Merge from vendor branch TNFTP:
[dragonfly.git] / sys / dev / raid / twe / twe_freebsd.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2003 Paul Saab
4  * Copyright (c) 2003 Vinod Kashyap
5  * Copyright (c) 2000 BSDi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/twe/twe_freebsd.c,v 1.2.2.9 2004/06/11 18:57:31 vkashyap Exp $
30  * $DragonFly: src/sys/dev/raid/twe/twe_freebsd.c,v 1.25 2006/12/22 23:26:24 swildner Exp $
31  */
32
33 /*
34  * FreeBSD-specific code.
35  */
36
37 #include <dev/raid/twe/twe_compat.h>
38 #include <dev/raid/twe/twereg.h>
39 #include <dev/raid/twe/twe_tables.h>
40 #include <dev/raid/twe/tweio.h>
41 #include <dev/raid/twe/twevar.h>
42
43 static devclass_t       twe_devclass;
44
45 #ifdef TWE_DEBUG
46 static u_int32_t        twed_bio_in;
47 #define TWED_BIO_IN     twed_bio_in++
48 static u_int32_t        twed_bio_out;
49 #define TWED_BIO_OUT    twed_bio_out++
50 #else
51 #define TWED_BIO_IN
52 #define TWED_BIO_OUT
53 #endif
54
55 /********************************************************************************
56  ********************************************************************************
57                                                          Control device interface
58  ********************************************************************************
59  ********************************************************************************/
60
61 static  d_open_t                twe_open;
62 static  d_close_t               twe_close;
63 static  d_ioctl_t               twe_ioctl_wrapper;
64
65 static struct dev_ops twe_ops = {
66         { "twe", TWE_CDEV_MAJOR, 0 },
67         .d_open =       twe_open,
68         .d_close =      twe_close,
69         .d_ioctl =      twe_ioctl_wrapper,
70 };
71
72 /********************************************************************************
73  * Accept an open operation on the control device.
74  */
75 static int
76 twe_open(struct dev_open_args *ap)
77 {
78     cdev_t dev = ap->a_head.a_dev;
79     int                 unit = minor(dev);
80     struct twe_softc    *sc = devclass_get_softc(twe_devclass, unit);
81
82     sc->twe_state |= TWE_STATE_OPEN;
83     return(0);
84 }
85
86 /********************************************************************************
87  * Accept the last close on the control device.
88  */
89 static int
90 twe_close(struct dev_close_args *ap)
91 {
92     cdev_t dev = ap->a_head.a_dev;
93     int                 unit = minor(dev);
94     struct twe_softc    *sc = devclass_get_softc(twe_devclass, unit);
95
96     sc->twe_state &= ~TWE_STATE_OPEN;
97     return (0);
98 }
99
100 /********************************************************************************
101  * Handle controller-specific control operations.
102  */
103 static int
104 twe_ioctl_wrapper(struct dev_ioctl_args *ap)
105 {
106     cdev_t dev = ap->a_head.a_dev;
107     struct twe_softc *sc = (struct twe_softc *)dev->si_drv1;
108     
109     return(twe_ioctl(sc, ap->a_cmd, ap->a_data));
110 }
111
112 /********************************************************************************
113  ********************************************************************************
114                                                              PCI device interface
115  ********************************************************************************
116  ********************************************************************************/
117
118 static int      twe_probe(device_t dev);
119 static int      twe_attach(device_t dev);
120 static void     twe_free(struct twe_softc *sc);
121 static int      twe_detach(device_t dev);
122 static int      twe_shutdown(device_t dev);
123 static int      twe_suspend(device_t dev);
124 static int      twe_resume(device_t dev);
125 static void     twe_pci_intr(void *arg);
126 static void     twe_intrhook(void *arg);
127 static void     twe_free_request(struct twe_request *tr);
128 static void     twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs,
129                                                                   int nsegments, int error);
130 static void     twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs,
131                                                                          int nsegments, int error);
132
133 static device_method_t twe_methods[] = {
134     /* Device interface */
135     DEVMETHOD(device_probe,     twe_probe),
136     DEVMETHOD(device_attach,    twe_attach),
137     DEVMETHOD(device_detach,    twe_detach),
138     DEVMETHOD(device_shutdown,  twe_shutdown),
139     DEVMETHOD(device_suspend,   twe_suspend),
140     DEVMETHOD(device_resume,    twe_resume),
141
142     DEVMETHOD(bus_print_child,  bus_generic_print_child),
143     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
144     { 0, 0 }
145 };
146
147 static driver_t twe_pci_driver = {
148         "twe",
149         twe_methods,
150         sizeof(struct twe_softc)
151 };
152
153 #ifdef TWE_OVERRIDE
154 DRIVER_MODULE(Xtwe, pci, twe_pci_driver, twe_devclass, 0, 0);
155 #else
156 DRIVER_MODULE(twe, pci, twe_pci_driver, twe_devclass, 0, 0);
157 #endif
158
159 /********************************************************************************
160  * Match a 3ware Escalade ATA RAID controller.
161  */
162 static int
163 twe_probe(device_t dev)
164 {
165
166     debug_called(4);
167
168     if ((pci_get_vendor(dev) == TWE_VENDOR_ID) &&
169         ((pci_get_device(dev) == TWE_DEVICE_ID) || 
170          (pci_get_device(dev) == TWE_DEVICE_ID_ASIC))) {
171         device_set_desc(dev, TWE_DEVICE_NAME " driver ver. " TWE_DRIVER_VERSION_STRING);
172 #ifdef TWE_OVERRIDE
173         return(0);
174 #else
175         return(-10);
176 #endif
177     }
178     return(ENXIO);
179 }
180
181 /********************************************************************************
182  * Allocate resources, initialise the controller.
183  */
184 static int
185 twe_attach(device_t dev)
186 {
187     struct twe_softc    *sc;
188     int                 rid, error;
189     u_int32_t           command;
190
191     debug_called(4);
192
193     /*
194      * Initialise the softc structure.
195      */
196     sc = device_get_softc(dev);
197     sc->twe_dev = dev;
198
199     sysctl_ctx_init(&sc->sysctl_ctx);
200     sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
201         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
202         device_get_nameunit(dev), CTLFLAG_RD, 0, "");
203     if (sc->sysctl_tree == NULL) {
204         twe_printf(sc, "cannot add sysctl tree node\n");
205         return (ENXIO);
206     }
207     SYSCTL_ADD_STRING(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
208         OID_AUTO, "driver_version", CTLFLAG_RD, TWE_DRIVER_VERSION_STRING, 0,
209         "TWE driver version");
210
211     /*
212      * Make sure we are going to be able to talk to this board.
213      */
214     command = pci_read_config(dev, PCIR_COMMAND, 2);
215     if ((command & PCIM_CMD_PORTEN) == 0) {
216         twe_printf(sc, "register window not available\n");
217         return(ENXIO);
218     }
219     /*
220      * Force the busmaster enable bit on, in case the BIOS forgot.
221      */
222     command |= PCIM_CMD_BUSMASTEREN;
223     pci_write_config(dev, PCIR_COMMAND, command, 2);
224
225     /*
226      * Allocate the PCI register window.
227      */
228     rid = TWE_IO_CONFIG_REG;
229     if ((sc->twe_io = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid, 0, ~0, 1, RF_ACTIVE)) == NULL) {
230         twe_printf(sc, "can't allocate register window\n");
231         twe_free(sc);
232         return(ENXIO);
233     }
234     sc->twe_btag = rman_get_bustag(sc->twe_io);
235     sc->twe_bhandle = rman_get_bushandle(sc->twe_io);
236
237     /*
238      * Allocate the parent bus DMA tag appropriate for PCI.
239      */
240     if (bus_dma_tag_create(NULL,                                /* parent */
241                            1, 0,                                /* alignment, boundary */
242                            BUS_SPACE_MAXADDR_32BIT,             /* lowaddr */
243                            BUS_SPACE_MAXADDR,                   /* highaddr */
244                            NULL, NULL,                          /* filter, filterarg */
245                            MAXBSIZE, TWE_MAX_SGL_LENGTH,        /* maxsize, nsegments */
246                            BUS_SPACE_MAXSIZE_32BIT,             /* maxsegsize */
247                            BUS_DMA_ALLOCNOW,                    /* flags */
248                            &sc->twe_parent_dmat)) {
249         twe_printf(sc, "can't allocate parent DMA tag\n");
250         twe_free(sc);
251         return(ENOMEM);
252     }
253
254     /* 
255      * Allocate and connect our interrupt.
256      */
257     rid = 0;
258     if ((sc->twe_irq = bus_alloc_resource(sc->twe_dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
259         twe_printf(sc, "can't allocate interrupt\n");
260         twe_free(sc);
261         return(ENXIO);
262     }
263     if (bus_setup_intr(sc->twe_dev, sc->twe_irq, 0,
264                         twe_pci_intr, sc, &sc->twe_intr, NULL)) {
265         twe_printf(sc, "can't set up interrupt\n");
266         twe_free(sc);
267         return(ENXIO);
268     }
269
270     /*
271      * Create DMA tag for mapping objects into controller-addressable space.
272      */
273     if (bus_dma_tag_create(sc->twe_parent_dmat,         /* parent */
274                            1, 0,                        /* alignment, boundary */
275                            BUS_SPACE_MAXADDR,           /* lowaddr */
276                            BUS_SPACE_MAXADDR,           /* highaddr */
277                            NULL, NULL,                  /* filter, filterarg */
278                            MAXBSIZE, TWE_MAX_SGL_LENGTH,/* maxsize, nsegments */
279                            BUS_SPACE_MAXSIZE_32BIT,     /* maxsegsize */
280                            0,                           /* flags */
281                            &sc->twe_buffer_dmat)) {
282         twe_printf(sc, "can't allocate data buffer DMA tag\n");
283         twe_free(sc);
284         return(ENOMEM);
285     }
286
287     /*
288      * Initialise the controller and driver core.
289      */
290     if ((error = twe_setup(sc))) {
291         twe_free(sc);
292         return(error);
293     }
294
295     /*
296      * Print some information about the controller and configuration.
297      */
298     twe_describe_controller(sc);
299
300     /*
301      * Create the control device.
302      */
303         dev_ops_add(&twe_ops, -1, device_get_unit(sc->twe_dev));
304     sc->twe_dev_t = make_dev(&twe_ops, device_get_unit(sc->twe_dev),
305                         UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR, "twe%d",
306                         device_get_unit(sc->twe_dev));
307     sc->twe_dev_t->si_drv1 = sc;
308     /*
309      * Schedule ourselves to bring the controller up once interrupts are available.
310      * This isn't strictly necessary, since we disable interrupts while probing the
311      * controller, but it is more in keeping with common practice for other disk 
312      * devices.
313      */
314     sc->twe_ich.ich_func = twe_intrhook;
315     sc->twe_ich.ich_arg = sc;
316     if (config_intrhook_establish(&sc->twe_ich) != 0) {
317         twe_printf(sc, "can't establish configuration hook\n");
318         twe_free(sc);
319         return(ENXIO);
320     }
321
322     return(0);
323 }
324
325 /********************************************************************************
326  * Free all of the resources associated with (sc).
327  *
328  * Should not be called if the controller is active.
329  */
330 static void
331 twe_free(struct twe_softc *sc)
332 {
333     struct twe_request  *tr;
334
335     debug_called(4);
336
337     /* throw away any command buffers */
338     while ((tr = twe_dequeue_free(sc)) != NULL)
339         twe_free_request(tr);
340
341     /* destroy the data-transfer DMA tag */
342     if (sc->twe_buffer_dmat)
343         bus_dma_tag_destroy(sc->twe_buffer_dmat);
344
345     /* disconnect the interrupt handler */
346     if (sc->twe_intr)
347         bus_teardown_intr(sc->twe_dev, sc->twe_irq, sc->twe_intr);
348     if (sc->twe_irq != NULL)
349         bus_release_resource(sc->twe_dev, SYS_RES_IRQ, 0, sc->twe_irq);
350
351     /* destroy the parent DMA tag */
352     if (sc->twe_parent_dmat)
353         bus_dma_tag_destroy(sc->twe_parent_dmat);
354
355     /* release the register window mapping */
356     if (sc->twe_io != NULL)
357         bus_release_resource(sc->twe_dev, SYS_RES_IOPORT, TWE_IO_CONFIG_REG, sc->twe_io);
358
359         dev_ops_remove(&twe_ops, -1, device_get_unit(sc->twe_dev));
360     /* destroy control device */
361     if (sc->twe_dev_t != (cdev_t)NULL)
362         destroy_dev(sc->twe_dev_t);
363
364     sysctl_ctx_free(&sc->sysctl_ctx);
365 }
366
367 /********************************************************************************
368  * Disconnect from the controller completely, in preparation for unload.
369  */
370 static int
371 twe_detach(device_t dev)
372 {
373     struct twe_softc    *sc = device_get_softc(dev);
374     int                 error;
375
376     debug_called(4);
377
378     error = EBUSY;
379     crit_enter();
380     if (sc->twe_state & TWE_STATE_OPEN)
381         goto out;
382
383     /*  
384      * Shut the controller down.
385      */
386     if ((error = twe_shutdown(dev)))
387         goto out;
388
389     twe_free(sc);
390
391     error = 0;
392  out:
393     crit_exit();
394     return(error);
395 }
396
397 /********************************************************************************
398  * Bring the controller down to a dormant state and detach all child devices.
399  *
400  * Note that we can assume that the bioq on the controller is empty, as we won't
401  * allow shutdown if any device is open.
402  */
403 static int
404 twe_shutdown(device_t dev)
405 {
406     struct twe_softc    *sc = device_get_softc(dev);
407     int                 i, error = 0;
408
409     debug_called(4);
410
411     crit_enter();
412
413     /* 
414      * Delete all our child devices.
415      */
416     for (i = 0; i < TWE_MAX_UNITS; i++) {
417       if (sc->twe_drive[i].td_disk != 0)
418         if ((error = twe_detach_drive(sc, i)) != 0)
419             goto out;
420     }
421
422     /*
423      * Bring the controller down.
424      */
425     twe_deinit(sc);
426
427  out:
428     crit_exit();
429     return(error);
430 }
431
432 /********************************************************************************
433  * Bring the controller to a quiescent state, ready for system suspend.
434  */
435 static int
436 twe_suspend(device_t dev)
437 {
438     struct twe_softc    *sc = device_get_softc(dev);
439
440     debug_called(4);
441
442     crit_enter();
443     sc->twe_state |= TWE_STATE_SUSPEND;
444     
445     twe_disable_interrupts(sc);
446     crit_exit();
447
448     return(0);
449 }
450
451 /********************************************************************************
452  * Bring the controller back to a state ready for operation.
453  */
454 static int
455 twe_resume(device_t dev)
456 {
457     struct twe_softc    *sc = device_get_softc(dev);
458
459     debug_called(4);
460
461     sc->twe_state &= ~TWE_STATE_SUSPEND;
462     twe_enable_interrupts(sc);
463
464     return(0);
465 }
466
467 /*******************************************************************************
468  * Take an interrupt, or be poked by other code to look for interrupt-worthy
469  * status.
470  */
471 static void
472 twe_pci_intr(void *arg)
473 {
474     twe_intr((struct twe_softc *)arg);
475 }
476
477 /********************************************************************************
478  * Delayed-startup hook
479  */
480 static void
481 twe_intrhook(void *arg)
482 {
483     struct twe_softc            *sc = (struct twe_softc *)arg;
484
485     /* pull ourselves off the intrhook chain */
486     config_intrhook_disestablish(&sc->twe_ich);
487
488     /* call core startup routine */
489     twe_init(sc);
490 }
491
492 /********************************************************************************
493  * Given a detected drive, attach it to the bio interface.
494  *
495  * This is called from twe_add_unit.
496  */
497 int
498 twe_attach_drive(struct twe_softc *sc, struct twe_drive *dr)
499 {
500     char        buf[80];
501     int         error = 0;
502
503     dr->td_disk =  device_add_child(sc->twe_dev, NULL, -1);
504     if (dr->td_disk == NULL) {
505         twe_printf(sc, "Cannot add unit\n");
506         return (EIO);
507     }
508     device_set_ivars(dr->td_disk, dr);
509
510     /* 
511      * XXX It would make sense to test the online/initialising bits, but they seem to be
512      * always set...
513      */
514     ksprintf(buf, "Unit %d, %s, %s",
515             dr->td_twe_unit,
516             twe_describe_code(twe_table_unittype, dr->td_type),
517             twe_describe_code(twe_table_unitstate, dr->td_state & TWE_PARAM_UNITSTATUS_MASK));
518     device_set_desc_copy(dr->td_disk, buf);
519
520     if ((error = bus_generic_attach(sc->twe_dev)) != 0) {
521         twe_printf(sc, "Cannot attach unit to controller. error = %d\n", error);
522         error = EIO;
523     }
524     return (error);
525 }
526
527 /********************************************************************************
528  * Detach the specified unit if it exsists
529  *
530  * This is called from twe_del_unit.
531  */
532 int
533 twe_detach_drive(struct twe_softc *sc, int unit)
534 {
535     int error = 0;
536
537     if ((error = device_delete_child(sc->twe_dev, sc->twe_drive[unit].td_disk))) {
538         twe_printf(sc, "Cannot delete unit. error = %d\n", error);
539         return (error);
540     }
541     bzero(&sc->twe_drive[unit], sizeof(sc->twe_drive[unit]));
542     return (error);
543 }
544
545 /********************************************************************************
546  * Clear a PCI parity error.
547  */
548 void
549 twe_clear_pci_parity_error(struct twe_softc *sc)
550 {
551     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PARITY_ERROR);
552     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
553 }
554
555 /********************************************************************************
556  * Clear a PCI abort.
557  */
558 void
559 twe_clear_pci_abort(struct twe_softc *sc)
560 {
561     TWE_CONTROL(sc, TWE_CONTROL_CLEAR_PCI_ABORT);
562     pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
563 }
564
565 /********************************************************************************
566  ********************************************************************************
567                                                                       Disk device
568  ********************************************************************************
569  ********************************************************************************/
570
571 /*
572  * Disk device bus interface
573  */
574 static int twed_probe(device_t dev);
575 static int twed_attach(device_t dev);
576 static int twed_detach(device_t dev);
577
578 static device_method_t twed_methods[] = {
579     DEVMETHOD(device_probe,     twed_probe),
580     DEVMETHOD(device_attach,    twed_attach),
581     DEVMETHOD(device_detach,    twed_detach),
582     { 0, 0 }
583 };
584
585 static driver_t twed_driver = {
586     "twed",
587     twed_methods,
588     sizeof(struct twed_softc)
589 };
590
591 static devclass_t       twed_devclass;
592 #ifdef TWE_OVERRIDE
593 DRIVER_MODULE(Xtwed, Xtwe, twed_driver, twed_devclass, 0, 0);
594 #else
595 DRIVER_MODULE(twed, twe, twed_driver, twed_devclass, 0, 0);
596 #endif
597
598 /*
599  * Disk device control interface.
600  */
601 static  d_open_t        twed_open;
602 static  d_close_t       twed_close;
603 static  d_strategy_t    twed_strategy;
604 static  d_dump_t        twed_dump;
605
606 static struct dev_ops twed_ops = {
607         { "twed", TWED_CDEV_MAJOR, D_DISK },
608         .d_open =       twed_open,
609         .d_close =      twed_close,
610         .d_read =       physread,
611         .d_write =      physwrite,
612         .d_strategy =   twed_strategy,
613         .d_dump =       twed_dump,
614 };
615
616 #ifdef FREEBSD_4
617 static int              disks_registered = 0;
618 #endif
619
620 /********************************************************************************
621  * Handle open from generic layer.
622  *
623  * Note that this is typically only called by the diskslice code, and not
624  * for opens on subdevices (eg. slices, partitions).
625  */
626 static int
627 twed_open(struct dev_open_args *ap)
628 {
629     cdev_t dev = ap->a_head.a_dev;
630     struct twed_softc   *sc = (struct twed_softc *)dev->si_drv1;
631     struct disklabel    *label;
632
633     debug_called(4);
634         
635     if (sc == NULL)
636         return (ENXIO);
637
638     /* check that the controller is up and running */
639     if (sc->twed_controller->twe_state & TWE_STATE_SHUTDOWN)
640         return(ENXIO);
641
642     /* build synthetic label */
643     label = &sc->twed_disk.d_label;
644     bzero(label, sizeof(*label));
645     label->d_type = DTYPE_ESDI;
646     label->d_secsize    = TWE_BLOCK_SIZE;
647     label->d_nsectors   = sc->twed_drive->td_sectors;
648     label->d_ntracks    = sc->twed_drive->td_heads;
649     label->d_ncylinders = sc->twed_drive->td_cylinders;
650     label->d_secpercyl  = sc->twed_drive->td_sectors * sc->twed_drive->td_heads;
651     label->d_secperunit = sc->twed_drive->td_size;
652
653     sc->twed_flags |= TWED_OPEN;
654     return (0);
655 }
656
657 /********************************************************************************
658  * Handle last close of the disk device.
659  */
660 static int
661 twed_close(struct dev_close_args *ap)
662 {
663     cdev_t dev = ap->a_head.a_dev;
664     struct twed_softc   *sc = (struct twed_softc *)dev->si_drv1;
665
666     debug_called(4);
667         
668     if (sc == NULL)
669         return (ENXIO);
670
671     sc->twed_flags &= ~TWED_OPEN;
672     return (0);
673 }
674
675 /********************************************************************************
676  * Handle an I/O request.
677  */
678 static int
679 twed_strategy(struct dev_strategy_args *ap)
680 {
681     cdev_t dev = ap->a_head.a_dev;
682     struct bio *bio = ap->a_bio;
683     struct twed_softc *sc = dev->si_drv1;
684     struct buf *bp = bio->bio_buf;
685
686     bio->bio_driver_info = sc;
687
688     debug_called(4);
689
690     TWED_BIO_IN;
691
692     /* bogus disk? */
693     if ((sc == NULL) || (!sc->twed_drive->td_disk)) {
694         bp->b_error = EINVAL;
695         bp->b_flags |= B_ERROR;
696         kprintf("twe: bio for invalid disk!\n");
697         biodone(bio);
698         TWED_BIO_OUT;
699         return(0);
700     }
701
702     /* perform accounting */
703     devstat_start_transaction(&sc->twed_stats);
704
705     /* queue the bio on the controller */
706     twe_enqueue_bio(sc->twed_controller, bio);
707
708     /* poke the controller to start I/O */
709     twe_startio(sc->twed_controller);
710     return(0);
711 }
712
713 /********************************************************************************
714  * System crashdump support
715  */
716 static int
717 twed_dump(struct dev_dump_args *ap)
718 {
719     cdev_t dev = ap->a_head.a_dev;
720     struct twed_softc   *twed_sc = (struct twed_softc *)dev->si_drv1;
721     struct twe_softc    *twe_sc  = (struct twe_softc *)twed_sc->twed_controller;
722     vm_paddr_t          addr = 0;
723     long                blkcnt;
724     int                 dumppages = MAXDUMPPGS;
725     int                 error;
726     int                 i;
727
728     if (!twed_sc || !twe_sc)
729         return(ENXIO);
730
731     blkcnt = howmany(PAGE_SIZE, ap->a_secsize);
732
733     while (ap->a_count > 0) {
734         caddr_t va = NULL;
735
736         if ((ap->a_count / blkcnt) < dumppages)
737             dumppages = ap->a_count / blkcnt;
738
739         for (i = 0; i < dumppages; ++i) {
740             vm_paddr_t a = addr + (i * PAGE_SIZE);
741             if (is_physical_memory(a))
742                 va = pmap_kenter_temporary(trunc_page(a), i);
743             else
744                 va = pmap_kenter_temporary(trunc_page(0), i);
745         }
746
747         if ((error = twe_dump_blocks(twe_sc, twed_sc->twed_drive->td_twe_unit, ap->a_blkno, va, 
748                                      (PAGE_SIZE * dumppages) / TWE_BLOCK_SIZE)) != 0)
749             return(error);
750
751
752         if (dumpstatus(addr, (off_t)ap->a_count * DEV_BSIZE) < 0)
753             return(EINTR);
754
755         ap->a_blkno += blkcnt * dumppages;
756         ap->a_count -= blkcnt * dumppages;
757         addr += PAGE_SIZE * dumppages;
758     }
759     return(0);
760 }
761
762 /********************************************************************************
763  * Handle completion of an I/O request.
764  */
765 void
766 twed_intr(struct bio *bio)
767 {
768     struct buf *bp = bio->bio_buf;
769     struct twed_softc *sc = bio->bio_driver_info;
770     debug_called(4);
771
772     /* if no error, transfer completed */
773     if ((bp->b_flags & B_ERROR) == 0)
774         bp->b_resid = 0;
775     devstat_end_transaction_buf(&sc->twed_stats, bp);
776     biodone(bio);
777     TWED_BIO_OUT;
778 }
779
780 /********************************************************************************
781  * Default probe stub.
782  */
783 static int
784 twed_probe(device_t dev)
785 {
786     return (0);
787 }
788
789 /********************************************************************************
790  * Attach a unit to the controller.
791  */
792 static int
793 twed_attach(device_t dev)
794 {
795     struct twed_softc   *sc;
796     device_t            parent;
797     cdev_t              dsk;
798     
799     debug_called(4);
800
801     /* initialise our softc */
802     sc = device_get_softc(dev);
803     parent = device_get_parent(dev);
804     sc->twed_controller = (struct twe_softc *)device_get_softc(parent);
805     sc->twed_drive = device_get_ivars(dev);
806     sc->twed_drive->td_sys_unit = device_get_unit(dev);
807     sc->twed_dev = dev;
808
809     /* report the drive */
810     twed_printf(sc, "%uMB (%u sectors)\n",
811                 sc->twed_drive->td_size / ((1024 * 1024) / TWE_BLOCK_SIZE),
812                 sc->twed_drive->td_size);
813     
814     devstat_add_entry(&sc->twed_stats, "twed", sc->twed_drive->td_sys_unit,
815                         TWE_BLOCK_SIZE,
816                         DEVSTAT_NO_ORDERED_TAGS,
817                         DEVSTAT_TYPE_STORARRAY | DEVSTAT_TYPE_IF_OTHER, 
818                         DEVSTAT_PRIORITY_ARRAY);
819
820     /* attach a generic disk device to ourselves */
821     dsk = disk_create(sc->twed_drive->td_sys_unit, &sc->twed_disk,
822                         0, &twed_ops);
823     dsk->si_drv1 = sc;
824 /*    dsk->si_drv2 = sc->twed_drive;*/
825     sc->twed_dev_t = dsk;
826 #ifdef FREEBSD_4
827     disks_registered++;
828 #endif
829
830     /* set the maximum I/O size to the theoretical maximum allowed by the S/G list size */
831     dsk->si_iosize_max = (TWE_MAX_SGL_LENGTH - 1) * PAGE_SIZE;
832
833     return (0);
834 }
835
836 /********************************************************************************
837  * Disconnect ourselves from the system.
838  */
839 static int
840 twed_detach(device_t dev)
841 {
842     struct twed_softc *sc = (struct twed_softc *)device_get_softc(dev);
843
844     debug_called(4);
845
846     if (sc->twed_flags & TWED_OPEN)
847         return(EBUSY);
848
849     devstat_remove_entry(&sc->twed_stats);
850     disk_destroy(&sc->twed_disk);
851 #ifdef FREEBSD_4
852         kprintf("Disks registered: %d\n", disks_registered);
853 #if 0
854     if (--disks_registered == 0)
855         dev_ops_remove(&tweddisk_ops);
856 #endif
857 #endif
858
859     return(0);
860 }
861
862 /********************************************************************************
863  ********************************************************************************
864                                                                              Misc
865  ********************************************************************************
866  ********************************************************************************/
867
868 MALLOC_DEFINE(TWE_MALLOC_CLASS, "twe commands", "twe commands");
869 /********************************************************************************
870  * Allocate a command buffer
871  */
872 struct twe_request *
873 twe_allocate_request(struct twe_softc *sc)
874 {
875     struct twe_request  *tr;
876         int aligned_size;
877
878     /*
879      * TWE requires requests to be 512-byte aligned.  Depend on malloc()
880      * guarenteeing alignment for power-of-2 requests.  Note that the old
881      * (FreeBSD-4.x) malloc code aligned all requests, but the new slab
882      * allocator only guarentees same-size alignment for power-of-2 requests.
883      */
884     aligned_size = (sizeof(struct twe_request) + TWE_ALIGNMASK) &
885            ~TWE_ALIGNMASK;
886     tr = kmalloc(aligned_size, TWE_MALLOC_CLASS, M_INTWAIT|M_ZERO);
887     tr->tr_sc = sc;
888     if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_cmdmap)) {
889         twe_free_request(tr);
890         return(NULL);
891     }
892     bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_cmdmap, &tr->tr_command,
893         sizeof(tr->tr_command), twe_setup_request_dmamap, tr, 0);
894     if (bus_dmamap_create(sc->twe_buffer_dmat, 0, &tr->tr_dmamap)) {
895         bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_cmdmap);
896         twe_free_request(tr);
897         return(NULL);
898     }    
899     return(tr);
900 }
901
902 /********************************************************************************
903  * Permanently discard a command buffer.
904  */
905 static void
906 twe_free_request(struct twe_request *tr) 
907 {
908     struct twe_softc    *sc = tr->tr_sc;
909     
910     debug_called(4);
911
912     bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_cmdmap); 
913     bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_cmdmap);
914     bus_dmamap_destroy(sc->twe_buffer_dmat, tr->tr_dmamap);
915     kfree(tr, TWE_MALLOC_CLASS);
916 }
917
918 /********************************************************************************
919  * Map/unmap (tr)'s command and data in the controller's addressable space.
920  *
921  * These routines ensure that the data which the controller is going to try to
922  * access is actually visible to the controller, in a machine-independant 
923  * fashion.  Due to a hardware limitation, I/O buffers must be 512-byte aligned
924  * and we take care of that here as well.
925  */
926 static void
927 twe_fillin_sgl(TWE_SG_Entry *sgl, bus_dma_segment_t *segs, int nsegments, int max_sgl)
928 {
929     int i;
930
931     for (i = 0; i < nsegments; i++) {
932         sgl[i].address = segs[i].ds_addr;
933         sgl[i].length = segs[i].ds_len;
934     }
935     for (; i < max_sgl; i++) {                          /* XXX necessary? */
936         sgl[i].address = 0;
937         sgl[i].length = 0;
938     }
939 }
940                 
941 static void
942 twe_setup_data_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
943 {
944     struct twe_request  *tr = (struct twe_request *)arg;
945     TWE_Command         *cmd = &tr->tr_command;
946
947     debug_called(4);
948
949     if (tr->tr_flags & TWE_CMD_MAPPED)
950         panic("already mapped command");
951
952     tr->tr_flags |= TWE_CMD_MAPPED;
953
954     if (tr->tr_flags & TWE_CMD_IN_PROGRESS)
955         tr->tr_sc->twe_state &= ~TWE_STATE_FRZN;
956     /* save base of first segment in command (applicable if there only one segment) */
957     tr->tr_dataphys = segs[0].ds_addr;
958
959     /* correct command size for s/g list size */
960     tr->tr_command.generic.size += 2 * nsegments;
961
962     /*
963      * Due to the fact that parameter and I/O commands have the scatter/gather list in
964      * different places, we need to determine which sort of command this actually is
965      * before we can populate it correctly.
966      */
967     switch(cmd->generic.opcode) {
968     case TWE_OP_GET_PARAM:
969     case TWE_OP_SET_PARAM:
970         cmd->generic.sgl_offset = 2;
971         twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
972         break;
973     case TWE_OP_READ:
974     case TWE_OP_WRITE:
975         cmd->generic.sgl_offset = 3;
976         twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
977         break;
978     case TWE_OP_ATA_PASSTHROUGH:
979         cmd->generic.sgl_offset = 5;
980         twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
981         break;
982     default:
983         /*
984          * Fall back to what the linux driver does.
985          * Do this because the API may send an opcode
986          * the driver knows nothing about and this will
987          * at least stop PCIABRT's from hosing us.
988          */
989         switch (cmd->generic.sgl_offset) {
990         case 2:
991             twe_fillin_sgl(&cmd->param.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
992             break;
993         case 3:
994             twe_fillin_sgl(&cmd->io.sgl[0], segs, nsegments, TWE_MAX_SGL_LENGTH);
995             break;
996         case 5:
997             twe_fillin_sgl(&cmd->ata.sgl[0], segs, nsegments, TWE_MAX_ATA_SGL_LENGTH);
998             break;
999         }
1000     }
1001     if (tr->tr_flags & TWE_CMD_DATAIN)
1002         bus_dmamap_sync(tr->tr_sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_PREREAD);
1003     if (tr->tr_flags & TWE_CMD_DATAOUT) {
1004         /* if we're using an alignment buffer, and we're writing data, copy the real data out */
1005         if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1006             bcopy(tr->tr_realdata, tr->tr_data, tr->tr_length);
1007         bus_dmamap_sync(tr->tr_sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_PREWRITE);
1008     }
1009     if (twe_start(tr) == EBUSY) {
1010         tr->tr_sc->twe_state |= TWE_STATE_CTLR_BUSY;
1011         twe_requeue_ready(tr);
1012     }
1013 }
1014
1015 static void
1016 twe_setup_request_dmamap(void *arg, bus_dma_segment_t *segs, int nsegments, int error)
1017 {
1018     struct twe_request  *tr = (struct twe_request *)arg;
1019
1020     debug_called(4);
1021
1022     /* command can't cross a page boundary */
1023     tr->tr_cmdphys = segs[0].ds_addr;
1024 }
1025
1026 int
1027 twe_map_request(struct twe_request *tr)
1028 {
1029     struct twe_softc    *sc = tr->tr_sc;
1030     int                 error = 0;
1031
1032     debug_called(4);
1033
1034     if (sc->twe_state & (TWE_STATE_CTLR_BUSY | TWE_STATE_FRZN)) {
1035         twe_requeue_ready(tr);
1036         return (EBUSY);
1037     }
1038
1039     /*
1040      * Map the command into bus space.
1041      */
1042     bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_cmdmap, BUS_DMASYNC_PREWRITE);
1043
1044     /*
1045      * If the command involves data, map that too.
1046      */
1047     if ((tr->tr_data != NULL) && ((tr->tr_flags & TWE_CMD_MAPPED) == 0)) {
1048
1049         /* 
1050          * Data must be 512-byte aligned; allocate a fixup buffer if it's not.
1051          *
1052          * DragonFly's malloc only guarentees alignment for requests which
1053          * are power-of-2 sized.
1054          */
1055         if (((vm_offset_t)tr->tr_data % TWE_ALIGNMENT) != 0) {
1056             int aligned_size;
1057
1058             tr->tr_realdata = tr->tr_data;      /* save pointer to 'real' data */
1059             aligned_size = TWE_ALIGNMENT;
1060             while (aligned_size < tr->tr_length)
1061                 aligned_size <<= 1;
1062             tr->tr_flags |= TWE_CMD_ALIGNBUF;
1063             tr->tr_data = kmalloc(aligned_size, TWE_MALLOC_CLASS, M_INTWAIT);
1064             if (tr->tr_data == NULL) {
1065                 twe_printf(sc, "%s: malloc failed\n", __func__);
1066                 tr->tr_data = tr->tr_realdata; /* restore original data pointer */
1067                 return(ENOMEM);
1068             }
1069         }
1070         
1071         /*
1072          * Map the data buffer into bus space and build the s/g list.
1073          */
1074         if ((error = bus_dmamap_load(sc->twe_buffer_dmat, tr->tr_dmamap, tr->tr_data,
1075                         tr->tr_length, twe_setup_data_dmamap, tr, BUS_DMA_NOWAIT)
1076                         == EINPROGRESS)) {
1077             tr->tr_flags |= TWE_CMD_IN_PROGRESS;
1078             sc->twe_state |= TWE_STATE_FRZN;
1079             error = 0;
1080         }
1081     } else {
1082         if ((error = twe_start(tr)) == EBUSY) {
1083             sc->twe_state |= TWE_STATE_CTLR_BUSY;
1084             twe_requeue_ready(tr);
1085         }
1086     }
1087
1088     return(error);
1089 }
1090
1091 void
1092 twe_unmap_request(struct twe_request *tr)
1093 {
1094     struct twe_softc    *sc = tr->tr_sc;
1095     debug_called(4);
1096
1097     /*
1098      * Unmap the command from bus space.
1099      */
1100     bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_cmdmap, BUS_DMASYNC_POSTWRITE);
1101
1102     /*
1103      * If the command involved data, unmap that too.
1104      */
1105     if (tr->tr_data != NULL) {
1106         
1107         if (tr->tr_flags & TWE_CMD_DATAIN) {
1108             bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_POSTREAD);
1109             /* if we're using an alignment buffer, and we're reading data, copy the real data in */
1110             if (tr->tr_flags & TWE_CMD_ALIGNBUF)
1111                 bcopy(tr->tr_data, tr->tr_realdata, tr->tr_length);
1112         }
1113         if (tr->tr_flags & TWE_CMD_DATAOUT)
1114             bus_dmamap_sync(sc->twe_buffer_dmat, tr->tr_dmamap, BUS_DMASYNC_POSTWRITE);
1115
1116         bus_dmamap_unload(sc->twe_buffer_dmat, tr->tr_dmamap); 
1117     }
1118
1119     /* free alignment buffer if it was used */
1120     if (tr->tr_flags & TWE_CMD_ALIGNBUF) {
1121         kfree(tr->tr_data, TWE_MALLOC_CLASS);
1122         tr->tr_data = tr->tr_realdata;          /* restore 'real' data pointer */
1123     }
1124 }
1125
1126 #ifdef TWE_DEBUG
1127 void twe_report(void);
1128 /********************************************************************************
1129  * Print current controller status, call from DDB.
1130  */
1131 void
1132 twe_report(void)
1133 {
1134     struct twe_softc    *sc;
1135     int                 i;
1136
1137     crit_enter();
1138     for (i = 0; (sc = devclass_get_softc(twe_devclass, i)) != NULL; i++)
1139         twe_print_controller(sc);
1140     kprintf("twed: total bio count in %u  out %u\n", twed_bio_in, twed_bio_out);
1141     crit_exit();
1142 }
1143 #endif