
1960
1961 /*
1962  * Check for commands that have been outstanding for a suspiciously long time,
1963  * and complain about them.
1964  */
1965 static void
1966 aac_timeout(void *xsc)
1967 {
1968         struct aac_softc *sc = xsc;
1969         struct aac_command *cm;
1970         time_t deadline;
1971         int timedout, code;
1972 #if 0
1973         /* simulate an interrupt to handle possibly-missed interrupts */
1974         /*
1975          * XXX This was done to work around another bug which has since been
1976          * fixed.  It is dangerous anyways because you don't want multiple
1977          * threads in the interrupt handler at the same time!  If calling
1978          * is deamed neccesary in the future, proper mutexes must be used.
1979          */
1980         crit_enter();
1981         aac_intr(sc);
1982         crit_exit();
1983
1984         /* kick the I/O queue to restart it in the case of deadlock */
1985         aac_startio(sc);
1986 #endif
1987
1988         /*
1989          * traverse the busy command list, bitch about late commands once
1990          * only.
1991          */
1992         timedout = 0;
1993         deadline = time_second - AAC_CMD_TIMEOUT;
1994         crit_enter();
1995         TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1996                 if ((cm->cm_timestamp  < deadline)
1997                         /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1998                         cm->cm_flags |= AAC_CMD_TIMEDOUT;
1999                         device_printf(sc->aac_dev,
2000                                       "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2001                                       cm, (int)(time_second-cm->cm_timestamp));
2002                         AAC_PRINT_FIB(sc, cm->cm_fib);
2003                         timedout++;
2004                 }
2005         }
2006         if (timedout) {
2007                 code = AAC_GET_FWSTATUS(sc);
2008                 if (code != AAC_UP_AND_RUNNING) {
2009                         device_printf(sc->aac_dev, "WARNING! Controller is no "
2010                                       "longer running! code= 0x%x\n", code);
2011
2012                 }
2013         }
2014         crit_exit();
2015
2016         /* reset the timer for next time */
2017         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2018                       aac_timeout, sc);
2019 }
2020
2021 /*
2022  * Interface Function Vectors
2023  */
2024
2025 /*
2026  * Read the current firmware status word.
2027  */
2028 static int
2029 aac_sa_get_fwstatus(struct aac_softc *sc)
2030 {
2031         debug_called(3);
2032
2033         return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2034 }
2035
2036 static int
2037 aac_rx_get_fwstatus(struct aac_softc *sc)
2038 {
2039         debug_called(3);
2040
2041         return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2042 }
2043
2044 static int
2045 aac_fa_get_fwstatus(struct aac_softc *sc)
2046 {
2047         int val;
2048
2049         debug_called(3);
2050
2051         val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2052         return (val);
2053 }
2054
2055 /*
2056  * Notify the controller of a change in a given queue
2057  */
2058
2059 static void
2060 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2061 {
2062         debug_called(3);
2063
2064         AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2065 }
2066
2067 static void
2068 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2069 {
2070         debug_called(3);
2071
2072         AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2073 }
2074
2075 static void
2076 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2077 {
2078         debug_called(3);
2079
2080         AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2081         AAC_FA_HACK(sc);
2082 }
2083
2084 /*
2085  * Get the interrupt reason bits
2086  */
2087 static int
2088 aac_sa_get_istatus(struct aac_softc *sc)
2089 {
2090         debug_called(3);
2091
2092         return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2093 }
2094
2095 static int
2096 aac_rx_get_istatus(struct aac_softc *sc)
2097 {
2098         debug_called(3);
2099
2100         return(AAC_GETREG4(sc, AAC_RX_ODBR));
2101 }
2102
2103 static int
2104 aac_fa_get_istatus(struct aac_softc *sc)
2105 {
2106         int val;
2107
2108         debug_called(3);
2109
2110         val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2111         return (val);
2112 }
2113
2114 /*
2115  * Clear some interrupt reason bits
2116  */
2117 static void
2118 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2119 {
2120         debug_called(3);
2121
2122         AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2123 }
2124
2125 static void
2126 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2127 {
2128         debug_called(3);
2129
2130         AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2131 }
2132
2133 static void
2134 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2135 {
2136         debug_called(3);
2137
2138         AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2139         AAC_FA_HACK(sc);
2140 }
2141
2142 /*
2143  * Populate the mailbox and set the command word
2144  */
2145 static void
2146 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2147                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2148 {
2149         debug_called(4);
2150
2151         AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2152         AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2153         AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2154         AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2155         AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2156 }
2157
2158 static void
2159 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2160                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2161 {
2162         debug_called(4);
2163
2164         AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2165         AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2166         AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2167         AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2168         AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2169 }
2170
2171 static void
2172 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2173                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2174 {
2175         debug_called(4);
2176
2177         AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2178         AAC_FA_HACK(sc);
2179         AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2180         AAC_FA_HACK(sc);
2181         AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2182         AAC_FA_HACK(sc);
2183         AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2184         AAC_FA_HACK(sc);
2185         AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2186         AAC_FA_HACK(sc);
2187 }
2188
2189 /*
2190  * Fetch the immediate command status word
2191  */
2192 static int
2193 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2194 {
2195         debug_called(4);
2196
2197         return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2198 }
2199
2200 static int
2201 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2202 {
2203         debug_called(4);
2204
2205         return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2206 }
2207
2208 static int
2209 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2210 {
2211         int val;
2212
2213         debug_called(4);
2214
2215         val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2216         return (val);
2217 }
2218
2219 /*
2220  * Set/clear interrupt masks
2221  */
2222 static void
2223 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2224 {
2225         debug(2, "%sable interrupts", enable ? "en" : "dis");
2226
2227         if (enable) {
2228                 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2229         } else {
2230                 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2231         }
2232 }
2233
2234 static void
2235 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2236 {
2237         debug(2, "%sable interrupts", enable ? "en" : "dis");
2238
2239         if (enable) {
2240                 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2241         } else {
2242                 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2243         }
2244 }
2245
2246 static void
2247 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2248 {
2249         debug(2, "%sable interrupts", enable ? "en" : "dis");
2250
2251         if (enable) {
2252                 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2253                 AAC_FA_HACK(sc);
2254         } else {
2255                 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2256                 AAC_FA_HACK(sc);
2257         }
2258 }
2259
2260 /*
2261  * Debugging and Diagnostics
2262  */
2263
2264 /*
2265  * Print some information about the controller.
2266  */
2267 static void
2268 aac_describe_controller(struct aac_softc *sc)
2269 {
2270         struct aac_fib *fib;
2271         struct aac_adapter_info *info;
2272
2273         debug_called(2);
2274
2275         aac_alloc_sync_fib(sc, &fib, 0);
2276
2277         fib->data[0] = 0;
2278         if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2279                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2280                 aac_release_sync_fib(sc);
2281                 return;
2282         }
2283         info = (struct aac_adapter_info *)&fib->data[0];   
2284
2285         device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 
2286                       aac_describe_code(aac_cpu_variant, info->CpuVariant),
2287                       info->ClockSpeed, info->BufferMem / (1024 * 1024), 
2288                       aac_describe_code(aac_battery_platform,
2289                                         info->batteryPlatform));
2290
2291         /* save the kernel revision structure for later use */
2292         sc->aac_revision = info->KernelRevision;
2293         device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2294                       info->KernelRevision.external.comp.major,
2295                       info->KernelRevision.external.comp.minor,
2296                       info->KernelRevision.external.comp.dash,
2297                       info->KernelRevision.buildNumber,
2298                       (u_int32_t)(info->SerialNumber & 0xffffff));
2299
2300         aac_release_sync_fib(sc);
2301
2302         if (1 || bootverbose) {
2303                 device_printf(sc->aac_dev, "Supported Options=%b\n",
2304                               sc->supported_options,
2305                               "\20"
2306                               "\1SNAPSHOT"
2307                               "\2CLUSTERS"
2308                               "\3WCACHE"
2309                               "\4DATA64"
2310                               "\5HOSTTIME"
2311                               "\6RAID50"
2312                               "\7WINDOW4GB"
2313                               "\10SCSIUPGD"
2314                               "\11SOFTERR"
2315                               "\12NORECOND"
2316                               "\13SGMAP64"
2317                               "\14ALARM"
2318                               "\15NONDASD");
2319         }
2320 }
2321
2322 /*
2323  * Look up a text description of a numeric error code and return a pointer to
2324  * same.
2325  */
2326 static char *
2327 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2328 {
2329         int i;
2330
2331         for (i = 0; table[i].string != NULL; i++)
2332                 if (table[i].code == code)
2333                         return(table[i].string);
2334         return(table[i + 1].string);
2335 }
2336
2337 /*
2338  * Management Interface
2339  */
2340
2341 static int
2342 aac_open(struct dev_open_args *ap)
2343 {
2344         cdev_t dev = ap->a_head.a_dev;
2345         struct aac_softc *sc;
2346
2347         debug_called(2);
2348
2349         sc = dev->si_drv1;
2350
2351         /* Check to make sure the device isn't already open */
2352         if (sc->aac_state & AAC_STATE_OPEN) {
2353                 return EBUSY;
2354         }
2355         sc->aac_state |= AAC_STATE_OPEN;
2356
2357         return 0;
2358 }
2359
2360 static int
2361 aac_close(struct dev_close_args *ap)
2362 {
2363         cdev_t dev = ap->a_head.a_dev;
2364         struct aac_softc *sc;
2365
2366         debug_called(2);
2367
2368         sc = dev->si_drv1;
2369
2370         /* Mark this unit as no longer open  */
2371         sc->aac_state &= ~AAC_STATE_OPEN;
2372
2373         return 0;
2374 }
2375
2376 static int
2377 aac_ioctl(struct dev_ioctl_args *ap)
2378 {
2379         cdev_t dev = ap->a_head.a_dev;
2380         caddr_t arg = ap->a_data;
2381         struct aac_softc *sc = dev->si_drv1;
2382         int error = 0;
2383         int i;
2384
2385         debug_called(2);
2386
2387         if (ap->a_cmd == AACIO_STATS) {
2388                 union aac_statrequest *as = (union aac_statrequest *)arg;
2389
2390                 switch (as->as_item) {
2391                 case AACQ_FREE:
2392                 case AACQ_BIO:
2393                 case AACQ_READY:
2394                 case AACQ_BUSY:
2395                 case AACQ_COMPLETE:
2396                         bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2397                               sizeof(struct aac_qstat));
2398                         break;
2399                 default:
2400                         error = ENOENT;
2401                         break;
2402                 }
2403                 return(error);
2404         }
2405
2406         arg = *(caddr_t *)arg;
2407
2408         switch (ap->a_cmd) {
2409         /* AACIO_STATS already handled above */
2410         case FSACTL_SENDFIB:
2411                 debug(1, "FSACTL_SENDFIB");
2412                 error = aac_ioctl_sendfib(sc, arg);
2413                 break;
2414         case FSACTL_AIF_THREAD:
2415                 debug(1, "FSACTL_AIF_THREAD");
2416                 error = EINVAL;
2417                 break;
2418         case FSACTL_OPEN_GET_ADAPTER_FIB:
2419                 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2420                 /*
2421                  * Pass the caller out an AdapterFibContext.
2422                  *
2423                  * Note that because we only support one opener, we
2424                  * basically ignore this.  Set the caller's context to a magic
2425                  * number just in case.
2426                  *
2427                  * The Linux code hands the driver a pointer into kernel space,
2428                  * and then trusts it when the caller hands it back.  Aiee!
2429                  * Here, we give it the proc pointer of the per-adapter aif 
2430                  * thread. It's only used as a sanity check in other calls.
2431                  */
2432                 i = (int)sc->aifthread;
2433                 error = copyout(&i, arg, sizeof(i));
2434                 break;
2435         case FSACTL_GET_NEXT_ADAPTER_FIB:
2436                 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2437                 error = aac_getnext_aif(sc, arg);
2438                 break;
2439         case FSACTL_CLOSE_GET_ADAPTER_FIB:
2440                 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2441                 /* don't do anything here */
2442                 break;
2443         case FSACTL_MINIPORT_REV_CHECK:
2444                 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2445                 error = aac_rev_check(sc, arg);
2446                 break;
2447         case FSACTL_QUERY_DISK:
2448                 debug(1, "FSACTL_QUERY_DISK");
2449                 error = aac_query_disk(sc, arg);
2450                         break;
2451         case FSACTL_DELETE_DISK:
2452                 /*
2453                  * We don't trust the underland to tell us when to delete a
2454                  * container, rather we rely on an AIF coming from the 
2455                  * controller
2456                  */
2457                 error = 0;
2458                 break;
2459         default:
2460                 debug(1, "unsupported cmd 0x%lx\n", ap->a_cmd);
2461                 error = EINVAL;
2462                 break;
2463         }
2464         return(error);
2465 }
2466
2467 static int
2468 aac_poll(struct dev_poll_args *ap)
2469 {
2470         cdev_t dev = ap->a_head.a_dev;
2471         struct aac_softc *sc;
2472         int revents;
2473
2474         sc = dev->si_drv1;
2475         revents = 0;
2476
2477         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2478         if ((ap->a_events & (POLLRDNORM | POLLIN)) != 0) {
2479                 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2480                         revents |= ap->a_events & (POLLIN | POLLRDNORM);
2481         }
2482         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2483
2484         if (revents == 0) {
2485                 if (ap->a_events & (POLLIN | POLLRDNORM))
2486                         selrecord(curthread, &sc->rcv_select);
2487         }
2488         ap->a_events = revents;
2489         return (0);
2490 }
2491
2492 /*
2493  * Send a FIB supplied from userspace
2494  */
2495 static int
2496 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2497 {
2498         struct aac_command *cm;
2499         int size, error;
2500
2501         debug_called(2);
2502
2503         cm = NULL;
2504
2505         /*
2506          * Get a command
2507          */
2508         if (aac_alloc_command(sc, &cm)) {
2509                 error = EBUSY;
2510                 goto out;
2511         }
2512
2513         /*
2514          * Fetch the FIB header, then re-copy to get data as well.
2515          */
2516         if ((error = copyin(ufib, cm->cm_fib,
2517                             sizeof(struct aac_fib_header))) != 0)
2518                 goto out;
2519         size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2520         if (size > sizeof(struct aac_fib)) {
2521                 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2522                               size, sizeof(struct aac_fib));
2523                 size = sizeof(struct aac_fib);
2524         }
2525         if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2526                 goto out;
2527         cm->cm_fib->Header.Size = size;
2528         cm->cm_timestamp = time_second;
2529
2530         /*
2531          * Pass the FIB to the controller, wait for it to complete.
2532          */
2533         if ((error = aac_wait_command(cm, 30)) != 0) {  /* XXX user timeout? */
2534                 printf("aac_wait_command return %d\n", error);
2535                 goto out;
2536         }
2537
2538         /*
2539          * Copy the FIB and data back out to the caller.
2540          */
2541         size = cm->cm_fib->Header.Size;
2542         if (size > sizeof(struct aac_fib)) {
2543                 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2544                               size, sizeof(struct aac_fib));
2545                 size = sizeof(struct aac_fib);
2546         }
2547         error = copyout(cm->cm_fib, ufib, size);
2548
2549 out:
2550         if (cm != NULL) {
2551                 aac_release_command(cm);
2552         }
2553         return(error);
2554 }
2555
2556 /*
2557  * Handle an AIF sent to us by the controller; queue it for later reference.
2558  * If the queue fills up, then drop the older entries.
2559  */
2560 static void
2561 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2562 {
2563         struct aac_aif_command *aif;
2564         struct aac_container *co, *co_next;
2565         struct aac_mntinfo *mi;
2566         struct aac_mntinforesp *mir = NULL;
2567         u_int16_t rsize;
2568         int next, found;
2569         int count = 0, added = 0, i = 0;
2570
2571         debug_called(2);
2572
2573         aif = (struct aac_aif_command*)&fib->data[0];
2574         aac_print_aif(sc, aif);
2575
2576         /* Is it an event that we should care about? */
2577         switch (aif->command) {
2578         case AifCmdEventNotify:
2579                 switch (aif->data.EN.type) {
2580                 case AifEnAddContainer:
2581                 case AifEnDeleteContainer:
2582                         /*
2583                          * A container was added or deleted, but the message 
2584                          * doesn't tell us anything else!  Re-enumerate the
2585                          * containers and sort things out.
2586                          */
2587                         aac_alloc_sync_fib(sc, &fib, 0);
2588                         mi = (struct aac_mntinfo *)&fib->data[0];
2589                         do {
2590                                 /*
2591                                  * Ask the controller for its containers one at
2592                                  * a time.
2593                                  * XXX What if the controller's list changes
2594                                  * midway through this enumaration?
2595                                  * XXX This should be done async.
2596                                  */
2597                                 bzero(mi, sizeof(struct aac_mntinfo));
2598                                 mi->Command = VM_NameServe;
2599                                 mi->MntType = FT_FILESYS;
2600                                 mi->MntCount = i;
2601                                 rsize = sizeof(mir);
2602                                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2603                                                  sizeof(struct aac_mntinfo))) {
2604                                         device_printf(sc->aac_dev,
2605                                             "Error probing container %d\n", i);
2606
2607                                         continue;
2608                                 }
2609                                 mir = (struct aac_mntinforesp *)&fib->data[0];
2610                                 /* XXX Need to check if count changed */
2611                                 count = mir->MntRespCount;
2612
2613                                 /*
2614                                  * Check the container against our list.
2615                                  * co->co_found was already set to 0 in a
2616                                  * previous run.
2617                                  */
2618                                 if ((mir->Status == ST_OK) &&
2619                                     (mir->MntTable[0].VolType != CT_NONE)) {
2620                                         found = 0;
2621                                         TAILQ_FOREACH(co,
2622                                                       &sc->aac_container_tqh, 
2623                                                       co_link) {
2624                                                 if (co->co_mntobj.ObjectId ==
2625                                                     mir->MntTable[0].ObjectId) {
2626                                                         co->co_found = 1;
2627                                                         found = 1;
2628                                                         break;
2629                                                 }
2630                                         }
2631                                         /*
2632                                          * If the container matched, continue
2633                                          * in the list.
2634                                          */
2635                                         if (found) {
2636                                                 i++;
2637                                                 continue;
2638                                         }
2639
2640                                         /*
2641                                          * This is a new container.  Do all the
2642                                          * appropriate things to set it up.                                              */
2643                                         aac_add_container(sc, mir, 1);
2644                                         added = 1;
2645                                 }
2646                                 i++;
2647                         } while ((i < count) && (i < AAC_MAX_CONTAINERS));
2648                         aac_release_sync_fib(sc);
2649
2650                         /*
2651                          * Go through our list of containers and see which ones
2652                          * were not marked 'found'.  Since the controller didn't
2653                          * list them they must have been deleted.  Do the
2654                          * appropriate steps to destroy the device.  Also reset
2655                          * the co->co_found field.
2656                          */
2657                         co = TAILQ_FIRST(&sc->aac_container_tqh);
2658                         while (co != NULL) {
2659                                 if (co->co_found == 0) {
2660                                         device_delete_child(sc->aac_dev,
2661                                                             co->co_disk);
2662                                         co_next = TAILQ_NEXT(co, co_link);
2663                                         AAC_LOCK_ACQUIRE(&sc->
2664                                                         aac_container_lock);
2665                                         TAILQ_REMOVE(&sc->aac_container_tqh, co,
2666                                                      co_link);
2667                                         AAC_LOCK_RELEASE(&sc->
2668                                                          aac_container_lock);
2669                                         FREE(co, M_AACBUF);
2670                                         co = co_next;
2671                                 } else {
2672                                         co->co_found = 0;
2673                                         co = TAILQ_NEXT(co, co_link);
2674                                 }
2675                         }
2676
2677                         /* Attach the newly created containers */
2678                         if (added)
2679                                 bus_generic_attach(sc->aac_dev);
2680         
2681                                 break;
2682
2683                 default:
2684                         break;
2685                 }
2686
2687         default:
2688                 break;
2689         }
2690
2691         /* Copy the AIF data to the AIF queue for ioctl retrieval */
2692         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2693         next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2694         if (next != sc->aac_aifq_tail) {
2695                 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2696                 sc->aac_aifq_head = next;
2697
2698                 /* On the off chance that someone is sleeping for an aif... */
2699                 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2700                         wakeup(sc->aac_aifq);
2701                 /* token may have been lost */
2702                 /* Wakeup any poll()ers */
2703                 selwakeup(&sc->rcv_select);
2704                 /* token may have been lost */
2705         }
2706         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2707
2708         return;
2709 }
2710
2711 /*
2712  * Return the Revision of the driver to userspace and check to see if the
2713  * userspace app is possibly compatible.  This is extremely bogus since
2714  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2715  * returning what the card reported.
2716  */
2717 static int
2718 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2719 {
2720         struct aac_rev_check rev_check;
2721         struct aac_rev_check_resp rev_check_resp;
2722         int error = 0;
2723
2724         debug_called(2);
2725
2726         /*
2727          * Copyin the revision struct from userspace
2728          */
2729         if ((error = copyin(udata, (caddr_t)&rev_check,
2730                         sizeof(struct aac_rev_check))) != 0) {
2731                 return error;
2732         }
2733
2734         debug(2, "Userland revision= %d\n",
2735               rev_check.callingRevision.buildNumber);
2736
2737         /*
2738          * Doctor up the response struct.
2739          */
2740         rev_check_resp.possiblyCompatible = 1;
2741         rev_check_resp.adapterSWRevision.external.ul =
2742             sc->aac_revision.external.ul;
2743         rev_check_resp.adapterSWRevision.buildNumber =
2744             sc->aac_revision.buildNumber;
2745
2746         return(copyout((caddr_t)&rev_check_resp, udata,
2747                         sizeof(struct aac_rev_check_resp)));
2748 }
2749
2750 /*
2751  * Pass the caller the next AIF in their queue
2752  */
2753 static int
2754 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2755 {
2756         struct get_adapter_fib_ioctl agf;
2757         int error;
2758
2759         debug_called(2);
2760
2761         if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2762
2763                 /*
2764                  * Check the magic number that we gave the caller.
2765                  */
2766                 if (agf.AdapterFibContext != (int)sc->aifthread) {
2767                         error = EFAULT;
2768                 } else {
2769         
2770                         crit_enter();
2771                         error = aac_return_aif(sc, agf.AifFib);
2772         
2773                         if ((error == EAGAIN) && (agf.Wait)) {
2774                                 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2775                                 while (error == EAGAIN) {
2776                                         error = tsleep(sc->aac_aifq,
2777                                                        PCATCH, "aacaif", 0);
2778                                         if (error == 0)
2779                                                 error = aac_return_aif(sc,
2780                                                     agf.AifFib);
2781                                 }
2782                                 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2783                         }
2784                         crit_exit();
2785                 }
2786         }
2787         return(error);
2788 }
2789
2790 /*
2791  * Hand the next AIF off the top of the queue out to userspace.
2792  *
2793  * YYY token could be lost during copyout
2794  */
2795 static int
2796 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2797 {
2798         int error;
2799
2800         debug_called(2);
2801
2802         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2803         if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2804                 error = EAGAIN;
2805         } else {
2806                 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2807                                 sizeof(struct aac_aif_command));
2808                 if (error)
2809                         printf("aac_return_aif: copyout returned %d\n", error);
2810                 if (!error)
2811                         sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2812                                             AAC_AIFQ_LENGTH;
2813         }
2814         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2815         return(error);
2816 }
2817
2818 /*
2819  * Give the userland some information about the container.  The AAC arch
2820  * expects the driver to be a SCSI passthrough type driver, so it expects
2821  * the containers to have b:t:l numbers.  Fake it.
2822  */
2823 static int
2824 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2825 {
2826         struct aac_query_disk query_disk;
2827         struct aac_container *co;
2828         struct aac_disk *disk;
2829         int error, id;
2830
2831         debug_called(2);
2832
2833         disk = NULL;
2834
2835         error = copyin(uptr, (caddr_t)&query_disk,
2836                        sizeof(struct aac_query_disk));
2837         if (error)
2838                 return (error);
2839
2840         id = query_disk.ContainerNumber;
2841         if (id == -1)
2842                 return (EINVAL);
2843
2844         AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2845         TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2846                 if (co->co_mntobj.ObjectId == id)
2847                         break;
2848                 }
2849
2850                 if (co == NULL) {
2851                         query_disk.Valid = 0;
2852                         query_disk.Locked = 0;
2853                         query_disk.Deleted = 1;         /* XXX is this right? */
2854                 } else {
2855                         disk = device_get_softc(co->co_disk);
2856                         query_disk.Valid = 1;
2857                         query_disk.Locked =
2858                             (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2859                         query_disk.Deleted = 0;
2860                         query_disk.Bus = device_get_unit(sc->aac_dev);
2861                         query_disk.Target = disk->unit;
2862                         query_disk.Lun = 0;
2863                         query_disk.UnMapped = 0;
2864                         bcopy(disk->ad_dev_t->si_name,
2865                               &query_disk.diskDeviceName[0], 10);
2866                 }
2867         AAC_LOCK_RELEASE(&sc->aac_container_lock);
2868
2869         error = copyout((caddr_t)&query_disk, uptr,
2870                         sizeof(struct aac_query_disk));
2871
2872         return (error);
2873 }
2874
2875 static void
2876 aac_get_bus_info(struct aac_softc *sc)
2877 {
2878         struct aac_fib *fib;
2879         struct aac_ctcfg *c_cmd;
2880         struct aac_ctcfg_resp *c_resp;
2881         struct aac_vmioctl *vmi;
2882         struct aac_vmi_businf_resp *vmi_resp;
2883         struct aac_getbusinf businfo;
2884         struct aac_cam_inf *caminf;
2885         device_t child;
2886         int i, found, error;
2887
2888         aac_alloc_sync_fib(sc, &fib, 0);
2889         c_cmd = (struct aac_ctcfg *)&fib->data[0];
2890         bzero(c_cmd, sizeof(struct aac_ctcfg));
2891
2892         c_cmd->Command = VM_ContainerConfig;
2893         c_cmd->cmd = CT_GET_SCSI_METHOD;
2894         c_cmd->param = 0;
2895
2896         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2897             sizeof(struct aac_ctcfg));
2898         if (error) {
2899                 device_printf(sc->aac_dev, "Error %d sending "
2900                     "VM_ContainerConfig command\n", error);
2901                 aac_release_sync_fib(sc);
2902                 return;
2903         }
2904
2905         c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2906         if (c_resp->Status != ST_OK) {
2907                 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2908                     c_resp->Status);
2909                 aac_release_sync_fib(sc);
2910                 return;
2911         }
2912
2913         sc->scsi_method_id = c_resp->param;
2914
2915         vmi = (struct aac_vmioctl *)&fib->data[0];
2916         bzero(vmi, sizeof(struct aac_vmioctl));
2917
2918         vmi->Command = VM_Ioctl;
2919         vmi->ObjType = FT_DRIVE;
2920         vmi->MethId = sc->scsi_method_id;
2921         vmi->ObjId = 0;
2922         vmi->IoctlCmd = GetBusInfo;
2923
2924         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2925             sizeof(struct aac_vmioctl));
2926         if (error) {
2927                 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2928                     error);
2929                 aac_release_sync_fib(sc);
2930                 return;
2931         }
2932
2933         vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2934         if (vmi_resp->Status != ST_OK) {
2935                 debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2936                 aac_release_sync_fib(sc);
2937                 return;
2938         }
2939
2940         bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2941         aac_release_sync_fib(sc);
2942
2943         found = 0;
2944         for (i = 0; i < businfo.BusCount; i++) {
2945                 if (businfo.BusValid[i] != AAC_BUS_VALID)
2946                         continue;
2947
2948                 MALLOC(caminf, struct aac_cam_inf *,
2949                     sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2950
2951                 child = device_add_child(sc->aac_dev, "aacp", -1);
2952                 if (child == NULL) {
2953                         device_printf(sc->aac_dev, "device_add_child failed\n");
2954                         continue;
2955                 }
2956
2957                 caminf->TargetsPerBus = businfo.TargetsPerBus;
2958                 caminf->BusNumber = i;
2959                 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2960                 caminf->aac_sc = sc;
2961
2962                 device_set_ivars(child, caminf);
2963                 device_set_desc(child, "SCSI Passthrough Bus");
2964
2965                 found = 1;
2966         }
2967
2968         if (found)
2969                 bus_generic_attach(sc->aac_dev);
2970
2971         return;
2972 }