Implement an upcall mechanism to support userland LWKT. This mechanism will
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.15 2003/11/21 05:29:08 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory mapping module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93
94 #include <sys/thread2.h>
95
96 /*
97  *      Virtual memory maps provide for the mapping, protection,
98  *      and sharing of virtual memory objects.  In addition,
99  *      this module provides for an efficient virtual copy of
100  *      memory from one map to another.
101  *
102  *      Synchronization is required prior to most operations.
103  *
104  *      Maps consist of an ordered doubly-linked list of simple
105  *      entries; a single hint is used to speed up lookups.
106  *
107  *      Since portions of maps are specified by start/end addresses,
108  *      which may not align with existing map entries, all
109  *      routines merely "clip" entries to these start/end values.
110  *      [That is, an entry is split into two, bordering at a
111  *      start or end value.]  Note that these clippings may not
112  *      always be necessary (as the two resulting entries are then
113  *      not changed); however, the clipping is done for convenience.
114  *
115  *      As mentioned above, virtual copy operations are performed
116  *      by copying VM object references from one map to
117  *      another, and then marking both regions as copy-on-write.
118  */
119
120 /*
121  *      vm_map_startup:
122  *
123  *      Initialize the vm_map module.  Must be called before
124  *      any other vm_map routines.
125  *
126  *      Map and entry structures are allocated from the general
127  *      purpose memory pool with some exceptions:
128  *
129  *      - The kernel map and kmem submap are allocated statically.
130  *      - Kernel map entries are allocated out of a static pool.
131  *
132  *      These restrictions are necessary since malloc() uses the
133  *      maps and requires map entries.
134  */
135
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150                 vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153
154 void
155 vm_map_startup()
156 {
157         mapzone = &mapzone_store;
158         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159                 map_init, MAX_KMAP);
160         mapentzone = &mapentzone_store;
161         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162                 map_entry_init, MAX_MAPENT);
163 }
164
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(min, max)
172         vm_offset_t min, max;
173 {
174         struct vmspace *vm;
175
176         vm = zalloc(vmspace_zone);
177         vm_map_init(&vm->vm_map, min, max);
178         pmap_pinit(vmspace_pmap(vm));
179         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
180         vm->vm_refcnt = 1;
181         vm->vm_shm = NULL;
182         vm->vm_exitingcnt = 0;
183         return (vm);
184 }
185
186 void
187 vm_init2(void) 
188 {
189         zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
190         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
191         vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
192         pmap_init2();
193         vm_object_init2();
194 }
195
196 static __inline void
197 vmspace_dofree(struct vmspace *vm)
198 {
199         int count;
200
201         /*
202          * Make sure any SysV shm is freed, it might not have in
203          * exit1()
204          */
205         shmexit(vm);
206
207         KKASSERT(vm->vm_upcalls == NULL);
208
209         /*
210          * Lock the map, to wait out all other references to it.
211          * Delete all of the mappings and pages they hold, then call
212          * the pmap module to reclaim anything left.
213          */
214         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
215         vm_map_lock(&vm->vm_map);
216         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
217                 vm->vm_map.max_offset, &count);
218         vm_map_unlock(&vm->vm_map);
219         vm_map_entry_release(count);
220
221         pmap_release(vmspace_pmap(vm));
222         zfree(vmspace_zone, vm);
223 }
224
225 void
226 vmspace_free(struct vmspace *vm)
227 {
228         if (vm->vm_refcnt == 0)
229                 panic("vmspace_free: attempt to free already freed vmspace");
230
231         if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
232                 vmspace_dofree(vm);
233 }
234
235 void
236 vmspace_exitfree(struct proc *p)
237 {
238         struct vmspace *vm;
239
240         vm = p->p_vmspace;
241         p->p_vmspace = NULL;
242
243         /*
244          * cleanup by parent process wait()ing on exiting child.  vm_refcnt
245          * may not be 0 (e.g. fork() and child exits without exec()ing).
246          * exitingcnt may increment above 0 and drop back down to zero
247          * several times while vm_refcnt is held non-zero.  vm_refcnt
248          * may also increment above 0 and drop back down to zero several
249          * times while vm_exitingcnt is held non-zero.
250          *
251          * The last wait on the exiting child's vmspace will clean up
252          * the remainder of the vmspace.
253          */
254         if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
255                 vmspace_dofree(vm);
256 }
257
258 /*
259  * vmspace_swap_count() - count the approximate swap useage in pages for a
260  *                        vmspace.
261  *
262  *      Swap useage is determined by taking the proportional swap used by
263  *      VM objects backing the VM map.  To make up for fractional losses,
264  *      if the VM object has any swap use at all the associated map entries
265  *      count for at least 1 swap page.
266  */
267 int
268 vmspace_swap_count(struct vmspace *vmspace)
269 {
270         vm_map_t map = &vmspace->vm_map;
271         vm_map_entry_t cur;
272         int count = 0;
273
274         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
275                 vm_object_t object;
276
277                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
278                     (object = cur->object.vm_object) != NULL &&
279                     object->type == OBJT_SWAP
280                 ) {
281                         int n = (cur->end - cur->start) / PAGE_SIZE;
282
283                         if (object->un_pager.swp.swp_bcount) {
284                                 count += object->un_pager.swp.swp_bcount *
285                                     SWAP_META_PAGES * n / object->size + 1;
286                         }
287                 }
288         }
289         return(count);
290 }
291
292
293 /*
294  *      vm_map_create:
295  *
296  *      Creates and returns a new empty VM map with
297  *      the given physical map structure, and having
298  *      the given lower and upper address bounds.
299  */
300 vm_map_t
301 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
302 {
303         vm_map_t result;
304
305         result = zalloc(mapzone);
306         vm_map_init(result, min, max);
307         result->pmap = pmap;
308         return (result);
309 }
310
311 /*
312  * Initialize an existing vm_map structure
313  * such as that in the vmspace structure.
314  * The pmap is set elsewhere.
315  */
316 void
317 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
318 {
319         map->header.next = map->header.prev = &map->header;
320         map->nentries = 0;
321         map->size = 0;
322         map->system_map = 0;
323         map->infork = 0;
324         map->min_offset = min;
325         map->max_offset = max;
326         map->first_free = &map->header;
327         map->hint = &map->header;
328         map->timestamp = 0;
329         lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
330 }
331
332 /*
333  *      vm_map_entry_reserve:
334  *
335  *      Reserves vm_map_entry structures outside of the critical path
336  */
337 int
338 vm_map_entry_reserve(int count)
339 {
340         struct globaldata *gd = mycpu;
341         vm_map_entry_t entry;
342
343         crit_enter();
344         gd->gd_vme_avail -= count;
345
346         /*
347          * Make sure we have enough structures in gd_vme_base to handle
348          * the reservation request.
349          */
350         while (gd->gd_vme_avail < 0) {
351                 entry = zalloc(mapentzone);
352                 entry->next = gd->gd_vme_base;
353                 gd->gd_vme_base = entry;
354                 ++gd->gd_vme_avail;
355         }
356         crit_exit();
357         return(count);
358 }
359
360 /*
361  *      vm_map_entry_release:
362  *
363  *      Releases previously reserved vm_map_entry structures that were not
364  *      used.  If we have too much junk in our per-cpu cache clean some of
365  *      it out.
366  */
367 void
368 vm_map_entry_release(int count)
369 {
370         struct globaldata *gd = mycpu;
371         vm_map_entry_t entry;
372
373         crit_enter();
374         gd->gd_vme_avail += count;
375         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
376                 entry = gd->gd_vme_base;
377                 KKASSERT(entry != NULL);
378                 gd->gd_vme_base = entry->next;
379                 --gd->gd_vme_avail;
380                 crit_exit();
381                 zfree(mapentzone, entry);
382                 crit_enter();
383         }
384         crit_exit();
385 }
386
387 /*
388  *      vm_map_entry_kreserve:
389  *
390  *      Reserve map entry structures for use in kernel_map or (if it exists)
391  *      kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
392  *      basis.
393  *
394  *      XXX if multiple kernel map entries are used without any intervening
395  *      use by another map the KKASSERT() may assert.
396  */
397 int
398 vm_map_entry_kreserve(int count)
399 {
400         struct globaldata *gd = mycpu;
401
402         crit_enter();
403         gd->gd_vme_kdeficit += count;
404         crit_exit();
405         KKASSERT(gd->gd_vme_base != NULL);
406         return(count);
407 }
408
409 /*
410  *      vm_map_entry_krelease:
411  *
412  *      Release previously reserved map entries for kernel_map or kmem_map
413  *      use.  This routine determines how many entries were actually used and
414  *      replentishes the kernel reserve supply from vme_avail.
415  *
416  *      If there is insufficient supply vme_avail will go negative, which is
417  *      ok.  We cannot safely call zalloc in this function without getting
418  *      into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
419  *      to regenerate the lost entries.
420  */
421 void
422 vm_map_entry_krelease(int count)
423 {
424         struct globaldata *gd = mycpu;
425
426         crit_enter();
427         gd->gd_vme_kdeficit -= count;
428         gd->gd_vme_avail -= gd->gd_vme_kdeficit;        /* can go negative */
429         gd->gd_vme_kdeficit = 0;
430         crit_exit();
431 }
432
433 /*
434  *      vm_map_entry_create:    [ internal use only ]
435  *
436  *      Allocates a VM map entry for insertion.  No entry fields are filled 
437  *      in.
438  *
439  *      This routine may be called from an interrupt thread but not a FAST
440  *      interrupt.  This routine may recurse the map lock.
441  */
442 static vm_map_entry_t
443 vm_map_entry_create(vm_map_t map, int *countp)
444 {
445         struct globaldata *gd = mycpu;
446         vm_map_entry_t entry;
447
448         KKASSERT(*countp > 0);
449         --*countp;
450         crit_enter();
451         entry = gd->gd_vme_base;
452         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
453         gd->gd_vme_base = entry->next;
454         crit_exit();
455         return(entry);
456 }
457
458 /*
459  *      vm_map_entry_dispose:   [ internal use only ]
460  *
461  *      Dispose of a vm_map_entry that is no longer being referenced.  This
462  *      function may be called from an interrupt.
463  */
464 static void
465 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
466 {
467         struct globaldata *gd = mycpu;
468
469         ++*countp;
470         crit_enter();
471         entry->next = gd->gd_vme_base;
472         gd->gd_vme_base = entry;
473         crit_exit();
474 }
475
476
477 /*
478  *      vm_map_entry_{un,}link:
479  *
480  *      Insert/remove entries from maps.
481  */
482 static __inline void
483 vm_map_entry_link(vm_map_t map,
484                   vm_map_entry_t after_where,
485                   vm_map_entry_t entry)
486 {
487         map->nentries++;
488         entry->prev = after_where;
489         entry->next = after_where->next;
490         entry->next->prev = entry;
491         after_where->next = entry;
492 }
493
494 static __inline void
495 vm_map_entry_unlink(vm_map_t map,
496                     vm_map_entry_t entry)
497 {
498         vm_map_entry_t prev;
499         vm_map_entry_t next;
500
501         if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
502                 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
503         prev = entry->prev;
504         next = entry->next;
505         next->prev = prev;
506         prev->next = next;
507         map->nentries--;
508 }
509
510 /*
511  *      SAVE_HINT:
512  *
513  *      Saves the specified entry as the hint for
514  *      future lookups.
515  */
516 #define SAVE_HINT(map,value) \
517                 (map)->hint = (value);
518
519 /*
520  *      vm_map_lookup_entry:    [ internal use only ]
521  *
522  *      Finds the map entry containing (or
523  *      immediately preceding) the specified address
524  *      in the given map; the entry is returned
525  *      in the "entry" parameter.  The boolean
526  *      result indicates whether the address is
527  *      actually contained in the map.
528  */
529 boolean_t
530 vm_map_lookup_entry(map, address, entry)
531         vm_map_t map;
532         vm_offset_t address;
533         vm_map_entry_t *entry;  /* OUT */
534 {
535         vm_map_entry_t cur;
536         vm_map_entry_t last;
537
538         /*
539          * Start looking either from the head of the list, or from the hint.
540          */
541
542         cur = map->hint;
543
544         if (cur == &map->header)
545                 cur = cur->next;
546
547         if (address >= cur->start) {
548                 /*
549                  * Go from hint to end of list.
550                  *
551                  * But first, make a quick check to see if we are already looking
552                  * at the entry we want (which is usually the case). Note also
553                  * that we don't need to save the hint here... it is the same
554                  * hint (unless we are at the header, in which case the hint
555                  * didn't buy us anything anyway).
556                  */
557                 last = &map->header;
558                 if ((cur != last) && (cur->end > address)) {
559                         *entry = cur;
560                         return (TRUE);
561                 }
562         } else {
563                 /*
564                  * Go from start to hint, *inclusively*
565                  */
566                 last = cur->next;
567                 cur = map->header.next;
568         }
569
570         /*
571          * Search linearly
572          */
573
574         while (cur != last) {
575                 if (cur->end > address) {
576                         if (address >= cur->start) {
577                                 /*
578                                  * Save this lookup for future hints, and
579                                  * return
580                                  */
581
582                                 *entry = cur;
583                                 SAVE_HINT(map, cur);
584                                 return (TRUE);
585                         }
586                         break;
587                 }
588                 cur = cur->next;
589         }
590         *entry = cur->prev;
591         SAVE_HINT(map, *entry);
592         return (FALSE);
593 }
594
595 /*
596  *      vm_map_insert:
597  *
598  *      Inserts the given whole VM object into the target
599  *      map at the specified address range.  The object's
600  *      size should match that of the address range.
601  *
602  *      Requires that the map be locked, and leaves it so.  Requires that
603  *      sufficient vm_map_entry structures have been reserved and tracks
604  *      the use via countp.
605  *
606  *      If object is non-NULL, ref count must be bumped by caller
607  *      prior to making call to account for the new entry.
608  */
609 int
610 vm_map_insert(vm_map_t map, int *countp,
611               vm_object_t object, vm_ooffset_t offset,
612               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
613               int cow)
614 {
615         vm_map_entry_t new_entry;
616         vm_map_entry_t prev_entry;
617         vm_map_entry_t temp_entry;
618         vm_eflags_t protoeflags;
619
620         /*
621          * Check that the start and end points are not bogus.
622          */
623
624         if ((start < map->min_offset) || (end > map->max_offset) ||
625             (start >= end))
626                 return (KERN_INVALID_ADDRESS);
627
628         /*
629          * Find the entry prior to the proposed starting address; if it's part
630          * of an existing entry, this range is bogus.
631          */
632
633         if (vm_map_lookup_entry(map, start, &temp_entry))
634                 return (KERN_NO_SPACE);
635
636         prev_entry = temp_entry;
637
638         /*
639          * Assert that the next entry doesn't overlap the end point.
640          */
641
642         if ((prev_entry->next != &map->header) &&
643             (prev_entry->next->start < end))
644                 return (KERN_NO_SPACE);
645
646         protoeflags = 0;
647
648         if (cow & MAP_COPY_ON_WRITE)
649                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
650
651         if (cow & MAP_NOFAULT) {
652                 protoeflags |= MAP_ENTRY_NOFAULT;
653
654                 KASSERT(object == NULL,
655                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
656         }
657         if (cow & MAP_DISABLE_SYNCER)
658                 protoeflags |= MAP_ENTRY_NOSYNC;
659         if (cow & MAP_DISABLE_COREDUMP)
660                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
661
662         if (object) {
663                 /*
664                  * When object is non-NULL, it could be shared with another
665                  * process.  We have to set or clear OBJ_ONEMAPPING 
666                  * appropriately.
667                  */
668                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
669                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
670                 }
671         }
672         else if ((prev_entry != &map->header) &&
673                  (prev_entry->eflags == protoeflags) &&
674                  (prev_entry->end == start) &&
675                  (prev_entry->wired_count == 0) &&
676                  ((prev_entry->object.vm_object == NULL) ||
677                   vm_object_coalesce(prev_entry->object.vm_object,
678                                      OFF_TO_IDX(prev_entry->offset),
679                                      (vm_size_t)(prev_entry->end - prev_entry->start),
680                                      (vm_size_t)(end - prev_entry->end)))) {
681                 /*
682                  * We were able to extend the object.  Determine if we
683                  * can extend the previous map entry to include the 
684                  * new range as well.
685                  */
686                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
687                     (prev_entry->protection == prot) &&
688                     (prev_entry->max_protection == max)) {
689                         map->size += (end - prev_entry->end);
690                         prev_entry->end = end;
691                         vm_map_simplify_entry(map, prev_entry, countp);
692                         return (KERN_SUCCESS);
693                 }
694
695                 /*
696                  * If we can extend the object but cannot extend the
697                  * map entry, we have to create a new map entry.  We
698                  * must bump the ref count on the extended object to
699                  * account for it.  object may be NULL.
700                  */
701                 object = prev_entry->object.vm_object;
702                 offset = prev_entry->offset +
703                         (prev_entry->end - prev_entry->start);
704                 vm_object_reference(object);
705         }
706
707         /*
708          * NOTE: if conditionals fail, object can be NULL here.  This occurs
709          * in things like the buffer map where we manage kva but do not manage
710          * backing objects.
711          */
712
713         /*
714          * Create a new entry
715          */
716
717         new_entry = vm_map_entry_create(map, countp);
718         new_entry->start = start;
719         new_entry->end = end;
720
721         new_entry->eflags = protoeflags;
722         new_entry->object.vm_object = object;
723         new_entry->offset = offset;
724         new_entry->avail_ssize = 0;
725
726         new_entry->inheritance = VM_INHERIT_DEFAULT;
727         new_entry->protection = prot;
728         new_entry->max_protection = max;
729         new_entry->wired_count = 0;
730
731         /*
732          * Insert the new entry into the list
733          */
734
735         vm_map_entry_link(map, prev_entry, new_entry);
736         map->size += new_entry->end - new_entry->start;
737
738         /*
739          * Update the free space hint
740          */
741         if ((map->first_free == prev_entry) &&
742             (prev_entry->end >= new_entry->start)) {
743                 map->first_free = new_entry;
744         }
745
746 #if 0
747         /*
748          * Temporarily removed to avoid MAP_STACK panic, due to
749          * MAP_STACK being a huge hack.  Will be added back in
750          * when MAP_STACK (and the user stack mapping) is fixed.
751          */
752         /*
753          * It may be possible to simplify the entry
754          */
755         vm_map_simplify_entry(map, new_entry, countp);
756 #endif
757
758         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
759                 pmap_object_init_pt(map->pmap, start,
760                                     object, OFF_TO_IDX(offset), end - start,
761                                     cow & MAP_PREFAULT_PARTIAL);
762         }
763
764         return (KERN_SUCCESS);
765 }
766
767 /*
768  * Find sufficient space for `length' bytes in the given map, starting at
769  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
770  *
771  * This function will returned an arbitrarily aligned pointer.  If no
772  * particular alignment is required you should pass align as 1.  Note that
773  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
774  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
775  * argument.
776  *
777  * 'align' should be a power of 2 but is not required to be.
778  */
779 int
780 vm_map_findspace(
781         vm_map_t map,
782         vm_offset_t start,
783         vm_size_t length,
784         vm_offset_t align,
785         vm_offset_t *addr)
786 {
787         vm_map_entry_t entry, next;
788         vm_offset_t end;
789         vm_offset_t align_mask;
790
791         if (start < map->min_offset)
792                 start = map->min_offset;
793         if (start > map->max_offset)
794                 return (1);
795
796         /*
797          * If the alignment is not a power of 2 we will have to use
798          * a mod/division, set align_mask to a special value.
799          */
800         if ((align | (align - 1)) + 1 != (align << 1))
801                 align_mask = (vm_offset_t)-1;
802         else
803                 align_mask = align - 1;
804
805 retry:
806         /*
807          * Look for the first possible address; if there's already something
808          * at this address, we have to start after it.
809          */
810         if (start == map->min_offset) {
811                 if ((entry = map->first_free) != &map->header)
812                         start = entry->end;
813         } else {
814                 vm_map_entry_t tmp;
815
816                 if (vm_map_lookup_entry(map, start, &tmp))
817                         start = tmp->end;
818                 entry = tmp;
819         }
820
821         /*
822          * Look through the rest of the map, trying to fit a new region in the
823          * gap between existing regions, or after the very last region.
824          */
825         for (;; start = (entry = next)->end) {
826                 /*
827                  * Adjust the proposed start by the requested alignment,
828                  * be sure that we didn't wrap the address.
829                  */
830                 if (align_mask == (vm_offset_t)-1)
831                         end = ((start + align - 1) / align) * align;
832                 else
833                         end = (start + align_mask) & ~align_mask;
834                 if (end < start)
835                         return (1);
836                 start = end;
837                 /*
838                  * Find the end of the proposed new region.  Be sure we didn't
839                  * go beyond the end of the map, or wrap around the address.
840                  * Then check to see if this is the last entry or if the 
841                  * proposed end fits in the gap between this and the next
842                  * entry.
843                  */
844                 end = start + length;
845                 if (end > map->max_offset || end < start)
846                         return (1);
847                 next = entry->next;
848                 if (next == &map->header || next->start >= end)
849                         break;
850         }
851         SAVE_HINT(map, entry);
852         if (map == kernel_map) {
853                 vm_offset_t ksize;
854                 if ((ksize = round_page(start + length)) > kernel_vm_end) {
855                         pmap_growkernel(ksize);
856                         goto retry;
857                 }
858         }
859         *addr = start;
860         return (0);
861 }
862
863 /*
864  *      vm_map_find finds an unallocated region in the target address
865  *      map with the given length.  The search is defined to be
866  *      first-fit from the specified address; the region found is
867  *      returned in the same parameter.
868  *
869  *      If object is non-NULL, ref count must be bumped by caller
870  *      prior to making call to account for the new entry.
871  */
872 int
873 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
874             vm_offset_t *addr,  /* IN/OUT */
875             vm_size_t length, boolean_t find_space, vm_prot_t prot,
876             vm_prot_t max, int cow)
877 {
878         vm_offset_t start;
879         int result;
880         int count;
881
882         start = *addr;
883
884         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
885         vm_map_lock(map);
886         if (find_space) {
887                 if (vm_map_findspace(map, start, length, 1, addr)) {
888                         vm_map_unlock(map);
889                         vm_map_entry_release(count);
890                         return (KERN_NO_SPACE);
891                 }
892                 start = *addr;
893         }
894         result = vm_map_insert(map, &count, object, offset,
895                 start, start + length, prot, max, cow);
896         vm_map_unlock(map);
897         vm_map_entry_release(count);
898
899         return (result);
900 }
901
902 /*
903  *      vm_map_simplify_entry:
904  *
905  *      Simplify the given map entry by merging with either neighbor.  This
906  *      routine also has the ability to merge with both neighbors.
907  *
908  *      The map must be locked.
909  *
910  *      This routine guarentees that the passed entry remains valid (though
911  *      possibly extended).  When merging, this routine may delete one or
912  *      both neighbors.  No action is taken on entries which have their
913  *      in-transition flag set.
914  */
915 void
916 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
917 {
918         vm_map_entry_t next, prev;
919         vm_size_t prevsize, esize;
920
921         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
922                 ++mycpu->gd_cnt.v_intrans_coll;
923                 return;
924         }
925
926         prev = entry->prev;
927         if (prev != &map->header) {
928                 prevsize = prev->end - prev->start;
929                 if ( (prev->end == entry->start) &&
930                      (prev->object.vm_object == entry->object.vm_object) &&
931                      (!prev->object.vm_object ||
932                         (prev->offset + prevsize == entry->offset)) &&
933                      (prev->eflags == entry->eflags) &&
934                      (prev->protection == entry->protection) &&
935                      (prev->max_protection == entry->max_protection) &&
936                      (prev->inheritance == entry->inheritance) &&
937                      (prev->wired_count == entry->wired_count)) {
938                         if (map->first_free == prev)
939                                 map->first_free = entry;
940                         if (map->hint == prev)
941                                 map->hint = entry;
942                         vm_map_entry_unlink(map, prev);
943                         entry->start = prev->start;
944                         entry->offset = prev->offset;
945                         if (prev->object.vm_object)
946                                 vm_object_deallocate(prev->object.vm_object);
947                         vm_map_entry_dispose(map, prev, countp);
948                 }
949         }
950
951         next = entry->next;
952         if (next != &map->header) {
953                 esize = entry->end - entry->start;
954                 if ((entry->end == next->start) &&
955                     (next->object.vm_object == entry->object.vm_object) &&
956                      (!entry->object.vm_object ||
957                         (entry->offset + esize == next->offset)) &&
958                     (next->eflags == entry->eflags) &&
959                     (next->protection == entry->protection) &&
960                     (next->max_protection == entry->max_protection) &&
961                     (next->inheritance == entry->inheritance) &&
962                     (next->wired_count == entry->wired_count)) {
963                         if (map->first_free == next)
964                                 map->first_free = entry;
965                         if (map->hint == next)
966                                 map->hint = entry;
967                         vm_map_entry_unlink(map, next);
968                         entry->end = next->end;
969                         if (next->object.vm_object)
970                                 vm_object_deallocate(next->object.vm_object);
971                         vm_map_entry_dispose(map, next, countp);
972                 }
973         }
974 }
975 /*
976  *      vm_map_clip_start:      [ internal use only ]
977  *
978  *      Asserts that the given entry begins at or after
979  *      the specified address; if necessary,
980  *      it splits the entry into two.
981  */
982 #define vm_map_clip_start(map, entry, startaddr, countp) \
983 { \
984         if (startaddr > entry->start) \
985                 _vm_map_clip_start(map, entry, startaddr, countp); \
986 }
987
988 /*
989  *      This routine is called only when it is known that
990  *      the entry must be split.
991  */
992 static void
993 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
994 {
995         vm_map_entry_t new_entry;
996
997         /*
998          * Split off the front portion -- note that we must insert the new
999          * entry BEFORE this one, so that this entry has the specified
1000          * starting address.
1001          */
1002
1003         vm_map_simplify_entry(map, entry, countp);
1004
1005         /*
1006          * If there is no object backing this entry, we might as well create
1007          * one now.  If we defer it, an object can get created after the map
1008          * is clipped, and individual objects will be created for the split-up
1009          * map.  This is a bit of a hack, but is also about the best place to
1010          * put this improvement.
1011          */
1012
1013         if (entry->object.vm_object == NULL && !map->system_map) {
1014                 vm_object_t object;
1015                 object = vm_object_allocate(OBJT_DEFAULT,
1016                                 atop(entry->end - entry->start));
1017                 entry->object.vm_object = object;
1018                 entry->offset = 0;
1019         }
1020
1021         new_entry = vm_map_entry_create(map, countp);
1022         *new_entry = *entry;
1023
1024         new_entry->end = start;
1025         entry->offset += (start - entry->start);
1026         entry->start = start;
1027
1028         vm_map_entry_link(map, entry->prev, new_entry);
1029
1030         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1031                 vm_object_reference(new_entry->object.vm_object);
1032         }
1033 }
1034
1035 /*
1036  *      vm_map_clip_end:        [ internal use only ]
1037  *
1038  *      Asserts that the given entry ends at or before
1039  *      the specified address; if necessary,
1040  *      it splits the entry into two.
1041  */
1042
1043 #define vm_map_clip_end(map, entry, endaddr, countp) \
1044 { \
1045         if (endaddr < entry->end) \
1046                 _vm_map_clip_end(map, entry, endaddr, countp); \
1047 }
1048
1049 /*
1050  *      This routine is called only when it is known that
1051  *      the entry must be split.
1052  */
1053 static void
1054 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1055 {
1056         vm_map_entry_t new_entry;
1057
1058         /*
1059          * If there is no object backing this entry, we might as well create
1060          * one now.  If we defer it, an object can get created after the map
1061          * is clipped, and individual objects will be created for the split-up
1062          * map.  This is a bit of a hack, but is also about the best place to
1063          * put this improvement.
1064          */
1065
1066         if (entry->object.vm_object == NULL && !map->system_map) {
1067                 vm_object_t object;
1068                 object = vm_object_allocate(OBJT_DEFAULT,
1069                                 atop(entry->end - entry->start));
1070                 entry->object.vm_object = object;
1071                 entry->offset = 0;
1072         }
1073
1074         /*
1075          * Create a new entry and insert it AFTER the specified entry
1076          */
1077
1078         new_entry = vm_map_entry_create(map, countp);
1079         *new_entry = *entry;
1080
1081         new_entry->start = entry->end = end;
1082         new_entry->offset += (end - entry->start);
1083
1084         vm_map_entry_link(map, entry, new_entry);
1085
1086         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1087                 vm_object_reference(new_entry->object.vm_object);
1088         }
1089 }
1090
1091 /*
1092  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
1093  *
1094  *      Asserts that the starting and ending region
1095  *      addresses fall within the valid range of the map.
1096  */
1097 #define VM_MAP_RANGE_CHECK(map, start, end)             \
1098                 {                                       \
1099                 if (start < vm_map_min(map))            \
1100                         start = vm_map_min(map);        \
1101                 if (end > vm_map_max(map))              \
1102                         end = vm_map_max(map);          \
1103                 if (start > end)                        \
1104                         start = end;                    \
1105                 }
1106
1107 /*
1108  *      vm_map_transition_wait: [ kernel use only ]
1109  *
1110  *      Used to block when an in-transition collison occurs.  The map
1111  *      is unlocked for the sleep and relocked before the return.
1112  */
1113 static
1114 void
1115 vm_map_transition_wait(vm_map_t map)
1116 {
1117         vm_map_unlock(map);
1118         tsleep(map, 0, "vment", 0);
1119         vm_map_lock(map);
1120 }
1121
1122 /*
1123  * CLIP_CHECK_BACK
1124  * CLIP_CHECK_FWD
1125  *
1126  *      When we do blocking operations with the map lock held it is
1127  *      possible that a clip might have occured on our in-transit entry,
1128  *      requiring an adjustment to the entry in our loop.  These macros
1129  *      help the pageable and clip_range code deal with the case.  The
1130  *      conditional costs virtually nothing if no clipping has occured.
1131  */
1132
1133 #define CLIP_CHECK_BACK(entry, save_start)              \
1134     do {                                                \
1135             while (entry->start != save_start) {        \
1136                     entry = entry->prev;                \
1137                     KASSERT(entry != &map->header, ("bad entry clip")); \
1138             }                                           \
1139     } while(0)
1140
1141 #define CLIP_CHECK_FWD(entry, save_end)                 \
1142     do {                                                \
1143             while (entry->end != save_end) {            \
1144                     entry = entry->next;                \
1145                     KASSERT(entry != &map->header, ("bad entry clip")); \
1146             }                                           \
1147     } while(0)
1148
1149
1150 /*
1151  *      vm_map_clip_range:      [ kernel use only ]
1152  *
1153  *      Clip the specified range and return the base entry.  The
1154  *      range may cover several entries starting at the returned base
1155  *      and the first and last entry in the covering sequence will be
1156  *      properly clipped to the requested start and end address.
1157  *
1158  *      If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1159  *      flag.  
1160  *
1161  *      The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1162  *      covered by the requested range.
1163  *
1164  *      The map must be exclusively locked on entry and will remain locked
1165  *      on return. If no range exists or the range contains holes and you
1166  *      specified that no holes were allowed, NULL will be returned.  This
1167  *      routine may temporarily unlock the map in order avoid a deadlock when
1168  *      sleeping.
1169  */
1170 static
1171 vm_map_entry_t
1172 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1173         int *countp, int flags)
1174 {
1175         vm_map_entry_t start_entry;
1176         vm_map_entry_t entry;
1177
1178         /*
1179          * Locate the entry and effect initial clipping.  The in-transition
1180          * case does not occur very often so do not try to optimize it.
1181          */
1182 again:
1183         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1184                 return (NULL);
1185         entry = start_entry;
1186         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1187                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1188                 ++mycpu->gd_cnt.v_intrans_coll;
1189                 ++mycpu->gd_cnt.v_intrans_wait;
1190                 vm_map_transition_wait(map);
1191                 /*
1192                  * entry and/or start_entry may have been clipped while
1193                  * we slept, or may have gone away entirely.  We have
1194                  * to restart from the lookup.
1195                  */
1196                 goto again;
1197         }
1198         /*
1199          * Since we hold an exclusive map lock we do not have to restart
1200          * after clipping, even though clipping may block in zalloc.
1201          */
1202         vm_map_clip_start(map, entry, start, countp);
1203         vm_map_clip_end(map, entry, end, countp);
1204         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1205
1206         /*
1207          * Scan entries covered by the range.  When working on the next
1208          * entry a restart need only re-loop on the current entry which
1209          * we have already locked, since 'next' may have changed.  Also,
1210          * even though entry is safe, it may have been clipped so we
1211          * have to iterate forwards through the clip after sleeping.
1212          */
1213         while (entry->next != &map->header && entry->next->start < end) {
1214                 vm_map_entry_t next = entry->next;
1215
1216                 if (flags & MAP_CLIP_NO_HOLES) {
1217                         if (next->start > entry->end) {
1218                                 vm_map_unclip_range(map, start_entry,
1219                                         start, entry->end, countp, flags);
1220                                 return(NULL);
1221                         }
1222                 }
1223
1224                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1225                         vm_offset_t save_end = entry->end;
1226                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1227                         ++mycpu->gd_cnt.v_intrans_coll;
1228                         ++mycpu->gd_cnt.v_intrans_wait;
1229                         vm_map_transition_wait(map);
1230
1231                         /*
1232                          * clips might have occured while we blocked.
1233                          */
1234                         CLIP_CHECK_FWD(entry, save_end);
1235                         CLIP_CHECK_BACK(start_entry, start);
1236                         continue;
1237                 }
1238                 /*
1239                  * No restart necessary even though clip_end may block, we
1240                  * are holding the map lock.
1241                  */
1242                 vm_map_clip_end(map, next, end, countp);
1243                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1244                 entry = next;
1245         }
1246         if (flags & MAP_CLIP_NO_HOLES) {
1247                 if (entry->end != end) {
1248                         vm_map_unclip_range(map, start_entry,
1249                                 start, entry->end, countp, flags);
1250                         return(NULL);
1251                 }
1252         }
1253         return(start_entry);
1254 }
1255
1256 /*
1257  *      vm_map_unclip_range:    [ kernel use only ]
1258  *
1259  *      Undo the effect of vm_map_clip_range().  You should pass the same
1260  *      flags and the same range that you passed to vm_map_clip_range().
1261  *      This code will clear the in-transition flag on the entries and
1262  *      wake up anyone waiting.  This code will also simplify the sequence 
1263  *      and attempt to merge it with entries before and after the sequence.
1264  *
1265  *      The map must be locked on entry and will remain locked on return.
1266  *
1267  *      Note that you should also pass the start_entry returned by 
1268  *      vm_map_clip_range().  However, if you block between the two calls
1269  *      with the map unlocked please be aware that the start_entry may
1270  *      have been clipped and you may need to scan it backwards to find
1271  *      the entry corresponding with the original start address.  You are
1272  *      responsible for this, vm_map_unclip_range() expects the correct
1273  *      start_entry to be passed to it and will KASSERT otherwise.
1274  */
1275 static
1276 void
1277 vm_map_unclip_range(
1278         vm_map_t map,
1279         vm_map_entry_t start_entry,
1280         vm_offset_t start,
1281         vm_offset_t end,
1282         int *countp,
1283         int flags)
1284 {
1285         vm_map_entry_t entry;
1286
1287         entry = start_entry;
1288
1289         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1290         while (entry != &map->header && entry->start < end) {
1291                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1292                 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1293                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1294                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1295                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1296                         wakeup(map);
1297                 }
1298                 entry = entry->next;
1299         }
1300
1301         /*
1302          * Simplification does not block so there is no restart case.
1303          */
1304         entry = start_entry;
1305         while (entry != &map->header && entry->start < end) {
1306                 vm_map_simplify_entry(map, entry, countp);
1307                 entry = entry->next;
1308         }
1309 }
1310
1311 /*
1312  *      vm_map_submap:          [ kernel use only ]
1313  *
1314  *      Mark the given range as handled by a subordinate map.
1315  *
1316  *      This range must have been created with vm_map_find,
1317  *      and no other operations may have been performed on this
1318  *      range prior to calling vm_map_submap.
1319  *
1320  *      Only a limited number of operations can be performed
1321  *      within this rage after calling vm_map_submap:
1322  *              vm_fault
1323  *      [Don't try vm_map_copy!]
1324  *
1325  *      To remove a submapping, one must first remove the
1326  *      range from the superior map, and then destroy the
1327  *      submap (if desired).  [Better yet, don't try it.]
1328  */
1329 int
1330 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1331 {
1332         vm_map_entry_t entry;
1333         int result = KERN_INVALID_ARGUMENT;
1334         int count;
1335
1336         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1337         vm_map_lock(map);
1338
1339         VM_MAP_RANGE_CHECK(map, start, end);
1340
1341         if (vm_map_lookup_entry(map, start, &entry)) {
1342                 vm_map_clip_start(map, entry, start, &count);
1343         } else {
1344                 entry = entry->next;
1345         }
1346
1347         vm_map_clip_end(map, entry, end, &count);
1348
1349         if ((entry->start == start) && (entry->end == end) &&
1350             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1351             (entry->object.vm_object == NULL)) {
1352                 entry->object.sub_map = submap;
1353                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1354                 result = KERN_SUCCESS;
1355         }
1356         vm_map_unlock(map);
1357         vm_map_entry_release(count);
1358
1359         return (result);
1360 }
1361
1362 /*
1363  *      vm_map_protect:
1364  *
1365  *      Sets the protection of the specified address
1366  *      region in the target map.  If "set_max" is
1367  *      specified, the maximum protection is to be set;
1368  *      otherwise, only the current protection is affected.
1369  */
1370 int
1371 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1372                vm_prot_t new_prot, boolean_t set_max)
1373 {
1374         vm_map_entry_t current;
1375         vm_map_entry_t entry;
1376         int count;
1377
1378         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1379         vm_map_lock(map);
1380
1381         VM_MAP_RANGE_CHECK(map, start, end);
1382
1383         if (vm_map_lookup_entry(map, start, &entry)) {
1384                 vm_map_clip_start(map, entry, start, &count);
1385         } else {
1386                 entry = entry->next;
1387         }
1388
1389         /*
1390          * Make a first pass to check for protection violations.
1391          */
1392
1393         current = entry;
1394         while ((current != &map->header) && (current->start < end)) {
1395                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1396                         vm_map_unlock(map);
1397                         vm_map_entry_release(count);
1398                         return (KERN_INVALID_ARGUMENT);
1399                 }
1400                 if ((new_prot & current->max_protection) != new_prot) {
1401                         vm_map_unlock(map);
1402                         vm_map_entry_release(count);
1403                         return (KERN_PROTECTION_FAILURE);
1404                 }
1405                 current = current->next;
1406         }
1407
1408         /*
1409          * Go back and fix up protections. [Note that clipping is not
1410          * necessary the second time.]
1411          */
1412         current = entry;
1413
1414         while ((current != &map->header) && (current->start < end)) {
1415                 vm_prot_t old_prot;
1416
1417                 vm_map_clip_end(map, current, end, &count);
1418
1419                 old_prot = current->protection;
1420                 if (set_max)
1421                         current->protection =
1422                             (current->max_protection = new_prot) &
1423                             old_prot;
1424                 else
1425                         current->protection = new_prot;
1426
1427                 /*
1428                  * Update physical map if necessary. Worry about copy-on-write
1429                  * here -- CHECK THIS XXX
1430                  */
1431
1432                 if (current->protection != old_prot) {
1433 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1434                                                         VM_PROT_ALL)
1435
1436                         pmap_protect(map->pmap, current->start,
1437                             current->end,
1438                             current->protection & MASK(current));
1439 #undef  MASK
1440                 }
1441
1442                 vm_map_simplify_entry(map, current, &count);
1443
1444                 current = current->next;
1445         }
1446
1447         vm_map_unlock(map);
1448         vm_map_entry_release(count);
1449         return (KERN_SUCCESS);
1450 }
1451
1452 /*
1453  *      vm_map_madvise:
1454  *
1455  *      This routine traverses a processes map handling the madvise
1456  *      system call.  Advisories are classified as either those effecting
1457  *      the vm_map_entry structure, or those effecting the underlying 
1458  *      objects.
1459  */
1460
1461 int
1462 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1463 {
1464         vm_map_entry_t current, entry;
1465         int modify_map = 0;
1466         int count;
1467
1468         /*
1469          * Some madvise calls directly modify the vm_map_entry, in which case
1470          * we need to use an exclusive lock on the map and we need to perform 
1471          * various clipping operations.  Otherwise we only need a read-lock
1472          * on the map.
1473          */
1474
1475         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1476
1477         switch(behav) {
1478         case MADV_NORMAL:
1479         case MADV_SEQUENTIAL:
1480         case MADV_RANDOM:
1481         case MADV_NOSYNC:
1482         case MADV_AUTOSYNC:
1483         case MADV_NOCORE:
1484         case MADV_CORE:
1485                 modify_map = 1;
1486                 vm_map_lock(map);
1487                 break;
1488         case MADV_WILLNEED:
1489         case MADV_DONTNEED:
1490         case MADV_FREE:
1491                 vm_map_lock_read(map);
1492                 break;
1493         default:
1494                 vm_map_entry_release(count);
1495                 return (KERN_INVALID_ARGUMENT);
1496         }
1497
1498         /*
1499          * Locate starting entry and clip if necessary.
1500          */
1501
1502         VM_MAP_RANGE_CHECK(map, start, end);
1503
1504         if (vm_map_lookup_entry(map, start, &entry)) {
1505                 if (modify_map)
1506                         vm_map_clip_start(map, entry, start, &count);
1507         } else {
1508                 entry = entry->next;
1509         }
1510
1511         if (modify_map) {
1512                 /*
1513                  * madvise behaviors that are implemented in the vm_map_entry.
1514                  *
1515                  * We clip the vm_map_entry so that behavioral changes are
1516                  * limited to the specified address range.
1517                  */
1518                 for (current = entry;
1519                      (current != &map->header) && (current->start < end);
1520                      current = current->next
1521                 ) {
1522                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1523                                 continue;
1524
1525                         vm_map_clip_end(map, current, end, &count);
1526
1527                         switch (behav) {
1528                         case MADV_NORMAL:
1529                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1530                                 break;
1531                         case MADV_SEQUENTIAL:
1532                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1533                                 break;
1534                         case MADV_RANDOM:
1535                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1536                                 break;
1537                         case MADV_NOSYNC:
1538                                 current->eflags |= MAP_ENTRY_NOSYNC;
1539                                 break;
1540                         case MADV_AUTOSYNC:
1541                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1542                                 break;
1543                         case MADV_NOCORE:
1544                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1545                                 break;
1546                         case MADV_CORE:
1547                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1548                                 break;
1549                         default:
1550                                 break;
1551                         }
1552                         vm_map_simplify_entry(map, current, &count);
1553                 }
1554                 vm_map_unlock(map);
1555         } else {
1556                 vm_pindex_t pindex;
1557                 int count;
1558
1559                 /*
1560                  * madvise behaviors that are implemented in the underlying
1561                  * vm_object.
1562                  *
1563                  * Since we don't clip the vm_map_entry, we have to clip
1564                  * the vm_object pindex and count.
1565                  */
1566                 for (current = entry;
1567                      (current != &map->header) && (current->start < end);
1568                      current = current->next
1569                 ) {
1570                         vm_offset_t useStart;
1571
1572                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1573                                 continue;
1574
1575                         pindex = OFF_TO_IDX(current->offset);
1576                         count = atop(current->end - current->start);
1577                         useStart = current->start;
1578
1579                         if (current->start < start) {
1580                                 pindex += atop(start - current->start);
1581                                 count -= atop(start - current->start);
1582                                 useStart = start;
1583                         }
1584                         if (current->end > end)
1585                                 count -= atop(current->end - end);
1586
1587                         if (count <= 0)
1588                                 continue;
1589
1590                         vm_object_madvise(current->object.vm_object,
1591                                           pindex, count, behav);
1592                         if (behav == MADV_WILLNEED) {
1593                                 pmap_object_init_pt(
1594                                     map->pmap, 
1595                                     useStart,
1596                                     current->object.vm_object,
1597                                     pindex, 
1598                                     (count << PAGE_SHIFT),
1599                                     MAP_PREFAULT_MADVISE
1600                                 );
1601                         }
1602                 }
1603                 vm_map_unlock_read(map);
1604         }
1605         vm_map_entry_release(count);
1606         return(0);
1607 }       
1608
1609
1610 /*
1611  *      vm_map_inherit:
1612  *
1613  *      Sets the inheritance of the specified address
1614  *      range in the target map.  Inheritance
1615  *      affects how the map will be shared with
1616  *      child maps at the time of vm_map_fork.
1617  */
1618 int
1619 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1620                vm_inherit_t new_inheritance)
1621 {
1622         vm_map_entry_t entry;
1623         vm_map_entry_t temp_entry;
1624         int count;
1625
1626         switch (new_inheritance) {
1627         case VM_INHERIT_NONE:
1628         case VM_INHERIT_COPY:
1629         case VM_INHERIT_SHARE:
1630                 break;
1631         default:
1632                 return (KERN_INVALID_ARGUMENT);
1633         }
1634
1635         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1636         vm_map_lock(map);
1637
1638         VM_MAP_RANGE_CHECK(map, start, end);
1639
1640         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1641                 entry = temp_entry;
1642                 vm_map_clip_start(map, entry, start, &count);
1643         } else
1644                 entry = temp_entry->next;
1645
1646         while ((entry != &map->header) && (entry->start < end)) {
1647                 vm_map_clip_end(map, entry, end, &count);
1648
1649                 entry->inheritance = new_inheritance;
1650
1651                 vm_map_simplify_entry(map, entry, &count);
1652
1653                 entry = entry->next;
1654         }
1655         vm_map_unlock(map);
1656         vm_map_entry_release(count);
1657         return (KERN_SUCCESS);
1658 }
1659
1660 /*
1661  * Implement the semantics of mlock
1662  */
1663 int
1664 vm_map_unwire(map, start, real_end, new_pageable)
1665         vm_map_t map;
1666         vm_offset_t start;
1667         vm_offset_t real_end;
1668         boolean_t new_pageable;
1669 {
1670         vm_map_entry_t entry;
1671         vm_map_entry_t start_entry;
1672         vm_offset_t end;
1673         int rv = KERN_SUCCESS;
1674         int count;
1675
1676         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1677         vm_map_lock(map);
1678         VM_MAP_RANGE_CHECK(map, start, real_end);
1679         end = real_end;
1680
1681         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1682         if (start_entry == NULL) {
1683                 vm_map_unlock(map);
1684                 vm_map_entry_release(count);
1685                 return (KERN_INVALID_ADDRESS);
1686         }
1687
1688         if (new_pageable == 0) {
1689                 entry = start_entry;
1690                 while ((entry != &map->header) && (entry->start < end)) {
1691                         vm_offset_t save_start;
1692                         vm_offset_t save_end;
1693
1694                         /*
1695                          * Already user wired or hard wired (trivial cases)
1696                          */
1697                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1698                                 entry = entry->next;
1699                                 continue;
1700                         }
1701                         if (entry->wired_count != 0) {
1702                                 entry->wired_count++;
1703                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
1704                                 entry = entry->next;
1705                                 continue;
1706                         }
1707
1708                         /*
1709                          * A new wiring requires instantiation of appropriate
1710                          * management structures and the faulting in of the
1711                          * page.
1712                          */
1713                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1714                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1715                                 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1716
1717                                         vm_object_shadow(&entry->object.vm_object,
1718                                             &entry->offset,
1719                                             atop(entry->end - entry->start));
1720                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1721
1722                                 } else if (entry->object.vm_object == NULL &&
1723                                            !map->system_map) {
1724
1725                                         entry->object.vm_object =
1726                                             vm_object_allocate(OBJT_DEFAULT,
1727                                                 atop(entry->end - entry->start));
1728                                         entry->offset = (vm_offset_t) 0;
1729
1730                                 }
1731                         }
1732                         entry->wired_count++;
1733                         entry->eflags |= MAP_ENTRY_USER_WIRED;
1734
1735                         /*
1736                          * Now fault in the area.  The map lock needs to be
1737                          * manipulated to avoid deadlocks.  The in-transition
1738                          * flag protects the entries. 
1739                          */
1740                         save_start = entry->start;
1741                         save_end = entry->end;
1742                         vm_map_unlock(map);
1743                         map->timestamp++;
1744                         rv = vm_fault_user_wire(map, save_start, save_end);
1745                         vm_map_lock(map);
1746                         if (rv) {
1747                                 CLIP_CHECK_BACK(entry, save_start);
1748                                 for (;;) {
1749                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1750                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1751                                         entry->wired_count = 0;
1752                                         if (entry->end == save_end)
1753                                                 break;
1754                                         entry = entry->next;
1755                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1756                                 }
1757                                 end = save_start;       /* unwire the rest */
1758                                 break;
1759                         }
1760                         /*
1761                          * note that even though the entry might have been
1762                          * clipped, the USER_WIRED flag we set prevents
1763                          * duplication so we do not have to do a 
1764                          * clip check.
1765                          */
1766                         entry = entry->next;
1767                 }
1768
1769                 /*
1770                  * If we failed fall through to the unwiring section to
1771                  * unwire what we had wired so far.  'end' has already
1772                  * been adjusted.
1773                  */
1774                 if (rv)
1775                         new_pageable = 1;
1776
1777                 /*
1778                  * start_entry might have been clipped if we unlocked the
1779                  * map and blocked.  No matter how clipped it has gotten
1780                  * there should be a fragment that is on our start boundary.
1781                  */
1782                 CLIP_CHECK_BACK(start_entry, start);
1783         }
1784
1785         /*
1786          * Deal with the unwiring case.
1787          */
1788         if (new_pageable) {
1789                 /*
1790                  * This is the unwiring case.  We must first ensure that the
1791                  * range to be unwired is really wired down.  We know there
1792                  * are no holes.
1793                  */
1794                 entry = start_entry;
1795                 while ((entry != &map->header) && (entry->start < end)) {
1796                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1797                                 rv = KERN_INVALID_ARGUMENT;
1798                                 goto done;
1799                         }
1800                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1801                         entry = entry->next;
1802                 }
1803
1804                 /*
1805                  * Now decrement the wiring count for each region. If a region
1806                  * becomes completely unwired, unwire its physical pages and
1807                  * mappings.
1808                  */
1809                 while ((entry != &map->header) && (entry->start < end)) {
1810                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1811                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1812                         entry->wired_count--;
1813                         if (entry->wired_count == 0)
1814                                 vm_fault_unwire(map, entry->start, entry->end);
1815                         entry = entry->next;
1816                 }
1817         }
1818 done:
1819         vm_map_unclip_range(map, start_entry, start, real_end, &count,
1820                 MAP_CLIP_NO_HOLES);
1821         map->timestamp++;
1822         vm_map_unlock(map);
1823         vm_map_entry_release(count);
1824         return (rv);
1825 }
1826
1827 /*
1828  *      vm_map_wire:
1829  *
1830  *      Sets the pageability of the specified address
1831  *      range in the target map.  Regions specified
1832  *      as not pageable require locked-down physical
1833  *      memory and physical page maps.
1834  *
1835  *      The map must not be locked, but a reference
1836  *      must remain to the map throughout the call.
1837  *
1838  *      This function may be called via the zalloc path and must properly
1839  *      reserve map entries for kernel_map.
1840  */
1841 int
1842 vm_map_wire(vm_map_t map, vm_offset_t start, 
1843         vm_offset_t real_end, boolean_t new_pageable)
1844 {
1845         vm_map_entry_t entry;
1846         vm_map_entry_t start_entry;
1847         vm_offset_t end;
1848         int rv = KERN_SUCCESS;
1849         int count;
1850         int s;
1851
1852         if (map == kernel_map)
1853                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1854         else
1855                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1856         vm_map_lock(map);
1857         VM_MAP_RANGE_CHECK(map, start, real_end);
1858         end = real_end;
1859
1860         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1861         if (start_entry == NULL) {
1862                 vm_map_unlock(map);
1863                 rv = KERN_INVALID_ADDRESS;
1864                 goto failure;
1865         }
1866         if (new_pageable == 0) {
1867                 /*
1868                  * Wiring.  
1869                  *
1870                  * 1.  Holding the write lock, we create any shadow or zero-fill
1871                  * objects that need to be created. Then we clip each map
1872                  * entry to the region to be wired and increment its wiring
1873                  * count.  We create objects before clipping the map entries
1874                  * to avoid object proliferation.
1875                  *
1876                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
1877                  * fault in the pages for any newly wired area (wired_count is
1878                  * 1).
1879                  *
1880                  * Downgrading to a read lock for vm_fault_wire avoids a 
1881                  * possible deadlock with another process that may have faulted
1882                  * on one of the pages to be wired (it would mark the page busy,
1883                  * blocking us, then in turn block on the map lock that we
1884                  * hold).  Because of problems in the recursive lock package,
1885                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1886                  * any actions that require the write lock must be done
1887                  * beforehand.  Because we keep the read lock on the map, the
1888                  * copy-on-write status of the entries we modify here cannot
1889                  * change.
1890                  */
1891
1892                 entry = start_entry;
1893                 while ((entry != &map->header) && (entry->start < end)) {
1894                         /*
1895                          * Trivial case if the entry is already wired
1896                          */
1897                         if (entry->wired_count) {
1898                                 entry->wired_count++;
1899                                 entry = entry->next;
1900                                 continue;
1901                         }
1902
1903                         /*
1904                          * The entry is being newly wired, we have to setup
1905                          * appropriate management structures.  A shadow 
1906                          * object is required for a copy-on-write region,
1907                          * or a normal object for a zero-fill region.  We
1908                          * do not have to do this for entries that point to sub
1909                          * maps because we won't hold the lock on the sub map.
1910                          */
1911                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1912                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1913                                 if (copyflag &&
1914                                     ((entry->protection & VM_PROT_WRITE) != 0)) {
1915
1916                                         vm_object_shadow(&entry->object.vm_object,
1917                                             &entry->offset,
1918                                             atop(entry->end - entry->start));
1919                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1920                                 } else if (entry->object.vm_object == NULL &&
1921                                            !map->system_map) {
1922                                         entry->object.vm_object =
1923                                             vm_object_allocate(OBJT_DEFAULT,
1924                                                 atop(entry->end - entry->start));
1925                                         entry->offset = (vm_offset_t) 0;
1926                                 }
1927                         }
1928
1929                         entry->wired_count++;
1930                         entry = entry->next;
1931                 }
1932
1933                 /*
1934                  * Pass 2.
1935                  */
1936
1937                 /*
1938                  * HACK HACK HACK HACK
1939                  *
1940                  * Unlock the map to avoid deadlocks.  The in-transit flag
1941                  * protects us from most changes but note that
1942                  * clipping may still occur.  To prevent clipping from
1943                  * occuring after the unlock, except for when we are
1944                  * blocking in vm_fault_wire, we must run at splvm().
1945                  * Otherwise our accesses to entry->start and entry->end
1946                  * could be corrupted.  We have to set splvm() prior to
1947                  * unlocking so start_entry does not change out from
1948                  * under us at the very beginning of the loop.
1949                  *
1950                  * HACK HACK HACK HACK
1951                  */
1952
1953                 s = splvm();
1954                 vm_map_unlock(map);
1955
1956                 entry = start_entry;
1957                 while (entry != &map->header && entry->start < end) {
1958                         /*
1959                          * If vm_fault_wire fails for any page we need to undo
1960                          * what has been done.  We decrement the wiring count
1961                          * for those pages which have not yet been wired (now)
1962                          * and unwire those that have (later).
1963                          */
1964                         vm_offset_t save_start = entry->start;
1965                         vm_offset_t save_end = entry->end;
1966
1967                         if (entry->wired_count == 1)
1968                                 rv = vm_fault_wire(map, entry->start, entry->end);
1969                         if (rv) {
1970                                 CLIP_CHECK_BACK(entry, save_start);
1971                                 for (;;) {
1972                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1973                                         entry->wired_count = 0;
1974                                         if (entry->end == save_end)
1975                                                 break;
1976                                         entry = entry->next;
1977                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1978                                 }
1979                                 end = save_start;
1980                                 break;
1981                         }
1982                         CLIP_CHECK_FWD(entry, save_end);
1983                         entry = entry->next;
1984                 }
1985                 splx(s);
1986
1987                 /*
1988                  * relock.  start_entry is still IN_TRANSITION and must
1989                  * still exist, but may have been clipped (handled just
1990                  * below).
1991                  */
1992                 vm_map_lock(map);
1993
1994                 /*
1995                  * If a failure occured undo everything by falling through
1996                  * to the unwiring code.  'end' has already been adjusted
1997                  * appropriately.
1998                  */
1999                 if (rv)
2000                         new_pageable = 1;
2001
2002                 /*
2003                  * start_entry might have been clipped if we unlocked the
2004                  * map and blocked.  No matter how clipped it has gotten
2005                  * there should be a fragment that is on our start boundary.
2006                  */
2007                 CLIP_CHECK_BACK(start_entry, start);
2008         }
2009
2010         if (new_pageable) {
2011                 /*
2012                  * This is the unwiring case.  We must first ensure that the
2013                  * range to be unwired is really wired down.  We know there
2014                  * are no holes.
2015                  */
2016                 entry = start_entry;
2017                 while ((entry != &map->header) && (entry->start < end)) {
2018                         if (entry->wired_count == 0) {
2019                                 rv = KERN_INVALID_ARGUMENT;
2020                                 goto done;
2021                         }
2022                         entry = entry->next;
2023                 }
2024
2025                 /*
2026                  * Now decrement the wiring count for each region. If a region
2027                  * becomes completely unwired, unwire its physical pages and
2028                  * mappings.
2029                  */
2030                 entry = start_entry;
2031                 while ((entry != &map->header) && (entry->start < end)) {
2032                         entry->wired_count--;
2033                         if (entry->wired_count == 0)
2034                                 vm_fault_unwire(map, entry->start, entry->end);
2035                         entry = entry->next;
2036                 }
2037         }
2038 done:
2039         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2040                 MAP_CLIP_NO_HOLES);
2041         map->timestamp++;
2042         vm_map_unlock(map);
2043 failure:
2044         if (map == kernel_map)
2045                 vm_map_entry_krelease(count);
2046         else
2047                 vm_map_entry_release(count);
2048         return (rv);
2049 }
2050
2051 /*
2052  * vm_map_set_wired_quick()
2053  *
2054  *      Mark a newly allocated address range as wired but do not fault in
2055  *      the pages.  The caller is expected to load the pages into the object.
2056  *
2057  *      The map must be locked on entry and will remain locked on return.
2058  */
2059 void
2060 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2061 {
2062         vm_map_entry_t scan;
2063         vm_map_entry_t entry;
2064
2065         entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2066         for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2067             KKASSERT(entry->wired_count == 0);
2068             entry->wired_count = 1;                                              
2069         }
2070         vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2071 }
2072
2073 /*
2074  * vm_map_clean
2075  *
2076  * Push any dirty cached pages in the address range to their pager.
2077  * If syncio is TRUE, dirty pages are written synchronously.
2078  * If invalidate is TRUE, any cached pages are freed as well.
2079  *
2080  * Returns an error if any part of the specified range is not mapped.
2081  */
2082 int
2083 vm_map_clean(map, start, end, syncio, invalidate)
2084         vm_map_t map;
2085         vm_offset_t start;
2086         vm_offset_t end;
2087         boolean_t syncio;
2088         boolean_t invalidate;
2089 {
2090         vm_map_entry_t current;
2091         vm_map_entry_t entry;
2092         vm_size_t size;
2093         vm_object_t object;
2094         vm_ooffset_t offset;
2095
2096         vm_map_lock_read(map);
2097         VM_MAP_RANGE_CHECK(map, start, end);
2098         if (!vm_map_lookup_entry(map, start, &entry)) {
2099                 vm_map_unlock_read(map);
2100                 return (KERN_INVALID_ADDRESS);
2101         }
2102         /*
2103          * Make a first pass to check for holes.
2104          */
2105         for (current = entry; current->start < end; current = current->next) {
2106                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2107                         vm_map_unlock_read(map);
2108                         return (KERN_INVALID_ARGUMENT);
2109                 }
2110                 if (end > current->end &&
2111                     (current->next == &map->header ||
2112                         current->end != current->next->start)) {
2113                         vm_map_unlock_read(map);
2114                         return (KERN_INVALID_ADDRESS);
2115                 }
2116         }
2117
2118         if (invalidate)
2119                 pmap_remove(vm_map_pmap(map), start, end);
2120         /*
2121          * Make a second pass, cleaning/uncaching pages from the indicated
2122          * objects as we go.
2123          */
2124         for (current = entry; current->start < end; current = current->next) {
2125                 offset = current->offset + (start - current->start);
2126                 size = (end <= current->end ? end : current->end) - start;
2127                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2128                         vm_map_t smap;
2129                         vm_map_entry_t tentry;
2130                         vm_size_t tsize;
2131
2132                         smap = current->object.sub_map;
2133                         vm_map_lock_read(smap);
2134                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2135                         tsize = tentry->end - offset;
2136                         if (tsize < size)
2137                                 size = tsize;
2138                         object = tentry->object.vm_object;
2139                         offset = tentry->offset + (offset - tentry->start);
2140                         vm_map_unlock_read(smap);
2141                 } else {
2142                         object = current->object.vm_object;
2143                 }
2144                 /*
2145                  * Note that there is absolutely no sense in writing out
2146                  * anonymous objects, so we track down the vnode object
2147                  * to write out.
2148                  * We invalidate (remove) all pages from the address space
2149                  * anyway, for semantic correctness.
2150                  *
2151                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2152                  * may start out with a NULL object.
2153                  */
2154                 while (object && object->backing_object) {
2155                         object = object->backing_object;
2156                         offset += object->backing_object_offset;
2157                         if (object->size < OFF_TO_IDX( offset + size))
2158                                 size = IDX_TO_OFF(object->size) - offset;
2159                 }
2160                 if (object && (object->type == OBJT_VNODE) && 
2161                     (current->protection & VM_PROT_WRITE)) {
2162                         /*
2163                          * Flush pages if writing is allowed, invalidate them
2164                          * if invalidation requested.  Pages undergoing I/O
2165                          * will be ignored by vm_object_page_remove().
2166                          *
2167                          * We cannot lock the vnode and then wait for paging
2168                          * to complete without deadlocking against vm_fault.
2169                          * Instead we simply call vm_object_page_remove() and
2170                          * allow it to block internally on a page-by-page 
2171                          * basis when it encounters pages undergoing async 
2172                          * I/O.
2173                          */
2174                         int flags;
2175
2176                         vm_object_reference(object);
2177                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
2178                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2179                         flags |= invalidate ? OBJPC_INVAL : 0;
2180                         vm_object_page_clean(object,
2181                             OFF_TO_IDX(offset),
2182                             OFF_TO_IDX(offset + size + PAGE_MASK),
2183                             flags);
2184                         VOP_UNLOCK(object->handle, 0, curthread);
2185                         vm_object_deallocate(object);
2186                 }
2187                 if (object && invalidate &&
2188                    ((object->type == OBJT_VNODE) ||
2189                     (object->type == OBJT_DEVICE))) {
2190                         vm_object_reference(object);
2191                         vm_object_page_remove(object,
2192                             OFF_TO_IDX(offset),
2193                             OFF_TO_IDX(offset + size + PAGE_MASK),
2194                             FALSE);
2195                         vm_object_deallocate(object);
2196                 }
2197                 start += size;
2198         }
2199
2200         vm_map_unlock_read(map);
2201         return (KERN_SUCCESS);
2202 }
2203
2204 /*
2205  *      vm_map_entry_unwire:    [ internal use only ]
2206  *
2207  *      Make the region specified by this entry pageable.
2208  *
2209  *      The map in question should be locked.
2210  *      [This is the reason for this routine's existence.]
2211  */
2212 static void 
2213 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2214 {
2215         vm_fault_unwire(map, entry->start, entry->end);
2216         entry->wired_count = 0;
2217 }
2218
2219 /*
2220  *      vm_map_entry_delete:    [ internal use only ]
2221  *
2222  *      Deallocate the given entry from the target map.
2223  */
2224 static void
2225 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2226 {
2227         vm_map_entry_unlink(map, entry);
2228         map->size -= entry->end - entry->start;
2229
2230         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2231                 vm_object_deallocate(entry->object.vm_object);
2232         }
2233
2234         vm_map_entry_dispose(map, entry, countp);
2235 }
2236
2237 /*
2238  *      vm_map_delete:  [ internal use only ]
2239  *
2240  *      Deallocates the given address range from the target
2241  *      map.
2242  */
2243 int
2244 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2245 {
2246         vm_object_t object;
2247         vm_map_entry_t entry;
2248         vm_map_entry_t first_entry;
2249
2250         /*
2251          * Find the start of the region, and clip it
2252          */
2253
2254 again:
2255         if (!vm_map_lookup_entry(map, start, &first_entry))
2256                 entry = first_entry->next;
2257         else {
2258                 entry = first_entry;
2259                 vm_map_clip_start(map, entry, start, countp);
2260                 /*
2261                  * Fix the lookup hint now, rather than each time though the
2262                  * loop.
2263                  */
2264                 SAVE_HINT(map, entry->prev);
2265         }
2266
2267         /*
2268          * Save the free space hint
2269          */
2270
2271         if (entry == &map->header) {
2272                 map->first_free = &map->header;
2273         } else if (map->first_free->start >= start) {
2274                 map->first_free = entry->prev;
2275         }
2276
2277         /*
2278          * Step through all entries in this region
2279          */
2280
2281         while ((entry != &map->header) && (entry->start < end)) {
2282                 vm_map_entry_t next;
2283                 vm_offset_t s, e;
2284                 vm_pindex_t offidxstart, offidxend, count;
2285
2286                 /*
2287                  * If we hit an in-transition entry we have to sleep and
2288                  * retry.  It's easier (and not really slower) to just retry
2289                  * since this case occurs so rarely and the hint is already
2290                  * pointing at the right place.  We have to reset the
2291                  * start offset so as not to accidently delete an entry
2292                  * another process just created in vacated space.
2293                  */
2294                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2295                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2296                         start = entry->start;
2297                         ++mycpu->gd_cnt.v_intrans_coll;
2298                         ++mycpu->gd_cnt.v_intrans_wait;
2299                         vm_map_transition_wait(map);
2300                         goto again;
2301                 }
2302                 vm_map_clip_end(map, entry, end, countp);
2303
2304                 s = entry->start;
2305                 e = entry->end;
2306                 next = entry->next;
2307
2308                 offidxstart = OFF_TO_IDX(entry->offset);
2309                 count = OFF_TO_IDX(e - s);
2310                 object = entry->object.vm_object;
2311
2312                 /*
2313                  * Unwire before removing addresses from the pmap; otherwise,
2314                  * unwiring will put the entries back in the pmap.
2315                  */
2316                 if (entry->wired_count != 0) {
2317                         vm_map_entry_unwire(map, entry);
2318                 }
2319
2320                 offidxend = offidxstart + count;
2321
2322                 if ((object == kernel_object) || (object == kmem_object)) {
2323                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2324                 } else {
2325                         pmap_remove(map->pmap, s, e);
2326                         if (object != NULL &&
2327                             object->ref_count != 1 &&
2328                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2329                             (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2330                                 vm_object_collapse(object);
2331                                 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2332                                 if (object->type == OBJT_SWAP) {
2333                                         swap_pager_freespace(object, offidxstart, count);
2334                                 }
2335                                 if (offidxend >= object->size &&
2336                                     offidxstart < object->size) {
2337                                         object->size = offidxstart;
2338                                 }
2339                         }
2340                 }
2341
2342                 /*
2343                  * Delete the entry (which may delete the object) only after
2344                  * removing all pmap entries pointing to its pages.
2345                  * (Otherwise, its page frames may be reallocated, and any
2346                  * modify bits will be set in the wrong object!)
2347                  */
2348                 vm_map_entry_delete(map, entry, countp);
2349                 entry = next;
2350         }
2351         return (KERN_SUCCESS);
2352 }
2353
2354 /*
2355  *      vm_map_remove:
2356  *
2357  *      Remove the given address range from the target map.
2358  *      This is the exported form of vm_map_delete.
2359  */
2360 int
2361 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2362 {
2363         int result;
2364         int count;
2365
2366         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2367         vm_map_lock(map);
2368         VM_MAP_RANGE_CHECK(map, start, end);
2369         result = vm_map_delete(map, start, end, &count);
2370         vm_map_unlock(map);
2371         vm_map_entry_release(count);
2372
2373         return (result);
2374 }
2375
2376 /*
2377  *      vm_map_check_protection:
2378  *
2379  *      Assert that the target map allows the specified
2380  *      privilege on the entire address region given.
2381  *      The entire region must be allocated.
2382  */
2383 boolean_t
2384 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2385                         vm_prot_t protection)
2386 {
2387         vm_map_entry_t entry;
2388         vm_map_entry_t tmp_entry;
2389
2390         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2391                 return (FALSE);
2392         }
2393         entry = tmp_entry;
2394
2395         while (start < end) {
2396                 if (entry == &map->header) {
2397                         return (FALSE);
2398                 }
2399                 /*
2400                  * No holes allowed!
2401                  */
2402
2403                 if (start < entry->start) {
2404                         return (FALSE);
2405                 }
2406                 /*
2407                  * Check protection associated with entry.
2408                  */
2409
2410                 if ((entry->protection & protection) != protection) {
2411                         return (FALSE);
2412                 }
2413                 /* go to next entry */
2414
2415                 start = entry->end;
2416                 entry = entry->next;
2417         }
2418         return (TRUE);
2419 }
2420
2421 /*
2422  * Split the pages in a map entry into a new object.  This affords
2423  * easier removal of unused pages, and keeps object inheritance from
2424  * being a negative impact on memory usage.
2425  */
2426 static void
2427 vm_map_split(vm_map_entry_t entry)
2428 {
2429         vm_page_t m;
2430         vm_object_t orig_object, new_object, source;
2431         vm_offset_t s, e;
2432         vm_pindex_t offidxstart, offidxend, idx;
2433         vm_size_t size;
2434         vm_ooffset_t offset;
2435
2436         orig_object = entry->object.vm_object;
2437         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2438                 return;
2439         if (orig_object->ref_count <= 1)
2440                 return;
2441
2442         offset = entry->offset;
2443         s = entry->start;
2444         e = entry->end;
2445
2446         offidxstart = OFF_TO_IDX(offset);
2447         offidxend = offidxstart + OFF_TO_IDX(e - s);
2448         size = offidxend - offidxstart;
2449
2450         new_object = vm_pager_allocate(orig_object->type,
2451                 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2452         if (new_object == NULL)
2453                 return;
2454
2455         source = orig_object->backing_object;
2456         if (source != NULL) {
2457                 vm_object_reference(source);    /* Referenced by new_object */
2458                 LIST_INSERT_HEAD(&source->shadow_head,
2459                                   new_object, shadow_list);
2460                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2461                 new_object->backing_object_offset = 
2462                         orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2463                 new_object->backing_object = source;
2464                 source->shadow_count++;
2465                 source->generation++;
2466         }
2467
2468         for (idx = 0; idx < size; idx++) {
2469                 vm_page_t m;
2470
2471         retry:
2472                 m = vm_page_lookup(orig_object, offidxstart + idx);
2473                 if (m == NULL)
2474                         continue;
2475
2476                 /*
2477                  * We must wait for pending I/O to complete before we can
2478                  * rename the page.
2479                  *
2480                  * We do not have to VM_PROT_NONE the page as mappings should
2481                  * not be changed by this operation.
2482                  */
2483                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2484                         goto retry;
2485                         
2486                 vm_page_busy(m);
2487                 vm_page_rename(m, new_object, idx);
2488                 /* page automatically made dirty by rename and cache handled */
2489                 vm_page_busy(m);
2490         }
2491
2492         if (orig_object->type == OBJT_SWAP) {
2493                 vm_object_pip_add(orig_object, 1);
2494                 /*
2495                  * copy orig_object pages into new_object
2496                  * and destroy unneeded pages in
2497                  * shadow object.
2498                  */
2499                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2500                 vm_object_pip_wakeup(orig_object);
2501         }
2502
2503         for (idx = 0; idx < size; idx++) {
2504                 m = vm_page_lookup(new_object, idx);
2505                 if (m) {
2506                         vm_page_wakeup(m);
2507                 }
2508         }
2509
2510         entry->object.vm_object = new_object;
2511         entry->offset = 0LL;
2512         vm_object_deallocate(orig_object);
2513 }
2514
2515 /*
2516  *      vm_map_copy_entry:
2517  *
2518  *      Copies the contents of the source entry to the destination
2519  *      entry.  The entries *must* be aligned properly.
2520  */
2521 static void
2522 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2523         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2524 {
2525         vm_object_t src_object;
2526
2527         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2528                 return;
2529
2530         if (src_entry->wired_count == 0) {
2531
2532                 /*
2533                  * If the source entry is marked needs_copy, it is already
2534                  * write-protected.
2535                  */
2536                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2537                         pmap_protect(src_map->pmap,
2538                             src_entry->start,
2539                             src_entry->end,
2540                             src_entry->protection & ~VM_PROT_WRITE);
2541                 }
2542
2543                 /*
2544                  * Make a copy of the object.
2545                  */
2546                 if ((src_object = src_entry->object.vm_object) != NULL) {
2547
2548                         if ((src_object->handle == NULL) &&
2549                                 (src_object->type == OBJT_DEFAULT ||
2550                                  src_object->type == OBJT_SWAP)) {
2551                                 vm_object_collapse(src_object);
2552                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2553                                         vm_map_split(src_entry);
2554                                         src_object = src_entry->object.vm_object;
2555                                 }
2556                         }
2557
2558                         vm_object_reference(src_object);
2559                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2560                         dst_entry->object.vm_object = src_object;
2561                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2562                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2563                         dst_entry->offset = src_entry->offset;
2564                 } else {
2565                         dst_entry->object.vm_object = NULL;
2566                         dst_entry->offset = 0;
2567                 }
2568
2569                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2570                     dst_entry->end - dst_entry->start, src_entry->start);
2571         } else {
2572                 /*
2573                  * Of course, wired down pages can't be set copy-on-write.
2574                  * Cause wired pages to be copied into the new map by
2575                  * simulating faults (the new pages are pageable)
2576                  */
2577                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2578         }
2579 }
2580
2581 /*
2582  * vmspace_fork:
2583  * Create a new process vmspace structure and vm_map
2584  * based on those of an existing process.  The new map
2585  * is based on the old map, according to the inheritance
2586  * values on the regions in that map.
2587  *
2588  * The source map must not be locked.
2589  */
2590 struct vmspace *
2591 vmspace_fork(struct vmspace *vm1)
2592 {
2593         struct vmspace *vm2;
2594         vm_map_t old_map = &vm1->vm_map;
2595         vm_map_t new_map;
2596         vm_map_entry_t old_entry;
2597         vm_map_entry_t new_entry;
2598         vm_object_t object;
2599         int count;
2600
2601         vm_map_lock(old_map);
2602         old_map->infork = 1;
2603
2604         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2605         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2606             (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2607         new_map = &vm2->vm_map; /* XXX */
2608         new_map->timestamp = 1;
2609
2610         count = 0;
2611         old_entry = old_map->header.next;
2612         while (old_entry != &old_map->header) {
2613                 ++count;
2614                 old_entry = old_entry->next;
2615         }
2616
2617         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2618
2619         old_entry = old_map->header.next;
2620         while (old_entry != &old_map->header) {
2621                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2622                         panic("vm_map_fork: encountered a submap");
2623
2624                 switch (old_entry->inheritance) {
2625                 case VM_INHERIT_NONE:
2626                         break;
2627
2628                 case VM_INHERIT_SHARE:
2629                         /*
2630                          * Clone the entry, creating the shared object if necessary.
2631                          */
2632                         object = old_entry->object.vm_object;
2633                         if (object == NULL) {
2634                                 object = vm_object_allocate(OBJT_DEFAULT,
2635                                         atop(old_entry->end - old_entry->start));
2636                                 old_entry->object.vm_object = object;
2637                                 old_entry->offset = (vm_offset_t) 0;
2638                         }
2639
2640                         /*
2641                          * Add the reference before calling vm_object_shadow
2642                          * to insure that a shadow object is created.
2643                          */
2644                         vm_object_reference(object);
2645                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2646                                 vm_object_shadow(&old_entry->object.vm_object,
2647                                         &old_entry->offset,
2648                                         atop(old_entry->end - old_entry->start));
2649                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2650                                 /* Transfer the second reference too. */
2651                                 vm_object_reference(
2652                                     old_entry->object.vm_object);
2653                                 vm_object_deallocate(object);
2654                                 object = old_entry->object.vm_object;
2655                         }
2656                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2657
2658                         /*
2659                          * Clone the entry, referencing the shared object.
2660                          */
2661                         new_entry = vm_map_entry_create(new_map, &count);
2662                         *new_entry = *old_entry;
2663                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2664                         new_entry->wired_count = 0;
2665
2666                         /*
2667                          * Insert the entry into the new map -- we know we're
2668                          * inserting at the end of the new map.
2669                          */
2670
2671                         vm_map_entry_link(new_map, new_map->header.prev,
2672                             new_entry);
2673
2674                         /*
2675                          * Update the physical map
2676                          */
2677
2678                         pmap_copy(new_map->pmap, old_map->pmap,
2679                             new_entry->start,
2680                             (old_entry->end - old_entry->start),
2681                             old_entry->start);
2682                         break;
2683
2684                 case VM_INHERIT_COPY:
2685                         /*
2686                          * Clone the entry and link into the map.
2687                          */
2688                         new_entry = vm_map_entry_create(new_map, &count);
2689                         *new_entry = *old_entry;
2690                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2691                         new_entry->wired_count = 0;
2692                         new_entry->object.vm_object = NULL;
2693                         vm_map_entry_link(new_map, new_map->header.prev,
2694                             new_entry);
2695                         vm_map_copy_entry(old_map, new_map, old_entry,
2696                             new_entry);
2697                         break;
2698                 }
2699                 old_entry = old_entry->next;
2700         }
2701
2702         new_map->size = old_map->size;
2703         old_map->infork = 0;
2704         vm_map_unlock(old_map);
2705         vm_map_entry_release(count);
2706
2707         return (vm2);
2708 }
2709
2710 int
2711 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2712               vm_prot_t prot, vm_prot_t max, int cow)
2713 {
2714         vm_map_entry_t prev_entry;
2715         vm_map_entry_t new_stack_entry;
2716         vm_size_t      init_ssize;
2717         int            rv;
2718         int             count;
2719
2720         if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2721                 return (KERN_NO_SPACE);
2722
2723         if (max_ssize < sgrowsiz)
2724                 init_ssize = max_ssize;
2725         else
2726                 init_ssize = sgrowsiz;
2727
2728         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2729         vm_map_lock(map);
2730
2731         /* If addr is already mapped, no go */
2732         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2733                 vm_map_unlock(map);
2734                 vm_map_entry_release(count);
2735                 return (KERN_NO_SPACE);
2736         }
2737
2738         /* If we would blow our VMEM resource limit, no go */
2739         if (map->size + init_ssize >
2740             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2741                 vm_map_unlock(map);
2742                 vm_map_entry_release(count);
2743                 return (KERN_NO_SPACE);
2744         }
2745
2746         /* If we can't accomodate max_ssize in the current mapping,
2747          * no go.  However, we need to be aware that subsequent user
2748          * mappings might map into the space we have reserved for
2749          * stack, and currently this space is not protected.  
2750          * 
2751          * Hopefully we will at least detect this condition 
2752          * when we try to grow the stack.
2753          */
2754         if ((prev_entry->next != &map->header) &&
2755             (prev_entry->next->start < addrbos + max_ssize)) {
2756                 vm_map_unlock(map);
2757                 vm_map_entry_release(count);
2758                 return (KERN_NO_SPACE);
2759         }
2760
2761         /* We initially map a stack of only init_ssize.  We will
2762          * grow as needed later.  Since this is to be a grow 
2763          * down stack, we map at the top of the range.
2764          *
2765          * Note: we would normally expect prot and max to be
2766          * VM_PROT_ALL, and cow to be 0.  Possibly we should
2767          * eliminate these as input parameters, and just
2768          * pass these values here in the insert call.
2769          */
2770         rv = vm_map_insert(map, &count,
2771                            NULL, 0, addrbos + max_ssize - init_ssize,
2772                            addrbos + max_ssize, prot, max, cow);
2773
2774         /* Now set the avail_ssize amount */
2775         if (rv == KERN_SUCCESS){
2776                 if (prev_entry != &map->header)
2777                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2778                 new_stack_entry = prev_entry->next;
2779                 if (new_stack_entry->end   != addrbos + max_ssize ||
2780                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
2781                         panic ("Bad entry start/end for new stack entry");
2782                 else 
2783                         new_stack_entry->avail_ssize = max_ssize - init_ssize;
2784         }
2785
2786         vm_map_unlock(map);
2787         vm_map_entry_release(count);
2788         return (rv);
2789 }
2790
2791 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2792  * desired address is already mapped, or if we successfully grow
2793  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2794  * stack range (this is strange, but preserves compatibility with
2795  * the grow function in vm_machdep.c).
2796  */
2797 int
2798 vm_map_growstack (struct proc *p, vm_offset_t addr)
2799 {
2800         vm_map_entry_t prev_entry;
2801         vm_map_entry_t stack_entry;
2802         vm_map_entry_t new_stack_entry;
2803         struct vmspace *vm = p->p_vmspace;
2804         vm_map_t map = &vm->vm_map;
2805         vm_offset_t    end;
2806         int grow_amount;
2807         int rv = KERN_SUCCESS;
2808         int is_procstack;
2809         int use_read_lock = 1;
2810         int count;
2811
2812         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2813 Retry:
2814         if (use_read_lock)
2815                 vm_map_lock_read(map);
2816         else
2817                 vm_map_lock(map);
2818
2819         /* If addr is already in the entry range, no need to grow.*/
2820         if (vm_map_lookup_entry(map, addr, &prev_entry))
2821                 goto done;
2822
2823         if ((stack_entry = prev_entry->next) == &map->header)
2824                 goto done;
2825         if (prev_entry == &map->header) 
2826                 end = stack_entry->start - stack_entry->avail_ssize;
2827         else
2828                 end = prev_entry->end;
2829
2830         /* This next test mimics the old grow function in vm_machdep.c.
2831          * It really doesn't quite make sense, but we do it anyway
2832          * for compatibility.
2833          *
2834          * If not growable stack, return success.  This signals the
2835          * caller to proceed as he would normally with normal vm.
2836          */
2837         if (stack_entry->avail_ssize < 1 ||
2838             addr >= stack_entry->start ||
2839             addr <  stack_entry->start - stack_entry->avail_ssize) {
2840                 goto done;
2841         } 
2842         
2843         /* Find the minimum grow amount */
2844         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2845         if (grow_amount > stack_entry->avail_ssize) {
2846                 rv = KERN_NO_SPACE;
2847                 goto done;
2848         }
2849
2850         /* If there is no longer enough space between the entries
2851          * nogo, and adjust the available space.  Note: this 
2852          * should only happen if the user has mapped into the
2853          * stack area after the stack was created, and is
2854          * probably an error.
2855          *
2856          * This also effectively destroys any guard page the user
2857          * might have intended by limiting the stack size.
2858          */
2859         if (grow_amount > stack_entry->start - end) {
2860                 if (use_read_lock && vm_map_lock_upgrade(map)) {
2861                         use_read_lock = 0;
2862                         goto Retry;
2863                 }
2864                 use_read_lock = 0;
2865                 stack_entry->avail_ssize = stack_entry->start - end;
2866                 rv = KERN_NO_SPACE;
2867                 goto done;
2868         }
2869
2870         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2871
2872         /* If this is the main process stack, see if we're over the 
2873          * stack limit.
2874          */
2875         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2876                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2877                 rv = KERN_NO_SPACE;
2878                 goto done;
2879         }
2880
2881         /* Round up the grow amount modulo SGROWSIZ */
2882         grow_amount = roundup (grow_amount, sgrowsiz);
2883         if (grow_amount > stack_entry->avail_ssize) {
2884                 grow_amount = stack_entry->avail_ssize;
2885         }
2886         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2887                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2888                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2889                               ctob(vm->vm_ssize);
2890         }
2891
2892         /* If we would blow our VMEM resource limit, no go */
2893         if (map->size + grow_amount >
2894             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2895                 rv = KERN_NO_SPACE;
2896                 goto done;
2897         }
2898
2899         if (use_read_lock && vm_map_lock_upgrade(map)) {
2900                 use_read_lock = 0;
2901                 goto Retry;
2902         }
2903         use_read_lock = 0;
2904
2905         /* Get the preliminary new entry start value */
2906         addr = stack_entry->start - grow_amount;
2907
2908         /* If this puts us into the previous entry, cut back our growth
2909          * to the available space.  Also, see the note above.
2910          */
2911         if (addr < end) {
2912                 stack_entry->avail_ssize = stack_entry->start - end;
2913                 addr = end;
2914         }
2915
2916         rv = vm_map_insert(map, &count,
2917                            NULL, 0, addr, stack_entry->start,
2918                            VM_PROT_ALL,
2919                            VM_PROT_ALL,
2920                            0);
2921
2922         /* Adjust the available stack space by the amount we grew. */
2923         if (rv == KERN_SUCCESS) {
2924                 if (prev_entry != &map->header)
2925                         vm_map_clip_end(map, prev_entry, addr, &count);
2926                 new_stack_entry = prev_entry->next;
2927                 if (new_stack_entry->end   != stack_entry->start  ||
2928                     new_stack_entry->start != addr)
2929                         panic ("Bad stack grow start/end in new stack entry");
2930                 else {
2931                         new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2932                                                         (new_stack_entry->end -
2933                                                          new_stack_entry->start);
2934                         if (is_procstack)
2935                                 vm->vm_ssize += btoc(new_stack_entry->end -
2936                                                      new_stack_entry->start);
2937                 }
2938         }
2939
2940 done:
2941         if (use_read_lock)
2942                 vm_map_unlock_read(map);
2943         else
2944                 vm_map_unlock(map);
2945         vm_map_entry_release(count);
2946         return (rv);
2947 }
2948
2949 /*
2950  * Unshare the specified VM space for exec.  If other processes are
2951  * mapped to it, then create a new one.  The new vmspace is null.
2952  */
2953
2954 void
2955 vmspace_exec(struct proc *p) 
2956 {
2957         struct vmspace *oldvmspace = p->p_vmspace;
2958         struct vmspace *newvmspace;
2959         vm_map_t map = &p->p_vmspace->vm_map;
2960
2961         newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2962         bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2963             (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2964         /*
2965          * This code is written like this for prototype purposes.  The
2966          * goal is to avoid running down the vmspace here, but let the
2967          * other process's that are still using the vmspace to finally
2968          * run it down.  Even though there is little or no chance of blocking
2969          * here, it is a good idea to keep this form for future mods.
2970          */
2971         vmspace_free(oldvmspace);
2972         p->p_vmspace = newvmspace;
2973         pmap_pinit2(vmspace_pmap(newvmspace));
2974         if (p == curproc)
2975                 pmap_activate(p);
2976 }
2977
2978 /*
2979  * Unshare the specified VM space for forcing COW.  This
2980  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2981  */
2982
2983 void
2984 vmspace_unshare(struct proc *p) 
2985 {
2986         struct vmspace *oldvmspace = p->p_vmspace;
2987         struct vmspace *newvmspace;
2988
2989         if (oldvmspace->vm_refcnt == 1)
2990                 return;
2991         newvmspace = vmspace_fork(oldvmspace);
2992         vmspace_free(oldvmspace);
2993         p->p_vmspace = newvmspace;
2994         pmap_pinit2(vmspace_pmap(newvmspace));
2995         if (p == curproc)
2996                 pmap_activate(p);
2997 }
2998
2999 /*
3000  *      vm_map_lookup:
3001  *
3002  *      Finds the VM object, offset, and
3003  *      protection for a given virtual address in the
3004  *      specified map, assuming a page fault of the
3005  *      type specified.
3006  *
3007  *      Leaves the map in question locked for read; return
3008  *      values are guaranteed until a vm_map_lookup_done
3009  *      call is performed.  Note that the map argument
3010  *      is in/out; the returned map must be used in
3011  *      the call to vm_map_lookup_done.
3012  *
3013  *      A handle (out_entry) is returned for use in
3014  *      vm_map_lookup_done, to make that fast.
3015  *
3016  *      If a lookup is requested with "write protection"
3017  *      specified, the map may be changed to perform virtual
3018  *      copying operations, although the data referenced will
3019  *      remain the same.
3020  */
3021 int
3022 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3023               vm_offset_t vaddr,
3024               vm_prot_t fault_typea,
3025               vm_map_entry_t *out_entry,        /* OUT */
3026               vm_object_t *object,              /* OUT */
3027               vm_pindex_t *pindex,              /* OUT */
3028               vm_prot_t *out_prot,              /* OUT */
3029               boolean_t *wired)                 /* OUT */
3030 {
3031         vm_map_entry_t entry;
3032         vm_map_t map = *var_map;
3033         vm_prot_t prot;
3034         vm_prot_t fault_type = fault_typea;
3035         int use_read_lock = 1;
3036         int rv = KERN_SUCCESS;
3037
3038 RetryLookup:
3039         if (use_read_lock)
3040                 vm_map_lock_read(map);
3041         else
3042                 vm_map_lock(map);
3043
3044         /*
3045          * If the map has an interesting hint, try it before calling full
3046          * blown lookup routine.
3047          */
3048         entry = map->hint;
3049         *out_entry = entry;
3050
3051         if ((entry == &map->header) ||
3052             (vaddr < entry->start) || (vaddr >= entry->end)) {
3053                 vm_map_entry_t tmp_entry;
3054
3055                 /*
3056                  * Entry was either not a valid hint, or the vaddr was not
3057                  * contained in the entry, so do a full lookup.
3058                  */
3059                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3060                         rv = KERN_INVALID_ADDRESS;
3061                         goto done;
3062                 }
3063
3064                 entry = tmp_entry;
3065                 *out_entry = entry;
3066         }
3067         
3068         /*
3069          * Handle submaps.
3070          */
3071
3072         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3073                 vm_map_t old_map = map;
3074
3075                 *var_map = map = entry->object.sub_map;
3076                 if (use_read_lock)
3077                         vm_map_unlock_read(old_map);
3078                 else
3079                         vm_map_unlock(old_map);
3080                 use_read_lock = 1;
3081                 goto RetryLookup;
3082         }
3083
3084         /*
3085          * Check whether this task is allowed to have this page.
3086          * Note the special case for MAP_ENTRY_COW
3087          * pages with an override.  This is to implement a forced
3088          * COW for debuggers.
3089          */
3090
3091         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3092                 prot = entry->max_protection;
3093         else
3094                 prot = entry->protection;
3095
3096         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3097         if ((fault_type & prot) != fault_type) {
3098                 rv = KERN_PROTECTION_FAILURE;
3099                 goto done;
3100         }
3101
3102         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3103             (entry->eflags & MAP_ENTRY_COW) &&
3104             (fault_type & VM_PROT_WRITE) &&
3105             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3106                 rv = KERN_PROTECTION_FAILURE;
3107                 goto done;
3108         }
3109
3110         /*
3111          * If this page is not pageable, we have to get it for all possible
3112          * accesses.
3113          */
3114
3115         *wired = (entry->wired_count != 0);
3116         if (*wired)
3117                 prot = fault_type = entry->protection;
3118
3119         /*
3120          * If the entry was copy-on-write, we either ...
3121          */
3122
3123         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3124                 /*
3125                  * If we want to write the page, we may as well handle that
3126                  * now since we've got the map locked.
3127                  *
3128                  * If we don't need to write the page, we just demote the
3129                  * permissions allowed.
3130                  */
3131
3132                 if (fault_type & VM_PROT_WRITE) {
3133                         /*
3134                          * Make a new object, and place it in the object
3135                          * chain.  Note that no new references have appeared
3136                          * -- one just moved from the map to the new
3137                          * object.
3138                          */
3139
3140                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3141                                 use_read_lock = 0;
3142                                 goto RetryLookup;
3143                         }
3144                         use_read_lock = 0;
3145
3146                         vm_object_shadow(
3147                             &entry->object.vm_object,
3148                             &entry->offset,
3149                             atop(entry->end - entry->start));
3150
3151                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3152                 } else {
3153                         /*
3154                          * We're attempting to read a copy-on-write page --
3155                          * don't allow writes.
3156                          */
3157
3158                         prot &= ~VM_PROT_WRITE;
3159                 }
3160         }
3161
3162         /*
3163          * Create an object if necessary.
3164          */
3165         if (entry->object.vm_object == NULL &&
3166             !map->system_map) {
3167                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3168                         use_read_lock = 0;
3169                         goto RetryLookup;
3170                 }
3171                 use_read_lock = 0;
3172                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3173                     atop(entry->end - entry->start));
3174                 entry->offset = 0;
3175         }
3176
3177         /*
3178          * Return the object/offset from this entry.  If the entry was
3179          * copy-on-write or empty, it has been fixed up.
3180          */
3181
3182         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3183         *object = entry->object.vm_object;
3184
3185         /*
3186          * Return whether this is the only map sharing this data.  On
3187          * success we return with a read lock held on the map.  On failure
3188          * we return with the map unlocked.
3189          */
3190         *out_prot = prot;
3191 done:
3192         if (rv == KERN_SUCCESS) {
3193                 if (use_read_lock == 0)
3194                         vm_map_lock_downgrade(map);
3195         } else if (use_read_lock) {
3196                 vm_map_unlock_read(map);
3197         } else {
3198                 vm_map_unlock(map);
3199         }
3200         return (rv);
3201 }
3202
3203 /*
3204  *      vm_map_lookup_done:
3205  *
3206  *      Releases locks acquired by a vm_map_lookup
3207  *      (according to the handle returned by that lookup).
3208  */
3209
3210 void
3211 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3212 {
3213         /*
3214          * Unlock the main-level map
3215          */
3216         vm_map_unlock_read(map);
3217         if (count)
3218                 vm_map_entry_release(count);
3219 }
3220
3221 /*
3222  * Implement uiomove with VM operations.  This handles (and collateral changes)
3223  * support every combination of source object modification, and COW type
3224  * operations.
3225  */
3226 int
3227 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3228         vm_map_t mapa;
3229         vm_object_t srcobject;
3230         off_t cp;
3231         int cnta;
3232         vm_offset_t uaddra;
3233         int *npages;
3234 {
3235         vm_map_t map;
3236         vm_object_t first_object, oldobject, object;
3237         vm_map_entry_t entry;
3238         vm_prot_t prot;
3239         boolean_t wired;
3240         int tcnt, rv;
3241         vm_offset_t uaddr, start, end, tend;
3242         vm_pindex_t first_pindex, osize, oindex;
3243         off_t ooffset;
3244         int cnt;
3245         int count;
3246
3247         if (npages)
3248                 *npages = 0;
3249
3250         cnt = cnta;
3251         uaddr = uaddra;
3252
3253         while (cnt > 0) {
3254                 map = mapa;
3255
3256                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3257
3258                 if ((vm_map_lookup(&map, uaddr,
3259                         VM_PROT_READ, &entry, &first_object,
3260                         &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3261                         return EFAULT;
3262                 }
3263
3264                 vm_map_clip_start(map, entry, uaddr, &count);
3265
3266                 tcnt = cnt;
3267                 tend = uaddr + tcnt;
3268                 if (tend > entry->end) {
3269                         tcnt = entry->end - uaddr;
3270                         tend = entry->end;
3271                 }
3272
3273                 vm_map_clip_end(map, entry, tend, &count);
3274
3275                 start = entry->start;
3276                 end = entry->end;
3277
3278                 osize = atop(tcnt);
3279
3280                 oindex = OFF_TO_IDX(cp);
3281                 if (npages) {
3282                         vm_pindex_t idx;
3283                         for (idx = 0; idx < osize; idx++) {
3284                                 vm_page_t m;
3285                                 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3286                                         vm_map_lookup_done(map, entry, count);
3287                                         return 0;
3288                                 }
3289                                 /*
3290                                  * disallow busy or invalid pages, but allow
3291                                  * m->busy pages if they are entirely valid.
3292                                  */
3293                                 if ((m->flags & PG_BUSY) ||
3294                                         ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3295                                         vm_map_lookup_done(map, entry, count);
3296                                         return 0;
3297                                 }
3298                         }
3299                 }
3300
3301 /*
3302  * If we are changing an existing map entry, just redirect
3303  * the object, and change mappings.
3304  */
3305                 if ((first_object->type == OBJT_VNODE) &&
3306                         ((oldobject = entry->object.vm_object) == first_object)) {
3307
3308                         if ((entry->offset != cp) || (oldobject != srcobject)) {
3309                                 /*
3310                                 * Remove old window into the file
3311                                 */
3312                                 pmap_remove (map->pmap, uaddr, tend);
3313
3314                                 /*
3315                                 * Force copy on write for mmaped regions
3316                                 */
3317                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3318
3319                                 /*
3320                                 * Point the object appropriately
3321                                 */
3322                                 if (oldobject != srcobject) {
3323
3324                                 /*
3325                                 * Set the object optimization hint flag
3326                                 */
3327                                         vm_object_set_flag(srcobject, OBJ_OPT);
3328                                         vm_object_reference(srcobject);
3329                                         entry->object.vm_object = srcobject;
3330
3331                                         if (oldobject) {
3332                                                 vm_object_deallocate(oldobject);
3333                                         }
3334                                 }
3335
3336                                 entry->offset = cp;
3337                                 map->timestamp++;
3338                         } else {
3339                                 pmap_remove (map->pmap, uaddr, tend);
3340                         }
3341
3342                 } else if ((first_object->ref_count == 1) &&
3343                         (first_object->size == osize) &&
3344                         ((first_object->type == OBJT_DEFAULT) ||
3345                                 (first_object->type == OBJT_SWAP)) ) {
3346
3347                         oldobject = first_object->backing_object;
3348
3349                         if ((first_object->backing_object_offset != cp) ||
3350                                 (oldobject != srcobject)) {
3351                                 /*
3352                                 * Remove old window into the file
3353                                 */
3354                                 pmap_remove (map->pmap, uaddr, tend);
3355
3356                                 /*
3357                                  * Remove unneeded old pages
3358                                  */
3359                                 vm_object_page_remove(first_object, 0, 0, 0);
3360
3361                                 /*
3362                                  * Invalidate swap space
3363                                  */
3364                                 if (first_object->type == OBJT_SWAP) {
3365                                         swap_pager_freespace(first_object,
3366                                                 0,
3367                                                 first_object->size);
3368                                 }
3369
3370                                 /*
3371                                 * Force copy on write for mmaped regions
3372                                 */
3373                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3374
3375                                 /*
3376                                 * Point the object appropriately
3377                                 */
3378                                 if (oldobject != srcobject) {
3379
3380                                 /*
3381                                 * Set the object optimization hint flag
3382                                 */
3383                                         vm_object_set_flag(srcobject, OBJ_OPT);
3384                                         vm_object_reference(srcobject);
3385
3386                                         if (oldobject) {
3387                                                 LIST_REMOVE(
3388                                                         first_object, shadow_list);
3389                                                 oldobject->shadow_count--;
3390                                                 /* XXX bump generation? */
3391                                                 vm_object_deallocate(oldobject);
3392                                         }
3393
3394                                         LIST_INSERT_HEAD(&srcobject->shadow_head,
3395                                                 first_object, shadow_list);
3396                                         srcobject->shadow_count++;
3397                                         /* XXX bump generation? */
3398
3399                                         first_object->backing_object = srcobject;
3400                                 }
3401                                 first_object->backing_object_offset = cp;
3402                                 map->timestamp++;
3403                         } else {
3404                                 pmap_remove (map->pmap, uaddr, tend);
3405                         }
3406 /*
3407  * Otherwise, we have to do a logical mmap.
3408  */
3409                 } else {
3410
3411                         vm_object_set_flag(srcobject, OBJ_OPT);
3412                         vm_object_reference(srcobject);
3413
3414                         pmap_remove (map->pmap, uaddr, tend);
3415
3416                         vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3417                         vm_map_lock_upgrade(map);
3418
3419                         if (entry == &map->header) {
3420                                 map->first_free = &map->header;
3421                         } else if (map->first_free->start >= start) {
3422                                 map->first_free = entry->prev;
3423                         }
3424
3425                         SAVE_HINT(map, entry->prev);
3426                         vm_map_entry_delete(map, entry, &count);
3427
3428                         object = srcobject;
3429                         ooffset = cp;
3430
3431                         rv = vm_map_insert(map, &count,
3432                                 object, ooffset, start, tend,
3433                                 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3434
3435                         if (rv != KERN_SUCCESS)
3436                                 panic("vm_uiomove: could not insert new entry: %d", rv);
3437                 }
3438
3439 /*
3440  * Map the window directly, if it is already in memory
3441  */
3442                 pmap_object_init_pt(map->pmap, uaddr,
3443                         srcobject, oindex, tcnt, 0);
3444
3445                 map->timestamp++;
3446                 vm_map_unlock(map);
3447                 vm_map_entry_release(count);
3448
3449                 cnt -= tcnt;
3450                 uaddr += tcnt;
3451                 cp += tcnt;
3452                 if (npages)
3453                         *npages += osize;
3454         }
3455         return 0;
3456 }
3457
3458 /*
3459  * Performs the copy_on_write operations necessary to allow the virtual copies
3460  * into user space to work.  This has to be called for write(2) system calls
3461  * from other processes, file unlinking, and file size shrinkage.
3462  */
3463 void
3464 vm_freeze_copyopts(object, froma, toa)
3465         vm_object_t object;
3466         vm_pindex_t froma, toa;
3467 {
3468         int rv;
3469         vm_object_t robject;
3470         vm_pindex_t idx;
3471
3472         if ((object == NULL) ||
3473                 ((object->flags & OBJ_OPT) == 0))
3474                 return;
3475
3476         if (object->shadow_count > object->ref_count)
3477                 panic("vm_freeze_copyopts: sc > rc");
3478
3479         while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3480                 vm_pindex_t bo_pindex;
3481                 vm_page_t m_in, m_out;
3482
3483                 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3484
3485                 vm_object_reference(robject);
3486
3487                 vm_object_pip_wait(robject, "objfrz");
3488
3489                 if (robject->ref_count == 1) {
3490                         vm_object_deallocate(robject);
3491                         continue;
3492                 }
3493
3494                 vm_object_pip_add(robject, 1);
3495
3496                 for (idx = 0; idx < robject->size; idx++) {
3497
3498                         m_out = vm_page_grab(robject, idx,
3499                                                 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3500
3501                         if (m_out->valid == 0) {
3502                                 m_in = vm_page_grab(object, bo_pindex + idx,
3503                                                 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3504                                 if (m_in->valid == 0) {
3505                                         rv = vm_pager_get_pages(object, &m_in, 1, 0);
3506                                         if (rv != VM_PAGER_OK) {
3507                                                 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3508                                                 continue;
3509                                         }
3510                                         vm_page_deactivate(m_in);
3511                                 }
3512
3513                                 vm_page_protect(m_in, VM_PROT_NONE);
3514                                 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3515                                 m_out->valid = m_in->valid;
3516                                 vm_page_dirty(m_out);
3517                                 vm_page_activate(m_out);
3518                                 vm_page_wakeup(m_in);
3519                         }
3520                         vm_page_wakeup(m_out);
3521                 }
3522
3523                 object->shadow_count--;
3524                 object->ref_count--;
3525                 LIST_REMOVE(robject, shadow_list);
3526                 robject->backing_object = NULL;
3527                 robject->backing_object_offset = 0;
3528
3529                 vm_object_pip_wakeup(robject);
3530                 vm_object_deallocate(robject);
3531         }
3532
3533         vm_object_clear_flag(object, OBJ_OPT);
3534 }
3535
3536 #include "opt_ddb.h"
3537 #ifdef DDB
3538 #include <sys/kernel.h>
3539
3540 #include <ddb/ddb.h>
3541
3542 /*
3543  *      vm_map_print:   [ debug ]
3544  */
3545 DB_SHOW_COMMAND(map, vm_map_print)
3546 {
3547         static int nlines;
3548         /* XXX convert args. */
3549         vm_map_t map = (vm_map_t)addr;
3550         boolean_t full = have_addr;
3551
3552         vm_map_entry_t entry;
3553
3554         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3555             (void *)map,
3556             (void *)map->pmap, map->nentries, map->timestamp);
3557         nlines++;
3558
3559         if (!full && db_indent)
3560                 return;
3561
3562         db_indent += 2;
3563         for (entry = map->header.next; entry != &map->header;
3564             entry = entry->next) {
3565                 db_iprintf("map entry %p: start=%p, end=%p\n",
3566                     (void *)entry, (void *)entry->start, (void *)entry->end);
3567                 nlines++;
3568                 {
3569                         static char *inheritance_name[4] =
3570                         {"share", "copy", "none", "donate_copy"};
3571
3572                         db_iprintf(" prot=%x/%x/%s",
3573                             entry->protection,
3574                             entry->max_protection,
3575                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3576                         if (entry->wired_count != 0)
3577                                 db_printf(", wired");
3578                 }
3579                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3580                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3581                         db_printf(", share=%p, offset=0x%lx\n",
3582                             (void *)entry->object.sub_map,
3583                             (long)entry->offset);
3584                         nlines++;
3585                         if ((entry->prev == &map->header) ||
3586                             (entry->prev->object.sub_map !=
3587                                 entry->object.sub_map)) {
3588                                 db_indent += 2;
3589                                 vm_map_print((db_expr_t)(intptr_t)
3590                                              entry->object.sub_map,
3591                                              full, 0, (char *)0);
3592                                 db_indent -= 2;
3593                         }
3594                 } else {
3595                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3596                         db_printf(", object=%p, offset=0x%lx",
3597                             (void *)entry->object.vm_object,
3598                             (long)entry->offset);
3599                         if (entry->eflags & MAP_ENTRY_COW)
3600                                 db_printf(", copy (%s)",
3601                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3602                         db_printf("\n");
3603                         nlines++;
3604
3605                         if ((entry->prev == &map->header) ||
3606                             (entry->prev->object.vm_object !=
3607                                 entry->object.vm_object)) {
3608                                 db_indent += 2;
3609                                 vm_object_print((db_expr_t)(intptr_t)
3610                                                 entry->object.vm_object,
3611                                                 full, 0, (char *)0);
3612                                 nlines += 4;
3613                                 db_indent -= 2;
3614                         }
3615                 }
3616         }
3617         db_indent -= 2;
3618         if (db_indent == 0)
3619                 nlines = 0;
3620 }
3621
3622
3623 DB_SHOW_COMMAND(procvm, procvm)
3624 {
3625         struct proc *p;
3626
3627         if (have_addr) {
3628                 p = (struct proc *) addr;
3629         } else {
3630                 p = curproc;
3631         }
3632
3633         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3634             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3635             (void *)vmspace_pmap(p->p_vmspace));
3636
3637         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3638 }
3639
3640 #endif /* DDB */