adb5c64e3929948907132702c5142517bd2c915b
[dragonfly.git] / sys / platform / pc64 / isa / clock.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40
41 /*
42  * Routines to handle clock hardware.
43  */
44
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51
52 #if 0
53 #include "opt_clock.h"
54 #endif
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/eventhandler.h>
59 #include <sys/time.h>
60 #include <sys/kernel.h>
61 #include <sys/bus.h>
62 #include <sys/sysctl.h>
63 #include <sys/cons.h>
64 #include <sys/systimer.h>
65 #include <sys/globaldata.h>
66 #include <sys/thread2.h>
67 #include <sys/machintr.h>
68 #include <sys/interrupt.h>
69
70 #include <machine/clock.h>
71 #include <machine/cputypes.h>
72 #include <machine/frame.h>
73 #include <machine/ipl.h>
74 #include <machine/limits.h>
75 #include <machine/md_var.h>
76 #include <machine/psl.h>
77 #include <machine/segments.h>
78 #include <machine/smp.h>
79 #include <machine/specialreg.h>
80 #include <machine/intr_machdep.h>
81
82 #include <machine_base/apic/ioapic.h>
83 #include <machine_base/apic/ioapic_abi.h>
84 #include <machine_base/icu/icu.h>
85 #include <bus/isa/isa.h>
86 #include <bus/isa/rtc.h>
87 #include <machine_base/isa/timerreg.h>
88
89 static void i8254_restore(void);
90 static void resettodr_on_shutdown(void *arg __unused);
91
92 /*
93  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
94  * can use a simple formula for leap years.
95  */
96 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
97 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
98
99 #ifndef TIMER_FREQ
100 #define TIMER_FREQ   1193182
101 #endif
102
103 static uint8_t i8254_walltimer_sel;
104 static uint16_t i8254_walltimer_cntr;
105
106 int     adjkerntz;              /* local offset from GMT in seconds */
107 int     disable_rtc_set;        /* disable resettodr() if != 0 */
108 int     tsc_present;
109 int     tsc_invariant;
110 int     tsc_mpsync;
111 int64_t tsc_frequency;
112 int     tsc_is_broken;
113 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
114 int     timer0_running;
115 enum tstate { RELEASED, ACQUIRED };
116 enum tstate timer0_state;
117 enum tstate timer1_state;
118 enum tstate timer2_state;
119
120 static  int     beeping = 0;
121 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
122 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
123 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
124 static  int     rtc_loaded;
125
126 static int i8254_cputimer_div;
127
128 static int i8254_nointr;
129 static int i8254_intr_disable = 1;
130 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
131
132 static struct callout sysbeepstop_ch;
133
134 static sysclock_t i8254_cputimer_count(void);
135 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
136 static void i8254_cputimer_destruct(struct cputimer *cputimer);
137
138 static struct cputimer  i8254_cputimer = {
139     SLIST_ENTRY_INITIALIZER,
140     "i8254",
141     CPUTIMER_PRI_8254,
142     0,
143     i8254_cputimer_count,
144     cputimer_default_fromhz,
145     cputimer_default_fromus,
146     i8254_cputimer_construct,
147     i8254_cputimer_destruct,
148     TIMER_FREQ,
149     0, 0, 0
150 };
151
152 static sysclock_t tsc_cputimer_count_mfence(void);
153 static sysclock_t tsc_cputimer_count_lfence(void);
154 static void tsc_cputimer_construct(struct cputimer *, sysclock_t);
155
156 static struct cputimer  tsc_cputimer = {
157     SLIST_ENTRY_INITIALIZER,
158     "TSC",
159     CPUTIMER_PRI_TSC,
160     CPUTIMER_TSC,
161     tsc_cputimer_count_mfence, /* safe bet */
162     cputimer_default_fromhz,
163     cputimer_default_fromus,
164     tsc_cputimer_construct,
165     cputimer_default_destruct,
166     0,
167     0, 0, 0
168 };
169
170 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
171 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
172 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
173
174 static struct cputimer_intr i8254_cputimer_intr = {
175     .freq = TIMER_FREQ,
176     .reload = i8254_intr_reload,
177     .enable = cputimer_intr_default_enable,
178     .config = i8254_intr_config,
179     .restart = cputimer_intr_default_restart,
180     .pmfixup = cputimer_intr_default_pmfixup,
181     .initclock = i8254_intr_initclock,
182     .next = SLIST_ENTRY_INITIALIZER,
183     .name = "i8254",
184     .type = CPUTIMER_INTR_8254,
185     .prio = CPUTIMER_INTR_PRIO_8254,
186     .caps = CPUTIMER_INTR_CAP_PS
187 };
188
189 /*
190  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
191  * counting as of this interrupt.  We use timer1 in free-running mode (not
192  * generating any interrupts) as our main counter.  Each cpu has timeouts
193  * pending.
194  *
195  * This code is INTR_MPSAFE and may be called without the BGL held.
196  */
197 static void
198 clkintr(void *dummy, void *frame_arg)
199 {
200         static sysclock_t sysclock_count;       /* NOTE! Must be static */
201         struct globaldata *gd = mycpu;
202         struct globaldata *gscan;
203         int n;
204
205         /*
206          * SWSTROBE mode is a one-shot, the timer is no longer running
207          */
208         timer0_running = 0;
209
210         /*
211          * XXX the dispatcher needs work.  right now we call systimer_intr()
212          * directly or via IPI for any cpu with systimers queued, which is
213          * usually *ALL* of them.  We need to use the LAPIC timer for this.
214          */
215         sysclock_count = sys_cputimer->count();
216         for (n = 0; n < ncpus; ++n) {
217             gscan = globaldata_find(n);
218             if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
219                 continue;
220             if (gscan != gd) {
221                 lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr, 
222                                 &sysclock_count, 1);
223             } else {
224                 systimer_intr(&sysclock_count, 0, frame_arg);
225             }
226         }
227 }
228
229
230 /*
231  * NOTE! not MP safe.
232  */
233 int
234 acquire_timer2(int mode)
235 {
236         if (timer2_state != RELEASED)
237                 return (-1);
238         timer2_state = ACQUIRED;
239
240         /*
241          * This access to the timer registers is as atomic as possible
242          * because it is a single instruction.  We could do better if we
243          * knew the rate.
244          */
245         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
246         return (0);
247 }
248
249 int
250 release_timer2(void)
251 {
252         if (timer2_state != ACQUIRED)
253                 return (-1);
254         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
255         timer2_state = RELEASED;
256         return (0);
257 }
258
259 #include "opt_ddb.h"
260 #ifdef DDB
261 #include <ddb/ddb.h>
262
263 DB_SHOW_COMMAND(rtc, rtc)
264 {
265         kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
266                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
267                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
268                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
269 }
270 #endif /* DDB */
271
272 /*
273  * Return the current cpu timer count as a 32 bit integer.
274  */
275 static
276 sysclock_t
277 i8254_cputimer_count(void)
278 {
279         static uint16_t cputimer_last;
280         uint16_t count;
281         sysclock_t ret;
282
283         clock_lock();
284         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
285         count = (uint8_t)inb(i8254_walltimer_cntr);             /* get countdown */
286         count |= ((uint8_t)inb(i8254_walltimer_cntr) << 8);
287         count = -count;                                 /* -> countup */
288         if (count < cputimer_last)                      /* rollover */
289                 i8254_cputimer.base += 0x00010000;
290         ret = i8254_cputimer.base | count;
291         cputimer_last = count;
292         clock_unlock();
293         return(ret);
294 }
295
296 /*
297  * This function is called whenever the system timebase changes, allowing
298  * us to calculate what is needed to convert a system timebase tick 
299  * into an 8254 tick for the interrupt timer.  If we can convert to a
300  * simple shift, multiplication, or division, we do so.  Otherwise 64
301  * bit arithmatic is required every time the interrupt timer is reloaded.
302  */
303 static void
304 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
305 {
306     int freq;
307     int div;
308
309     /*
310      * Will a simple divide do the trick?
311      */
312     div = (timer->freq + (cti->freq / 2)) / cti->freq;
313     freq = cti->freq * div;
314
315     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
316         i8254_cputimer_div = div;
317     else
318         i8254_cputimer_div = 0;
319 }
320
321 /*
322  * Reload for the next timeout.  It is possible for the reload value
323  * to be 0 or negative, indicating that an immediate timer interrupt
324  * is desired.  For now make the minimum 2 ticks.
325  *
326  * We may have to convert from the system timebase to the 8254 timebase.
327  */
328 static void
329 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
330 {
331     uint16_t count;
332
333     if (i8254_cputimer_div)
334         reload /= i8254_cputimer_div;
335     else
336         reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
337
338     if ((int)reload < 2)
339         reload = 2;
340
341     clock_lock();
342     if (timer0_running) {
343         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);     /* count-down timer */
344         count = (uint8_t)inb(TIMER_CNTR0);              /* lsb */
345         count |= ((uint8_t)inb(TIMER_CNTR0) << 8);      /* msb */
346         if (reload < count) {
347             outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
348             outb(TIMER_CNTR0, (uint8_t)reload);         /* lsb */
349             outb(TIMER_CNTR0, (uint8_t)(reload >> 8));  /* msb */
350         }
351     } else {
352         timer0_running = 1;
353         if (reload > 0xFFFF)
354             reload = 0;         /* full count */
355         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
356         outb(TIMER_CNTR0, (uint8_t)reload);             /* lsb */
357         outb(TIMER_CNTR0, (uint8_t)(reload >> 8));      /* msb */
358     }
359     clock_unlock();
360 }
361
362 /*
363  * DELAY(usec)       - Spin for the specified number of microseconds.
364  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
365  *                     but do a thread switch in the loop
366  *
367  * Relies on timer 1 counting down from (cputimer_freq / hz)
368  * Note: timer had better have been programmed before this is first used!
369  */
370 static void
371 DODELAY(int n, int doswitch)
372 {
373         ssysclock_t delta, ticks_left;
374         sysclock_t prev_tick, tick;
375
376 #ifdef DELAYDEBUG
377         int getit_calls = 1;
378         int n1;
379         static int state = 0;
380
381         if (state == 0) {
382                 state = 1;
383                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
384                         DELAY(n1);
385                 state = 2;
386         }
387         if (state == 1)
388                 kprintf("DELAY(%d)...", n);
389 #endif
390         /*
391          * Guard against the timer being uninitialized if we are called
392          * early for console i/o.
393          */
394         if (timer0_state == RELEASED)
395                 i8254_restore();
396
397         /*
398          * Read the counter first, so that the rest of the setup overhead is
399          * counted.  Then calculate the number of hardware timer ticks
400          * required, rounding up to be sure we delay at least the requested
401          * number of microseconds.
402          */
403         prev_tick = sys_cputimer->count();
404         ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
405                      1000000;
406
407         /*
408          * Loop until done.
409          */
410         while (ticks_left > 0) {
411                 tick = sys_cputimer->count();
412 #ifdef DELAYDEBUG
413                 ++getit_calls;
414 #endif
415                 delta = tick - prev_tick;
416                 prev_tick = tick;
417                 if (delta < 0)
418                         delta = 0;
419                 ticks_left -= delta;
420                 if (doswitch && ticks_left > 0)
421                         lwkt_switch();
422                 cpu_pause();
423         }
424 #ifdef DELAYDEBUG
425         if (state == 1)
426                 kprintf(" %d calls to getit() at %d usec each\n",
427                        getit_calls, (n + 5) / getit_calls);
428 #endif
429 }
430
431 /*
432  * DELAY() never switches.
433  */
434 void
435 DELAY(int n)
436 {
437         DODELAY(n, 0);
438 }
439
440 /*
441  * Returns non-zero if the specified time period has elapsed.  Call
442  * first with last_clock set to 0.
443  */
444 int
445 CHECKTIMEOUT(TOTALDELAY *tdd)
446 {
447         sysclock_t delta;
448         int us;
449
450         if (tdd->started == 0) {
451                 if (timer0_state == RELEASED)
452                         i8254_restore();
453                 tdd->last_clock = sys_cputimer->count();
454                 tdd->started = 1;
455                 return(0);
456         }
457         delta = sys_cputimer->count() - tdd->last_clock;
458         us = (u_int64_t)delta * (u_int64_t)1000000 /
459              (u_int64_t)sys_cputimer->freq;
460         tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
461                            1000000;
462         tdd->us -= us;
463         return (tdd->us < 0);
464 }
465
466
467 /*
468  * DRIVERSLEEP() does not switch if called with a spinlock held or
469  * from a hard interrupt.
470  */
471 void
472 DRIVERSLEEP(int usec)
473 {
474         globaldata_t gd = mycpu;
475
476         if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
477                 DODELAY(usec, 0);
478         } else {
479                 DODELAY(usec, 1);
480         }
481 }
482
483 static void
484 sysbeepstop(void *chan)
485 {
486         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
487         beeping = 0;
488         release_timer2();
489 }
490
491 int
492 sysbeep(int pitch, int period)
493 {
494         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
495                 return(-1);
496         if (sysbeep_enable == 0)
497                 return(-1);
498         /*
499          * Nobody else is using timer2, we do not need the clock lock
500          */
501         outb(TIMER_CNTR2, pitch);
502         outb(TIMER_CNTR2, (pitch>>8));
503         if (!beeping) {
504                 /* enable counter2 output to speaker */
505                 outb(IO_PPI, inb(IO_PPI) | 3);
506                 beeping = period;
507                 callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
508         }
509         return (0);
510 }
511
512 /*
513  * RTC support routines
514  */
515
516 int
517 rtcin(int reg)
518 {
519         u_char val;
520
521         crit_enter();
522         outb(IO_RTC, reg);
523         inb(0x84);
524         val = inb(IO_RTC + 1);
525         inb(0x84);
526         crit_exit();
527         return (val);
528 }
529
530 static __inline void
531 writertc(u_char reg, u_char val)
532 {
533         crit_enter();
534         inb(0x84);
535         outb(IO_RTC, reg);
536         inb(0x84);
537         outb(IO_RTC + 1, val);
538         inb(0x84);              /* XXX work around wrong order in rtcin() */
539         crit_exit();
540 }
541
542 static __inline int
543 readrtc(int port)
544 {
545         return(bcd2bin(rtcin(port)));
546 }
547
548 static u_int
549 calibrate_clocks(void)
550 {
551         u_int64_t old_tsc;
552         u_int tot_count;
553         sysclock_t count, prev_count;
554         int sec, start_sec, timeout;
555
556         if (bootverbose)
557                 kprintf("Calibrating clock(s) ...\n");
558         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
559                 goto fail;
560         timeout = 100000000;
561
562         /* Read the mc146818A seconds counter. */
563         for (;;) {
564                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
565                         sec = rtcin(RTC_SEC);
566                         break;
567                 }
568                 if (--timeout == 0)
569                         goto fail;
570         }
571
572         /* Wait for the mC146818A seconds counter to change. */
573         start_sec = sec;
574         for (;;) {
575                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
576                         sec = rtcin(RTC_SEC);
577                         if (sec != start_sec)
578                                 break;
579                 }
580                 if (--timeout == 0)
581                         goto fail;
582         }
583
584         /* Start keeping track of the i8254 counter. */
585         prev_count = sys_cputimer->count();
586         tot_count = 0;
587
588         if (tsc_present) 
589                 old_tsc = rdtsc();
590         else
591                 old_tsc = 0;            /* shut up gcc */
592
593         /*
594          * Wait for the mc146818A seconds counter to change.  Read the i8254
595          * counter for each iteration since this is convenient and only
596          * costs a few usec of inaccuracy. The timing of the final reads
597          * of the counters almost matches the timing of the initial reads,
598          * so the main cause of inaccuracy is the varying latency from 
599          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
600          * rtcin(RTC_SEC) that returns a changed seconds count.  The
601          * maximum inaccuracy from this cause is < 10 usec on 486's.
602          */
603         start_sec = sec;
604         for (;;) {
605                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
606                         sec = rtcin(RTC_SEC);
607                 count = sys_cputimer->count();
608                 tot_count += (int)(count - prev_count);
609                 prev_count = count;
610                 if (sec != start_sec)
611                         break;
612                 if (--timeout == 0)
613                         goto fail;
614         }
615
616         /*
617          * Read the cpu cycle counter.  The timing considerations are
618          * similar to those for the i8254 clock.
619          */
620         if (tsc_present) {
621                 tsc_frequency = rdtsc() - old_tsc;
622         }
623
624         if (tsc_present) {
625                 kprintf("TSC%s clock: %llu Hz, ",
626                     tsc_invariant ? " invariant" : "",
627                     (long long)tsc_frequency);
628         }
629         kprintf("i8254 clock: %u Hz\n", tot_count);
630         return (tot_count);
631
632 fail:
633         kprintf("failed, using default i8254 clock of %u Hz\n",
634                 i8254_cputimer.freq);
635         return (i8254_cputimer.freq);
636 }
637
638 static void
639 i8254_restore(void)
640 {
641         timer0_state = ACQUIRED;
642
643         clock_lock();
644
645         /*
646          * Timer0 is our fine-grained variable clock interrupt
647          */
648         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
649         outb(TIMER_CNTR0, 2);   /* lsb */
650         outb(TIMER_CNTR0, 0);   /* msb */
651         clock_unlock();
652
653         if (!i8254_nointr) {
654                 cputimer_intr_register(&i8254_cputimer_intr);
655                 cputimer_intr_select(&i8254_cputimer_intr, 0);
656         }
657
658         /*
659          * Timer1 or timer2 is our free-running clock, but only if another
660          * has not been selected.
661          */
662         cputimer_register(&i8254_cputimer);
663         cputimer_select(&i8254_cputimer, 0);
664 }
665
666 static void
667 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
668 {
669         int which;
670
671         /*
672          * Should we use timer 1 or timer 2 ?
673          */
674         which = 0;
675         TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
676         if (which != 1 && which != 2)
677                 which = 2;
678
679         switch(which) {
680         case 1:
681                 timer->name = "i8254_timer1";
682                 timer->type = CPUTIMER_8254_SEL1;
683                 i8254_walltimer_sel = TIMER_SEL1;
684                 i8254_walltimer_cntr = TIMER_CNTR1;
685                 timer1_state = ACQUIRED;
686                 break;
687         case 2:
688                 timer->name = "i8254_timer2";
689                 timer->type = CPUTIMER_8254_SEL2;
690                 i8254_walltimer_sel = TIMER_SEL2;
691                 i8254_walltimer_cntr = TIMER_CNTR2;
692                 timer2_state = ACQUIRED;
693                 break;
694         }
695
696         timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
697
698         clock_lock();
699         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
700         outb(i8254_walltimer_cntr, 0);  /* lsb */
701         outb(i8254_walltimer_cntr, 0);  /* msb */
702         outb(IO_PPI, inb(IO_PPI) | 1);  /* bit 0: enable gate, bit 1: spkr */
703         clock_unlock();
704 }
705
706 static void
707 i8254_cputimer_destruct(struct cputimer *timer)
708 {
709         switch(timer->type) {
710         case CPUTIMER_8254_SEL1:
711             timer1_state = RELEASED;
712             break;
713         case CPUTIMER_8254_SEL2:
714             timer2_state = RELEASED;
715             break;
716         default:
717             break;
718         }
719         timer->type = 0;
720 }
721
722 static void
723 rtc_restore(void)
724 {
725         /* Restore all of the RTC's "status" (actually, control) registers. */
726         writertc(RTC_STATUSB, RTCSB_24HR);
727         writertc(RTC_STATUSA, rtc_statusa);
728         writertc(RTC_STATUSB, rtc_statusb);
729 }
730
731 /*
732  * Restore all the timers.
733  *
734  * This function is called to resynchronize our core timekeeping after a
735  * long halt, e.g. from apm_default_resume() and friends.  It is also 
736  * called if after a BIOS call we have detected munging of the 8254.
737  * It is necessary because cputimer_count() counter's delta may have grown
738  * too large for nanouptime() and friends to handle, or (in the case of 8254
739  * munging) might cause the SYSTIMER code to prematurely trigger.
740  */
741 void
742 timer_restore(void)
743 {
744         crit_enter();
745         i8254_restore();                /* restore timer_freq and hz */
746         rtc_restore();                  /* reenable RTC interrupts */
747         crit_exit();
748 }
749
750 /*
751  * Initialize 8254 timer 0 early so that it can be used in DELAY().
752  */
753 void
754 startrtclock(void)
755 {
756         u_int delta, freq;
757
758         /* 
759          * Can we use the TSC?
760          *
761          * NOTE: If running under qemu, probably a good idea to force the
762          *       TSC because we are not likely to detect it as being
763          *       invariant or mpsyncd if you don't.  This will greatly
764          *       reduce SMP contention.
765          */
766         if (cpu_feature & CPUID_TSC) {
767                 tsc_present = 1;
768                 TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_invariant);
769
770                 if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
771                      cpu_vendor_id == CPU_VENDOR_AMD) &&
772                     cpu_exthigh >= 0x80000007) {
773                         u_int regs[4];
774
775                         do_cpuid(0x80000007, regs);
776                         if (regs[3] & 0x100)
777                                 tsc_invariant = 1;
778                 }
779         } else {
780                 tsc_present = 0;
781         }
782
783         /*
784          * Initial RTC state, don't do anything unexpected
785          */
786         writertc(RTC_STATUSA, rtc_statusa);
787         writertc(RTC_STATUSB, RTCSB_24HR);
788
789         /*
790          * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to 
791          * generate an interrupt, which we will ignore for now.
792          *
793          * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
794          * (so it counts a full 2^16 and repeats).  We will use this timer
795          * for our counting.
796          */
797         i8254_restore();
798         freq = calibrate_clocks();
799 #ifdef CLK_CALIBRATION_LOOP
800         if (bootverbose) {
801                 kprintf(
802                 "Press a key on the console to abort clock calibration\n");
803                 while (cncheckc() == -1)
804                         calibrate_clocks();
805         }
806 #endif
807
808         /*
809          * Use the calibrated i8254 frequency if it seems reasonable.
810          * Otherwise use the default, and don't use the calibrated i586
811          * frequency.
812          */
813         delta = freq > i8254_cputimer.freq ? 
814                         freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
815         if (delta < i8254_cputimer.freq / 100) {
816 #ifndef CLK_USE_I8254_CALIBRATION
817                 if (bootverbose)
818                         kprintf(
819 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
820                 freq = i8254_cputimer.freq;
821 #endif
822                 /*
823                  * NOTE:
824                  * Interrupt timer's freq must be adjusted
825                  * before we change the cuptimer's frequency.
826                  */
827                 i8254_cputimer_intr.freq = freq;
828                 cputimer_set_frequency(&i8254_cputimer, freq);
829         } else {
830                 if (bootverbose)
831                         kprintf(
832                     "%d Hz differs from default of %d Hz by more than 1%%\n",
833                                freq, i8254_cputimer.freq);
834                 tsc_frequency = 0;
835         }
836
837 #ifndef CLK_USE_TSC_CALIBRATION
838         if (tsc_frequency != 0) {
839                 if (bootverbose)
840                         kprintf(
841 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
842                 tsc_frequency = 0;
843         }
844 #endif
845         if (tsc_present && tsc_frequency == 0) {
846                 /*
847                  * Calibration of the i586 clock relative to the mc146818A
848                  * clock failed.  Do a less accurate calibration relative
849                  * to the i8254 clock.
850                  */
851                 u_int64_t old_tsc = rdtsc();
852
853                 DELAY(1000000);
854                 tsc_frequency = rdtsc() - old_tsc;
855 #ifdef CLK_USE_TSC_CALIBRATION
856                 if (bootverbose) {
857                         kprintf("TSC clock: %llu Hz (Method B)\n",
858                                 tsc_frequency);
859                 }
860 #endif
861         }
862
863         EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
864 }
865
866 /*
867  * Sync the time of day back to the RTC on shutdown, but only if
868  * we have already loaded it and have not crashed.
869  */
870 static void
871 resettodr_on_shutdown(void *arg __unused)
872 {
873         if (rtc_loaded && panicstr == NULL) {
874                 resettodr();
875         }
876 }
877
878 /*
879  * Initialize the time of day register, based on the time base which is, e.g.
880  * from a filesystem.
881  */
882 void
883 inittodr(time_t base)
884 {
885         unsigned long   sec, days;
886         int             year, month;
887         int             y, m;
888         struct timespec ts;
889
890         if (base) {
891                 ts.tv_sec = base;
892                 ts.tv_nsec = 0;
893                 set_timeofday(&ts);
894         }
895
896         /* Look if we have a RTC present and the time is valid */
897         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
898                 goto wrong_time;
899
900         /* wait for time update to complete */
901         /* If RTCSA_TUP is zero, we have at least 244us before next update */
902         crit_enter();
903         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
904                 crit_exit();
905                 crit_enter();
906         }
907
908         days = 0;
909 #ifdef USE_RTC_CENTURY
910         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
911 #else
912         year = readrtc(RTC_YEAR) + 1900;
913         if (year < 1970)
914                 year += 100;
915 #endif
916         if (year < 1970) {
917                 crit_exit();
918                 goto wrong_time;
919         }
920         month = readrtc(RTC_MONTH);
921         for (m = 1; m < month; m++)
922                 days += daysinmonth[m-1];
923         if ((month > 2) && LEAPYEAR(year))
924                 days ++;
925         days += readrtc(RTC_DAY) - 1;
926         for (y = 1970; y < year; y++)
927                 days += DAYSPERYEAR + LEAPYEAR(y);
928         sec = ((( days * 24 +
929                   readrtc(RTC_HRS)) * 60 +
930                   readrtc(RTC_MIN)) * 60 +
931                   readrtc(RTC_SEC));
932         /* sec now contains the number of seconds, since Jan 1 1970,
933            in the local time zone */
934
935         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
936
937         y = (int)(time_second - sec);
938         if (y <= -2 || y >= 2) {
939                 /* badly off, adjust it */
940                 ts.tv_sec = sec;
941                 ts.tv_nsec = 0;
942                 set_timeofday(&ts);
943         }
944         rtc_loaded = 1;
945         crit_exit();
946         return;
947
948 wrong_time:
949         kprintf("Invalid time in real time clock.\n");
950         kprintf("Check and reset the date immediately!\n");
951 }
952
953 /*
954  * Write system time back to RTC
955  */
956 void
957 resettodr(void)
958 {
959         struct timeval tv;
960         unsigned long tm;
961         int m;
962         int y;
963
964         if (disable_rtc_set)
965                 return;
966
967         microtime(&tv);
968         tm = tv.tv_sec;
969
970         crit_enter();
971         /* Disable RTC updates and interrupts. */
972         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
973
974         /* Calculate local time to put in RTC */
975
976         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
977
978         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
979         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
980         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
981
982         /* We have now the days since 01-01-1970 in tm */
983         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
984         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
985              tm >= m;
986              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
987              tm -= m;
988
989         /* Now we have the years in y and the day-of-the-year in tm */
990         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
991 #ifdef USE_RTC_CENTURY
992         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
993 #endif
994         for (m = 0; ; m++) {
995                 int ml;
996
997                 ml = daysinmonth[m];
998                 if (m == 1 && LEAPYEAR(y))
999                         ml++;
1000                 if (tm < ml)
1001                         break;
1002                 tm -= ml;
1003         }
1004
1005         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1006         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1007
1008         /* Reenable RTC updates and interrupts. */
1009         writertc(RTC_STATUSB, rtc_statusb);
1010         crit_exit();
1011 }
1012
1013 static int
1014 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1015 {
1016         sysclock_t base;
1017         long lastcnt;
1018
1019         /*
1020          * Following code assumes the 8254 is the cpu timer,
1021          * so make sure it is.
1022          */
1023         KKASSERT(sys_cputimer == &i8254_cputimer);
1024         KKASSERT(cti == &i8254_cputimer_intr);
1025
1026         lastcnt = get_interrupt_counter(irq, mycpuid);
1027
1028         /*
1029          * Force an 8254 Timer0 interrupt and wait 1/100s for
1030          * it to happen, then see if we got it.
1031          */
1032         kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1033
1034         i8254_intr_reload(cti, 2);
1035         base = sys_cputimer->count();
1036         while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1037                 ; /* nothing */
1038
1039         if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1040                 return ENOENT;
1041         return 0;
1042 }
1043
1044 /*
1045  * Start both clocks running.  DragonFly note: the stat clock is no longer
1046  * used.  Instead, 8254 based systimers are used for all major clock
1047  * interrupts.
1048  */
1049 static void
1050 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1051 {
1052         void *clkdesc = NULL;
1053         int irq = 0, mixed_mode = 0, error;
1054
1055         KKASSERT(mycpuid == 0);
1056         callout_init_mp(&sysbeepstop_ch);
1057
1058         if (!selected && i8254_intr_disable)
1059                 goto nointr;
1060
1061         /*
1062          * The stat interrupt mask is different without the
1063          * statistics clock.  Also, don't set the interrupt
1064          * flag which would normally cause the RTC to generate
1065          * interrupts.
1066          */
1067         rtc_statusb = RTCSB_24HR;
1068
1069         /* Finish initializing 8254 timer 0. */
1070         if (ioapic_enable) {
1071                 irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1072                         INTR_POLARITY_HIGH);
1073                 if (irq < 0) {
1074 mixed_mode_setup:
1075                         error = ioapic_conf_legacy_extint(0);
1076                         if (!error) {
1077                                 irq = machintr_legacy_intr_find(0,
1078                                     INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1079                                 if (irq < 0)
1080                                         error = ENOENT;
1081                         }
1082
1083                         if (error) {
1084                                 if (!selected) {
1085                                         kprintf("IOAPIC: setup mixed mode for "
1086                                                 "irq 0 failed: %d\n", error);
1087                                         goto nointr;
1088                                 } else {
1089                                         panic("IOAPIC: setup mixed mode for "
1090                                               "irq 0 failed: %d\n", error);
1091                                 }
1092                         }
1093                         mixed_mode = 1;
1094                 }
1095                 clkdesc = register_int(irq, clkintr, NULL, "clk",
1096                                        NULL,
1097                                        INTR_EXCL | INTR_CLOCK |
1098                                        INTR_NOPOLL | INTR_MPSAFE |
1099                                        INTR_NOENTROPY, 0);
1100         } else {
1101                 register_int(0, clkintr, NULL, "clk", NULL,
1102                              INTR_EXCL | INTR_CLOCK |
1103                              INTR_NOPOLL | INTR_MPSAFE |
1104                              INTR_NOENTROPY, 0);
1105         }
1106
1107         /* Initialize RTC. */
1108         writertc(RTC_STATUSA, rtc_statusa);
1109         writertc(RTC_STATUSB, RTCSB_24HR);
1110
1111         if (ioapic_enable) {
1112                 error = i8254_ioapic_trial(irq, cti);
1113                 if (error) {
1114                         if (mixed_mode) {
1115                                 if (!selected) {
1116                                         kprintf("IOAPIC: mixed mode for irq %d "
1117                                                 "trial failed: %d\n",
1118                                                 irq, error);
1119                                         goto nointr;
1120                                 } else {
1121                                         panic("IOAPIC: mixed mode for irq %d "
1122                                               "trial failed: %d\n", irq, error);
1123                                 }
1124                         } else {
1125                                 kprintf("IOAPIC: warning 8254 is not connected "
1126                                         "to the correct pin, try mixed mode\n");
1127                                 unregister_int(clkdesc, 0);
1128                                 goto mixed_mode_setup;
1129                         }
1130                 }
1131         }
1132         return;
1133
1134 nointr:
1135         i8254_nointr = 1; /* don't try to register again */
1136         cputimer_intr_deregister(cti);
1137 }
1138
1139 void
1140 setstatclockrate(int newhz)
1141 {
1142         if (newhz == RTC_PROFRATE)
1143                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1144         else
1145                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1146         writertc(RTC_STATUSA, rtc_statusa);
1147 }
1148
1149 #if 0
1150 static unsigned
1151 tsc_get_timecount(struct timecounter *tc)
1152 {
1153         return (rdtsc());
1154 }
1155 #endif
1156
1157 #ifdef KERN_TIMESTAMP
1158 #define KERN_TIMESTAMP_SIZE 16384
1159 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1160 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1161         sizeof(tsc), "LU", "Kernel timestamps");
1162 void  
1163 _TSTMP(u_int32_t x)
1164 {
1165         static int i;
1166
1167         tsc[i] = (u_int32_t)rdtsc();
1168         tsc[i+1] = x;
1169         i = i + 2;
1170         if (i >= KERN_TIMESTAMP_SIZE)
1171                 i = 0;
1172         tsc[i] = 0; /* mark last entry */
1173 }
1174 #endif /* KERN_TIMESTAMP */
1175
1176 /*
1177  *
1178  */
1179
1180 static int
1181 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1182 {
1183     sysclock_t count;
1184     uint64_t tscval;
1185     char buf[32];
1186
1187     crit_enter();
1188     if (sys_cputimer == &i8254_cputimer)
1189         count = sys_cputimer->count();
1190     else
1191         count = 0;
1192     if (tsc_present)
1193         tscval = rdtsc();
1194     else
1195         tscval = 0;
1196     crit_exit();
1197     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1198     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1199 }
1200
1201 struct tsc_mpsync_arg {
1202         volatile uint64_t       tsc_target;
1203         volatile int            tsc_mpsync;
1204 };
1205
1206 struct tsc_mpsync_thr {
1207         volatile int            tsc_done_cnt;
1208         volatile int            tsc_mpsync_cnt;
1209 };
1210
1211 static void
1212 tsc_mpsync_test_remote(void *xarg)
1213 {
1214         struct tsc_mpsync_arg *arg = xarg;
1215         uint64_t tsc;
1216
1217         tsc = rdtsc_ordered();
1218         if (tsc < arg->tsc_target)
1219                 arg->tsc_mpsync = 0;
1220 }
1221
1222 static void
1223 tsc_mpsync_test_loop(struct tsc_mpsync_arg *arg)
1224 {
1225         struct globaldata *gd = mycpu;
1226         uint64_t test_end, test_begin;
1227         u_int i;
1228
1229         if (bootverbose) {
1230                 kprintf("cpu%d: TSC testing MP synchronization ...\n",
1231                     gd->gd_cpuid);
1232         }
1233
1234         test_begin = rdtsc_ordered();
1235         /* Run test for 100ms */
1236         test_end = test_begin + (tsc_frequency / 10);
1237
1238         arg->tsc_mpsync = 1;
1239         arg->tsc_target = test_begin;
1240
1241 #define TSC_TEST_TRYMAX         1000000 /* Make sure we could stop */
1242 #define TSC_TEST_TRYMIN         50000
1243
1244         for (i = 0; i < TSC_TEST_TRYMAX; ++i) {
1245                 struct lwkt_cpusync cs;
1246
1247                 crit_enter();
1248                 lwkt_cpusync_init(&cs, gd->gd_other_cpus,
1249                     tsc_mpsync_test_remote, arg);
1250                 lwkt_cpusync_interlock(&cs);
1251                 arg->tsc_target = rdtsc_ordered();
1252                 cpu_mfence();
1253                 lwkt_cpusync_deinterlock(&cs);
1254                 crit_exit();
1255
1256                 if (!arg->tsc_mpsync) {
1257                         kprintf("cpu%d: TSC is not MP synchronized @%u\n",
1258                             gd->gd_cpuid, i);
1259                         break;
1260                 }
1261                 if (arg->tsc_target > test_end && i >= TSC_TEST_TRYMIN)
1262                         break;
1263         }
1264
1265 #undef TSC_TEST_TRYMIN
1266 #undef TSC_TEST_TRYMAX
1267
1268         if (arg->tsc_target == test_begin) {
1269                 kprintf("cpu%d: TSC does not tick?!\n", gd->gd_cpuid);
1270                 /* XXX disable TSC? */
1271                 tsc_invariant = 0;
1272                 arg->tsc_mpsync = 0;
1273                 return;
1274         }
1275
1276         if (arg->tsc_mpsync && bootverbose) {
1277                 kprintf("cpu%d: TSC is MP synchronized after %u tries\n",
1278                     gd->gd_cpuid, i);
1279         }
1280 }
1281
1282 static void
1283 tsc_mpsync_ap_thread(void *xthr)
1284 {
1285         struct tsc_mpsync_thr *thr = xthr;
1286         struct tsc_mpsync_arg arg;
1287
1288         tsc_mpsync_test_loop(&arg);
1289         if (arg.tsc_mpsync) {
1290                 atomic_add_int(&thr->tsc_mpsync_cnt, 1);
1291                 cpu_sfence();
1292         }
1293         atomic_add_int(&thr->tsc_done_cnt, 1);
1294
1295         lwkt_exit();
1296 }
1297
1298 static void
1299 tsc_mpsync_test(void)
1300 {
1301         struct tsc_mpsync_arg arg;
1302
1303         if (!tsc_invariant) {
1304                 /* Not even invariant TSC */
1305                 return;
1306         }
1307
1308         if (ncpus == 1) {
1309                 /* Only one CPU */
1310                 tsc_mpsync = 1;
1311                 return;
1312         }
1313
1314         /*
1315          * Forcing can be used w/qemu to reduce contention
1316          */
1317         TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_mpsync);
1318         if (tsc_mpsync) {
1319                 kprintf("TSC as cputimer forced\n");
1320                 return;
1321         }
1322
1323         if (cpu_vendor_id != CPU_VENDOR_INTEL) {
1324                 /* XXX only Intel works */
1325                 return;
1326         }
1327
1328         kprintf("TSC testing MP synchronization ...\n");
1329
1330         tsc_mpsync_test_loop(&arg);
1331         if (arg.tsc_mpsync) {
1332                 struct tsc_mpsync_thr thr;
1333                 int cpu;
1334
1335                 /*
1336                  * Test TSC MP synchronization on APs.
1337                  */
1338
1339                 thr.tsc_done_cnt = 1;
1340                 thr.tsc_mpsync_cnt = 1;
1341
1342                 for (cpu = 0; cpu < ncpus; ++cpu) {
1343                         if (cpu == mycpuid)
1344                                 continue;
1345
1346                         lwkt_create(tsc_mpsync_ap_thread, &thr, NULL,
1347                             NULL, 0, cpu, "tsc mpsync %d", cpu);
1348                 }
1349
1350                 while (thr.tsc_done_cnt != ncpus) {
1351                         cpu_pause();
1352                         cpu_lfence();
1353                 }
1354                 if (thr.tsc_mpsync_cnt == ncpus)
1355                         tsc_mpsync = 1;
1356         }
1357
1358         if (tsc_mpsync)
1359                 kprintf("TSC is MP synchronized\n");
1360         else
1361                 kprintf("TSC is not MP synchronized\n");
1362 }
1363 SYSINIT(tsc_mpsync, SI_BOOT2_FINISH_SMP, SI_ORDER_ANY, tsc_mpsync_test, NULL);
1364
1365 #define TSC_CPUTIMER_FREQMAX    128000000       /* 128Mhz */
1366
1367 static int tsc_cputimer_shift;
1368
1369 static void
1370 tsc_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
1371 {
1372         timer->base = 0;
1373         timer->base = oldclock - timer->count();
1374 }
1375
1376 static __inline sysclock_t
1377 tsc_cputimer_count(void)
1378 {
1379         uint64_t tsc;
1380
1381         tsc = rdtsc();
1382         tsc >>= tsc_cputimer_shift;
1383
1384         return (tsc + tsc_cputimer.base);
1385 }
1386
1387 static sysclock_t
1388 tsc_cputimer_count_lfence(void)
1389 {
1390         cpu_lfence();
1391         return tsc_cputimer_count();
1392 }
1393
1394 static sysclock_t
1395 tsc_cputimer_count_mfence(void)
1396 {
1397         cpu_mfence();
1398         return tsc_cputimer_count();
1399 }
1400
1401 static void
1402 tsc_cputimer_register(void)
1403 {
1404         uint64_t freq;
1405         int enable = 1;
1406
1407         if (!tsc_mpsync)
1408                 return;
1409
1410         TUNABLE_INT_FETCH("hw.tsc_cputimer_enable", &enable);
1411         if (!enable)
1412                 return;
1413
1414         freq = tsc_frequency;
1415         while (freq > TSC_CPUTIMER_FREQMAX) {
1416                 freq >>= 1;
1417                 ++tsc_cputimer_shift;
1418         }
1419         kprintf("TSC: cputimer freq %ju, shift %d\n",
1420             (uintmax_t)freq, tsc_cputimer_shift);
1421
1422         tsc_cputimer.freq = freq;
1423
1424         if (cpu_vendor_id == CPU_VENDOR_INTEL)
1425                 tsc_cputimer.count = tsc_cputimer_count_lfence;
1426         else
1427                 tsc_cputimer.count = tsc_cputimer_count_mfence; /* safe bet */
1428
1429         cputimer_register(&tsc_cputimer);
1430         cputimer_select(&tsc_cputimer, 0);
1431 }
1432 SYSINIT(tsc_cputimer_reg, SI_BOOT2_POST_SMP, SI_ORDER_FIRST,
1433         tsc_cputimer_register, NULL);
1434
1435 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1436 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1437             "frequency");
1438 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1439             0, 0, hw_i8254_timestamp, "A", "");
1440
1441 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1442             &tsc_present, 0, "TSC Available");
1443 SYSCTL_INT(_hw, OID_AUTO, tsc_invariant, CTLFLAG_RD,
1444             &tsc_invariant, 0, "Invariant TSC");
1445 SYSCTL_INT(_hw, OID_AUTO, tsc_mpsync, CTLFLAG_RD,
1446             &tsc_mpsync, 0, "TSC is synchronized across CPUs");
1447 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1448             &tsc_frequency, 0, "TSC Frequency");