Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 static inline int ring_space(struct intel_ring_buffer *ring)
37 {
38         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
39         if (space < 0)
40                 space += ring->size;
41         return space;
42 }
43
44 void __intel_ring_advance(struct intel_ring_buffer *ring)
45 {
46         struct drm_i915_private *dev_priv = ring->dev->dev_private;
47
48         ring->tail &= ring->size - 1;
49         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
50                 return;
51         ring->write_tail(ring, ring->tail);
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         u32 scratch_addr = ring->scratch.gtt_offset + 128;
179         int ret;
180
181
182         ret = intel_ring_begin(ring, 6);
183         if (ret)
184                 return ret;
185
186         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
187         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
189         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
190         intel_ring_emit(ring, 0); /* low dword */
191         intel_ring_emit(ring, 0); /* high dword */
192         intel_ring_emit(ring, MI_NOOP);
193         intel_ring_advance(ring);
194
195         ret = intel_ring_begin(ring, 6);
196         if (ret)
197                 return ret;
198
199         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
200         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
201         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
202         intel_ring_emit(ring, 0);
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, MI_NOOP);
205         intel_ring_advance(ring);
206
207         return 0;
208 }
209
210 static int
211 gen6_render_ring_flush(struct intel_ring_buffer *ring,
212                          u32 invalidate_domains, u32 flush_domains)
213 {
214         u32 flags = 0;
215         u32 scratch_addr = ring->scratch.gtt_offset + 128;
216         int ret;
217
218         /* Force SNB workarounds for PIPE_CONTROL flushes */
219         ret = intel_emit_post_sync_nonzero_flush(ring);
220         if (ret)
221                 return ret;
222
223         /* Just flush everything.  Experiments have shown that reducing the
224          * number of bits based on the write domains has little performance
225          * impact.
226          */
227         if (flush_domains) {
228                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
229                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
230                 /*
231                  * Ensure that any following seqno writes only happen
232                  * when the render cache is indeed flushed.
233                  */
234                 flags |= PIPE_CONTROL_CS_STALL;
235         }
236         if (invalidate_domains) {
237                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
238                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
243                 /*
244                  * TLB invalidate requires a post-sync write.
245                  */
246                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
247         }
248
249         ret = intel_ring_begin(ring, 4);
250         if (ret)
251                 return ret;
252
253         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
254         intel_ring_emit(ring, flags);
255         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
256         intel_ring_emit(ring, 0);
257         intel_ring_advance(ring);
258
259         return 0;
260 }
261
262 static int
263 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
264 {
265         int ret;
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
273                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
274         intel_ring_emit(ring, 0);
275         intel_ring_emit(ring, 0);
276         intel_ring_advance(ring);
277
278         return 0;
279 }
280
281 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
282 {
283         int ret;
284
285         if (!ring->fbc_dirty)
286                 return 0;
287
288         ret = intel_ring_begin(ring, 6);
289         if (ret)
290                 return ret;
291         /* WaFbcNukeOn3DBlt:ivb/hsw */
292         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
293         intel_ring_emit(ring, MSG_FBC_REND_STATE);
294         intel_ring_emit(ring, value);
295         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         u32 scratch_addr = ring->scratch.gtt_offset + 128;
310         int ret;
311
312         /*
313          * Ensure that any following seqno writes only happen when the render
314          * cache is indeed flushed.
315          *
316          * Workaround: 4th PIPE_CONTROL command (except the ones with only
317          * read-cache invalidate bits set) must have the CS_STALL bit set. We
318          * don't try to be clever and just set it unconditionally.
319          */
320         flags |= PIPE_CONTROL_CS_STALL;
321
322         /* Just flush everything.  Experiments have shown that reducing the
323          * number of bits based on the write domains has little performance
324          * impact.
325          */
326         if (flush_domains) {
327                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
328                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
329         }
330         if (invalidate_domains) {
331                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
332                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
333                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
337                 /*
338                  * TLB invalidate requires a post-sync write.
339                  */
340                 flags |= PIPE_CONTROL_QW_WRITE;
341                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
342
343                 /* Workaround: we must issue a pipe_control with CS-stall bit
344                  * set before a pipe_control command that has the state cache
345                  * invalidate bit set. */
346                 gen7_render_ring_cs_stall_wa(ring);
347         }
348
349         ret = intel_ring_begin(ring, 4);
350         if (ret)
351                 return ret;
352
353         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
354         intel_ring_emit(ring, flags);
355         intel_ring_emit(ring, scratch_addr);
356         intel_ring_emit(ring, 0);
357         intel_ring_advance(ring);
358
359         if (!invalidate_domains && flush_domains)
360                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
361
362         return 0;
363 }
364
365 static int
366 gen8_render_ring_flush(struct intel_ring_buffer *ring,
367                        u32 invalidate_domains, u32 flush_domains)
368 {
369         u32 flags = 0;
370         u32 scratch_addr = ring->scratch.gtt_offset + 128;
371         int ret;
372
373         flags |= PIPE_CONTROL_CS_STALL;
374
375         if (flush_domains) {
376                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
377                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
378         }
379         if (invalidate_domains) {
380                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
381                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
382                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
383                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
384                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
385                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
386                 flags |= PIPE_CONTROL_QW_WRITE;
387                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
388         }
389
390         ret = intel_ring_begin(ring, 6);
391         if (ret)
392                 return ret;
393
394         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
395         intel_ring_emit(ring, flags);
396         intel_ring_emit(ring, scratch_addr);
397         intel_ring_emit(ring, 0);
398         intel_ring_emit(ring, 0);
399         intel_ring_emit(ring, 0);
400         intel_ring_advance(ring);
401
402         return 0;
403
404 }
405
406 static void ring_write_tail(struct intel_ring_buffer *ring,
407                             u32 value)
408 {
409         drm_i915_private_t *dev_priv = ring->dev->dev_private;
410         I915_WRITE_TAIL(ring, value);
411 }
412
413 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
414 {
415         drm_i915_private_t *dev_priv = ring->dev->dev_private;
416         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
417                         RING_ACTHD(ring->mmio_base) : ACTHD;
418
419         return I915_READ(acthd_reg);
420 }
421
422 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
423 {
424         struct drm_i915_private *dev_priv = ring->dev->dev_private;
425         u32 addr;
426
427         addr = dev_priv->status_page_dmah->busaddr;
428         if (INTEL_INFO(ring->dev)->gen >= 4)
429                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
430         I915_WRITE(HWS_PGA, addr);
431 }
432
433 static int init_ring_common(struct intel_ring_buffer *ring)
434 {
435         struct drm_device *dev = ring->dev;
436         drm_i915_private_t *dev_priv = dev->dev_private;
437         struct drm_i915_gem_object *obj = ring->obj;
438         int ret = 0;
439         u32 head;
440
441         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
442
443         if (I915_NEED_GFX_HWS(dev))
444                 intel_ring_setup_status_page(ring);
445         else
446                 ring_setup_phys_status_page(ring);
447
448         /* Stop the ring if it's running. */
449         I915_WRITE_CTL(ring, 0);
450         I915_WRITE_HEAD(ring, 0);
451         ring->write_tail(ring, 0);
452
453         head = I915_READ_HEAD(ring) & HEAD_ADDR;
454
455         /* G45 ring initialization fails to reset head to zero */
456         if (head != 0) {
457                 DRM_DEBUG_KMS("%s head not reset to zero "
458                               "ctl %08x head %08x tail %08x start %08x\n",
459                               ring->name,
460                               I915_READ_CTL(ring),
461                               I915_READ_HEAD(ring),
462                               I915_READ_TAIL(ring),
463                               I915_READ_START(ring));
464
465                 I915_WRITE_HEAD(ring, 0);
466
467                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
468                         DRM_ERROR("failed to set %s head to zero "
469                                   "ctl %08x head %08x tail %08x start %08x\n",
470                                   ring->name,
471                                   I915_READ_CTL(ring),
472                                   I915_READ_HEAD(ring),
473                                   I915_READ_TAIL(ring),
474                                   I915_READ_START(ring));
475                 }
476         }
477
478         /* Initialize the ring. This must happen _after_ we've cleared the ring
479          * registers with the above sequence (the readback of the HEAD registers
480          * also enforces ordering), otherwise the hw might lose the new ring
481          * register values. */
482         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
483         I915_WRITE_CTL(ring,
484                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
485                         | RING_VALID);
486
487         /* If the head is still not zero, the ring is dead */
488         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
489                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
490                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
491                 DRM_ERROR("%s initialization failed "
492                                 "ctl %08x head %08x tail %08x start %08x\n",
493                                 ring->name,
494                                 I915_READ_CTL(ring),
495                                 I915_READ_HEAD(ring),
496                                 I915_READ_TAIL(ring),
497                                 I915_READ_START(ring));
498                 ret = -EIO;
499                 goto out;
500         }
501
502         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
503                 i915_kernel_lost_context(ring->dev);
504         else {
505                 ring->head = I915_READ_HEAD(ring);
506                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
507                 ring->space = ring_space(ring);
508                 ring->last_retired_head = -1;
509         }
510
511         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
512
513 out:
514         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
515
516         return ret;
517 }
518
519 static int
520 init_pipe_control(struct intel_ring_buffer *ring)
521 {
522         int ret;
523
524         if (ring->scratch.obj)
525                 return 0;
526
527         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
528         if (ring->scratch.obj == NULL) {
529                 DRM_ERROR("Failed to allocate seqno page\n");
530                 ret = -ENOMEM;
531                 goto err;
532         }
533
534         i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
535
536         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
537         if (ret)
538                 goto err_unref;
539
540         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
541         ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
542         if (ring->scratch.cpu_page == NULL) {
543                 ret = -ENOMEM;
544                 goto err_unpin;
545         }
546
547         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
548                          ring->name, ring->scratch.gtt_offset);
549         return 0;
550
551 err_unpin:
552         i915_gem_object_unpin(ring->scratch.obj);
553 err_unref:
554         drm_gem_object_unreference(&ring->scratch.obj->base);
555 err:
556         return ret;
557 }
558
559 static int init_render_ring(struct intel_ring_buffer *ring)
560 {
561         struct drm_device *dev = ring->dev;
562         struct drm_i915_private *dev_priv = dev->dev_private;
563         int ret = init_ring_common(ring);
564
565         if (INTEL_INFO(dev)->gen > 3)
566                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
567
568         /* We need to disable the AsyncFlip performance optimisations in order
569          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
570          * programmed to '1' on all products.
571          *
572          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
573          */
574         if (INTEL_INFO(dev)->gen >= 6)
575                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
576
577         /* Required for the hardware to program scanline values for waiting */
578         if (INTEL_INFO(dev)->gen == 6)
579                 I915_WRITE(GFX_MODE,
580                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
581
582         if (IS_GEN7(dev))
583                 I915_WRITE(GFX_MODE_GEN7,
584                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
585                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
586
587         if (INTEL_INFO(dev)->gen >= 5) {
588                 ret = init_pipe_control(ring);
589                 if (ret)
590                         return ret;
591         }
592
593         if (IS_GEN6(dev)) {
594                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
595                  * "If this bit is set, STCunit will have LRA as replacement
596                  *  policy. [...] This bit must be reset.  LRA replacement
597                  *  policy is not supported."
598                  */
599                 I915_WRITE(CACHE_MODE_0,
600                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
601
602                 /* This is not explicitly set for GEN6, so read the register.
603                  * see intel_ring_mi_set_context() for why we care.
604                  * TODO: consider explicitly setting the bit for GEN5
605                  */
606                 ring->itlb_before_ctx_switch =
607                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
608         }
609
610         if (INTEL_INFO(dev)->gen >= 6)
611                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
612
613         if (HAS_L3_DPF(dev))
614                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
615
616         return ret;
617 }
618
619 static void render_ring_cleanup(struct intel_ring_buffer *ring)
620 {
621         struct drm_device *dev = ring->dev;
622
623         if (ring->scratch.obj == NULL)
624                 return;
625
626         if (INTEL_INFO(dev)->gen >= 5) {
627                 kunmap(ring->scratch.obj->pages[0]);
628                 i915_gem_object_unpin(ring->scratch.obj);
629         }
630
631         drm_gem_object_unreference(&ring->scratch.obj->base);
632         ring->scratch.obj = NULL;
633 }
634
635 static void
636 update_mboxes(struct intel_ring_buffer *ring,
637               u32 mmio_offset)
638 {
639 /* NB: In order to be able to do semaphore MBOX updates for varying number
640  * of rings, it's easiest if we round up each individual update to a
641  * multiple of 2 (since ring updates must always be a multiple of 2)
642  * even though the actual update only requires 3 dwords.
643  */
644 #define MBOX_UPDATE_DWORDS 4
645         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
646         intel_ring_emit(ring, mmio_offset);
647         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
648         intel_ring_emit(ring, MI_NOOP);
649 }
650
651 /**
652  * gen6_add_request - Update the semaphore mailbox registers
653  * 
654  * @ring - ring that is adding a request
655  * @seqno - return seqno stuck into the ring
656  *
657  * Update the mailbox registers in the *other* rings with the current seqno.
658  * This acts like a signal in the canonical semaphore.
659  */
660 static int
661 gen6_add_request(struct intel_ring_buffer *ring)
662 {
663         struct drm_device *dev = ring->dev;
664         struct drm_i915_private *dev_priv = dev->dev_private;
665         struct intel_ring_buffer *useless;
666         int i, ret, num_dwords = 4;
667
668         if (i915_semaphore_is_enabled(dev))
669                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
670 #undef MBOX_UPDATE_DWORDS
671
672         ret = intel_ring_begin(ring, num_dwords);
673         if (ret)
674                 return ret;
675
676         if (i915_semaphore_is_enabled(dev)) {
677                 for_each_ring(useless, dev_priv, i) {
678                         u32 mbox_reg = ring->signal_mbox[i];
679                         if (mbox_reg != GEN6_NOSYNC)
680                                 update_mboxes(ring, mbox_reg);
681                 }
682         }
683
684         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
685         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
686         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
687         intel_ring_emit(ring, MI_USER_INTERRUPT);
688         __intel_ring_advance(ring);
689
690         return 0;
691 }
692
693 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
694                                               u32 seqno)
695 {
696         struct drm_i915_private *dev_priv = dev->dev_private;
697         return dev_priv->last_seqno < seqno;
698 }
699
700 /**
701  * intel_ring_sync - sync the waiter to the signaller on seqno
702  *
703  * @waiter - ring that is waiting
704  * @signaller - ring which has, or will signal
705  * @seqno - seqno which the waiter will block on
706  */
707 static int
708 gen6_ring_sync(struct intel_ring_buffer *waiter,
709                struct intel_ring_buffer *signaller,
710                u32 seqno)
711 {
712         int ret;
713         u32 dw1 = MI_SEMAPHORE_MBOX |
714                   MI_SEMAPHORE_COMPARE |
715                   MI_SEMAPHORE_REGISTER;
716
717         /* Throughout all of the GEM code, seqno passed implies our current
718          * seqno is >= the last seqno executed. However for hardware the
719          * comparison is strictly greater than.
720          */
721         seqno -= 1;
722
723         WARN_ON(signaller->semaphore_register[waiter->id] ==
724                 MI_SEMAPHORE_SYNC_INVALID);
725
726         ret = intel_ring_begin(waiter, 4);
727         if (ret)
728                 return ret;
729
730         /* If seqno wrap happened, omit the wait with no-ops */
731         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
732                 intel_ring_emit(waiter,
733                                 dw1 |
734                                 signaller->semaphore_register[waiter->id]);
735                 intel_ring_emit(waiter, seqno);
736                 intel_ring_emit(waiter, 0);
737                 intel_ring_emit(waiter, MI_NOOP);
738         } else {
739                 intel_ring_emit(waiter, MI_NOOP);
740                 intel_ring_emit(waiter, MI_NOOP);
741                 intel_ring_emit(waiter, MI_NOOP);
742                 intel_ring_emit(waiter, MI_NOOP);
743         }
744         intel_ring_advance(waiter);
745
746         return 0;
747 }
748
749 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
750 do {                                                                    \
751         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
752                  PIPE_CONTROL_DEPTH_STALL);                             \
753         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
754         intel_ring_emit(ring__, 0);                                                     \
755         intel_ring_emit(ring__, 0);                                                     \
756 } while (0)
757
758 static int
759 pc_render_add_request(struct intel_ring_buffer *ring)
760 {
761         u32 scratch_addr = ring->scratch.gtt_offset + 128;
762         int ret;
763
764         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
765          * incoherent with writes to memory, i.e. completely fubar,
766          * so we need to use PIPE_NOTIFY instead.
767          *
768          * However, we also need to workaround the qword write
769          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
770          * memory before requesting an interrupt.
771          */
772         ret = intel_ring_begin(ring, 32);
773         if (ret)
774                 return ret;
775
776         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
777                         PIPE_CONTROL_WRITE_FLUSH |
778                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
779         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
780         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
781         intel_ring_emit(ring, 0);
782         PIPE_CONTROL_FLUSH(ring, scratch_addr);
783         scratch_addr += 128; /* write to separate cachelines */
784         PIPE_CONTROL_FLUSH(ring, scratch_addr);
785         scratch_addr += 128;
786         PIPE_CONTROL_FLUSH(ring, scratch_addr);
787         scratch_addr += 128;
788         PIPE_CONTROL_FLUSH(ring, scratch_addr);
789         scratch_addr += 128;
790         PIPE_CONTROL_FLUSH(ring, scratch_addr);
791         scratch_addr += 128;
792         PIPE_CONTROL_FLUSH(ring, scratch_addr);
793
794         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
795                         PIPE_CONTROL_WRITE_FLUSH |
796                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
797                         PIPE_CONTROL_NOTIFY);
798         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
799         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
800         intel_ring_emit(ring, 0);
801         __intel_ring_advance(ring);
802
803         return 0;
804 }
805
806 static u32
807 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
808 {
809         /* Workaround to force correct ordering between irq and seqno writes on
810          * ivb (and maybe also on snb) by reading from a CS register (like
811          * ACTHD) before reading the status page. */
812         if (!lazy_coherency)
813                 intel_ring_get_active_head(ring);
814         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
815 }
816
817 static u32
818 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
819 {
820         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
821 }
822
823 static void
824 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
825 {
826         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
827 }
828
829 static u32
830 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
831 {
832         return ring->scratch.cpu_page[0];
833 }
834
835 static void
836 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
837 {
838         ring->scratch.cpu_page[0] = seqno;
839 }
840
841 static bool
842 gen5_ring_get_irq(struct intel_ring_buffer *ring)
843 {
844         struct drm_device *dev = ring->dev;
845         drm_i915_private_t *dev_priv = dev->dev_private;
846
847         if (!dev->irq_enabled)
848                 return false;
849
850         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
851         if (ring->irq_refcount++ == 0)
852                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
853         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
854
855         return true;
856 }
857
858 static void
859 gen5_ring_put_irq(struct intel_ring_buffer *ring)
860 {
861         struct drm_device *dev = ring->dev;
862         drm_i915_private_t *dev_priv = dev->dev_private;
863
864         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
865         if (--ring->irq_refcount == 0)
866                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
867         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
868 }
869
870 static bool
871 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
872 {
873         struct drm_device *dev = ring->dev;
874         drm_i915_private_t *dev_priv = dev->dev_private;
875
876         if (!dev->irq_enabled)
877                 return false;
878
879         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
880         if (ring->irq_refcount++ == 0) {
881                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
882                 I915_WRITE(IMR, dev_priv->irq_mask);
883                 POSTING_READ(IMR);
884         }
885         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
886
887         return true;
888 }
889
890 static void
891 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
892 {
893         struct drm_device *dev = ring->dev;
894         drm_i915_private_t *dev_priv = dev->dev_private;
895
896         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
897         if (--ring->irq_refcount == 0) {
898                 dev_priv->irq_mask |= ring->irq_enable_mask;
899                 I915_WRITE(IMR, dev_priv->irq_mask);
900                 POSTING_READ(IMR);
901         }
902         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
903 }
904
905 static bool
906 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
907 {
908         struct drm_device *dev = ring->dev;
909         drm_i915_private_t *dev_priv = dev->dev_private;
910
911         if (!dev->irq_enabled)
912                 return false;
913
914         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
915         if (ring->irq_refcount++ == 0) {
916                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
917                 I915_WRITE16(IMR, dev_priv->irq_mask);
918                 POSTING_READ16(IMR);
919         }
920         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
921
922         return true;
923 }
924
925 static void
926 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
927 {
928         struct drm_device *dev = ring->dev;
929         drm_i915_private_t *dev_priv = dev->dev_private;
930
931         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
932         if (--ring->irq_refcount == 0) {
933                 dev_priv->irq_mask |= ring->irq_enable_mask;
934                 I915_WRITE16(IMR, dev_priv->irq_mask);
935                 POSTING_READ16(IMR);
936         }
937         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
938 }
939
940 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
941 {
942         struct drm_device *dev = ring->dev;
943         drm_i915_private_t *dev_priv = ring->dev->dev_private;
944         u32 mmio = 0;
945
946         /* The ring status page addresses are no longer next to the rest of
947          * the ring registers as of gen7.
948          */
949         if (IS_GEN7(dev)) {
950                 switch (ring->id) {
951                 case RCS:
952                         mmio = RENDER_HWS_PGA_GEN7;
953                         break;
954                 case BCS:
955                         mmio = BLT_HWS_PGA_GEN7;
956                         break;
957                 case VCS:
958                         mmio = BSD_HWS_PGA_GEN7;
959                         break;
960                 case VECS:
961                         mmio = VEBOX_HWS_PGA_GEN7;
962                         break;
963                 }
964         } else if (IS_GEN6(ring->dev)) {
965                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
966         } else {
967                 /* XXX: gen8 returns to sanity */
968                 mmio = RING_HWS_PGA(ring->mmio_base);
969         }
970
971         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
972         POSTING_READ(mmio);
973
974         /* Flush the TLB for this page */
975         if (INTEL_INFO(dev)->gen >= 6) {
976                 u32 reg = RING_INSTPM(ring->mmio_base);
977                 I915_WRITE(reg,
978                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
979                                               INSTPM_SYNC_FLUSH));
980                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
981                              1000))
982                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
983                                   ring->name);
984         }
985 }
986
987 static int
988 bsd_ring_flush(struct intel_ring_buffer *ring,
989                u32     invalidate_domains,
990                u32     flush_domains)
991 {
992         int ret;
993
994         ret = intel_ring_begin(ring, 2);
995         if (ret)
996                 return ret;
997
998         intel_ring_emit(ring, MI_FLUSH);
999         intel_ring_emit(ring, MI_NOOP);
1000         intel_ring_advance(ring);
1001         return 0;
1002 }
1003
1004 static int
1005 i9xx_add_request(struct intel_ring_buffer *ring)
1006 {
1007         int ret;
1008
1009         ret = intel_ring_begin(ring, 4);
1010         if (ret)
1011                 return ret;
1012
1013         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1014         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1015         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1016         intel_ring_emit(ring, MI_USER_INTERRUPT);
1017         __intel_ring_advance(ring);
1018
1019         return 0;
1020 }
1021
1022 static bool
1023 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1024 {
1025         struct drm_device *dev = ring->dev;
1026         drm_i915_private_t *dev_priv = dev->dev_private;
1027
1028         if (!dev->irq_enabled)
1029                return false;
1030
1031         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1032         if (ring->irq_refcount++ == 0) {
1033                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1034                         I915_WRITE_IMR(ring,
1035                                        ~(ring->irq_enable_mask |
1036                                          GT_PARITY_ERROR(dev)));
1037                 else
1038                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1039                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1040         }
1041         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1042
1043         return true;
1044 }
1045
1046 static void
1047 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1048 {
1049         struct drm_device *dev = ring->dev;
1050         drm_i915_private_t *dev_priv = dev->dev_private;
1051
1052         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1053         if (--ring->irq_refcount == 0) {
1054                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1055                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1056                 else
1057                         I915_WRITE_IMR(ring, ~0);
1058                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1059         }
1060         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1061 }
1062
1063 static bool
1064 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1065 {
1066         struct drm_device *dev = ring->dev;
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068
1069         if (!dev->irq_enabled)
1070                 return false;
1071
1072         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1073         if (ring->irq_refcount++ == 0) {
1074                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1075                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1076         }
1077         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1078
1079         return true;
1080 }
1081
1082 static void
1083 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1084 {
1085         struct drm_device *dev = ring->dev;
1086         struct drm_i915_private *dev_priv = dev->dev_private;
1087
1088         if (!dev->irq_enabled)
1089                 return;
1090
1091         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1092         if (--ring->irq_refcount == 0) {
1093                 I915_WRITE_IMR(ring, ~0);
1094                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1095         }
1096         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1097 }
1098
1099 static bool
1100 gen8_ring_get_irq(struct intel_ring_buffer *ring)
1101 {
1102         struct drm_device *dev = ring->dev;
1103         struct drm_i915_private *dev_priv = dev->dev_private;
1104
1105         if (!dev->irq_enabled)
1106                 return false;
1107
1108         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1109         if (ring->irq_refcount++ == 0) {
1110                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1111                         I915_WRITE_IMR(ring,
1112                                        ~(ring->irq_enable_mask |
1113                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1114                 } else {
1115                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1116                 }
1117                 POSTING_READ(RING_IMR(ring->mmio_base));
1118         }
1119         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1120
1121         return true;
1122 }
1123
1124 static void
1125 gen8_ring_put_irq(struct intel_ring_buffer *ring)
1126 {
1127         struct drm_device *dev = ring->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129
1130         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1131         if (--ring->irq_refcount == 0) {
1132                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1133                         I915_WRITE_IMR(ring,
1134                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1135                 } else {
1136                         I915_WRITE_IMR(ring, ~0);
1137                 }
1138                 POSTING_READ(RING_IMR(ring->mmio_base));
1139         }
1140         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1141 }
1142
1143 static int
1144 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1145                          u32 offset, u32 length,
1146                          unsigned flags)
1147 {
1148         int ret;
1149
1150         ret = intel_ring_begin(ring, 2);
1151         if (ret)
1152                 return ret;
1153
1154         intel_ring_emit(ring,
1155                         MI_BATCH_BUFFER_START |
1156                         MI_BATCH_GTT |
1157                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1158         intel_ring_emit(ring, offset);
1159         intel_ring_advance(ring);
1160
1161         return 0;
1162 }
1163
1164 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1165 #define I830_BATCH_LIMIT (256*1024)
1166 static int
1167 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1168                                 u32 offset, u32 len,
1169                                 unsigned flags)
1170 {
1171         int ret;
1172
1173         if (flags & I915_DISPATCH_PINNED) {
1174                 ret = intel_ring_begin(ring, 4);
1175                 if (ret)
1176                         return ret;
1177
1178                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1179                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1180                 intel_ring_emit(ring, offset + len - 8);
1181                 intel_ring_emit(ring, MI_NOOP);
1182                 intel_ring_advance(ring);
1183         } else {
1184                 u32 cs_offset = ring->scratch.gtt_offset;
1185
1186                 if (len > I830_BATCH_LIMIT)
1187                         return -ENOSPC;
1188
1189                 ret = intel_ring_begin(ring, 9+3);
1190                 if (ret)
1191                         return ret;
1192                 /* Blit the batch (which has now all relocs applied) to the stable batch
1193                  * scratch bo area (so that the CS never stumbles over its tlb
1194                  * invalidation bug) ... */
1195                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1196                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1197                                 XY_SRC_COPY_BLT_WRITE_RGB);
1198                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1199                 intel_ring_emit(ring, 0);
1200                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1201                 intel_ring_emit(ring, cs_offset);
1202                 intel_ring_emit(ring, 0);
1203                 intel_ring_emit(ring, 4096);
1204                 intel_ring_emit(ring, offset);
1205                 intel_ring_emit(ring, MI_FLUSH);
1206
1207                 /* ... and execute it. */
1208                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1209                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1210                 intel_ring_emit(ring, cs_offset + len - 8);
1211                 intel_ring_advance(ring);
1212         }
1213
1214         return 0;
1215 }
1216
1217 static int
1218 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1219                          u32 offset, u32 len,
1220                          unsigned flags)
1221 {
1222         int ret;
1223
1224         ret = intel_ring_begin(ring, 2);
1225         if (ret)
1226                 return ret;
1227
1228         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1229         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1230         intel_ring_advance(ring);
1231
1232         return 0;
1233 }
1234
1235 static void cleanup_status_page(struct intel_ring_buffer *ring)
1236 {
1237         struct drm_i915_gem_object *obj;
1238
1239         obj = ring->status_page.obj;
1240         if (obj == NULL)
1241                 return;
1242
1243         kunmap(obj->pages[0]);
1244         i915_gem_object_unpin(obj);
1245         drm_gem_object_unreference(&obj->base);
1246         ring->status_page.obj = NULL;
1247 }
1248
1249 static int init_status_page(struct intel_ring_buffer *ring)
1250 {
1251         struct drm_device *dev = ring->dev;
1252         struct drm_i915_gem_object *obj;
1253         int ret;
1254
1255         obj = i915_gem_alloc_object(dev, 4096);
1256         if (obj == NULL) {
1257                 DRM_ERROR("Failed to allocate status page\n");
1258                 ret = -ENOMEM;
1259                 goto err;
1260         }
1261
1262         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1263
1264         ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
1265         if (ret != 0) {
1266                 goto err_unref;
1267         }
1268
1269         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1270         ring->status_page.page_addr = kmap(obj->pages[0]);
1271         if (ring->status_page.page_addr == NULL) {
1272                 ret = -ENOMEM;
1273                 goto err_unpin;
1274         }
1275         ring->status_page.obj = obj;
1276         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1277
1278         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1279                         ring->name, ring->status_page.gfx_addr);
1280
1281         return 0;
1282
1283 err_unpin:
1284         i915_gem_object_unpin(obj);
1285 err_unref:
1286         drm_gem_object_unreference(&obj->base);
1287 err:
1288         return ret;
1289 }
1290
1291 static int init_phys_status_page(struct intel_ring_buffer *ring)
1292 {
1293         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1294
1295         if (!dev_priv->status_page_dmah) {
1296                 dev_priv->status_page_dmah =
1297                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1298                 if (!dev_priv->status_page_dmah)
1299                         return -ENOMEM;
1300         }
1301
1302         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1303         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1304
1305         return 0;
1306 }
1307
1308 static int intel_init_ring_buffer(struct drm_device *dev,
1309                                   struct intel_ring_buffer *ring)
1310 {
1311         struct drm_i915_gem_object *obj;
1312         int ret;
1313
1314         ring->dev = dev;
1315         INIT_LIST_HEAD(&ring->active_list);
1316         INIT_LIST_HEAD(&ring->request_list);
1317         ring->size = 32 * PAGE_SIZE;
1318         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1319
1320         init_waitqueue_head(&ring->irq_queue);
1321
1322         if (I915_NEED_GFX_HWS(dev)) {
1323                 ret = init_status_page(ring);
1324                 if (ret)
1325                         return ret;
1326         } else {
1327                 BUG_ON(ring->id != RCS);
1328                 ret = init_phys_status_page(ring);
1329                 if (ret)
1330                         return ret;
1331         }
1332
1333         obj = NULL;
1334         if (!HAS_LLC(dev))
1335                 obj = i915_gem_object_create_stolen(dev, ring->size);
1336         if (obj == NULL)
1337                 obj = i915_gem_alloc_object(dev, ring->size);
1338         if (obj == NULL) {
1339                 DRM_ERROR("Failed to allocate ringbuffer\n");
1340                 ret = -ENOMEM;
1341                 goto err_hws;
1342         }
1343
1344         ring->obj = obj;
1345
1346         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
1347         if (ret)
1348                 goto err_unref;
1349
1350         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1351         if (ret)
1352                 goto err_unpin;
1353
1354         ring->virtual_start =
1355                 ioremap_wc(dev->agp->base + i915_gem_obj_ggtt_offset(obj),
1356                            ring->size);
1357         if (ring->virtual_start == NULL) {
1358                 DRM_ERROR("Failed to map ringbuffer.\n");
1359                 ret = -EINVAL;
1360                 goto err_unpin;
1361         }
1362
1363         ret = ring->init(ring);
1364         if (ret)
1365                 goto err_unmap;
1366
1367         /* Workaround an erratum on the i830 which causes a hang if
1368          * the TAIL pointer points to within the last 2 cachelines
1369          * of the buffer.
1370          */
1371         ring->effective_size = ring->size;
1372         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1373                 ring->effective_size -= 128;
1374
1375         return 0;
1376
1377 err_unmap:
1378         pmap_unmapdev((vm_offset_t)ring->virtual_start, ring->size);
1379 err_unpin:
1380         i915_gem_object_unpin(obj);
1381 err_unref:
1382         drm_gem_object_unreference(&obj->base);
1383         ring->obj = NULL;
1384 err_hws:
1385         cleanup_status_page(ring);
1386         return ret;
1387 }
1388
1389 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1390 {
1391         struct drm_i915_private *dev_priv;
1392         int ret;
1393
1394         if (ring->obj == NULL)
1395                 return;
1396
1397         /* Disable the ring buffer. The ring must be idle at this point */
1398         dev_priv = ring->dev->dev_private;
1399         ret = intel_ring_idle(ring);
1400         if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1401                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1402                           ring->name, ret);
1403
1404         I915_WRITE_CTL(ring, 0);
1405
1406         pmap_unmapdev((vm_offset_t)ring->virtual_start, ring->size);
1407
1408         i915_gem_object_unpin(ring->obj);
1409         drm_gem_object_unreference(&ring->obj->base);
1410         ring->obj = NULL;
1411         ring->preallocated_lazy_request = NULL;
1412         ring->outstanding_lazy_seqno = 0;
1413
1414         if (ring->cleanup)
1415                 ring->cleanup(ring);
1416
1417         cleanup_status_page(ring);
1418 }
1419
1420 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1421 {
1422         int ret;
1423
1424         ret = i915_wait_seqno(ring, seqno);
1425         if (!ret)
1426                 i915_gem_retire_requests_ring(ring);
1427
1428         return ret;
1429 }
1430
1431 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1432 {
1433         struct drm_i915_gem_request *request;
1434         u32 seqno = 0;
1435         int ret;
1436
1437         i915_gem_retire_requests_ring(ring);
1438
1439         if (ring->last_retired_head != -1) {
1440                 ring->head = ring->last_retired_head;
1441                 ring->last_retired_head = -1;
1442                 ring->space = ring_space(ring);
1443                 if (ring->space >= n)
1444                         return 0;
1445         }
1446
1447         list_for_each_entry(request, &ring->request_list, list) {
1448                 int space;
1449
1450                 if (request->tail == -1)
1451                         continue;
1452
1453                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1454                 if (space < 0)
1455                         space += ring->size;
1456                 if (space >= n) {
1457                         seqno = request->seqno;
1458                         break;
1459                 }
1460
1461                 /* Consume this request in case we need more space than
1462                  * is available and so need to prevent a race between
1463                  * updating last_retired_head and direct reads of
1464                  * I915_RING_HEAD. It also provides a nice sanity check.
1465                  */
1466                 request->tail = -1;
1467         }
1468
1469         if (seqno == 0)
1470                 return -ENOSPC;
1471
1472         ret = intel_ring_wait_seqno(ring, seqno);
1473         if (ret)
1474                 return ret;
1475
1476         if (WARN_ON(ring->last_retired_head == -1))
1477                 return -ENOSPC;
1478
1479         ring->head = ring->last_retired_head;
1480         ring->last_retired_head = -1;
1481         ring->space = ring_space(ring);
1482         if (WARN_ON(ring->space < n))
1483                 return -ENOSPC;
1484
1485         return 0;
1486 }
1487
1488 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1489 {
1490         struct drm_device *dev = ring->dev;
1491         struct drm_i915_private *dev_priv = dev->dev_private;
1492         unsigned long end;
1493         int ret;
1494
1495         ret = intel_ring_wait_request(ring, n);
1496         if (ret != -ENOSPC)
1497                 return ret;
1498
1499         /* force the tail write in case we have been skipping them */
1500         __intel_ring_advance(ring);
1501
1502         trace_i915_ring_wait_begin(ring);
1503         /* With GEM the hangcheck timer should kick us out of the loop,
1504          * leaving it early runs the risk of corrupting GEM state (due
1505          * to running on almost untested codepaths). But on resume
1506          * timers don't work yet, so prevent a complete hang in that
1507          * case by choosing an insanely large timeout. */
1508         end = jiffies + 60 * HZ;
1509
1510         do {
1511                 ring->head = I915_READ_HEAD(ring);
1512                 ring->space = ring_space(ring);
1513                 if (ring->space >= n) {
1514                         trace_i915_ring_wait_end(ring);
1515                         return 0;
1516                 }
1517
1518 #if 0
1519                 if (dev->primary->master) {
1520                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1521                         if (master_priv->sarea_priv)
1522                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1523                 }
1524 #else
1525                 if (dev_priv->sarea_priv)
1526                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1527 #endif
1528
1529                 msleep(1);
1530
1531                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1532                                            dev_priv->mm.interruptible);
1533                 if (ret)
1534                         return ret;
1535         } while (!time_after(jiffies, end));
1536         trace_i915_ring_wait_end(ring);
1537         return -EBUSY;
1538 }
1539
1540 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1541 {
1542         uint32_t __iomem *virt;
1543         int rem = ring->size - ring->tail;
1544
1545         if (ring->space < rem) {
1546                 int ret = ring_wait_for_space(ring, rem);
1547                 if (ret)
1548                         return ret;
1549         }
1550
1551         virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1552         rem /= 4;
1553         while (rem--)
1554                 iowrite32(MI_NOOP, virt++);
1555
1556         ring->tail = 0;
1557         ring->space = ring_space(ring);
1558
1559         return 0;
1560 }
1561
1562 int intel_ring_idle(struct intel_ring_buffer *ring)
1563 {
1564         u32 seqno;
1565         int ret;
1566
1567         /* We need to add any requests required to flush the objects and ring */
1568         if (ring->outstanding_lazy_seqno) {
1569                 ret = i915_add_request(ring, NULL);
1570                 if (ret)
1571                         return ret;
1572         }
1573
1574         /* Wait upon the last request to be completed */
1575         if (list_empty(&ring->request_list))
1576                 return 0;
1577
1578         seqno = list_entry(ring->request_list.prev,
1579                            struct drm_i915_gem_request,
1580                            list)->seqno;
1581
1582         return i915_wait_seqno(ring, seqno);
1583 }
1584
1585 static int
1586 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1587 {
1588         if (ring->outstanding_lazy_seqno)
1589                 return 0;
1590
1591         if (ring->preallocated_lazy_request == NULL) {
1592                 struct drm_i915_gem_request *request;
1593
1594                 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1595                 if (request == NULL)
1596                         return -ENOMEM;
1597
1598                 ring->preallocated_lazy_request = request;
1599         }
1600
1601         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1602 }
1603
1604 static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1605                                 int bytes)
1606 {
1607         int ret;
1608
1609         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1610                 ret = intel_wrap_ring_buffer(ring);
1611                 if (unlikely(ret))
1612                         return ret;
1613         }
1614
1615         if (unlikely(ring->space < bytes)) {
1616                 ret = ring_wait_for_space(ring, bytes);
1617                 if (unlikely(ret))
1618                         return ret;
1619         }
1620
1621         return 0;
1622 }
1623
1624 int intel_ring_begin(struct intel_ring_buffer *ring,
1625                      int num_dwords)
1626 {
1627         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1628         int ret;
1629
1630         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1631                                    dev_priv->mm.interruptible);
1632         if (ret)
1633                 return ret;
1634
1635         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1636         if (ret)
1637                 return ret;
1638
1639         /* Preallocate the olr before touching the ring */
1640         ret = intel_ring_alloc_seqno(ring);
1641         if (ret)
1642                 return ret;
1643
1644         ring->space -= num_dwords * sizeof(uint32_t);
1645         return 0;
1646 }
1647
1648 /* Align the ring tail to a cacheline boundary */
1649 int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1650 {
1651         int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1652         int ret;
1653
1654         if (num_dwords == 0)
1655                 return 0;
1656
1657         ret = intel_ring_begin(ring, num_dwords);
1658         if (ret)
1659                 return ret;
1660
1661         while (num_dwords--)
1662                 intel_ring_emit(ring, MI_NOOP);
1663
1664         intel_ring_advance(ring);
1665
1666         return 0;
1667 }
1668
1669 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1670 {
1671         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1672
1673         BUG_ON(ring->outstanding_lazy_seqno);
1674
1675         if (INTEL_INFO(ring->dev)->gen >= 6) {
1676                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1677                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1678                 if (HAS_VEBOX(ring->dev))
1679                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1680         }
1681
1682         ring->set_seqno(ring, seqno);
1683         ring->hangcheck.seqno = seqno;
1684 }
1685
1686 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1687                                      u32 value)
1688 {
1689         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1690
1691        /* Every tail move must follow the sequence below */
1692
1693         /* Disable notification that the ring is IDLE. The GT
1694          * will then assume that it is busy and bring it out of rc6.
1695          */
1696         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1697                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1698
1699         /* Clear the context id. Here be magic! */
1700         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1701
1702         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1703         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1704                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1705                      50))
1706                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1707
1708         /* Now that the ring is fully powered up, update the tail */
1709         I915_WRITE_TAIL(ring, value);
1710         POSTING_READ(RING_TAIL(ring->mmio_base));
1711
1712         /* Let the ring send IDLE messages to the GT again,
1713          * and so let it sleep to conserve power when idle.
1714          */
1715         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1716                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1717 }
1718
1719 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1720                                u32 invalidate, u32 flush)
1721 {
1722         uint32_t cmd;
1723         int ret;
1724
1725         ret = intel_ring_begin(ring, 4);
1726         if (ret)
1727                 return ret;
1728
1729         cmd = MI_FLUSH_DW;
1730         if (INTEL_INFO(ring->dev)->gen >= 8)
1731                 cmd += 1;
1732         /*
1733          * Bspec vol 1c.5 - video engine command streamer:
1734          * "If ENABLED, all TLBs will be invalidated once the flush
1735          * operation is complete. This bit is only valid when the
1736          * Post-Sync Operation field is a value of 1h or 3h."
1737          */
1738         if (invalidate & I915_GEM_GPU_DOMAINS)
1739                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1740                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1741         intel_ring_emit(ring, cmd);
1742         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1743         if (INTEL_INFO(ring->dev)->gen >= 8) {
1744                 intel_ring_emit(ring, 0); /* upper addr */
1745                 intel_ring_emit(ring, 0); /* value */
1746         } else  {
1747                 intel_ring_emit(ring, 0);
1748                 intel_ring_emit(ring, MI_NOOP);
1749         }
1750         intel_ring_advance(ring);
1751         return 0;
1752 }
1753
1754 static int
1755 gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1756                               u32 offset, u32 len,
1757                               unsigned flags)
1758 {
1759         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1760         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1761                 !(flags & I915_DISPATCH_SECURE);
1762         int ret;
1763
1764         ret = intel_ring_begin(ring, 4);
1765         if (ret)
1766                 return ret;
1767
1768         /* FIXME(BDW): Address space and security selectors. */
1769         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1770         intel_ring_emit(ring, offset);
1771         intel_ring_emit(ring, 0);
1772         intel_ring_emit(ring, MI_NOOP);
1773         intel_ring_advance(ring);
1774
1775         return 0;
1776 }
1777
1778 static int
1779 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1780                               u32 offset, u32 len,
1781                               unsigned flags)
1782 {
1783         int ret;
1784
1785         ret = intel_ring_begin(ring, 2);
1786         if (ret)
1787                 return ret;
1788
1789         intel_ring_emit(ring,
1790                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1791                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1792         /* bit0-7 is the length on GEN6+ */
1793         intel_ring_emit(ring, offset);
1794         intel_ring_advance(ring);
1795
1796         return 0;
1797 }
1798
1799 static int
1800 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1801                               u32 offset, u32 len,
1802                               unsigned flags)
1803 {
1804         int ret;
1805
1806         ret = intel_ring_begin(ring, 2);
1807         if (ret)
1808                 return ret;
1809
1810         intel_ring_emit(ring,
1811                         MI_BATCH_BUFFER_START |
1812                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1813         /* bit0-7 is the length on GEN6+ */
1814         intel_ring_emit(ring, offset);
1815         intel_ring_advance(ring);
1816
1817         return 0;
1818 }
1819
1820 /* Blitter support (SandyBridge+) */
1821
1822 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1823                            u32 invalidate, u32 flush)
1824 {
1825         struct drm_device *dev = ring->dev;
1826         uint32_t cmd;
1827         int ret;
1828
1829         ret = intel_ring_begin(ring, 4);
1830         if (ret)
1831                 return ret;
1832
1833         cmd = MI_FLUSH_DW;
1834         if (INTEL_INFO(ring->dev)->gen >= 8)
1835                 cmd += 1;
1836         /*
1837          * Bspec vol 1c.3 - blitter engine command streamer:
1838          * "If ENABLED, all TLBs will be invalidated once the flush
1839          * operation is complete. This bit is only valid when the
1840          * Post-Sync Operation field is a value of 1h or 3h."
1841          */
1842         if (invalidate & I915_GEM_DOMAIN_RENDER)
1843                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1844                         MI_FLUSH_DW_OP_STOREDW;
1845         intel_ring_emit(ring, cmd);
1846         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1847         if (INTEL_INFO(ring->dev)->gen >= 8) {
1848                 intel_ring_emit(ring, 0); /* upper addr */
1849                 intel_ring_emit(ring, 0); /* value */
1850         } else  {
1851                 intel_ring_emit(ring, 0);
1852                 intel_ring_emit(ring, MI_NOOP);
1853         }
1854         intel_ring_advance(ring);
1855
1856         if (IS_GEN7(dev) && !invalidate && flush)
1857                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1858
1859         return 0;
1860 }
1861
1862 int intel_init_render_ring_buffer(struct drm_device *dev)
1863 {
1864         drm_i915_private_t *dev_priv = dev->dev_private;
1865         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1866
1867         ring->name = "render ring";
1868         ring->id = RCS;
1869         ring->mmio_base = RENDER_RING_BASE;
1870
1871         if (INTEL_INFO(dev)->gen >= 6) {
1872                 ring->add_request = gen6_add_request;
1873                 ring->flush = gen7_render_ring_flush;
1874                 if (INTEL_INFO(dev)->gen == 6)
1875                         ring->flush = gen6_render_ring_flush;
1876                 if (INTEL_INFO(dev)->gen >= 8) {
1877                         ring->flush = gen8_render_ring_flush;
1878                         ring->irq_get = gen8_ring_get_irq;
1879                         ring->irq_put = gen8_ring_put_irq;
1880                 } else {
1881                         ring->irq_get = gen6_ring_get_irq;
1882                         ring->irq_put = gen6_ring_put_irq;
1883                 }
1884                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1885                 ring->get_seqno = gen6_ring_get_seqno;
1886                 ring->set_seqno = ring_set_seqno;
1887                 ring->sync_to = gen6_ring_sync;
1888                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1889                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1890                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1891                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1892                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1893                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1894                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1895                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1896         } else if (IS_GEN5(dev)) {
1897                 ring->add_request = pc_render_add_request;
1898                 ring->flush = gen4_render_ring_flush;
1899                 ring->get_seqno = pc_render_get_seqno;
1900                 ring->set_seqno = pc_render_set_seqno;
1901                 ring->irq_get = gen5_ring_get_irq;
1902                 ring->irq_put = gen5_ring_put_irq;
1903                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1904                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1905         } else {
1906                 ring->add_request = i9xx_add_request;
1907                 if (INTEL_INFO(dev)->gen < 4)
1908                         ring->flush = gen2_render_ring_flush;
1909                 else
1910                         ring->flush = gen4_render_ring_flush;
1911                 ring->get_seqno = ring_get_seqno;
1912                 ring->set_seqno = ring_set_seqno;
1913                 if (IS_GEN2(dev)) {
1914                         ring->irq_get = i8xx_ring_get_irq;
1915                         ring->irq_put = i8xx_ring_put_irq;
1916                 } else {
1917                         ring->irq_get = i9xx_ring_get_irq;
1918                         ring->irq_put = i9xx_ring_put_irq;
1919                 }
1920                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1921         }
1922         ring->write_tail = ring_write_tail;
1923         if (IS_HASWELL(dev))
1924                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1925         else if (IS_GEN8(dev))
1926                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1927         else if (INTEL_INFO(dev)->gen >= 6)
1928                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1929         else if (INTEL_INFO(dev)->gen >= 4)
1930                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1931         else if (IS_I830(dev) || IS_845G(dev))
1932                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1933         else
1934                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1935         ring->init = init_render_ring;
1936         ring->cleanup = render_ring_cleanup;
1937
1938         /* Workaround batchbuffer to combat CS tlb bug. */
1939         if (HAS_BROKEN_CS_TLB(dev)) {
1940                 struct drm_i915_gem_object *obj;
1941                 int ret;
1942
1943                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1944                 if (obj == NULL) {
1945                         DRM_ERROR("Failed to allocate batch bo\n");
1946                         return -ENOMEM;
1947                 }
1948
1949                 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1950                 if (ret != 0) {
1951                         drm_gem_object_unreference(&obj->base);
1952                         DRM_ERROR("Failed to ping batch bo\n");
1953                         return ret;
1954                 }
1955
1956                 ring->scratch.obj = obj;
1957                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1958         }
1959
1960         return intel_init_ring_buffer(dev, ring);
1961 }
1962
1963 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1964 {
1965         drm_i915_private_t *dev_priv = dev->dev_private;
1966         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1967         int ret;
1968
1969         ring->name = "render ring";
1970         ring->id = RCS;
1971         ring->mmio_base = RENDER_RING_BASE;
1972
1973         if (INTEL_INFO(dev)->gen >= 6) {
1974                 /* non-kms not supported on gen6+ */
1975                 return -ENODEV;
1976         }
1977
1978         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1979          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1980          * the special gen5 functions. */
1981         ring->add_request = i9xx_add_request;
1982         if (INTEL_INFO(dev)->gen < 4)
1983                 ring->flush = gen2_render_ring_flush;
1984         else
1985                 ring->flush = gen4_render_ring_flush;
1986         ring->get_seqno = ring_get_seqno;
1987         ring->set_seqno = ring_set_seqno;
1988         if (IS_GEN2(dev)) {
1989                 ring->irq_get = i8xx_ring_get_irq;
1990                 ring->irq_put = i8xx_ring_put_irq;
1991         } else {
1992                 ring->irq_get = i9xx_ring_get_irq;
1993                 ring->irq_put = i9xx_ring_put_irq;
1994         }
1995         ring->irq_enable_mask = I915_USER_INTERRUPT;
1996         ring->write_tail = ring_write_tail;
1997         if (INTEL_INFO(dev)->gen >= 4)
1998                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1999         else if (IS_I830(dev) || IS_845G(dev))
2000                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2001         else
2002                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2003         ring->init = init_render_ring;
2004         ring->cleanup = render_ring_cleanup;
2005
2006         ring->dev = dev;
2007         INIT_LIST_HEAD(&ring->active_list);
2008         INIT_LIST_HEAD(&ring->request_list);
2009
2010         ring->size = size;
2011         ring->effective_size = ring->size;
2012         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2013                 ring->effective_size -= 128;
2014
2015         ring->virtual_start = ioremap_wc(start, size);
2016         if (ring->virtual_start == NULL) {
2017                 DRM_ERROR("can not ioremap virtual address for"
2018                           " ring buffer\n");
2019                 return -ENOMEM;
2020         }
2021
2022         if (!I915_NEED_GFX_HWS(dev)) {
2023                 ret = init_phys_status_page(ring);
2024                 if (ret)
2025                         return ret;
2026         }
2027
2028         return 0;
2029 }
2030
2031 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2032 {
2033         drm_i915_private_t *dev_priv = dev->dev_private;
2034         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2035
2036         ring->name = "bsd ring";
2037         ring->id = VCS;
2038
2039         ring->write_tail = ring_write_tail;
2040         if (INTEL_INFO(dev)->gen >= 6) {
2041                 ring->mmio_base = GEN6_BSD_RING_BASE;
2042                 /* gen6 bsd needs a special wa for tail updates */
2043                 if (IS_GEN6(dev))
2044                         ring->write_tail = gen6_bsd_ring_write_tail;
2045                 ring->flush = gen6_bsd_ring_flush;
2046                 ring->add_request = gen6_add_request;
2047                 ring->get_seqno = gen6_ring_get_seqno;
2048                 ring->set_seqno = ring_set_seqno;
2049                 if (INTEL_INFO(dev)->gen >= 8) {
2050                         ring->irq_enable_mask =
2051                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2052                         ring->irq_get = gen8_ring_get_irq;
2053                         ring->irq_put = gen8_ring_put_irq;
2054                         ring->dispatch_execbuffer =
2055                                 gen8_ring_dispatch_execbuffer;
2056                 } else {
2057                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2058                         ring->irq_get = gen6_ring_get_irq;
2059                         ring->irq_put = gen6_ring_put_irq;
2060                         ring->dispatch_execbuffer =
2061                                 gen6_ring_dispatch_execbuffer;
2062                 }
2063                 ring->sync_to = gen6_ring_sync;
2064                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2065                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2066                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2067                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2068                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
2069                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
2070                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
2071                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2072         } else {
2073                 ring->mmio_base = BSD_RING_BASE;
2074                 ring->flush = bsd_ring_flush;
2075                 ring->add_request = i9xx_add_request;
2076                 ring->get_seqno = ring_get_seqno;
2077                 ring->set_seqno = ring_set_seqno;
2078                 if (IS_GEN5(dev)) {
2079                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2080                         ring->irq_get = gen5_ring_get_irq;
2081                         ring->irq_put = gen5_ring_put_irq;
2082                 } else {
2083                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2084                         ring->irq_get = i9xx_ring_get_irq;
2085                         ring->irq_put = i9xx_ring_put_irq;
2086                 }
2087                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2088         }
2089         ring->init = init_ring_common;
2090
2091         return intel_init_ring_buffer(dev, ring);
2092 }
2093
2094 int intel_init_blt_ring_buffer(struct drm_device *dev)
2095 {
2096         drm_i915_private_t *dev_priv = dev->dev_private;
2097         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2098
2099         ring->name = "blitter ring";
2100         ring->id = BCS;
2101
2102         ring->mmio_base = BLT_RING_BASE;
2103         ring->write_tail = ring_write_tail;
2104         ring->flush = gen6_ring_flush;
2105         ring->add_request = gen6_add_request;
2106         ring->get_seqno = gen6_ring_get_seqno;
2107         ring->set_seqno = ring_set_seqno;
2108         if (INTEL_INFO(dev)->gen >= 8) {
2109                 ring->irq_enable_mask =
2110                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2111                 ring->irq_get = gen8_ring_get_irq;
2112                 ring->irq_put = gen8_ring_put_irq;
2113                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2114         } else {
2115                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2116                 ring->irq_get = gen6_ring_get_irq;
2117                 ring->irq_put = gen6_ring_put_irq;
2118                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2119         }
2120         ring->sync_to = gen6_ring_sync;
2121         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2122         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2123         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2124         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2125         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2126         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2127         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2128         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2129         ring->init = init_ring_common;
2130
2131         return intel_init_ring_buffer(dev, ring);
2132 }
2133
2134 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2135 {
2136         drm_i915_private_t *dev_priv = dev->dev_private;
2137         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2138
2139         ring->name = "video enhancement ring";
2140         ring->id = VECS;
2141
2142         ring->mmio_base = VEBOX_RING_BASE;
2143         ring->write_tail = ring_write_tail;
2144         ring->flush = gen6_ring_flush;
2145         ring->add_request = gen6_add_request;
2146         ring->get_seqno = gen6_ring_get_seqno;
2147         ring->set_seqno = ring_set_seqno;
2148
2149         if (INTEL_INFO(dev)->gen >= 8) {
2150                 ring->irq_enable_mask =
2151                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2152                 ring->irq_get = gen8_ring_get_irq;
2153                 ring->irq_put = gen8_ring_put_irq;
2154                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2155         } else {
2156                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2157                 ring->irq_get = hsw_vebox_get_irq;
2158                 ring->irq_put = hsw_vebox_put_irq;
2159                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2160         }
2161         ring->sync_to = gen6_ring_sync;
2162         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2163         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2164         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2165         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2166         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2167         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2168         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2169         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2170         ring->init = init_ring_common;
2171
2172         return intel_init_ring_buffer(dev, ring);
2173 }
2174
2175 int
2176 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2177 {
2178         int ret;
2179
2180         if (!ring->gpu_caches_dirty)
2181                 return 0;
2182
2183         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2184         if (ret)
2185                 return ret;
2186
2187         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2188
2189         ring->gpu_caches_dirty = false;
2190         return 0;
2191 }
2192
2193 int
2194 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2195 {
2196         uint32_t flush_domains;
2197         int ret;
2198
2199         flush_domains = 0;
2200         if (ring->gpu_caches_dirty)
2201                 flush_domains = I915_GEM_GPU_DOMAINS;
2202
2203         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2204         if (ret)
2205                 return ret;
2206
2207         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2208
2209         ring->gpu_caches_dirty = false;
2210         return 0;
2211 }