adecb25152dd537df8188636fb672261a14583e4
[dragonfly.git] / sys / dev / netif / bce / if_bce.c
1 /*-
2  * Copyright (c) 2006-2007 Broadcom Corporation
3  *      David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/dev/bce/if_bce.c,v 1.31 2007/05/16 23:34:11 davidch Exp $
31  */
32
33 /*
34  * The following controllers are supported by this driver:
35  *   BCM5706C A2, A3
36  *   BCM5706S A2, A3
37  *   BCM5708C B1, B2
38  *   BCM5708S B1, B2
39  *   BCM5709C A1, B2, C0
40  *   BCM5716  C0
41  *
42  * The following controllers are not supported by this driver:
43  *   BCM5706C A0, A1
44  *   BCM5706S A0, A1
45  *   BCM5708C A0, B0
46  *   BCM5708S A0, B0
47  *   BCM5709C A0, B0, B1
48  *   BCM5709S A0, A1, B0, B1, B2, C0
49  *
50  *
51  * Note about MSI-X on 5709/5716:
52  * - 9 MSI-X vectors are supported.
53  * - MSI-X vectors, RX/TX rings and status blocks' association
54  *   are fixed:
55  *   o  The first RX ring and the first TX ring use the first
56  *      status block.
57  *   o  The first MSI-X vector is associated with the first
58  *      status block.
59  *   o  The second RX ring and the second TX ring use the second
60  *      status block.
61  *   o  The second MSI-X vector is associated with the second
62  *      status block.
63  *   ...
64  *   and so on so forth.
65  * - Status blocks must reside in physically contiguous memory
66  *   and each status block consumes 128bytes.  In addition to
67  *   this, the memory for the status blocks is aligned on 128bytes
68  *   in this driver.  (see bce_dma_alloc() and HC_CONFIG)
69  * - Each status block has its own coalesce parameters, which also
70  *   serve as the related MSI-X vector's interrupt moderation
71  *   parameters.  (see bce_coal_change())
72  */
73
74 #include "opt_bce.h"
75 #include "opt_ifpoll.h"
76
77 #include <sys/param.h>
78 #include <sys/bus.h>
79 #include <sys/endian.h>
80 #include <sys/kernel.h>
81 #include <sys/interrupt.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/queue.h>
85 #include <sys/rman.h>
86 #include <sys/serialize.h>
87 #include <sys/socket.h>
88 #include <sys/sockio.h>
89 #include <sys/sysctl.h>
90
91 #include <netinet/ip.h>
92 #include <netinet/tcp.h>
93
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/if_types.h>
102 #include <net/ifq_var.h>
103 #include <net/toeplitz.h>
104 #include <net/toeplitz2.h>
105 #include <net/vlan/if_vlan_var.h>
106 #include <net/vlan/if_vlan_ether.h>
107
108 #include <dev/netif/mii_layer/mii.h>
109 #include <dev/netif/mii_layer/miivar.h>
110 #include <dev/netif/mii_layer/brgphyreg.h>
111
112 #include <bus/pci/pcireg.h>
113 #include <bus/pci/pcivar.h>
114
115 #include "miibus_if.h"
116
117 #include <dev/netif/bce/if_bcereg.h>
118 #include <dev/netif/bce/if_bcefw.h>
119
120 #define BCE_MSI_CKINTVL         ((10 * hz) / 1000)      /* 10ms */
121
122 #ifdef BCE_RSS_DEBUG
123 #define BCE_RSS_DPRINTF(sc, lvl, fmt, ...) \
124 do { \
125         if (sc->rss_debug >= lvl) \
126                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
127 } while (0)
128 #else   /* !BCE_RSS_DEBUG */
129 #define BCE_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
130 #endif  /* BCE_RSS_DEBUG */
131
132 /****************************************************************************/
133 /* PCI Device ID Table                                                      */
134 /*                                                                          */
135 /* Used by bce_probe() to identify the devices supported by this driver.    */
136 /****************************************************************************/
137 #define BCE_DEVDESC_MAX         64
138
139 static struct bce_type bce_devs[] = {
140         /* BCM5706C Controllers and OEM boards. */
141         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
142                 "HP NC370T Multifunction Gigabit Server Adapter" },
143         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
144                 "HP NC370i Multifunction Gigabit Server Adapter" },
145         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
146                 "HP NC380T PCIe DP Multifunc Gig Server Adapter" },
147         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
148                 "HP NC371i Multifunction Gigabit Server Adapter" },
149         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
150                 "Broadcom NetXtreme II BCM5706 1000Base-T" },
151
152         /* BCM5706S controllers and OEM boards. */
153         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
154                 "HP NC370F Multifunction Gigabit Server Adapter" },
155         { BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
156                 "Broadcom NetXtreme II BCM5706 1000Base-SX" },
157
158         /* BCM5708C controllers and OEM boards. */
159         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
160                 "HP NC373T PCIe Multifunction Gig Server Adapter" },
161         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
162                 "HP NC373i Multifunction Gigabit Server Adapter" },
163         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
164                 "HP NC374m PCIe Multifunction Adapter" },
165         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
166                 "Broadcom NetXtreme II BCM5708 1000Base-T" },
167
168         /* BCM5708S controllers and OEM boards. */
169         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
170                 "HP NC373m Multifunction Gigabit Server Adapter" },
171         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
172                 "HP NC373i Multifunction Gigabit Server Adapter" },
173         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
174                 "HP NC373F PCIe Multifunc Giga Server Adapter" },
175         { BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
176                 "Broadcom NetXtreme II BCM5708S 1000Base-T" },
177
178         /* BCM5709C controllers and OEM boards. */
179         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
180                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
181         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
182                 "HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
183         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
184                 "Broadcom NetXtreme II BCM5709 1000Base-T" },
185
186         /* BCM5709S controllers and OEM boards. */
187         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
188                 "HP NC382m DP 1GbE Multifunction BL-c Adapter" },
189         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
190                 "HP NC382i DP Multifunction Gigabit Server Adapter" },
191         { BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
192                 "Broadcom NetXtreme II BCM5709 1000Base-SX" },
193
194         /* BCM5716 controllers and OEM boards. */
195         { BRCM_VENDORID, BRCM_DEVICEID_BCM5716,   PCI_ANY_ID,  PCI_ANY_ID,
196                 "Broadcom NetXtreme II BCM5716 1000Base-T" },
197
198         { 0, 0, 0, 0, NULL }
199 };
200
201 /****************************************************************************/
202 /* Supported Flash NVRAM device data.                                       */
203 /****************************************************************************/
204 static const struct flash_spec flash_table[] =
205 {
206 #define BUFFERED_FLAGS          (BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
207 #define NONBUFFERED_FLAGS       (BCE_NV_WREN)
208
209         /* Slow EEPROM */
210         {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
211          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
212          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
213          "EEPROM - slow"},
214         /* Expansion entry 0001 */
215         {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
216          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
217          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
218          "Entry 0001"},
219         /* Saifun SA25F010 (non-buffered flash) */
220         /* strap, cfg1, & write1 need updates */
221         {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
222          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
223          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
224          "Non-buffered flash (128kB)"},
225         /* Saifun SA25F020 (non-buffered flash) */
226         /* strap, cfg1, & write1 need updates */
227         {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
228          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
230          "Non-buffered flash (256kB)"},
231         /* Expansion entry 0100 */
232         {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
233          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
234          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
235          "Entry 0100"},
236         /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
237         {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
238          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
239          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
240          "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
241         /* Entry 0110: ST M45PE20 (non-buffered flash)*/
242         {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
243          NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
244          ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
245          "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
246         /* Saifun SA25F005 (non-buffered flash) */
247         /* strap, cfg1, & write1 need updates */
248         {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
249          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
250          SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
251          "Non-buffered flash (64kB)"},
252         /* Fast EEPROM */
253         {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
254          BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
255          SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
256          "EEPROM - fast"},
257         /* Expansion entry 1001 */
258         {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
259          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
260          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
261          "Entry 1001"},
262         /* Expansion entry 1010 */
263         {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
264          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
265          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
266          "Entry 1010"},
267         /* ATMEL AT45DB011B (buffered flash) */
268         {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
269          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
270          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
271          "Buffered flash (128kB)"},
272         /* Expansion entry 1100 */
273         {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
274          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
275          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
276          "Entry 1100"},
277         /* Expansion entry 1101 */
278         {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
279          NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
280          SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
281          "Entry 1101"},
282         /* Ateml Expansion entry 1110 */
283         {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
284          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
285          BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
286          "Entry 1110 (Atmel)"},
287         /* ATMEL AT45DB021B (buffered flash) */
288         {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
289          BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
290          BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
291          "Buffered flash (256kB)"},
292 };
293
294 /*
295  * The BCM5709 controllers transparently handle the
296  * differences between Atmel 264 byte pages and all
297  * flash devices which use 256 byte pages, so no
298  * logical-to-physical mapping is required in the
299  * driver.
300  */
301 static struct flash_spec flash_5709 = {
302         .flags          = BCE_NV_BUFFERED,
303         .page_bits      = BCM5709_FLASH_PAGE_BITS,
304         .page_size      = BCM5709_FLASH_PAGE_SIZE,
305         .addr_mask      = BCM5709_FLASH_BYTE_ADDR_MASK,
306         .total_size     = BUFFERED_FLASH_TOTAL_SIZE * 2,
307         .name           = "5709/5716 buffered flash (256kB)",
308 };
309
310 /****************************************************************************/
311 /* DragonFly device entry points.                                           */
312 /****************************************************************************/
313 static int      bce_probe(device_t);
314 static int      bce_attach(device_t);
315 static int      bce_detach(device_t);
316 static void     bce_shutdown(device_t);
317 static int      bce_miibus_read_reg(device_t, int, int);
318 static int      bce_miibus_write_reg(device_t, int, int, int);
319 static void     bce_miibus_statchg(device_t);
320
321 /****************************************************************************/
322 /* BCE Register/Memory Access Routines                                      */
323 /****************************************************************************/
324 static uint32_t bce_reg_rd_ind(struct bce_softc *, uint32_t);
325 static void     bce_reg_wr_ind(struct bce_softc *, uint32_t, uint32_t);
326 static void     bce_shmem_wr(struct bce_softc *, uint32_t, uint32_t);
327 static uint32_t bce_shmem_rd(struct bce_softc *, u32);
328 static void     bce_ctx_wr(struct bce_softc *, uint32_t, uint32_t, uint32_t);
329
330 /****************************************************************************/
331 /* BCE NVRAM Access Routines                                                */
332 /****************************************************************************/
333 static int      bce_acquire_nvram_lock(struct bce_softc *);
334 static int      bce_release_nvram_lock(struct bce_softc *);
335 static void     bce_enable_nvram_access(struct bce_softc *);
336 static void     bce_disable_nvram_access(struct bce_softc *);
337 static int      bce_nvram_read_dword(struct bce_softc *, uint32_t, uint8_t *,
338                     uint32_t);
339 static int      bce_init_nvram(struct bce_softc *);
340 static int      bce_nvram_read(struct bce_softc *, uint32_t, uint8_t *, int);
341 static int      bce_nvram_test(struct bce_softc *);
342
343 /****************************************************************************/
344 /* BCE DMA Allocate/Free Routines                                           */
345 /****************************************************************************/
346 static int      bce_dma_alloc(struct bce_softc *);
347 static void     bce_dma_free(struct bce_softc *);
348 static void     bce_dma_map_addr(void *, bus_dma_segment_t *, int, int);
349
350 /****************************************************************************/
351 /* BCE Firmware Synchronization and Load                                    */
352 /****************************************************************************/
353 static int      bce_fw_sync(struct bce_softc *, uint32_t);
354 static void     bce_load_rv2p_fw(struct bce_softc *, uint32_t *,
355                     uint32_t, uint32_t);
356 static void     bce_load_cpu_fw(struct bce_softc *, struct cpu_reg *,
357                     struct fw_info *);
358 static void     bce_start_cpu(struct bce_softc *, struct cpu_reg *);
359 static void     bce_halt_cpu(struct bce_softc *, struct cpu_reg *);
360 static void     bce_start_rxp_cpu(struct bce_softc *);
361 static void     bce_init_rxp_cpu(struct bce_softc *);
362 static void     bce_init_txp_cpu(struct bce_softc *);
363 static void     bce_init_tpat_cpu(struct bce_softc *);
364 static void     bce_init_cp_cpu(struct bce_softc *);
365 static void     bce_init_com_cpu(struct bce_softc *);
366 static void     bce_init_cpus(struct bce_softc *);
367 static void     bce_setup_msix_table(struct bce_softc *);
368 static void     bce_init_rss(struct bce_softc *);
369
370 static void     bce_stop(struct bce_softc *);
371 static int      bce_reset(struct bce_softc *, uint32_t);
372 static int      bce_chipinit(struct bce_softc *);
373 static int      bce_blockinit(struct bce_softc *);
374 static void     bce_probe_pci_caps(struct bce_softc *);
375 static void     bce_print_adapter_info(struct bce_softc *);
376 static void     bce_get_media(struct bce_softc *);
377 static void     bce_mgmt_init(struct bce_softc *);
378 static int      bce_init_ctx(struct bce_softc *);
379 static void     bce_get_mac_addr(struct bce_softc *);
380 static void     bce_set_mac_addr(struct bce_softc *);
381 static void     bce_set_rx_mode(struct bce_softc *);
382 static void     bce_coal_change(struct bce_softc *);
383 static void     bce_npoll_coal_change(struct bce_softc *);
384 static void     bce_setup_serialize(struct bce_softc *);
385 static void     bce_serialize_skipmain(struct bce_softc *);
386 static void     bce_deserialize_skipmain(struct bce_softc *);
387 static void     bce_set_timer_cpuid(struct bce_softc *, boolean_t);
388 static int      bce_alloc_intr(struct bce_softc *);
389 static void     bce_free_intr(struct bce_softc *);
390 static void     bce_try_alloc_msix(struct bce_softc *);
391 static void     bce_free_msix(struct bce_softc *, boolean_t);
392 static void     bce_setup_ring_cnt(struct bce_softc *);
393 static int      bce_setup_intr(struct bce_softc *);
394 static void     bce_teardown_intr(struct bce_softc *);
395 static int      bce_setup_msix(struct bce_softc *);
396 static void     bce_teardown_msix(struct bce_softc *, int);
397
398 static int      bce_create_tx_ring(struct bce_tx_ring *);
399 static void     bce_destroy_tx_ring(struct bce_tx_ring *);
400 static void     bce_init_tx_context(struct bce_tx_ring *);
401 static int      bce_init_tx_chain(struct bce_tx_ring *);
402 static void     bce_free_tx_chain(struct bce_tx_ring *);
403 static void     bce_xmit(struct bce_tx_ring *);
404 static int      bce_encap(struct bce_tx_ring *, struct mbuf **, int *);
405 static int      bce_tso_setup(struct bce_tx_ring *, struct mbuf **,
406                     uint16_t *, uint16_t *);
407
408 static int      bce_create_rx_ring(struct bce_rx_ring *);
409 static void     bce_destroy_rx_ring(struct bce_rx_ring *);
410 static void     bce_init_rx_context(struct bce_rx_ring *);
411 static int      bce_init_rx_chain(struct bce_rx_ring *);
412 static void     bce_free_rx_chain(struct bce_rx_ring *);
413 static int      bce_newbuf_std(struct bce_rx_ring *, uint16_t *, uint16_t,
414                     uint32_t *, int);
415 static void     bce_setup_rxdesc_std(struct bce_rx_ring *, uint16_t,
416                     uint32_t *);
417 static struct pktinfo *bce_rss_pktinfo(struct pktinfo *, uint32_t,
418                     const struct l2_fhdr *);
419
420 static void     bce_start(struct ifnet *, struct ifaltq_subque *);
421 static int      bce_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
422 static void     bce_watchdog(struct ifaltq_subque *);
423 static int      bce_ifmedia_upd(struct ifnet *);
424 static void     bce_ifmedia_sts(struct ifnet *, struct ifmediareq *);
425 static void     bce_init(void *);
426 #ifdef IFPOLL_ENABLE
427 static void     bce_npoll(struct ifnet *, struct ifpoll_info *);
428 static void     bce_npoll_rx(struct ifnet *, void *, int);
429 static void     bce_npoll_tx(struct ifnet *, void *, int);
430 static void     bce_npoll_status(struct ifnet *);
431 static void     bce_npoll_rx_pack(struct ifnet *, void *, int);
432 #endif
433 static void     bce_serialize(struct ifnet *, enum ifnet_serialize);
434 static void     bce_deserialize(struct ifnet *, enum ifnet_serialize);
435 static int      bce_tryserialize(struct ifnet *, enum ifnet_serialize);
436 #ifdef INVARIANTS
437 static void     bce_serialize_assert(struct ifnet *, enum ifnet_serialize,
438                     boolean_t);
439 #endif
440
441 static void     bce_intr(struct bce_softc *);
442 static void     bce_intr_legacy(void *);
443 static void     bce_intr_msi(void *);
444 static void     bce_intr_msi_oneshot(void *);
445 static void     bce_intr_msix_rxtx(void *);
446 static void     bce_intr_msix_rx(void *);
447 static void     bce_tx_intr(struct bce_tx_ring *, uint16_t);
448 static void     bce_rx_intr(struct bce_rx_ring *, int, uint16_t);
449 static void     bce_phy_intr(struct bce_softc *);
450 static void     bce_disable_intr(struct bce_softc *);
451 static void     bce_enable_intr(struct bce_softc *);
452 static void     bce_reenable_intr(struct bce_rx_ring *);
453 static void     bce_check_msi(void *);
454
455 static void     bce_stats_update(struct bce_softc *);
456 static void     bce_tick(void *);
457 static void     bce_tick_serialized(struct bce_softc *);
458 static void     bce_pulse(void *);
459
460 static void     bce_add_sysctls(struct bce_softc *);
461 static int      bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS);
462 static int      bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS);
463 static int      bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS);
464 static int      bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS);
465 static int      bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS);
466 static int      bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS);
467 static int      bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS);
468 static int      bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS);
469 #ifdef IFPOLL_ENABLE
470 static int      bce_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS);
471 #endif
472 static int      bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS,
473                     uint32_t *, uint32_t);
474
475 /*
476  * NOTE:
477  * Don't set bce_tx_ticks_int/bce_tx_ticks to 1023.  Linux's bnx2
478  * takes 1023 as the TX ticks limit.  However, using 1023 will
479  * cause 5708(B2) to generate extra interrupts (~2000/s) even when
480  * there is _no_ network activity on the NIC.
481  */
482 static uint32_t bce_tx_bds_int = 255;           /* bcm: 20 */
483 static uint32_t bce_tx_bds = 255;               /* bcm: 20 */
484 static uint32_t bce_tx_ticks_int = 1022;        /* bcm: 80 */
485 static uint32_t bce_tx_ticks = 1022;            /* bcm: 80 */
486 static uint32_t bce_rx_bds_int = 128;           /* bcm: 6 */
487 static uint32_t bce_rx_bds = 0;                 /* bcm: 6 */
488 static uint32_t bce_rx_ticks_int = 150;         /* bcm: 18 */
489 static uint32_t bce_rx_ticks = 150;             /* bcm: 18 */
490
491 static int      bce_tx_wreg = 8;
492
493 static int      bce_msi_enable = 1;
494 static int      bce_msix_enable = 1;
495
496 static int      bce_rx_pages = RX_PAGES_DEFAULT;
497 static int      bce_tx_pages = TX_PAGES_DEFAULT;
498
499 static int      bce_rx_rings = 0;       /* auto */
500 static int      bce_tx_rings = 0;       /* auto */
501
502 TUNABLE_INT("hw.bce.tx_bds_int", &bce_tx_bds_int);
503 TUNABLE_INT("hw.bce.tx_bds", &bce_tx_bds);
504 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
505 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
506 TUNABLE_INT("hw.bce.rx_bds_int", &bce_rx_bds_int);
507 TUNABLE_INT("hw.bce.rx_bds", &bce_rx_bds);
508 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
509 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
510 TUNABLE_INT("hw.bce.msi.enable", &bce_msi_enable);
511 TUNABLE_INT("hw.bce.msix.enable", &bce_msix_enable);
512 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
513 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
514 TUNABLE_INT("hw.bce.tx_wreg", &bce_tx_wreg);
515 TUNABLE_INT("hw.bce.tx_rings", &bce_tx_rings);
516 TUNABLE_INT("hw.bce.rx_rings", &bce_rx_rings);
517
518 /****************************************************************************/
519 /* DragonFly device dispatch table.                                         */
520 /****************************************************************************/
521 static device_method_t bce_methods[] = {
522         /* Device interface */
523         DEVMETHOD(device_probe,         bce_probe),
524         DEVMETHOD(device_attach,        bce_attach),
525         DEVMETHOD(device_detach,        bce_detach),
526         DEVMETHOD(device_shutdown,      bce_shutdown),
527
528         /* bus interface */
529         DEVMETHOD(bus_print_child,      bus_generic_print_child),
530         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
531
532         /* MII interface */
533         DEVMETHOD(miibus_readreg,       bce_miibus_read_reg),
534         DEVMETHOD(miibus_writereg,      bce_miibus_write_reg),
535         DEVMETHOD(miibus_statchg,       bce_miibus_statchg),
536
537         DEVMETHOD_END
538 };
539
540 static driver_t bce_driver = {
541         "bce",
542         bce_methods,
543         sizeof(struct bce_softc)
544 };
545
546 static devclass_t bce_devclass;
547
548 DECLARE_DUMMY_MODULE(if_bce);
549 MODULE_DEPEND(bce, miibus, 1, 1, 1);
550 DRIVER_MODULE(if_bce, pci, bce_driver, bce_devclass, NULL, NULL);
551 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
552
553 /****************************************************************************/
554 /* Device probe function.                                                   */
555 /*                                                                          */
556 /* Compares the device to the driver's list of supported devices and        */
557 /* reports back to the OS whether this is the right driver for the device.  */
558 /*                                                                          */
559 /* Returns:                                                                 */
560 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
561 /****************************************************************************/
562 static int
563 bce_probe(device_t dev)
564 {
565         struct bce_type *t;
566         uint16_t vid, did, svid, sdid;
567
568         /* Get the data for the device to be probed. */
569         vid  = pci_get_vendor(dev);
570         did  = pci_get_device(dev);
571         svid = pci_get_subvendor(dev);
572         sdid = pci_get_subdevice(dev);
573
574         /* Look through the list of known devices for a match. */
575         for (t = bce_devs; t->bce_name != NULL; ++t) {
576                 if (vid == t->bce_vid && did == t->bce_did && 
577                     (svid == t->bce_svid || t->bce_svid == PCI_ANY_ID) &&
578                     (sdid == t->bce_sdid || t->bce_sdid == PCI_ANY_ID)) {
579                         uint32_t revid = pci_read_config(dev, PCIR_REVID, 4);
580                         char *descbuf;
581
582                         descbuf = kmalloc(BCE_DEVDESC_MAX, M_TEMP, M_WAITOK);
583
584                         /* Print out the device identity. */
585                         ksnprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
586                                   t->bce_name,
587                                   ((revid & 0xf0) >> 4) + 'A', revid & 0xf);
588
589                         device_set_desc_copy(dev, descbuf);
590                         kfree(descbuf, M_TEMP);
591                         return 0;
592                 }
593         }
594         return ENXIO;
595 }
596
597 /****************************************************************************/
598 /* PCI Capabilities Probe Function.                                         */
599 /*                                                                          */
600 /* Walks the PCI capabiites list for the device to find what features are   */
601 /* supported.                                                               */
602 /*                                                                          */
603 /* Returns:                                                                 */
604 /*   None.                                                                  */
605 /****************************************************************************/
606 static void
607 bce_print_adapter_info(struct bce_softc *sc)
608 {
609         device_printf(sc->bce_dev, "ASIC (0x%08X); ", sc->bce_chipid);
610
611         kprintf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
612                 ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
613
614         /* Bus info. */
615         if (sc->bce_flags & BCE_PCIE_FLAG) {
616                 kprintf("Bus (PCIe x%d, ", sc->link_width);
617                 switch (sc->link_speed) {
618                 case 1:
619                         kprintf("2.5Gbps); ");
620                         break;
621                 case 2:
622                         kprintf("5Gbps); ");
623                         break;
624                 default:
625                         kprintf("Unknown link speed); ");
626                         break;
627                 }
628         } else {
629                 kprintf("Bus (PCI%s, %s, %dMHz); ",
630                     ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
631                     ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
632                     sc->bus_speed_mhz);
633         }
634
635         /* Firmware version and device features. */
636         kprintf("B/C (%s)", sc->bce_bc_ver);
637
638         if ((sc->bce_flags & BCE_MFW_ENABLE_FLAG) ||
639             (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)) {
640                 kprintf("; Flags(");
641                 if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
642                         kprintf("MFW[%s]", sc->bce_mfw_ver);
643                 if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
644                         kprintf(" 2.5G");
645                 kprintf(")");
646         }
647         kprintf("\n");
648 }
649
650 /****************************************************************************/
651 /* PCI Capabilities Probe Function.                                         */
652 /*                                                                          */
653 /* Walks the PCI capabiites list for the device to find what features are   */
654 /* supported.                                                               */
655 /*                                                                          */
656 /* Returns:                                                                 */
657 /*   None.                                                                  */
658 /****************************************************************************/
659 static void
660 bce_probe_pci_caps(struct bce_softc *sc)
661 {
662         device_t dev = sc->bce_dev;
663         uint8_t ptr;
664
665         if (pci_is_pcix(dev))
666                 sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
667
668         ptr = pci_get_pciecap_ptr(dev);
669         if (ptr) {
670                 uint16_t link_status = pci_read_config(dev, ptr + 0x12, 2);
671
672                 sc->link_speed = link_status & 0xf;
673                 sc->link_width = (link_status >> 4) & 0x3f;
674                 sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
675                 sc->bce_flags |= BCE_PCIE_FLAG;
676         }
677 }
678
679 /****************************************************************************/
680 /* Device attach function.                                                  */
681 /*                                                                          */
682 /* Allocates device resources, performs secondary chip identification,      */
683 /* resets and initializes the hardware, and initializes driver instance     */
684 /* variables.                                                               */
685 /*                                                                          */
686 /* Returns:                                                                 */
687 /*   0 on success, positive value on failure.                               */
688 /****************************************************************************/
689 static int
690 bce_attach(device_t dev)
691 {
692         struct bce_softc *sc = device_get_softc(dev);
693         struct ifnet *ifp = &sc->arpcom.ac_if;
694         uint32_t val;
695         int rid, rc = 0;
696         int i, j;
697         struct mii_probe_args mii_args;
698         uintptr_t mii_priv = 0;
699 #ifdef IFPOLL_ENABLE
700         int offset, offset_def;
701 #endif
702
703         sc->bce_dev = dev;
704         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
705
706         lwkt_serialize_init(&sc->main_serialize);
707         for (i = 0; i < BCE_MSIX_MAX; ++i) {
708                 struct bce_msix_data *msix = &sc->bce_msix[i];
709
710                 msix->msix_cpuid = -1;
711                 msix->msix_rid = -1;
712         }
713
714         pci_enable_busmaster(dev);
715
716         bce_probe_pci_caps(sc);
717
718         /* Allocate PCI memory resources. */
719         rid = PCIR_BAR(0);
720         sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
721                                                  RF_ACTIVE | PCI_RF_DENSE);
722         if (sc->bce_res_mem == NULL) {
723                 device_printf(dev, "PCI memory allocation failed\n");
724                 return ENXIO;
725         }
726         sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
727         sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
728
729         /*
730          * Configure byte swap and enable indirect register access.
731          * Rely on CPU to do target byte swapping on big endian systems.
732          * Access to registers outside of PCI configurtion space are not
733          * valid until this is done.
734          */
735         pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
736                          BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
737                          BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
738
739         /* Save ASIC revsion info. */
740         sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
741
742         /* Weed out any non-production controller revisions. */
743         switch (BCE_CHIP_ID(sc)) {
744         case BCE_CHIP_ID_5706_A0:
745         case BCE_CHIP_ID_5706_A1:
746         case BCE_CHIP_ID_5708_A0:
747         case BCE_CHIP_ID_5708_B0:
748         case BCE_CHIP_ID_5709_A0:
749         case BCE_CHIP_ID_5709_B0:
750         case BCE_CHIP_ID_5709_B1:
751 #ifdef foo
752         /* 5709C B2 seems to work fine */
753         case BCE_CHIP_ID_5709_B2:
754 #endif
755                 device_printf(dev, "Unsupported chip id 0x%08x!\n",
756                               BCE_CHIP_ID(sc));
757                 rc = ENODEV;
758                 goto fail;
759         }
760
761         mii_priv |= BRGPHY_FLAG_WIRESPEED;
762         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
763                 if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax ||
764                     BCE_CHIP_REV(sc) == BCE_CHIP_REV_Bx)
765                         mii_priv |= BRGPHY_FLAG_NO_EARLYDAC;
766         } else {
767                 mii_priv |= BRGPHY_FLAG_BER_BUG;
768         }
769
770         /*
771          * Find the base address for shared memory access.
772          * Newer versions of bootcode use a signature and offset
773          * while older versions use a fixed address.
774          */
775         val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
776         if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) ==
777             BCE_SHM_HDR_SIGNATURE_SIG) {
778                 /* Multi-port devices use different offsets in shared memory. */
779                 sc->bce_shmem_base = REG_RD_IND(sc,
780                     BCE_SHM_HDR_ADDR_0 + (pci_get_function(sc->bce_dev) << 2));
781         } else {
782                 sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
783         }
784
785         /* Fetch the bootcode revision. */
786         val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
787         for (i = 0, j = 0; i < 3; i++) {
788                 uint8_t num;
789                 int k, skip0;
790
791                 num = (uint8_t)(val >> (24 - (i * 8)));
792                 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
793                         if (num >= k || !skip0 || k == 1) {
794                                 sc->bce_bc_ver[j++] = (num / k) + '0';
795                                 skip0 = 0;
796                         }
797                 }
798                 if (i != 2)
799                         sc->bce_bc_ver[j++] = '.';
800         }
801
802         /* Check if any management firwmare is running. */
803         val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
804         if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
805                 sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
806
807                 /* Allow time for firmware to enter the running state. */
808                 for (i = 0; i < 30; i++) {
809                         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
810                         if (val & BCE_CONDITION_MFW_RUN_MASK)
811                                 break;
812                         DELAY(10000);
813                 }
814         }
815
816         /* Check the current bootcode state. */
817         val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION) &
818             BCE_CONDITION_MFW_RUN_MASK;
819         if (val != BCE_CONDITION_MFW_RUN_UNKNOWN &&
820             val != BCE_CONDITION_MFW_RUN_NONE) {
821                 uint32_t addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
822
823                 for (i = 0, j = 0; j < 3; j++) {
824                         val = bce_reg_rd_ind(sc, addr + j * 4);
825                         val = bswap32(val);
826                         memcpy(&sc->bce_mfw_ver[i], &val, 4);
827                         i += 4;
828                 }
829         }
830
831         /* Get PCI bus information (speed and type). */
832         val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
833         if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
834                 uint32_t clkreg;
835
836                 sc->bce_flags |= BCE_PCIX_FLAG;
837
838                 clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS) &
839                          BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
840                 switch (clkreg) {
841                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
842                         sc->bus_speed_mhz = 133;
843                         break;
844
845                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
846                         sc->bus_speed_mhz = 100;
847                         break;
848
849                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
850                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
851                         sc->bus_speed_mhz = 66;
852                         break;
853
854                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
855                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
856                         sc->bus_speed_mhz = 50;
857                         break;
858
859                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
860                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
861                 case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
862                         sc->bus_speed_mhz = 33;
863                         break;
864                 }
865         } else {
866                 if (val & BCE_PCICFG_MISC_STATUS_M66EN)
867                         sc->bus_speed_mhz = 66;
868                 else
869                         sc->bus_speed_mhz = 33;
870         }
871
872         if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
873                 sc->bce_flags |= BCE_PCI_32BIT_FLAG;
874
875         /* Reset the controller. */
876         rc = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
877         if (rc != 0)
878                 goto fail;
879
880         /* Initialize the controller. */
881         rc = bce_chipinit(sc);
882         if (rc != 0) {
883                 device_printf(dev, "Controller initialization failed!\n");
884                 goto fail;
885         }
886
887         /* Perform NVRAM test. */
888         rc = bce_nvram_test(sc);
889         if (rc != 0) {
890                 device_printf(dev, "NVRAM test failed!\n");
891                 goto fail;
892         }
893
894         /* Fetch the permanent Ethernet MAC address. */
895         bce_get_mac_addr(sc);
896
897         /*
898          * Trip points control how many BDs
899          * should be ready before generating an
900          * interrupt while ticks control how long
901          * a BD can sit in the chain before
902          * generating an interrupt.  Set the default 
903          * values for the RX and TX rings.
904          */
905
906 #ifdef BCE_DRBUG
907         /* Force more frequent interrupts. */
908         sc->bce_tx_quick_cons_trip_int = 1;
909         sc->bce_tx_quick_cons_trip     = 1;
910         sc->bce_tx_ticks_int           = 0;
911         sc->bce_tx_ticks               = 0;
912
913         sc->bce_rx_quick_cons_trip_int = 1;
914         sc->bce_rx_quick_cons_trip     = 1;
915         sc->bce_rx_ticks_int           = 0;
916         sc->bce_rx_ticks               = 0;
917 #else
918         sc->bce_tx_quick_cons_trip_int = bce_tx_bds_int;
919         sc->bce_tx_quick_cons_trip     = bce_tx_bds;
920         sc->bce_tx_ticks_int           = bce_tx_ticks_int;
921         sc->bce_tx_ticks               = bce_tx_ticks;
922
923         sc->bce_rx_quick_cons_trip_int = bce_rx_bds_int;
924         sc->bce_rx_quick_cons_trip     = bce_rx_bds;
925         sc->bce_rx_ticks_int           = bce_rx_ticks_int;
926         sc->bce_rx_ticks               = bce_rx_ticks;
927 #endif
928
929         /* Update statistics once every second. */
930         sc->bce_stats_ticks = 1000000 & 0xffff00;
931
932         /* Find the media type for the adapter. */
933         bce_get_media(sc);
934
935         /* Find out RX/TX ring count */
936         bce_setup_ring_cnt(sc);
937
938         /* Allocate DMA memory resources. */
939         rc = bce_dma_alloc(sc);
940         if (rc != 0) {
941                 device_printf(dev, "DMA resource allocation failed!\n");
942                 goto fail;
943         }
944
945 #ifdef IFPOLL_ENABLE
946         /*
947          * NPOLLING RX/TX CPU offset
948          */
949         if (sc->rx_ring_cnt2 == ncpus2) {
950                 offset = 0;
951         } else {
952                 offset_def = (sc->rx_ring_cnt2 * device_get_unit(dev)) % ncpus2;
953                 offset = device_getenv_int(dev, "npoll.offset", offset_def);
954                 if (offset >= ncpus2 ||
955                     offset % sc->rx_ring_cnt2 != 0) {
956                         device_printf(dev, "invalid npoll.offset %d, use %d\n",
957                             offset, offset_def);
958                         offset = offset_def;
959                 }
960         }
961         sc->npoll_ofs = offset;
962 #endif
963
964         /* Allocate PCI IRQ resources. */
965         rc = bce_alloc_intr(sc);
966         if (rc != 0)
967                 goto fail;
968
969         /* Setup serializer */
970         bce_setup_serialize(sc);
971
972         /* Initialize the ifnet interface. */
973         ifp->if_softc = sc;
974         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
975         ifp->if_ioctl = bce_ioctl;
976         ifp->if_start = bce_start;
977         ifp->if_init = bce_init;
978         ifp->if_serialize = bce_serialize;
979         ifp->if_deserialize = bce_deserialize;
980         ifp->if_tryserialize = bce_tryserialize;
981 #ifdef INVARIANTS
982         ifp->if_serialize_assert = bce_serialize_assert;
983 #endif
984 #ifdef IFPOLL_ENABLE
985         ifp->if_npoll = bce_npoll;
986 #endif
987
988         ifp->if_mtu = ETHERMTU;
989         ifp->if_hwassist = BCE_CSUM_FEATURES | CSUM_TSO;
990         ifp->if_capabilities = BCE_IF_CAPABILITIES;
991         if (sc->rx_ring_cnt > 1)
992                 ifp->if_capabilities |= IFCAP_RSS;
993         ifp->if_capenable = ifp->if_capabilities;
994
995         if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
996                 ifp->if_baudrate = IF_Gbps(2.5);
997         else
998                 ifp->if_baudrate = IF_Gbps(1);
999
1000         ifq_set_maxlen(&ifp->if_snd, USABLE_TX_BD(&sc->tx_rings[0]));
1001         ifq_set_ready(&ifp->if_snd);
1002         ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1003
1004         if (sc->tx_ring_cnt > 1) {
1005                 ifp->if_mapsubq = ifq_mapsubq_mask;
1006                 ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_cnt - 1);
1007         }
1008
1009         /*
1010          * Look for our PHY.
1011          */
1012         mii_probe_args_init(&mii_args, bce_ifmedia_upd, bce_ifmedia_sts);
1013         mii_args.mii_probemask = 1 << sc->bce_phy_addr;
1014         mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
1015         mii_args.mii_priv = mii_priv;
1016
1017         rc = mii_probe(dev, &sc->bce_miibus, &mii_args);
1018         if (rc != 0) {
1019                 device_printf(dev, "PHY probe failed!\n");
1020                 goto fail;
1021         }
1022
1023         /* Attach to the Ethernet interface list. */
1024         ether_ifattach(ifp, sc->eaddr, NULL);
1025
1026         /* Setup TX rings and subqueues */
1027         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1028                 struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1029                 struct bce_tx_ring *txr = &sc->tx_rings[i];
1030
1031                 ifsq_set_cpuid(ifsq, sc->bce_msix[i].msix_cpuid);
1032                 ifsq_set_priv(ifsq, txr);
1033                 txr->ifsq = ifsq;
1034
1035                 ifsq_watchdog_init(&txr->tx_watchdog, ifsq, bce_watchdog);
1036         }
1037
1038         callout_init_mp(&sc->bce_tick_callout);
1039         callout_init_mp(&sc->bce_pulse_callout);
1040         callout_init_mp(&sc->bce_ckmsi_callout);
1041
1042         rc = bce_setup_intr(sc);
1043         if (rc != 0) {
1044                 device_printf(dev, "Failed to setup IRQ!\n");
1045                 ether_ifdetach(ifp);
1046                 goto fail;
1047         }
1048
1049         /* Set timer CPUID */
1050         bce_set_timer_cpuid(sc, FALSE);
1051
1052         /* Add the supported sysctls to the kernel. */
1053         bce_add_sysctls(sc);
1054
1055         /*
1056          * The chip reset earlier notified the bootcode that
1057          * a driver is present.  We now need to start our pulse
1058          * routine so that the bootcode is reminded that we're
1059          * still running.
1060          */
1061         bce_pulse(sc);
1062
1063         /* Get the firmware running so IPMI still works */
1064         bce_mgmt_init(sc);
1065
1066         if (bootverbose)
1067                 bce_print_adapter_info(sc);
1068
1069         return 0;
1070 fail:
1071         bce_detach(dev);
1072         return(rc);
1073 }
1074
1075 /****************************************************************************/
1076 /* Device detach function.                                                  */
1077 /*                                                                          */
1078 /* Stops the controller, resets the controller, and releases resources.     */
1079 /*                                                                          */
1080 /* Returns:                                                                 */
1081 /*   0 on success, positive value on failure.                               */
1082 /****************************************************************************/
1083 static int
1084 bce_detach(device_t dev)
1085 {
1086         struct bce_softc *sc = device_get_softc(dev);
1087
1088         if (device_is_attached(dev)) {
1089                 struct ifnet *ifp = &sc->arpcom.ac_if;
1090                 uint32_t msg;
1091
1092                 ifnet_serialize_all(ifp);
1093
1094                 /* Stop and reset the controller. */
1095                 callout_stop(&sc->bce_pulse_callout);
1096                 bce_stop(sc);
1097                 if (sc->bce_flags & BCE_NO_WOL_FLAG)
1098                         msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1099                 else
1100                         msg = BCE_DRV_MSG_CODE_UNLOAD;
1101                 bce_reset(sc, msg);
1102
1103                 bce_teardown_intr(sc);
1104
1105                 ifnet_deserialize_all(ifp);
1106
1107                 ether_ifdetach(ifp);
1108         }
1109
1110         /* If we have a child device on the MII bus remove it too. */
1111         if (sc->bce_miibus)
1112                 device_delete_child(dev, sc->bce_miibus);
1113         bus_generic_detach(dev);
1114
1115         bce_free_intr(sc);
1116
1117         if (sc->bce_res_mem != NULL) {
1118                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
1119                                      sc->bce_res_mem);
1120         }
1121
1122         bce_dma_free(sc);
1123
1124         if (sc->bce_sysctl_tree != NULL)
1125                 sysctl_ctx_free(&sc->bce_sysctl_ctx);
1126
1127         if (sc->serializes != NULL)
1128                 kfree(sc->serializes, M_DEVBUF);
1129
1130         return 0;
1131 }
1132
1133 /****************************************************************************/
1134 /* Device shutdown function.                                                */
1135 /*                                                                          */
1136 /* Stops and resets the controller.                                         */
1137 /*                                                                          */
1138 /* Returns:                                                                 */
1139 /*   Nothing                                                                */
1140 /****************************************************************************/
1141 static void
1142 bce_shutdown(device_t dev)
1143 {
1144         struct bce_softc *sc = device_get_softc(dev);
1145         struct ifnet *ifp = &sc->arpcom.ac_if;
1146         uint32_t msg;
1147
1148         ifnet_serialize_all(ifp);
1149
1150         bce_stop(sc);
1151         if (sc->bce_flags & BCE_NO_WOL_FLAG)
1152                 msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1153         else
1154                 msg = BCE_DRV_MSG_CODE_UNLOAD;
1155         bce_reset(sc, msg);
1156
1157         ifnet_deserialize_all(ifp);
1158 }
1159
1160 /****************************************************************************/
1161 /* Indirect register read.                                                  */
1162 /*                                                                          */
1163 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1164 /* configuration space.  Using this mechanism avoids issues with posted     */
1165 /* reads but is much slower than memory-mapped I/O.                         */
1166 /*                                                                          */
1167 /* Returns:                                                                 */
1168 /*   The value of the register.                                             */
1169 /****************************************************************************/
1170 static uint32_t
1171 bce_reg_rd_ind(struct bce_softc *sc, uint32_t offset)
1172 {
1173         device_t dev = sc->bce_dev;
1174
1175         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1176         return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1177 }
1178
1179 /****************************************************************************/
1180 /* Indirect register write.                                                 */
1181 /*                                                                          */
1182 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1183 /* configuration space.  Using this mechanism avoids issues with posted     */
1184 /* writes but is muchh slower than memory-mapped I/O.                       */
1185 /*                                                                          */
1186 /* Returns:                                                                 */
1187 /*   Nothing.                                                               */
1188 /****************************************************************************/
1189 static void
1190 bce_reg_wr_ind(struct bce_softc *sc, uint32_t offset, uint32_t val)
1191 {
1192         device_t dev = sc->bce_dev;
1193
1194         pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1195         pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1196 }
1197
1198 /****************************************************************************/
1199 /* Shared memory write.                                                     */
1200 /*                                                                          */
1201 /* Writes NetXtreme II shared memory region.                                */
1202 /*                                                                          */
1203 /* Returns:                                                                 */
1204 /*   Nothing.                                                               */
1205 /****************************************************************************/
1206 static void
1207 bce_shmem_wr(struct bce_softc *sc, uint32_t offset, uint32_t val)
1208 {
1209         bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1210 }
1211
1212 /****************************************************************************/
1213 /* Shared memory read.                                                      */
1214 /*                                                                          */
1215 /* Reads NetXtreme II shared memory region.                                 */
1216 /*                                                                          */
1217 /* Returns:                                                                 */
1218 /*   The 32 bit value read.                                                 */
1219 /****************************************************************************/
1220 static u32
1221 bce_shmem_rd(struct bce_softc *sc, uint32_t offset)
1222 {
1223         return bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1224 }
1225
1226 /****************************************************************************/
1227 /* Context memory write.                                                    */
1228 /*                                                                          */
1229 /* The NetXtreme II controller uses context memory to track connection      */
1230 /* information for L2 and higher network protocols.                         */
1231 /*                                                                          */
1232 /* Returns:                                                                 */
1233 /*   Nothing.                                                               */
1234 /****************************************************************************/
1235 static void
1236 bce_ctx_wr(struct bce_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1237     uint32_t ctx_val)
1238 {
1239         uint32_t idx, offset = ctx_offset + cid_addr;
1240         uint32_t val, retry_cnt = 5;
1241
1242         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1243             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1244                 REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1245                 REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1246
1247                 for (idx = 0; idx < retry_cnt; idx++) {
1248                         val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1249                         if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1250                                 break;
1251                         DELAY(5);
1252                 }
1253
1254                 if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) {
1255                         device_printf(sc->bce_dev,
1256                             "Unable to write CTX memory: "
1257                             "cid_addr = 0x%08X, offset = 0x%08X!\n",
1258                             cid_addr, ctx_offset);
1259                 }
1260         } else {
1261                 REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1262                 REG_WR(sc, BCE_CTX_DATA, ctx_val);
1263         }
1264 }
1265
1266 /****************************************************************************/
1267 /* PHY register read.                                                       */
1268 /*                                                                          */
1269 /* Implements register reads on the MII bus.                                */
1270 /*                                                                          */
1271 /* Returns:                                                                 */
1272 /*   The value of the register.                                             */
1273 /****************************************************************************/
1274 static int
1275 bce_miibus_read_reg(device_t dev, int phy, int reg)
1276 {
1277         struct bce_softc *sc = device_get_softc(dev);
1278         uint32_t val;
1279         int i;
1280
1281         /* Make sure we are accessing the correct PHY address. */
1282         KASSERT(phy == sc->bce_phy_addr,
1283             ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1284
1285         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1286                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1287                 val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1288
1289                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1290                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1291
1292                 DELAY(40);
1293         }
1294
1295         val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1296               BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1297               BCE_EMAC_MDIO_COMM_START_BUSY;
1298         REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1299
1300         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1301                 DELAY(10);
1302
1303                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1304                 if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1305                         DELAY(5);
1306
1307                         val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1308                         val &= BCE_EMAC_MDIO_COMM_DATA;
1309                         break;
1310                 }
1311         }
1312
1313         if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1314                 if_printf(&sc->arpcom.ac_if,
1315                           "Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
1316                           phy, reg);
1317                 val = 0x0;
1318         } else {
1319                 val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1320         }
1321
1322         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1323                 val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1324                 val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1325
1326                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1327                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1328
1329                 DELAY(40);
1330         }
1331         return (val & 0xffff);
1332 }
1333
1334 /****************************************************************************/
1335 /* PHY register write.                                                      */
1336 /*                                                                          */
1337 /* Implements register writes on the MII bus.                               */
1338 /*                                                                          */
1339 /* Returns:                                                                 */
1340 /*   The value of the register.                                             */
1341 /****************************************************************************/
1342 static int
1343 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1344 {
1345         struct bce_softc *sc = device_get_softc(dev);
1346         uint32_t val1;
1347         int i;
1348
1349         /* Make sure we are accessing the correct PHY address. */
1350         KASSERT(phy == sc->bce_phy_addr,
1351             ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1352
1353         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1354                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1355                 val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1356
1357                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1358                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1359
1360                 DELAY(40);
1361         }
1362
1363         val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1364                 BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1365                 BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1366         REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1367
1368         for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1369                 DELAY(10);
1370
1371                 val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1372                 if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1373                         DELAY(5);
1374                         break;
1375                 }
1376         }
1377
1378         if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1379                 if_printf(&sc->arpcom.ac_if, "PHY write timeout!\n");
1380
1381         if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1382                 val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1383                 val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1384
1385                 REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1386                 REG_RD(sc, BCE_EMAC_MDIO_MODE);
1387
1388                 DELAY(40);
1389         }
1390         return 0;
1391 }
1392
1393 /****************************************************************************/
1394 /* MII bus status change.                                                   */
1395 /*                                                                          */
1396 /* Called by the MII bus driver when the PHY establishes link to set the    */
1397 /* MAC interface registers.                                                 */
1398 /*                                                                          */
1399 /* Returns:                                                                 */
1400 /*   Nothing.                                                               */
1401 /****************************************************************************/
1402 static void
1403 bce_miibus_statchg(device_t dev)
1404 {
1405         struct bce_softc *sc = device_get_softc(dev);
1406         struct mii_data *mii = device_get_softc(sc->bce_miibus);
1407
1408         BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT);
1409
1410         /*
1411          * Set MII or GMII interface based on the speed negotiated
1412          * by the PHY.
1413          */
1414         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 
1415             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
1416                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII);
1417         } else {
1418                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII);
1419         }
1420
1421         /*
1422          * Set half or full duplex based on the duplicity negotiated
1423          * by the PHY.
1424          */
1425         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1426                 BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1427         } else {
1428                 BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1429         }
1430 }
1431
1432 /****************************************************************************/
1433 /* Acquire NVRAM lock.                                                      */
1434 /*                                                                          */
1435 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1436 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1437 /* for use by the driver.                                                   */
1438 /*                                                                          */
1439 /* Returns:                                                                 */
1440 /*   0 on success, positive value on failure.                               */
1441 /****************************************************************************/
1442 static int
1443 bce_acquire_nvram_lock(struct bce_softc *sc)
1444 {
1445         uint32_t val;
1446         int j;
1447
1448         /* Request access to the flash interface. */
1449         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1450         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1451                 val = REG_RD(sc, BCE_NVM_SW_ARB);
1452                 if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1453                         break;
1454
1455                 DELAY(5);
1456         }
1457
1458         if (j >= NVRAM_TIMEOUT_COUNT) {
1459                 return EBUSY;
1460         }
1461         return 0;
1462 }
1463
1464 /****************************************************************************/
1465 /* Release NVRAM lock.                                                      */
1466 /*                                                                          */
1467 /* When the caller is finished accessing NVRAM the lock must be released.   */
1468 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1469 /* for use by the driver.                                                   */
1470 /*                                                                          */
1471 /* Returns:                                                                 */
1472 /*   0 on success, positive value on failure.                               */
1473 /****************************************************************************/
1474 static int
1475 bce_release_nvram_lock(struct bce_softc *sc)
1476 {
1477         int j;
1478         uint32_t val;
1479
1480         /*
1481          * Relinquish nvram interface.
1482          */
1483         REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1484
1485         for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1486                 val = REG_RD(sc, BCE_NVM_SW_ARB);
1487                 if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1488                         break;
1489
1490                 DELAY(5);
1491         }
1492
1493         if (j >= NVRAM_TIMEOUT_COUNT) {
1494                 return EBUSY;
1495         }
1496         return 0;
1497 }
1498
1499 /****************************************************************************/
1500 /* Enable NVRAM access.                                                     */
1501 /*                                                                          */
1502 /* Before accessing NVRAM for read or write operations the caller must      */
1503 /* enabled NVRAM access.                                                    */
1504 /*                                                                          */
1505 /* Returns:                                                                 */
1506 /*   Nothing.                                                               */
1507 /****************************************************************************/
1508 static void
1509 bce_enable_nvram_access(struct bce_softc *sc)
1510 {
1511         uint32_t val;
1512
1513         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1514         /* Enable both bits, even on read. */
1515         REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1516                val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1517 }
1518
1519 /****************************************************************************/
1520 /* Disable NVRAM access.                                                    */
1521 /*                                                                          */
1522 /* When the caller is finished accessing NVRAM access must be disabled.     */
1523 /*                                                                          */
1524 /* Returns:                                                                 */
1525 /*   Nothing.                                                               */
1526 /****************************************************************************/
1527 static void
1528 bce_disable_nvram_access(struct bce_softc *sc)
1529 {
1530         uint32_t val;
1531
1532         val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1533
1534         /* Disable both bits, even after read. */
1535         REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1536                val & ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1537 }
1538
1539 /****************************************************************************/
1540 /* Read a dword (32 bits) from NVRAM.                                       */
1541 /*                                                                          */
1542 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1543 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1544 /*                                                                          */
1545 /* Returns:                                                                 */
1546 /*   0 on success and the 32 bit value read, positive value on failure.     */
1547 /****************************************************************************/
1548 static int
1549 bce_nvram_read_dword(struct bce_softc *sc, uint32_t offset, uint8_t *ret_val,
1550                      uint32_t cmd_flags)
1551 {
1552         uint32_t cmd;
1553         int i, rc = 0;
1554
1555         /* Build the command word. */
1556         cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
1557
1558         /* Calculate the offset for buffered flash. */
1559         if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1560                 offset = ((offset / sc->bce_flash_info->page_size) <<
1561                           sc->bce_flash_info->page_bits) +
1562                          (offset % sc->bce_flash_info->page_size);
1563         }
1564
1565         /*
1566          * Clear the DONE bit separately, set the address to read,
1567          * and issue the read.
1568          */
1569         REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1570         REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1571         REG_WR(sc, BCE_NVM_COMMAND, cmd);
1572
1573         /* Wait for completion. */
1574         for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1575                 uint32_t val;
1576
1577                 DELAY(5);
1578
1579                 val = REG_RD(sc, BCE_NVM_COMMAND);
1580                 if (val & BCE_NVM_COMMAND_DONE) {
1581                         val = REG_RD(sc, BCE_NVM_READ);
1582
1583                         val = be32toh(val);
1584                         memcpy(ret_val, &val, 4);
1585                         break;
1586                 }
1587         }
1588
1589         /* Check for errors. */
1590         if (i >= NVRAM_TIMEOUT_COUNT) {
1591                 if_printf(&sc->arpcom.ac_if,
1592                           "Timeout error reading NVRAM at offset 0x%08X!\n",
1593                           offset);
1594                 rc = EBUSY;
1595         }
1596         return rc;
1597 }
1598
1599 /****************************************************************************/
1600 /* Initialize NVRAM access.                                                 */
1601 /*                                                                          */
1602 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1603 /* access that device.                                                      */
1604 /*                                                                          */
1605 /* Returns:                                                                 */
1606 /*   0 on success, positive value on failure.                               */
1607 /****************************************************************************/
1608 static int
1609 bce_init_nvram(struct bce_softc *sc)
1610 {
1611         uint32_t val;
1612         int j, entry_count, rc = 0;
1613         const struct flash_spec *flash;
1614
1615         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1616             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1617                 sc->bce_flash_info = &flash_5709;
1618                 goto bce_init_nvram_get_flash_size;
1619         }
1620
1621         /* Determine the selected interface. */
1622         val = REG_RD(sc, BCE_NVM_CFG1);
1623
1624         entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1625
1626         /*
1627          * Flash reconfiguration is required to support additional
1628          * NVRAM devices not directly supported in hardware.
1629          * Check if the flash interface was reconfigured
1630          * by the bootcode.
1631          */
1632
1633         if (val & 0x40000000) {
1634                 /* Flash interface reconfigured by bootcode. */
1635                 for (j = 0, flash = flash_table; j < entry_count;
1636                      j++, flash++) {
1637                         if ((val & FLASH_BACKUP_STRAP_MASK) ==
1638                             (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1639                                 sc->bce_flash_info = flash;
1640                                 break;
1641                         }
1642                 }
1643         } else {
1644                 /* Flash interface not yet reconfigured. */
1645                 uint32_t mask;
1646
1647                 if (val & (1 << 23))
1648                         mask = FLASH_BACKUP_STRAP_MASK;
1649                 else
1650                         mask = FLASH_STRAP_MASK;
1651
1652                 /* Look for the matching NVRAM device configuration data. */
1653                 for (j = 0, flash = flash_table; j < entry_count;
1654                      j++, flash++) {
1655                         /* Check if the device matches any of the known devices. */
1656                         if ((val & mask) == (flash->strapping & mask)) {
1657                                 /* Found a device match. */
1658                                 sc->bce_flash_info = flash;
1659
1660                                 /* Request access to the flash interface. */
1661                                 rc = bce_acquire_nvram_lock(sc);
1662                                 if (rc != 0)
1663                                         return rc;
1664
1665                                 /* Reconfigure the flash interface. */
1666                                 bce_enable_nvram_access(sc);
1667                                 REG_WR(sc, BCE_NVM_CFG1, flash->config1);
1668                                 REG_WR(sc, BCE_NVM_CFG2, flash->config2);
1669                                 REG_WR(sc, BCE_NVM_CFG3, flash->config3);
1670                                 REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
1671                                 bce_disable_nvram_access(sc);
1672                                 bce_release_nvram_lock(sc);
1673                                 break;
1674                         }
1675                 }
1676         }
1677
1678         /* Check if a matching device was found. */
1679         if (j == entry_count) {
1680                 sc->bce_flash_info = NULL;
1681                 if_printf(&sc->arpcom.ac_if, "Unknown Flash NVRAM found!\n");
1682                 return ENODEV;
1683         }
1684
1685 bce_init_nvram_get_flash_size:
1686         /* Write the flash config data to the shared memory interface. */
1687         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2) &
1688             BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
1689         if (val)
1690                 sc->bce_flash_size = val;
1691         else
1692                 sc->bce_flash_size = sc->bce_flash_info->total_size;
1693
1694         return rc;
1695 }
1696
1697 /****************************************************************************/
1698 /* Read an arbitrary range of data from NVRAM.                              */
1699 /*                                                                          */
1700 /* Prepares the NVRAM interface for access and reads the requested data     */
1701 /* into the supplied buffer.                                                */
1702 /*                                                                          */
1703 /* Returns:                                                                 */
1704 /*   0 on success and the data read, positive value on failure.             */
1705 /****************************************************************************/
1706 static int
1707 bce_nvram_read(struct bce_softc *sc, uint32_t offset, uint8_t *ret_buf,
1708                int buf_size)
1709 {
1710         uint32_t cmd_flags, offset32, len32, extra;
1711         int rc = 0;
1712
1713         if (buf_size == 0)
1714                 return 0;
1715
1716         /* Request access to the flash interface. */
1717         rc = bce_acquire_nvram_lock(sc);
1718         if (rc != 0)
1719                 return rc;
1720
1721         /* Enable access to flash interface */
1722         bce_enable_nvram_access(sc);
1723
1724         len32 = buf_size;
1725         offset32 = offset;
1726         extra = 0;
1727
1728         cmd_flags = 0;
1729
1730         /* XXX should we release nvram lock if read_dword() fails? */
1731         if (offset32 & 3) {
1732                 uint8_t buf[4];
1733                 uint32_t pre_len;
1734
1735                 offset32 &= ~3;
1736                 pre_len = 4 - (offset & 3);
1737
1738                 if (pre_len >= len32) {
1739                         pre_len = len32;
1740                         cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
1741                 } else {
1742                         cmd_flags = BCE_NVM_COMMAND_FIRST;
1743                 }
1744
1745                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1746                 if (rc)
1747                         return rc;
1748
1749                 memcpy(ret_buf, buf + (offset & 3), pre_len);
1750
1751                 offset32 += 4;
1752                 ret_buf += pre_len;
1753                 len32 -= pre_len;
1754         }
1755
1756         if (len32 & 3) {
1757                 extra = 4 - (len32 & 3);
1758                 len32 = (len32 + 4) & ~3;
1759         }
1760
1761         if (len32 == 4) {
1762                 uint8_t buf[4];
1763
1764                 if (cmd_flags)
1765                         cmd_flags = BCE_NVM_COMMAND_LAST;
1766                 else
1767                         cmd_flags = BCE_NVM_COMMAND_FIRST |
1768                                     BCE_NVM_COMMAND_LAST;
1769
1770                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1771
1772                 memcpy(ret_buf, buf, 4 - extra);
1773         } else if (len32 > 0) {
1774                 uint8_t buf[4];
1775
1776                 /* Read the first word. */
1777                 if (cmd_flags)
1778                         cmd_flags = 0;
1779                 else
1780                         cmd_flags = BCE_NVM_COMMAND_FIRST;
1781
1782                 rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1783
1784                 /* Advance to the next dword. */
1785                 offset32 += 4;
1786                 ret_buf += 4;
1787                 len32 -= 4;
1788
1789                 while (len32 > 4 && rc == 0) {
1790                         rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
1791
1792                         /* Advance to the next dword. */
1793                         offset32 += 4;
1794                         ret_buf += 4;
1795                         len32 -= 4;
1796                 }
1797
1798                 if (rc)
1799                         goto bce_nvram_read_locked_exit;
1800
1801                 cmd_flags = BCE_NVM_COMMAND_LAST;
1802                 rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1803
1804                 memcpy(ret_buf, buf, 4 - extra);
1805         }
1806
1807 bce_nvram_read_locked_exit:
1808         /* Disable access to flash interface and release the lock. */
1809         bce_disable_nvram_access(sc);
1810         bce_release_nvram_lock(sc);
1811
1812         return rc;
1813 }
1814
1815 /****************************************************************************/
1816 /* Verifies that NVRAM is accessible and contains valid data.               */
1817 /*                                                                          */
1818 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1819 /* correct.                                                                 */
1820 /*                                                                          */
1821 /* Returns:                                                                 */
1822 /*   0 on success, positive value on failure.                               */
1823 /****************************************************************************/
1824 static int
1825 bce_nvram_test(struct bce_softc *sc)
1826 {
1827         uint32_t buf[BCE_NVRAM_SIZE / 4];
1828         uint32_t magic, csum;
1829         uint8_t *data = (uint8_t *)buf;
1830         int rc = 0;
1831
1832         /*
1833          * Check that the device NVRAM is valid by reading
1834          * the magic value at offset 0.
1835          */
1836         rc = bce_nvram_read(sc, 0, data, 4);
1837         if (rc != 0)
1838                 return rc;
1839
1840         magic = be32toh(buf[0]);
1841         if (magic != BCE_NVRAM_MAGIC) {
1842                 if_printf(&sc->arpcom.ac_if,
1843                           "Invalid NVRAM magic value! Expected: 0x%08X, "
1844                           "Found: 0x%08X\n", BCE_NVRAM_MAGIC, magic);
1845                 return ENODEV;
1846         }
1847
1848         /*
1849          * Verify that the device NVRAM includes valid
1850          * configuration data.
1851          */
1852         rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE);
1853         if (rc != 0)
1854                 return rc;
1855
1856         csum = ether_crc32_le(data, 0x100);
1857         if (csum != BCE_CRC32_RESIDUAL) {
1858                 if_printf(&sc->arpcom.ac_if,
1859                           "Invalid Manufacturing Information NVRAM CRC! "
1860                           "Expected: 0x%08X, Found: 0x%08X\n",
1861                           BCE_CRC32_RESIDUAL, csum);
1862                 return ENODEV;
1863         }
1864
1865         csum = ether_crc32_le(data + 0x100, 0x100);
1866         if (csum != BCE_CRC32_RESIDUAL) {
1867                 if_printf(&sc->arpcom.ac_if,
1868                           "Invalid Feature Configuration Information "
1869                           "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1870                           BCE_CRC32_RESIDUAL, csum);
1871                 rc = ENODEV;
1872         }
1873         return rc;
1874 }
1875
1876 /****************************************************************************/
1877 /* Identifies the current media type of the controller and sets the PHY     */
1878 /* address.                                                                 */
1879 /*                                                                          */
1880 /* Returns:                                                                 */
1881 /*   Nothing.                                                               */
1882 /****************************************************************************/
1883 static void
1884 bce_get_media(struct bce_softc *sc)
1885 {
1886         uint32_t val;
1887
1888         sc->bce_phy_addr = 1;
1889
1890         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1891             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1892                 uint32_t val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
1893                 uint32_t bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1894                 uint32_t strap;
1895
1896                 /*
1897                  * The BCM5709S is software configurable
1898                  * for Copper or SerDes operation.
1899                  */
1900                 if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1901                         return;
1902                 } else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1903                         sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1904                         return;
1905                 }
1906
1907                 if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) {
1908                         strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1909                 } else {
1910                         strap =
1911                         (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
1912                 }
1913
1914                 if (pci_get_function(sc->bce_dev) == 0) {
1915                         switch (strap) {
1916                         case 0x4:
1917                         case 0x5:
1918                         case 0x6:
1919                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1920                                 break;
1921                         }
1922                 } else {
1923                         switch (strap) {
1924                         case 0x1:
1925                         case 0x2:
1926                         case 0x4:
1927                                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1928                                 break;
1929                         }
1930                 }
1931         } else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
1932                 sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1933         }
1934
1935         if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
1936                 sc->bce_flags |= BCE_NO_WOL_FLAG;
1937                 if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1938                         sc->bce_phy_addr = 2;
1939                         val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1940                         if (val & BCE_SHARED_HW_CFG_PHY_2_5G)
1941                                 sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
1942                 }
1943         } else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
1944             (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) {
1945                 sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
1946         }
1947 }
1948
1949 static void
1950 bce_destroy_tx_ring(struct bce_tx_ring *txr)
1951 {
1952         int i;
1953
1954         /* Destroy the TX buffer descriptor DMA stuffs. */
1955         if (txr->tx_bd_chain_tag != NULL) {
1956                 for (i = 0; i < txr->tx_pages; i++) {
1957                         if (txr->tx_bd_chain[i] != NULL) {
1958                                 bus_dmamap_unload(txr->tx_bd_chain_tag,
1959                                     txr->tx_bd_chain_map[i]);
1960                                 bus_dmamem_free(txr->tx_bd_chain_tag,
1961                                     txr->tx_bd_chain[i],
1962                                     txr->tx_bd_chain_map[i]);
1963                         }
1964                 }
1965                 bus_dma_tag_destroy(txr->tx_bd_chain_tag);
1966         }
1967
1968         /* Destroy the TX mbuf DMA stuffs. */
1969         if (txr->tx_mbuf_tag != NULL) {
1970                 for (i = 0; i < TOTAL_TX_BD(txr); i++) {
1971                         /* Must have been unloaded in bce_stop() */
1972                         KKASSERT(txr->tx_bufs[i].tx_mbuf_ptr == NULL);
1973                         bus_dmamap_destroy(txr->tx_mbuf_tag,
1974                             txr->tx_bufs[i].tx_mbuf_map);
1975                 }
1976                 bus_dma_tag_destroy(txr->tx_mbuf_tag);
1977         }
1978
1979         if (txr->tx_bd_chain_map != NULL)
1980                 kfree(txr->tx_bd_chain_map, M_DEVBUF);
1981         if (txr->tx_bd_chain != NULL)
1982                 kfree(txr->tx_bd_chain, M_DEVBUF);
1983         if (txr->tx_bd_chain_paddr != NULL)
1984                 kfree(txr->tx_bd_chain_paddr, M_DEVBUF);
1985
1986         if (txr->tx_bufs != NULL)
1987                 kfree(txr->tx_bufs, M_DEVBUF);
1988 }
1989
1990 static void
1991 bce_destroy_rx_ring(struct bce_rx_ring *rxr)
1992 {
1993         int i;
1994
1995         /* Destroy the RX buffer descriptor DMA stuffs. */
1996         if (rxr->rx_bd_chain_tag != NULL) {
1997                 for (i = 0; i < rxr->rx_pages; i++) {
1998                         if (rxr->rx_bd_chain[i] != NULL) {
1999                                 bus_dmamap_unload(rxr->rx_bd_chain_tag,
2000                                     rxr->rx_bd_chain_map[i]);
2001                                 bus_dmamem_free(rxr->rx_bd_chain_tag,
2002                                     rxr->rx_bd_chain[i],
2003                                     rxr->rx_bd_chain_map[i]);
2004                         }
2005                 }
2006                 bus_dma_tag_destroy(rxr->rx_bd_chain_tag);
2007         }
2008
2009         /* Destroy the RX mbuf DMA stuffs. */
2010         if (rxr->rx_mbuf_tag != NULL) {
2011                 for (i = 0; i < TOTAL_RX_BD(rxr); i++) {
2012                         /* Must have been unloaded in bce_stop() */
2013                         KKASSERT(rxr->rx_bufs[i].rx_mbuf_ptr == NULL);
2014                         bus_dmamap_destroy(rxr->rx_mbuf_tag,
2015                             rxr->rx_bufs[i].rx_mbuf_map);
2016                 }
2017                 bus_dmamap_destroy(rxr->rx_mbuf_tag, rxr->rx_mbuf_tmpmap);
2018                 bus_dma_tag_destroy(rxr->rx_mbuf_tag);
2019         }
2020
2021         if (rxr->rx_bd_chain_map != NULL)
2022                 kfree(rxr->rx_bd_chain_map, M_DEVBUF);
2023         if (rxr->rx_bd_chain != NULL)
2024                 kfree(rxr->rx_bd_chain, M_DEVBUF);
2025         if (rxr->rx_bd_chain_paddr != NULL)
2026                 kfree(rxr->rx_bd_chain_paddr, M_DEVBUF);
2027
2028         if (rxr->rx_bufs != NULL)
2029                 kfree(rxr->rx_bufs, M_DEVBUF);
2030 }
2031
2032 /****************************************************************************/
2033 /* Free any DMA memory owned by the driver.                                 */
2034 /*                                                                          */
2035 /* Scans through each data structre that requires DMA memory and frees      */
2036 /* the memory if allocated.                                                 */
2037 /*                                                                          */
2038 /* Returns:                                                                 */
2039 /*   Nothing.                                                               */
2040 /****************************************************************************/
2041 static void
2042 bce_dma_free(struct bce_softc *sc)
2043 {
2044         int i;
2045
2046         /* Destroy the status block. */
2047         if (sc->status_tag != NULL) {
2048                 if (sc->status_block != NULL) {
2049                         bus_dmamap_unload(sc->status_tag, sc->status_map);
2050                         bus_dmamem_free(sc->status_tag, sc->status_block,
2051                                         sc->status_map);
2052                 }
2053                 bus_dma_tag_destroy(sc->status_tag);
2054         }
2055
2056         /* Destroy the statistics block. */
2057         if (sc->stats_tag != NULL) {
2058                 if (sc->stats_block != NULL) {
2059                         bus_dmamap_unload(sc->stats_tag, sc->stats_map);
2060                         bus_dmamem_free(sc->stats_tag, sc->stats_block,
2061                                         sc->stats_map);
2062                 }
2063                 bus_dma_tag_destroy(sc->stats_tag);
2064         }
2065
2066         /* Destroy the CTX DMA stuffs. */
2067         if (sc->ctx_tag != NULL) {
2068                 for (i = 0; i < sc->ctx_pages; i++) {
2069                         if (sc->ctx_block[i] != NULL) {
2070                                 bus_dmamap_unload(sc->ctx_tag, sc->ctx_map[i]);
2071                                 bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2072                                                 sc->ctx_map[i]);
2073                         }
2074                 }
2075                 bus_dma_tag_destroy(sc->ctx_tag);
2076         }
2077
2078         /* Free TX rings */
2079         if (sc->tx_rings != NULL) {
2080                 for (i = 0; i < sc->tx_ring_cnt; ++i)
2081                         bce_destroy_tx_ring(&sc->tx_rings[i]);
2082                 kfree(sc->tx_rings, M_DEVBUF);
2083         }
2084
2085         /* Free RX rings */
2086         if (sc->rx_rings != NULL) {
2087                 for (i = 0; i < sc->rx_ring_cnt; ++i)
2088                         bce_destroy_rx_ring(&sc->rx_rings[i]);
2089                 kfree(sc->rx_rings, M_DEVBUF);
2090         }
2091
2092         /* Destroy the parent tag */
2093         if (sc->parent_tag != NULL)
2094                 bus_dma_tag_destroy(sc->parent_tag);
2095 }
2096
2097 /****************************************************************************/
2098 /* Get DMA memory from the OS.                                              */
2099 /*                                                                          */
2100 /* Validates that the OS has provided DMA buffers in response to a          */
2101 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
2102 /* When the callback is used the OS will return 0 for the mapping function  */
2103 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
2104 /* failures back to the caller.                                             */
2105 /*                                                                          */
2106 /* Returns:                                                                 */
2107 /*   Nothing.                                                               */
2108 /****************************************************************************/
2109 static void
2110 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2111 {
2112         bus_addr_t *busaddr = arg;
2113
2114         /* Check for an error and signal the caller that an error occurred. */
2115         if (error)
2116                 return;
2117
2118         KASSERT(nseg == 1, ("only one segment is allowed"));
2119         *busaddr = segs->ds_addr;
2120 }
2121
2122 static int
2123 bce_create_tx_ring(struct bce_tx_ring *txr)
2124 {
2125         int pages, rc, i;
2126
2127         lwkt_serialize_init(&txr->tx_serialize);
2128         txr->tx_wreg = bce_tx_wreg;
2129
2130         pages = device_getenv_int(txr->sc->bce_dev, "tx_pages", bce_tx_pages);
2131         if (pages <= 0 || pages > TX_PAGES_MAX || !powerof2(pages)) {
2132                 device_printf(txr->sc->bce_dev, "invalid # of TX pages\n");
2133                 pages = TX_PAGES_DEFAULT;
2134         }
2135         txr->tx_pages = pages;
2136
2137         txr->tx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * txr->tx_pages,
2138             M_DEVBUF, M_WAITOK | M_ZERO);
2139         txr->tx_bd_chain = kmalloc(sizeof(struct tx_bd *) * txr->tx_pages,
2140             M_DEVBUF, M_WAITOK | M_ZERO);
2141         txr->tx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * txr->tx_pages,
2142             M_DEVBUF, M_WAITOK | M_ZERO);
2143
2144         txr->tx_bufs = kmalloc_cachealign(
2145             sizeof(struct bce_tx_buf) * TOTAL_TX_BD(txr),
2146             M_DEVBUF, M_WAITOK | M_ZERO);
2147
2148         /*
2149          * Create a DMA tag for the TX buffer descriptor chain,
2150          * allocate and clear the  memory, and fetch the
2151          * physical address of the block.
2152          */
2153         rc = bus_dma_tag_create(txr->sc->parent_tag, BCM_PAGE_SIZE, 0,
2154             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2155             BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ,
2156             0, &txr->tx_bd_chain_tag);
2157         if (rc != 0) {
2158                 device_printf(txr->sc->bce_dev, "Could not allocate "
2159                     "TX descriptor chain DMA tag!\n");
2160                 return rc;
2161         }
2162
2163         for (i = 0; i < txr->tx_pages; i++) {
2164                 bus_addr_t busaddr;
2165
2166                 rc = bus_dmamem_alloc(txr->tx_bd_chain_tag,
2167                     (void **)&txr->tx_bd_chain[i],
2168                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
2169                     &txr->tx_bd_chain_map[i]);
2170                 if (rc != 0) {
2171                         device_printf(txr->sc->bce_dev,
2172                             "Could not allocate %dth TX descriptor "
2173                             "chain DMA memory!\n", i);
2174                         return rc;
2175                 }
2176
2177                 rc = bus_dmamap_load(txr->tx_bd_chain_tag,
2178                     txr->tx_bd_chain_map[i],
2179                     txr->tx_bd_chain[i],
2180                     BCE_TX_CHAIN_PAGE_SZ,
2181                     bce_dma_map_addr, &busaddr,
2182                     BUS_DMA_WAITOK);
2183                 if (rc != 0) {
2184                         if (rc == EINPROGRESS) {
2185                                 panic("%s coherent memory loading "
2186                                     "is still in progress!",
2187                                     txr->sc->arpcom.ac_if.if_xname);
2188                         }
2189                         device_printf(txr->sc->bce_dev, "Could not map %dth "
2190                             "TX descriptor chain DMA memory!\n", i);
2191                         bus_dmamem_free(txr->tx_bd_chain_tag,
2192                             txr->tx_bd_chain[i],
2193                             txr->tx_bd_chain_map[i]);
2194                         txr->tx_bd_chain[i] = NULL;
2195                         return rc;
2196                 }
2197
2198                 txr->tx_bd_chain_paddr[i] = busaddr;
2199         }
2200
2201         /* Create a DMA tag for TX mbufs. */
2202         rc = bus_dma_tag_create(txr->sc->parent_tag, 1, 0,
2203             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2204             IP_MAXPACKET + sizeof(struct ether_vlan_header),
2205             BCE_MAX_SEGMENTS, PAGE_SIZE,
2206             BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2207             &txr->tx_mbuf_tag);
2208         if (rc != 0) {
2209                 device_printf(txr->sc->bce_dev,
2210                     "Could not allocate TX mbuf DMA tag!\n");
2211                 return rc;
2212         }
2213
2214         /* Create DMA maps for the TX mbufs clusters. */
2215         for (i = 0; i < TOTAL_TX_BD(txr); i++) {
2216                 rc = bus_dmamap_create(txr->tx_mbuf_tag,
2217                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2218                     &txr->tx_bufs[i].tx_mbuf_map);
2219                 if (rc != 0) {
2220                         int j;
2221
2222                         for (j = 0; j < i; ++j) {
2223                                 bus_dmamap_destroy(txr->tx_mbuf_tag,
2224                                     txr->tx_bufs[j].tx_mbuf_map);
2225                         }
2226                         bus_dma_tag_destroy(txr->tx_mbuf_tag);
2227                         txr->tx_mbuf_tag = NULL;
2228
2229                         device_printf(txr->sc->bce_dev, "Unable to create "
2230                             "%dth TX mbuf DMA map!\n", i);
2231                         return rc;
2232                 }
2233         }
2234         return 0;
2235 }
2236
2237 static int
2238 bce_create_rx_ring(struct bce_rx_ring *rxr)
2239 {
2240         int pages, rc, i;
2241
2242         lwkt_serialize_init(&rxr->rx_serialize);
2243
2244         pages = device_getenv_int(rxr->sc->bce_dev, "rx_pages", bce_rx_pages);
2245         if (pages <= 0 || pages > RX_PAGES_MAX || !powerof2(pages)) {
2246                 device_printf(rxr->sc->bce_dev, "invalid # of RX pages\n");
2247                 pages = RX_PAGES_DEFAULT;
2248         }
2249         rxr->rx_pages = pages;
2250
2251         rxr->rx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * rxr->rx_pages,
2252             M_DEVBUF, M_WAITOK | M_ZERO);
2253         rxr->rx_bd_chain = kmalloc(sizeof(struct rx_bd *) * rxr->rx_pages,
2254             M_DEVBUF, M_WAITOK | M_ZERO);
2255         rxr->rx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * rxr->rx_pages,
2256             M_DEVBUF, M_WAITOK | M_ZERO);
2257
2258         rxr->rx_bufs = kmalloc_cachealign(
2259             sizeof(struct bce_rx_buf) * TOTAL_RX_BD(rxr),
2260             M_DEVBUF, M_WAITOK | M_ZERO);
2261
2262         /*
2263          * Create a DMA tag for the RX buffer descriptor chain,
2264          * allocate and clear the  memory, and fetch the physical
2265          * address of the blocks.
2266          */
2267         rc = bus_dma_tag_create(rxr->sc->parent_tag, BCM_PAGE_SIZE, 0,
2268             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2269             BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
2270             0, &rxr->rx_bd_chain_tag);
2271         if (rc != 0) {
2272                 device_printf(rxr->sc->bce_dev, "Could not allocate "
2273                     "RX descriptor chain DMA tag!\n");
2274                 return rc;
2275         }
2276
2277         for (i = 0; i < rxr->rx_pages; i++) {
2278                 bus_addr_t busaddr;
2279
2280                 rc = bus_dmamem_alloc(rxr->rx_bd_chain_tag,
2281                     (void **)&rxr->rx_bd_chain[i],
2282                     BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
2283                     &rxr->rx_bd_chain_map[i]);
2284                 if (rc != 0) {
2285                         device_printf(rxr->sc->bce_dev,
2286                             "Could not allocate %dth RX descriptor "
2287                             "chain DMA memory!\n", i);
2288                         return rc;
2289                 }
2290
2291                 rc = bus_dmamap_load(rxr->rx_bd_chain_tag,
2292                     rxr->rx_bd_chain_map[i],
2293                     rxr->rx_bd_chain[i],
2294                     BCE_RX_CHAIN_PAGE_SZ,
2295                     bce_dma_map_addr, &busaddr,
2296                     BUS_DMA_WAITOK);
2297                 if (rc != 0) {
2298                         if (rc == EINPROGRESS) {
2299                                 panic("%s coherent memory loading "
2300                                     "is still in progress!",
2301                                     rxr->sc->arpcom.ac_if.if_xname);
2302                         }
2303                         device_printf(rxr->sc->bce_dev,
2304                             "Could not map %dth RX descriptor "
2305                             "chain DMA memory!\n", i);
2306                         bus_dmamem_free(rxr->rx_bd_chain_tag,
2307                             rxr->rx_bd_chain[i],
2308                             rxr->rx_bd_chain_map[i]);
2309                         rxr->rx_bd_chain[i] = NULL;
2310                         return rc;
2311                 }
2312
2313                 rxr->rx_bd_chain_paddr[i] = busaddr;
2314         }
2315
2316         /* Create a DMA tag for RX mbufs. */
2317         rc = bus_dma_tag_create(rxr->sc->parent_tag, BCE_DMA_RX_ALIGN, 0,
2318             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2319             MCLBYTES, 1, MCLBYTES,
2320             BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED | BUS_DMA_WAITOK,
2321             &rxr->rx_mbuf_tag);
2322         if (rc != 0) {
2323                 device_printf(rxr->sc->bce_dev,
2324                     "Could not allocate RX mbuf DMA tag!\n");
2325                 return rc;
2326         }
2327
2328         /* Create tmp DMA map for RX mbuf clusters. */
2329         rc = bus_dmamap_create(rxr->rx_mbuf_tag, BUS_DMA_WAITOK,
2330             &rxr->rx_mbuf_tmpmap);
2331         if (rc != 0) {
2332                 bus_dma_tag_destroy(rxr->rx_mbuf_tag);
2333                 rxr->rx_mbuf_tag = NULL;
2334
2335                 device_printf(rxr->sc->bce_dev,
2336                     "Could not create RX mbuf tmp DMA map!\n");
2337                 return rc;
2338         }
2339
2340         /* Create DMA maps for the RX mbuf clusters. */
2341         for (i = 0; i < TOTAL_RX_BD(rxr); i++) {
2342                 rc = bus_dmamap_create(rxr->rx_mbuf_tag, BUS_DMA_WAITOK,
2343                     &rxr->rx_bufs[i].rx_mbuf_map);
2344                 if (rc != 0) {
2345                         int j;
2346
2347                         for (j = 0; j < i; ++j) {
2348                                 bus_dmamap_destroy(rxr->rx_mbuf_tag,
2349                                     rxr->rx_bufs[j].rx_mbuf_map);
2350                         }
2351                         bus_dma_tag_destroy(rxr->rx_mbuf_tag);
2352                         rxr->rx_mbuf_tag = NULL;
2353
2354                         device_printf(rxr->sc->bce_dev, "Unable to create "
2355                             "%dth RX mbuf DMA map!\n", i);
2356                         return rc;
2357                 }
2358         }
2359         return 0;
2360 }
2361
2362 /****************************************************************************/
2363 /* Allocate any DMA memory needed by the driver.                            */
2364 /*                                                                          */
2365 /* Allocates DMA memory needed for the various global structures needed by  */
2366 /* hardware.                                                                */
2367 /*                                                                          */
2368 /* Memory alignment requirements:                                           */
2369 /* -----------------+----------+----------+----------+----------+           */
2370 /*  Data Structure  |   5706   |   5708   |   5709   |   5716   |           */
2371 /* -----------------+----------+----------+----------+----------+           */
2372 /* Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2373 /* Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2374 /* RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |           */
2375 /* PG Buffers       |   none   |   none   |   none   |   none   |           */
2376 /* TX Buffers       |   none   |   none   |   none   |   none   |           */
2377 /* Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |           */
2378 /* Context Pages(1) |   N/A    |   N/A    |   4KiB   |   4KiB   |           */
2379 /* -----------------+----------+----------+----------+----------+           */
2380 /*                                                                          */
2381 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
2382 /*                                                                          */
2383 /* Returns:                                                                 */
2384 /*   0 for success, positive value for failure.                             */
2385 /****************************************************************************/
2386 static int
2387 bce_dma_alloc(struct bce_softc *sc)
2388 {
2389         struct ifnet *ifp = &sc->arpcom.ac_if;
2390         int i, rc = 0;
2391         bus_addr_t busaddr, max_busaddr;
2392         bus_size_t status_align, stats_align, status_size;
2393
2394         /*
2395          * The embedded PCIe to PCI-X bridge (EPB) 
2396          * in the 5708 cannot address memory above 
2397          * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043). 
2398          */
2399         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
2400                 max_busaddr = BCE_BUS_SPACE_MAXADDR;
2401         else
2402                 max_busaddr = BUS_SPACE_MAXADDR;
2403
2404         /*
2405          * BCM5709 and BCM5716 uses host memory as cache for context memory.
2406          */
2407         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2408             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2409                 sc->ctx_pages = BCE_CTX_BLK_SZ / BCM_PAGE_SIZE;
2410                 if (sc->ctx_pages == 0)
2411                         sc->ctx_pages = 1;
2412                 if (sc->ctx_pages > BCE_CTX_PAGES) {
2413                         device_printf(sc->bce_dev, "excessive ctx pages %d\n",
2414                             sc->ctx_pages);
2415                         return ENOMEM;
2416                 }
2417                 status_align = 16;
2418                 stats_align = 16;
2419         } else {
2420                 status_align = 8;
2421                 stats_align = 8;
2422         }
2423
2424         /*
2425          * Each MSI-X vector needs a status block; each status block
2426          * consumes 128bytes and is 128bytes aligned.
2427          */
2428         if (sc->rx_ring_cnt > 1) {
2429                 status_size = BCE_MSIX_MAX * BCE_STATUS_BLK_MSIX_ALIGN;
2430                 status_align = BCE_STATUS_BLK_MSIX_ALIGN;
2431         } else {
2432                 status_size = BCE_STATUS_BLK_SZ;
2433         }
2434
2435         /*
2436          * Allocate the parent bus DMA tag appropriate for PCI.
2437          */
2438         rc = bus_dma_tag_create(NULL, 1, BCE_DMA_BOUNDARY,
2439                                 max_busaddr, BUS_SPACE_MAXADDR,
2440                                 NULL, NULL,
2441                                 BUS_SPACE_MAXSIZE_32BIT, 0,
2442                                 BUS_SPACE_MAXSIZE_32BIT,
2443                                 0, &sc->parent_tag);
2444         if (rc != 0) {
2445                 if_printf(ifp, "Could not allocate parent DMA tag!\n");
2446                 return rc;
2447         }
2448
2449         /*
2450          * Allocate status block.
2451          */
2452         sc->status_block = bus_dmamem_coherent_any(sc->parent_tag,
2453                                 status_align, status_size,
2454                                 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2455                                 &sc->status_tag, &sc->status_map,
2456                                 &sc->status_block_paddr);
2457         if (sc->status_block == NULL) {
2458                 if_printf(ifp, "Could not allocate status block!\n");
2459                 return ENOMEM;
2460         }
2461
2462         /*
2463          * Allocate statistics block.
2464          */
2465         sc->stats_block = bus_dmamem_coherent_any(sc->parent_tag,
2466                                 stats_align, BCE_STATS_BLK_SZ,
2467                                 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2468                                 &sc->stats_tag, &sc->stats_map,
2469                                 &sc->stats_block_paddr);
2470         if (sc->stats_block == NULL) {
2471                 if_printf(ifp, "Could not allocate statistics block!\n");
2472                 return ENOMEM;
2473         }
2474
2475         /*
2476          * Allocate context block, if needed
2477          */
2478         if (sc->ctx_pages != 0) {
2479                 rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2480                                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2481                                         NULL, NULL,
2482                                         BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
2483                                         0, &sc->ctx_tag);
2484                 if (rc != 0) {
2485                         if_printf(ifp, "Could not allocate "
2486                                   "context block DMA tag!\n");
2487                         return rc;
2488                 }
2489
2490                 for (i = 0; i < sc->ctx_pages; i++) {
2491                         rc = bus_dmamem_alloc(sc->ctx_tag,
2492                                               (void **)&sc->ctx_block[i],
2493                                               BUS_DMA_WAITOK | BUS_DMA_ZERO |
2494                                               BUS_DMA_COHERENT,
2495                                               &sc->ctx_map[i]);
2496                         if (rc != 0) {
2497                                 if_printf(ifp, "Could not allocate %dth context "
2498                                           "DMA memory!\n", i);
2499                                 return rc;
2500                         }
2501
2502                         rc = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
2503                                              sc->ctx_block[i], BCM_PAGE_SIZE,
2504                                              bce_dma_map_addr, &busaddr,
2505                                              BUS_DMA_WAITOK);
2506                         if (rc != 0) {
2507                                 if (rc == EINPROGRESS) {
2508                                         panic("%s coherent memory loading "
2509                                               "is still in progress!", ifp->if_xname);
2510                                 }
2511                                 if_printf(ifp, "Could not map %dth context "
2512                                           "DMA memory!\n", i);
2513                                 bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2514                                                 sc->ctx_map[i]);
2515                                 sc->ctx_block[i] = NULL;
2516                                 return rc;
2517                         }
2518                         sc->ctx_paddr[i] = busaddr;
2519                 }
2520         }
2521
2522         sc->tx_rings = kmalloc_cachealign(
2523             sizeof(struct bce_tx_ring) * sc->tx_ring_cnt, M_DEVBUF,
2524             M_WAITOK | M_ZERO);
2525         for (i = 0; i < sc->tx_ring_cnt; ++i) {
2526                 sc->tx_rings[i].sc = sc;
2527                 if (i == 0) {
2528                         sc->tx_rings[i].tx_cid = TX_CID;
2529                         sc->tx_rings[i].tx_hw_cons =
2530                             &sc->status_block->status_tx_quick_consumer_index0;
2531                 } else {
2532                         struct status_block_msix *sblk =
2533                             (struct status_block_msix *)
2534                             (((uint8_t *)(sc->status_block)) +
2535                              (i * BCE_STATUS_BLK_MSIX_ALIGN));
2536
2537                         sc->tx_rings[i].tx_cid = TX_TSS_CID + i - 1;
2538                         sc->tx_rings[i].tx_hw_cons =
2539                             &sblk->status_tx_quick_consumer_index;
2540                 }
2541
2542                 rc = bce_create_tx_ring(&sc->tx_rings[i]);
2543                 if (rc != 0) {
2544                         device_printf(sc->bce_dev,
2545                             "can't create %dth tx ring\n", i);
2546                         return rc;
2547                 }
2548         }
2549
2550         sc->rx_rings = kmalloc_cachealign(
2551             sizeof(struct bce_rx_ring) * sc->rx_ring_cnt, M_DEVBUF,
2552             M_WAITOK | M_ZERO);
2553         for (i = 0; i < sc->rx_ring_cnt; ++i) {
2554                 sc->rx_rings[i].sc = sc;
2555                 sc->rx_rings[i].idx = i;
2556                 if (i == 0) {
2557                         sc->rx_rings[i].rx_cid = RX_CID;
2558                         sc->rx_rings[i].rx_hw_cons =
2559                             &sc->status_block->status_rx_quick_consumer_index0;
2560                         sc->rx_rings[i].hw_status_idx =
2561                             &sc->status_block->status_idx;
2562                 } else {
2563                         struct status_block_msix *sblk =
2564                             (struct status_block_msix *)
2565                             (((uint8_t *)(sc->status_block)) +
2566                              (i * BCE_STATUS_BLK_MSIX_ALIGN));
2567
2568                         sc->rx_rings[i].rx_cid = RX_RSS_CID + i - 1;
2569                         sc->rx_rings[i].rx_hw_cons =
2570                             &sblk->status_rx_quick_consumer_index;
2571                         sc->rx_rings[i].hw_status_idx = &sblk->status_idx;
2572                 }
2573
2574                 rc = bce_create_rx_ring(&sc->rx_rings[i]);
2575                 if (rc != 0) {
2576                         device_printf(sc->bce_dev,
2577                             "can't create %dth rx ring\n", i);
2578                         return rc;
2579                 }
2580         }
2581
2582         return 0;
2583 }
2584
2585 /****************************************************************************/
2586 /* Firmware synchronization.                                                */
2587 /*                                                                          */
2588 /* Before performing certain events such as a chip reset, synchronize with  */
2589 /* the firmware first.                                                      */
2590 /*                                                                          */
2591 /* Returns:                                                                 */
2592 /*   0 for success, positive value for failure.                             */
2593 /****************************************************************************/
2594 static int
2595 bce_fw_sync(struct bce_softc *sc, uint32_t msg_data)
2596 {
2597         int i, rc = 0;
2598         uint32_t val;
2599
2600         /* Don't waste any time if we've timed out before. */
2601         if (sc->bce_fw_timed_out)
2602                 return EBUSY;
2603
2604         /* Increment the message sequence number. */
2605         sc->bce_fw_wr_seq++;
2606         msg_data |= sc->bce_fw_wr_seq;
2607
2608         /* Send the message to the bootcode driver mailbox. */
2609         bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2610
2611         /* Wait for the bootcode to acknowledge the message. */
2612         for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2613                 /* Check for a response in the bootcode firmware mailbox. */
2614                 val = bce_shmem_rd(sc, BCE_FW_MB);
2615                 if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
2616                         break;
2617                 DELAY(1000);
2618         }
2619
2620         /* If we've timed out, tell the bootcode that we've stopped waiting. */
2621         if ((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ) &&
2622             (msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0) {
2623                 if_printf(&sc->arpcom.ac_if,
2624                           "Firmware synchronization timeout! "
2625                           "msg_data = 0x%08X\n", msg_data);
2626
2627                 msg_data &= ~BCE_DRV_MSG_CODE;
2628                 msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
2629
2630                 bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2631
2632                 sc->bce_fw_timed_out = 1;
2633                 rc = EBUSY;
2634         }
2635         return rc;
2636 }
2637
2638 /****************************************************************************/
2639 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2640 /*                                                                          */
2641 /* Returns:                                                                 */
2642 /*   Nothing.                                                               */
2643 /****************************************************************************/
2644 static void
2645 bce_load_rv2p_fw(struct bce_softc *sc, uint32_t *rv2p_code,
2646                  uint32_t rv2p_code_len, uint32_t rv2p_proc)
2647 {
2648         int i;
2649         uint32_t val;
2650
2651         for (i = 0; i < rv2p_code_len; i += 8) {
2652                 REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
2653                 rv2p_code++;
2654                 REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
2655                 rv2p_code++;
2656
2657                 if (rv2p_proc == RV2P_PROC1) {
2658                         val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
2659                         REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
2660                 } else {
2661                         val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
2662                         REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
2663                 }
2664         }
2665
2666         /* Reset the processor, un-stall is done later. */
2667         if (rv2p_proc == RV2P_PROC1)
2668                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
2669         else
2670                 REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
2671 }
2672
2673 /****************************************************************************/
2674 /* Load RISC processor firmware.                                            */
2675 /*                                                                          */
2676 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
2677 /* associated with a particular processor.                                  */
2678 /*                                                                          */
2679 /* Returns:                                                                 */
2680 /*   Nothing.                                                               */
2681 /****************************************************************************/
2682 static void
2683 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
2684                 struct fw_info *fw)
2685 {
2686         uint32_t offset;
2687         int j;
2688
2689         bce_halt_cpu(sc, cpu_reg);
2690
2691         /* Load the Text area. */
2692         offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2693         if (fw->text) {
2694                 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2695                         REG_WR_IND(sc, offset, fw->text[j]);
2696         }
2697
2698         /* Load the Data area. */
2699         offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2700         if (fw->data) {
2701                 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2702                         REG_WR_IND(sc, offset, fw->data[j]);
2703         }
2704
2705         /* Load the SBSS area. */
2706         offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2707         if (fw->sbss) {
2708                 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2709                         REG_WR_IND(sc, offset, fw->sbss[j]);
2710         }
2711
2712         /* Load the BSS area. */
2713         offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2714         if (fw->bss) {
2715                 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2716                         REG_WR_IND(sc, offset, fw->bss[j]);
2717         }
2718
2719         /* Load the Read-Only area. */
2720         offset = cpu_reg->spad_base +
2721                 (fw->rodata_addr - cpu_reg->mips_view_base);
2722         if (fw->rodata) {
2723                 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2724                         REG_WR_IND(sc, offset, fw->rodata[j]);
2725         }
2726
2727         /* Clear the pre-fetch instruction and set the FW start address. */
2728         REG_WR_IND(sc, cpu_reg->inst, 0);
2729         REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2730 }
2731
2732 /****************************************************************************/
2733 /* Starts the RISC processor.                                               */
2734 /*                                                                          */
2735 /* Assumes the CPU starting address has already been set.                   */
2736 /*                                                                          */
2737 /* Returns:                                                                 */
2738 /*   Nothing.                                                               */
2739 /****************************************************************************/
2740 static void
2741 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2742 {
2743         uint32_t val;
2744
2745         /* Start the CPU. */
2746         val = REG_RD_IND(sc, cpu_reg->mode);
2747         val &= ~cpu_reg->mode_value_halt;
2748         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2749         REG_WR_IND(sc, cpu_reg->mode, val);
2750 }
2751
2752 /****************************************************************************/
2753 /* Halts the RISC processor.                                                */
2754 /*                                                                          */
2755 /* Returns:                                                                 */
2756 /*   Nothing.                                                               */
2757 /****************************************************************************/
2758 static void
2759 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2760 {
2761         uint32_t val;
2762
2763         /* Halt the CPU. */
2764         val = REG_RD_IND(sc, cpu_reg->mode);
2765         val |= cpu_reg->mode_value_halt;
2766         REG_WR_IND(sc, cpu_reg->mode, val);
2767         REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2768 }
2769
2770 /****************************************************************************/
2771 /* Start the RX CPU.                                                        */
2772 /*                                                                          */
2773 /* Returns:                                                                 */
2774 /*   Nothing.                                                               */
2775 /****************************************************************************/
2776 static void
2777 bce_start_rxp_cpu(struct bce_softc *sc)
2778 {
2779         struct cpu_reg cpu_reg;
2780
2781         cpu_reg.mode = BCE_RXP_CPU_MODE;
2782         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2783         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2784         cpu_reg.state = BCE_RXP_CPU_STATE;
2785         cpu_reg.state_value_clear = 0xffffff;
2786         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2787         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2788         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2789         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2790         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2791         cpu_reg.spad_base = BCE_RXP_SCRATCH;
2792         cpu_reg.mips_view_base = 0x8000000;
2793
2794         bce_start_cpu(sc, &cpu_reg);
2795 }
2796
2797 /****************************************************************************/
2798 /* Initialize the RX CPU.                                                   */
2799 /*                                                                          */
2800 /* Returns:                                                                 */
2801 /*   Nothing.                                                               */
2802 /****************************************************************************/
2803 static void
2804 bce_init_rxp_cpu(struct bce_softc *sc)
2805 {
2806         struct cpu_reg cpu_reg;
2807         struct fw_info fw;
2808
2809         cpu_reg.mode = BCE_RXP_CPU_MODE;
2810         cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2811         cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2812         cpu_reg.state = BCE_RXP_CPU_STATE;
2813         cpu_reg.state_value_clear = 0xffffff;
2814         cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2815         cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2816         cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2817         cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2818         cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2819         cpu_reg.spad_base = BCE_RXP_SCRATCH;
2820         cpu_reg.mips_view_base = 0x8000000;
2821
2822         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2823             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2824                 fw.ver_major = bce_RXP_b09FwReleaseMajor;
2825                 fw.ver_minor = bce_RXP_b09FwReleaseMinor;
2826                 fw.ver_fix = bce_RXP_b09FwReleaseFix;
2827                 fw.start_addr = bce_RXP_b09FwStartAddr;
2828
2829                 fw.text_addr = bce_RXP_b09FwTextAddr;
2830                 fw.text_len = bce_RXP_b09FwTextLen;
2831                 fw.text_index = 0;
2832                 fw.text = bce_RXP_b09FwText;
2833
2834                 fw.data_addr = bce_RXP_b09FwDataAddr;
2835                 fw.data_len = bce_RXP_b09FwDataLen;
2836                 fw.data_index = 0;
2837                 fw.data = bce_RXP_b09FwData;
2838
2839                 fw.sbss_addr = bce_RXP_b09FwSbssAddr;
2840                 fw.sbss_len = bce_RXP_b09FwSbssLen;
2841                 fw.sbss_index = 0;
2842                 fw.sbss = bce_RXP_b09FwSbss;
2843
2844                 fw.bss_addr = bce_RXP_b09FwBssAddr;
2845                 fw.bss_len = bce_RXP_b09FwBssLen;
2846                 fw.bss_index = 0;
2847                 fw.bss = bce_RXP_b09FwBss;
2848
2849                 fw.rodata_addr = bce_RXP_b09FwRodataAddr;
2850                 fw.rodata_len = bce_RXP_b09FwRodataLen;
2851                 fw.rodata_index = 0;
2852                 fw.rodata = bce_RXP_b09FwRodata;
2853         } else {
2854                 fw.ver_major = bce_RXP_b06FwReleaseMajor;
2855                 fw.ver_minor = bce_RXP_b06FwReleaseMinor;
2856                 fw.ver_fix = bce_RXP_b06FwReleaseFix;
2857                 fw.start_addr = bce_RXP_b06FwStartAddr;
2858
2859                 fw.text_addr = bce_RXP_b06FwTextAddr;
2860                 fw.text_len = bce_RXP_b06FwTextLen;
2861                 fw.text_index = 0;
2862                 fw.text = bce_RXP_b06FwText;
2863
2864                 fw.data_addr = bce_RXP_b06FwDataAddr;
2865                 fw.data_len = bce_RXP_b06FwDataLen;
2866                 fw.data_index = 0;
2867                 fw.data = bce_RXP_b06FwData;
2868
2869                 fw.sbss_addr = bce_RXP_b06FwSbssAddr;
2870                 fw.sbss_len = bce_RXP_b06FwSbssLen;
2871                 fw.sbss_index = 0;
2872                 fw.sbss = bce_RXP_b06FwSbss;
2873
2874                 fw.bss_addr = bce_RXP_b06FwBssAddr;
2875                 fw.bss_len = bce_RXP_b06FwBssLen;
2876                 fw.bss_index = 0;
2877                 fw.bss = bce_RXP_b06FwBss;
2878
2879                 fw.rodata_addr = bce_RXP_b06FwRodataAddr;
2880                 fw.rodata_len = bce_RXP_b06FwRodataLen;
2881                 fw.rodata_index = 0;
2882                 fw.rodata = bce_RXP_b06FwRodata;
2883         }
2884
2885         bce_load_cpu_fw(sc, &cpu_reg, &fw);
2886         /* Delay RXP start until initialization is complete. */
2887 }
2888
2889 /****************************************************************************/
2890 /* Initialize the TX CPU.                                                   */
2891 /*                                                                          */
2892 /* Returns:                                                                 */
2893 /*   Nothing.                                                               */
2894 /****************************************************************************/
2895 static void
2896 bce_init_txp_cpu(struct bce_softc *sc)
2897 {
2898         struct cpu_reg cpu_reg;
2899         struct fw_info fw;
2900
2901         cpu_reg.mode = BCE_TXP_CPU_MODE;
2902         cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
2903         cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
2904         cpu_reg.state = BCE_TXP_CPU_STATE;
2905         cpu_reg.state_value_clear = 0xffffff;
2906         cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
2907         cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
2908         cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
2909         cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
2910         cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
2911         cpu_reg.spad_base = BCE_TXP_SCRATCH;
2912         cpu_reg.mips_view_base = 0x8000000;
2913
2914         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2915             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2916                 fw.ver_major = bce_TXP_b09FwReleaseMajor;
2917                 fw.ver_minor = bce_TXP_b09FwReleaseMinor;
2918                 fw.ver_fix = bce_TXP_b09FwReleaseFix;
2919                 fw.start_addr = bce_TXP_b09FwStartAddr;
2920
2921                 fw.text_addr = bce_TXP_b09FwTextAddr;
2922                 fw.text_len = bce_TXP_b09FwTextLen;
2923                 fw.text_index = 0;
2924                 fw.text = bce_TXP_b09FwText;
2925
2926                 fw.data_addr = bce_TXP_b09FwDataAddr;
2927                 fw.data_len = bce_TXP_b09FwDataLen;
2928                 fw.data_index = 0;
2929                 fw.data = bce_TXP_b09FwData;
2930
2931                 fw.sbss_addr = bce_TXP_b09FwSbssAddr;
2932                 fw.sbss_len = bce_TXP_b09FwSbssLen;
2933                 fw.sbss_index = 0;
2934                 fw.sbss = bce_TXP_b09FwSbss;
2935
2936                 fw.bss_addr = bce_TXP_b09FwBssAddr;
2937                 fw.bss_len = bce_TXP_b09FwBssLen;
2938                 fw.bss_index = 0;
2939                 fw.bss = bce_TXP_b09FwBss;
2940
2941                 fw.rodata_addr = bce_TXP_b09FwRodataAddr;
2942                 fw.rodata_len = bce_TXP_b09FwRodataLen;
2943                 fw.rodata_index = 0;
2944                 fw.rodata = bce_TXP_b09FwRodata;
2945         } else {
2946                 fw.ver_major = bce_TXP_b06FwReleaseMajor;
2947                 fw.ver_minor = bce_TXP_b06FwReleaseMinor;
2948                 fw.ver_fix = bce_TXP_b06FwReleaseFix;
2949                 fw.start_addr = bce_TXP_b06FwStartAddr;
2950
2951                 fw.text_addr = bce_TXP_b06FwTextAddr;
2952                 fw.text_len = bce_TXP_b06FwTextLen;
2953                 fw.text_index = 0;
2954                 fw.text = bce_TXP_b06FwText;
2955
2956                 fw.data_addr = bce_TXP_b06FwDataAddr;
2957                 fw.data_len = bce_TXP_b06FwDataLen;
2958                 fw.data_index = 0;
2959                 fw.data = bce_TXP_b06FwData;
2960
2961                 fw.sbss_addr = bce_TXP_b06FwSbssAddr;
2962                 fw.sbss_len = bce_TXP_b06FwSbssLen;
2963                 fw.sbss_index = 0;
2964                 fw.sbss = bce_TXP_b06FwSbss;
2965
2966                 fw.bss_addr = bce_TXP_b06FwBssAddr;
2967                 fw.bss_len = bce_TXP_b06FwBssLen;
2968                 fw.bss_index = 0;
2969                 fw.bss = bce_TXP_b06FwBss;
2970
2971                 fw.rodata_addr = bce_TXP_b06FwRodataAddr;
2972                 fw.rodata_len = bce_TXP_b06FwRodataLen;
2973                 fw.rodata_index = 0;
2974                 fw.rodata = bce_TXP_b06FwRodata;
2975         }
2976
2977         bce_load_cpu_fw(sc, &cpu_reg, &fw);
2978         bce_start_cpu(sc, &cpu_reg);
2979 }
2980
2981 /****************************************************************************/
2982 /* Initialize the TPAT CPU.                                                 */
2983 /*                                                                          */
2984 /* Returns:                                                                 */
2985 /*   Nothing.                                                               */
2986 /****************************************************************************/
2987 static void
2988 bce_init_tpat_cpu(struct bce_softc *sc)
2989 {
2990         struct cpu_reg cpu_reg;
2991         struct fw_info fw;
2992
2993         cpu_reg.mode = BCE_TPAT_CPU_MODE;
2994         cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
2995         cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
2996         cpu_reg.state = BCE_TPAT_CPU_STATE;
2997         cpu_reg.state_value_clear = 0xffffff;
2998         cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
2999         cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
3000         cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
3001         cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
3002         cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
3003         cpu_reg.spad_base = BCE_TPAT_SCRATCH;
3004         cpu_reg.mips_view_base = 0x8000000;
3005
3006         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3007             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3008                 fw.ver_major = bce_TPAT_b09FwReleaseMajor;
3009                 fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
3010                 fw.ver_fix = bce_TPAT_b09FwReleaseFix;
3011                 fw.start_addr = bce_TPAT_b09FwStartAddr;
3012
3013                 fw.text_addr = bce_TPAT_b09FwTextAddr;
3014                 fw.text_len = bce_TPAT_b09FwTextLen;
3015                 fw.text_index = 0;
3016                 fw.text = bce_TPAT_b09FwText;
3017
3018                 fw.data_addr = bce_TPAT_b09FwDataAddr;
3019                 fw.data_len = bce_TPAT_b09FwDataLen;
3020                 fw.data_index = 0;
3021                 fw.data = bce_TPAT_b09FwData;
3022
3023                 fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
3024                 fw.sbss_len = bce_TPAT_b09FwSbssLen;
3025                 fw.sbss_index = 0;
3026                 fw.sbss = bce_TPAT_b09FwSbss;
3027
3028                 fw.bss_addr = bce_TPAT_b09FwBssAddr;
3029                 fw.bss_len = bce_TPAT_b09FwBssLen;
3030                 fw.bss_index = 0;
3031                 fw.bss = bce_TPAT_b09FwBss;
3032
3033                 fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
3034                 fw.rodata_len = bce_TPAT_b09FwRodataLen;
3035                 fw.rodata_index = 0;
3036                 fw.rodata = bce_TPAT_b09FwRodata;
3037         } else {
3038                 fw.ver_major = bce_TPAT_b06FwReleaseMajor;
3039                 fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
3040                 fw.ver_fix = bce_TPAT_b06FwReleaseFix;
3041                 fw.start_addr = bce_TPAT_b06FwStartAddr;
3042
3043                 fw.text_addr = bce_TPAT_b06FwTextAddr;
3044                 fw.text_len = bce_TPAT_b06FwTextLen;
3045                 fw.text_index = 0;
3046                 fw.text = bce_TPAT_b06FwText;
3047
3048                 fw.data_addr = bce_TPAT_b06FwDataAddr;
3049                 fw.data_len = bce_TPAT_b06FwDataLen;
3050                 fw.data_index = 0;
3051                 fw.data = bce_TPAT_b06FwData;
3052
3053                 fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
3054                 fw.sbss_len = bce_TPAT_b06FwSbssLen;
3055                 fw.sbss_index = 0;
3056                 fw.sbss = bce_TPAT_b06FwSbss;
3057
3058                 fw.bss_addr = bce_TPAT_b06FwBssAddr;
3059                 fw.bss_len = bce_TPAT_b06FwBssLen;
3060                 fw.bss_index = 0;
3061                 fw.bss = bce_TPAT_b06FwBss;
3062
3063                 fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
3064                 fw.rodata_len = bce_TPAT_b06FwRodataLen;
3065                 fw.rodata_index = 0;
3066                 fw.rodata = bce_TPAT_b06FwRodata;
3067         }
3068
3069         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3070         bce_start_cpu(sc, &cpu_reg);
3071 }
3072
3073 /****************************************************************************/
3074 /* Initialize the CP CPU.                                                   */
3075 /*                                                                          */
3076 /* Returns:                                                                 */
3077 /*   Nothing.                                                               */
3078 /****************************************************************************/
3079 static void
3080 bce_init_cp_cpu(struct bce_softc *sc)
3081 {
3082         struct cpu_reg cpu_reg;
3083         struct fw_info fw;
3084
3085         cpu_reg.mode = BCE_CP_CPU_MODE;
3086         cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
3087         cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
3088         cpu_reg.state = BCE_CP_CPU_STATE;
3089         cpu_reg.state_value_clear = 0xffffff;
3090         cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
3091         cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
3092         cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
3093         cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
3094         cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
3095         cpu_reg.spad_base = BCE_CP_SCRATCH;
3096         cpu_reg.mips_view_base = 0x8000000;
3097
3098         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3099             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3100                 fw.ver_major = bce_CP_b09FwReleaseMajor;
3101                 fw.ver_minor = bce_CP_b09FwReleaseMinor;
3102                 fw.ver_fix = bce_CP_b09FwReleaseFix;
3103                 fw.start_addr = bce_CP_b09FwStartAddr;
3104
3105                 fw.text_addr = bce_CP_b09FwTextAddr;
3106                 fw.text_len = bce_CP_b09FwTextLen;
3107                 fw.text_index = 0;
3108                 fw.text = bce_CP_b09FwText;
3109
3110                 fw.data_addr = bce_CP_b09FwDataAddr;
3111                 fw.data_len = bce_CP_b09FwDataLen;
3112                 fw.data_index = 0;
3113                 fw.data = bce_CP_b09FwData;
3114
3115                 fw.sbss_addr = bce_CP_b09FwSbssAddr;
3116                 fw.sbss_len = bce_CP_b09FwSbssLen;
3117                 fw.sbss_index = 0;
3118                 fw.sbss = bce_CP_b09FwSbss;
3119
3120                 fw.bss_addr = bce_CP_b09FwBssAddr;
3121                 fw.bss_len = bce_CP_b09FwBssLen;
3122                 fw.bss_index = 0;
3123                 fw.bss = bce_CP_b09FwBss;
3124
3125                 fw.rodata_addr = bce_CP_b09FwRodataAddr;
3126                 fw.rodata_len = bce_CP_b09FwRodataLen;
3127                 fw.rodata_index = 0;
3128                 fw.rodata = bce_CP_b09FwRodata;
3129         } else {
3130                 fw.ver_major = bce_CP_b06FwReleaseMajor;
3131                 fw.ver_minor = bce_CP_b06FwReleaseMinor;
3132                 fw.ver_fix = bce_CP_b06FwReleaseFix;
3133                 fw.start_addr = bce_CP_b06FwStartAddr;
3134
3135                 fw.text_addr = bce_CP_b06FwTextAddr;
3136                 fw.text_len = bce_CP_b06FwTextLen;
3137                 fw.text_index = 0;
3138                 fw.text = bce_CP_b06FwText;
3139
3140                 fw.data_addr = bce_CP_b06FwDataAddr;
3141                 fw.data_len = bce_CP_b06FwDataLen;
3142                 fw.data_index = 0;
3143                 fw.data = bce_CP_b06FwData;
3144
3145                 fw.sbss_addr = bce_CP_b06FwSbssAddr;
3146                 fw.sbss_len = bce_CP_b06FwSbssLen;
3147                 fw.sbss_index = 0;
3148                 fw.sbss = bce_CP_b06FwSbss;
3149
3150                 fw.bss_addr = bce_CP_b06FwBssAddr;
3151                 fw.bss_len = bce_CP_b06FwBssLen;
3152                 fw.bss_index = 0;
3153                 fw.bss = bce_CP_b06FwBss;
3154
3155                 fw.rodata_addr = bce_CP_b06FwRodataAddr;
3156                 fw.rodata_len = bce_CP_b06FwRodataLen;
3157                 fw.rodata_index = 0;
3158                 fw.rodata = bce_CP_b06FwRodata;
3159         }
3160
3161         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3162         bce_start_cpu(sc, &cpu_reg);
3163 }
3164
3165 /****************************************************************************/
3166 /* Initialize the COM CPU.                                                 */
3167 /*                                                                          */
3168 /* Returns:                                                                 */
3169 /*   Nothing.                                                               */
3170 /****************************************************************************/
3171 static void
3172 bce_init_com_cpu(struct bce_softc *sc)
3173 {
3174         struct cpu_reg cpu_reg;
3175         struct fw_info fw;
3176
3177         cpu_reg.mode = BCE_COM_CPU_MODE;
3178         cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
3179         cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
3180         cpu_reg.state = BCE_COM_CPU_STATE;
3181         cpu_reg.state_value_clear = 0xffffff;
3182         cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
3183         cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
3184         cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
3185         cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
3186         cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
3187         cpu_reg.spad_base = BCE_COM_SCRATCH;
3188         cpu_reg.mips_view_base = 0x8000000;
3189
3190         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3191             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3192                 fw.ver_major = bce_COM_b09FwReleaseMajor;
3193                 fw.ver_minor = bce_COM_b09FwReleaseMinor;
3194                 fw.ver_fix = bce_COM_b09FwReleaseFix;
3195                 fw.start_addr = bce_COM_b09FwStartAddr;
3196
3197                 fw.text_addr = bce_COM_b09FwTextAddr;
3198                 fw.text_len = bce_COM_b09FwTextLen;
3199                 fw.text_index = 0;
3200                 fw.text = bce_COM_b09FwText;
3201
3202                 fw.data_addr = bce_COM_b09FwDataAddr;
3203                 fw.data_len = bce_COM_b09FwDataLen;
3204                 fw.data_index = 0;
3205                 fw.data = bce_COM_b09FwData;
3206
3207                 fw.sbss_addr = bce_COM_b09FwSbssAddr;
3208                 fw.sbss_len = bce_COM_b09FwSbssLen;
3209                 fw.sbss_index = 0;
3210                 fw.sbss = bce_COM_b09FwSbss;
3211
3212                 fw.bss_addr = bce_COM_b09FwBssAddr;
3213                 fw.bss_len = bce_COM_b09FwBssLen;
3214                 fw.bss_index = 0;
3215                 fw.bss = bce_COM_b09FwBss;
3216
3217                 fw.rodata_addr = bce_COM_b09FwRodataAddr;
3218                 fw.rodata_len = bce_COM_b09FwRodataLen;
3219                 fw.rodata_index = 0;
3220                 fw.rodata = bce_COM_b09FwRodata;
3221         } else {
3222                 fw.ver_major = bce_COM_b06FwReleaseMajor;
3223                 fw.ver_minor = bce_COM_b06FwReleaseMinor;
3224                 fw.ver_fix = bce_COM_b06FwReleaseFix;
3225                 fw.start_addr = bce_COM_b06FwStartAddr;
3226
3227                 fw.text_addr = bce_COM_b06FwTextAddr;
3228                 fw.text_len = bce_COM_b06FwTextLen;
3229                 fw.text_index = 0;
3230                 fw.text = bce_COM_b06FwText;
3231
3232                 fw.data_addr = bce_COM_b06FwDataAddr;
3233                 fw.data_len = bce_COM_b06FwDataLen;
3234                 fw.data_index = 0;
3235                 fw.data = bce_COM_b06FwData;
3236
3237                 fw.sbss_addr = bce_COM_b06FwSbssAddr;
3238                 fw.sbss_len = bce_COM_b06FwSbssLen;
3239                 fw.sbss_index = 0;
3240                 fw.sbss = bce_COM_b06FwSbss;
3241
3242                 fw.bss_addr = bce_COM_b06FwBssAddr;
3243                 fw.bss_len = bce_COM_b06FwBssLen;
3244                 fw.bss_index = 0;
3245                 fw.bss = bce_COM_b06FwBss;
3246
3247                 fw.rodata_addr = bce_COM_b06FwRodataAddr;
3248                 fw.rodata_len = bce_COM_b06FwRodataLen;
3249                 fw.rodata_index = 0;
3250                 fw.rodata = bce_COM_b06FwRodata;
3251         }
3252
3253         bce_load_cpu_fw(sc, &cpu_reg, &fw);
3254         bce_start_cpu(sc, &cpu_reg);
3255 }
3256
3257 /****************************************************************************/
3258 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
3259 /*                                                                          */
3260 /* Loads the firmware for each CPU and starts the CPU.                      */
3261 /*                                                                          */
3262 /* Returns:                                                                 */
3263 /*   Nothing.                                                               */
3264 /****************************************************************************/
3265 static void
3266 bce_init_cpus(struct bce_softc *sc)
3267 {
3268         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3269             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3270                 if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax) {
3271                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
3272                             sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
3273                         bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
3274                             sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
3275                 } else {
3276                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
3277                             sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
3278                         bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
3279                             sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
3280                 }
3281         } else {
3282                 bce_load_rv2p_fw(sc, bce_rv2p_proc1,
3283                     sizeof(bce_rv2p_proc1), RV2P_PROC1);
3284                 bce_load_rv2p_fw(sc, bce_rv2p_proc2,
3285                     sizeof(bce_rv2p_proc2), RV2P_PROC2);
3286         }
3287
3288         bce_init_rxp_cpu(sc);
3289         bce_init_txp_cpu(sc);
3290         bce_init_tpat_cpu(sc);
3291         bce_init_com_cpu(sc);
3292         bce_init_cp_cpu(sc);
3293 }
3294
3295 /****************************************************************************/
3296 /* Initialize context memory.                                               */
3297 /*                                                                          */
3298 /* Clears the memory associated with each Context ID (CID).                 */
3299 /*                                                                          */
3300 /* Returns:                                                                 */
3301 /*   Nothing.                                                               */
3302 /****************************************************************************/
3303 static int
3304 bce_init_ctx(struct bce_softc *sc)
3305 {
3306         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3307             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3308                 /* DRC: Replace this constant value with a #define. */
3309                 int i, retry_cnt = 10;
3310                 uint32_t val;
3311
3312                 /*
3313                  * BCM5709 context memory may be cached
3314                  * in host memory so prepare the host memory
3315                  * for access.
3316                  */
3317                 val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT |
3318                     (1 << 12);
3319                 val |= (BCM_PAGE_BITS - 8) << 16;
3320                 REG_WR(sc, BCE_CTX_COMMAND, val);
3321
3322                 /* Wait for mem init command to complete. */
3323                 for (i = 0; i < retry_cnt; i++) {
3324                         val = REG_RD(sc, BCE_CTX_COMMAND);
3325                         if (!(val & BCE_CTX_COMMAND_MEM_INIT))
3326                                 break;
3327                         DELAY(2);
3328                 }
3329                 if (i == retry_cnt) {
3330                         device_printf(sc->bce_dev,
3331                             "Context memory initialization failed!\n");
3332                         return ETIMEDOUT;
3333                 }
3334
3335                 for (i = 0; i < sc->ctx_pages; i++) {
3336                         int j;
3337
3338                         /*
3339                          * Set the physical address of the context
3340                          * memory cache.
3341                          */
3342                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
3343                             BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
3344                             BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
3345                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
3346                             BCE_ADDR_HI(sc->ctx_paddr[i]));
3347                         REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL,
3348                             i | BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3349
3350                         /*
3351                          * Verify that the context memory write was successful.
3352                          */
3353                         for (j = 0; j < retry_cnt; j++) {
3354                                 val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
3355                                 if ((val &
3356                                     BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3357                                         break;
3358                                 DELAY(5);
3359                         }
3360                         if (j == retry_cnt) {
3361                                 device_printf(sc->bce_dev,
3362                                     "Failed to initialize context page!\n");
3363                                 return ETIMEDOUT;
3364                         }
3365                 }
3366         } else {
3367                 uint32_t vcid_addr, offset;
3368
3369                 /*
3370                  * For the 5706/5708, context memory is local to
3371                  * the controller, so initialize the controller
3372                  * context memory.
3373                  */
3374
3375                 vcid_addr = GET_CID_ADDR(96);
3376                 while (vcid_addr) {
3377                         vcid_addr -= PHY_CTX_SIZE;
3378
3379                         REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
3380                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3381
3382                         for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
3383                                 CTX_WR(sc, 0x00, offset, 0);
3384
3385                         REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
3386                         REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3387                 }
3388         }
3389         return 0;
3390 }
3391
3392 /****************************************************************************/
3393 /* Fetch the permanent MAC address of the controller.                       */
3394 /*                                                                          */
3395 /* Returns:                                                                 */
3396 /*   Nothing.                                                               */
3397 /****************************************************************************/
3398 static void
3399 bce_get_mac_addr(struct bce_softc *sc)
3400 {
3401         uint32_t mac_lo = 0, mac_hi = 0;
3402
3403         /*
3404          * The NetXtreme II bootcode populates various NIC
3405          * power-on and runtime configuration items in a
3406          * shared memory area.  The factory configured MAC
3407          * address is available from both NVRAM and the
3408          * shared memory area so we'll read the value from
3409          * shared memory for speed.
3410          */
3411
3412         mac_hi = bce_shmem_rd(sc,  BCE_PORT_HW_CFG_MAC_UPPER);
3413         mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
3414
3415         if (mac_lo == 0 && mac_hi == 0) {
3416                 if_printf(&sc->arpcom.ac_if, "Invalid Ethernet address!\n");
3417         } else {
3418                 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3419                 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3420                 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3421                 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3422                 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3423                 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3424         }
3425 }
3426
3427 /****************************************************************************/
3428 /* Program the MAC address.                                                 */
3429 /*                                                                          */
3430 /* Returns:                                                                 */
3431 /*   Nothing.                                                               */
3432 /****************************************************************************/
3433 static void
3434 bce_set_mac_addr(struct bce_softc *sc)
3435 {
3436         const uint8_t *mac_addr = sc->eaddr;
3437         uint32_t val;
3438
3439         val = (mac_addr[0] << 8) | mac_addr[1];
3440         REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
3441
3442         val = (mac_addr[2] << 24) |
3443               (mac_addr[3] << 16) |
3444               (mac_addr[4] << 8) |
3445               mac_addr[5];
3446         REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
3447 }
3448
3449 /****************************************************************************/
3450 /* Stop the controller.                                                     */
3451 /*                                                                          */
3452 /* Returns:                                                                 */
3453 /*   Nothing.                                                               */
3454 /****************************************************************************/
3455 static void
3456 bce_stop(struct bce_softc *sc)
3457 {
3458         struct ifnet *ifp = &sc->arpcom.ac_if;
3459         int i;
3460
3461         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3462
3463         callout_stop(&sc->bce_tick_callout);
3464
3465         /* Disable the transmit/receive blocks. */
3466         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
3467         REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3468         DELAY(20);
3469
3470         bce_disable_intr(sc);
3471
3472         ifp->if_flags &= ~IFF_RUNNING;
3473         for (i = 0; i < sc->tx_ring_cnt; ++i) {
3474                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
3475                 ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
3476         }
3477
3478         /* Free the RX lists. */
3479         for (i = 0; i < sc->rx_ring_cnt; ++i)
3480                 bce_free_rx_chain(&sc->rx_rings[i]);
3481
3482         /* Free TX buffers. */
3483         for (i = 0; i < sc->tx_ring_cnt; ++i)
3484                 bce_free_tx_chain(&sc->tx_rings[i]);
3485
3486         sc->bce_link = 0;
3487         sc->bce_coalchg_mask = 0;
3488 }
3489
3490 static int
3491 bce_reset(struct bce_softc *sc, uint32_t reset_code)
3492 {
3493         uint32_t val;
3494         int i, rc = 0;
3495
3496         /* Wait for pending PCI transactions to complete. */
3497         REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
3498                BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3499                BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3500                BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3501                BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3502         val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3503         DELAY(5);
3504
3505         /* Disable DMA */
3506         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3507             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3508                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3509                 val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3510                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3511         }
3512
3513         /* Assume bootcode is running. */
3514         sc->bce_fw_timed_out = 0;
3515         sc->bce_drv_cardiac_arrest = 0;
3516
3517         /* Give the firmware a chance to prepare for the reset. */
3518         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
3519         if (rc) {
3520                 if_printf(&sc->arpcom.ac_if,
3521                           "Firmware is not ready for reset\n");
3522                 return rc;
3523         }
3524
3525         /* Set a firmware reminder that this is a soft reset. */
3526         bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE,
3527             BCE_DRV_RESET_SIGNATURE_MAGIC);
3528
3529         /* Dummy read to force the chip to complete all current transactions. */
3530         val = REG_RD(sc, BCE_MISC_ID);
3531
3532         /* Chip reset. */
3533         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3534             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3535                 REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
3536                 REG_RD(sc, BCE_MISC_COMMAND);
3537                 DELAY(5);
3538
3539                 val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3540                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3541
3542                 pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
3543         } else {
3544                 val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3545                     BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3546                     BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3547                 REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
3548
3549                 /* Allow up to 30us for reset to complete. */
3550                 for (i = 0; i < 10; i++) {
3551                         val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
3552                         if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3553                             BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3554                                 break;
3555                         DELAY(10);
3556                 }
3557
3558                 /* Check that reset completed successfully. */
3559                 if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3560                     BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3561                         if_printf(&sc->arpcom.ac_if, "Reset failed!\n");
3562                         return EBUSY;
3563                 }
3564         }
3565
3566         /* Make sure byte swapping is properly configured. */
3567         val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
3568         if (val != 0x01020304) {
3569                 if_printf(&sc->arpcom.ac_if, "Byte swap is incorrect!\n");
3570                 return ENODEV;
3571         }
3572
3573         /* Just completed a reset, assume that firmware is running again. */
3574         sc->bce_fw_timed_out = 0;
3575         sc->bce_drv_cardiac_arrest = 0;
3576
3577         /* Wait for the firmware to finish its initialization. */
3578         rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
3579         if (rc) {
3580                 if_printf(&sc->arpcom.ac_if,
3581                           "Firmware did not complete initialization!\n");
3582         }
3583
3584         if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) {
3585                 bce_setup_msix_table(sc);
3586                 /* Prevent MSIX table reads and write from timing out */
3587                 REG_WR(sc, BCE_MISC_ECO_HW_CTL,
3588                     BCE_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
3589
3590         }
3591         return rc;
3592 }
3593
3594 static int
3595 bce_chipinit(struct bce_softc *sc)
3596 {
3597         uint32_t val;
3598         int rc = 0;
3599
3600         /* Make sure the interrupt is not active. */
3601         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
3602         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
3603
3604         /*
3605          * Initialize DMA byte/word swapping, configure the number of DMA
3606          * channels and PCI clock compensation delay.
3607          */
3608         val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
3609               BCE_DMA_CONFIG_DATA_WORD_SWAP |
3610 #if BYTE_ORDER == BIG_ENDIAN
3611               BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
3612 #endif
3613               BCE_DMA_CONFIG_CNTL_WORD_SWAP |
3614               DMA_READ_CHANS << 12 |
3615               DMA_WRITE_CHANS << 16;
3616
3617         val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3618
3619         if ((sc->bce_flags & BCE_PCIX_FLAG) && sc->bus_speed_mhz == 133)
3620                 val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
3621
3622         /*
3623          * This setting resolves a problem observed on certain Intel PCI
3624          * chipsets that cannot handle multiple outstanding DMA operations.
3625          * See errata E9_5706A1_65.
3626          */
3627         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706 &&
3628             BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0 &&
3629             !(sc->bce_flags & BCE_PCIX_FLAG))
3630                 val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
3631
3632         REG_WR(sc, BCE_DMA_CONFIG, val);
3633
3634         /* Enable the RX_V2P and Context state machines before access. */
3635         REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3636                BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3637                BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3638                BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3639
3640         /* Initialize context mapping and zero out the quick contexts. */
3641         rc = bce_init_ctx(sc);
3642         if (rc != 0)
3643                 return rc;
3644
3645         /* Initialize the on-boards CPUs */
3646         bce_init_cpus(sc);
3647
3648         /* Enable management frames (NC-SI) to flow to the MCP. */
3649         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3650                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) |
3651                     BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3652                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3653         }
3654
3655         /* Prepare NVRAM for access. */
3656         rc = bce_init_nvram(sc);
3657         if (rc != 0)
3658                 return rc;
3659
3660         /* Set the kernel bypass block size */
3661         val = REG_RD(sc, BCE_MQ_CONFIG);
3662         val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3663         val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3664
3665         /* Enable bins used on the 5709/5716. */
3666         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3667             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3668                 val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
3669                 if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
3670                         val |= BCE_MQ_CONFIG_HALT_DIS;
3671         }
3672
3673         REG_WR(sc, BCE_MQ_CONFIG, val);
3674
3675         val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3676         REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
3677         REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
3678
3679         /* Set the page size and clear the RV2P processor stall bits. */
3680         val = (BCM_PAGE_BITS - 8) << 24;
3681         REG_WR(sc, BCE_RV2P_CONFIG, val);
3682
3683         /* Configure page size. */
3684         val = REG_RD(sc, BCE_TBDR_CONFIG);
3685         val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
3686         val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3687         REG_WR(sc, BCE_TBDR_CONFIG, val);
3688
3689         /* Set the perfect match control register to default. */
3690         REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
3691
3692         return 0;
3693 }
3694
3695 /****************************************************************************/
3696 /* Initialize the controller in preparation to send/receive traffic.        */
3697 /*                                                                          */
3698 /* Returns:                                                                 */
3699 /*   0 for success, positive value for failure.                             */
3700 /****************************************************************************/
3701 static int
3702 bce_blockinit(struct bce_softc *sc)
3703 {
3704         uint32_t reg, val;
3705         int i;
3706
3707         /* Load the hardware default MAC address. */
3708         bce_set_mac_addr(sc);
3709
3710         /* Set the Ethernet backoff seed value */
3711         val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3712               sc->eaddr[3] + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3713         REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
3714
3715         sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
3716
3717         /* Set up link change interrupt generation. */
3718         REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
3719
3720         /* Program the physical address of the status block. */
3721         REG_WR(sc, BCE_HC_STATUS_ADDR_L, BCE_ADDR_LO(sc->status_block_paddr));
3722         REG_WR(sc, BCE_HC_STATUS_ADDR_H, BCE_ADDR_HI(sc->status_block_paddr));
3723
3724         /* Program the physical address of the statistics block. */
3725         REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
3726                BCE_ADDR_LO(sc->stats_block_paddr));
3727         REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
3728                BCE_ADDR_HI(sc->stats_block_paddr));
3729
3730         /* Program various host coalescing parameters. */
3731         REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
3732                (sc->bce_tx_quick_cons_trip_int << 16) |
3733                sc->bce_tx_quick_cons_trip);
3734         REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
3735                (sc->bce_rx_quick_cons_trip_int << 16) |
3736                sc->bce_rx_quick_cons_trip);
3737         REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
3738                (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
3739         REG_WR(sc, BCE_HC_TX_TICKS,
3740                (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
3741         REG_WR(sc, BCE_HC_RX_TICKS,
3742                (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
3743         REG_WR(sc, BCE_HC_COM_TICKS,
3744                (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
3745         REG_WR(sc, BCE_HC_CMD_TICKS,
3746                (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
3747         REG_WR(sc, BCE_HC_STATS_TICKS, (sc->bce_stats_ticks & 0xffff00));
3748         REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);   /* 3ms */
3749
3750         if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX)
3751                 REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
3752
3753         val = BCE_HC_CONFIG_TX_TMR_MODE | BCE_HC_CONFIG_COLLECT_STATS;
3754         if ((sc->bce_flags & BCE_ONESHOT_MSI_FLAG) ||
3755             sc->bce_irq_type == PCI_INTR_TYPE_MSIX) {
3756                 if (bootverbose) {
3757                         if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) {
3758                                 if_printf(&sc->arpcom.ac_if,
3759                                     "using MSI-X\n");
3760                         } else {
3761                                 if_printf(&sc->arpcom.ac_if,
3762                                     "using oneshot MSI\n");
3763                         }
3764                 }
3765                 val |= BCE_HC_CONFIG_ONE_SHOT | BCE_HC_CONFIG_USE_INT_PARAM;
3766                 if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX)
3767                         val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
3768         }
3769         REG_WR(sc, BCE_HC_CONFIG, val);
3770
3771         for (i = 1; i < sc->rx_ring_cnt; ++i) {
3772                 uint32_t base;
3773
3774                 base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) + BCE_HC_SB_CONFIG_1;
3775                 KKASSERT(base <= BCE_HC_SB_CONFIG_8);
3776
3777                 REG_WR(sc, base,
3778                     BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
3779                     /* BCE_HC_SB_CONFIG_1_RX_TMR_MODE | */
3780                     BCE_HC_SB_CONFIG_1_ONE_SHOT);
3781
3782                 REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
3783                     (sc->bce_tx_quick_cons_trip_int << 16) |
3784                     sc->bce_tx_quick_cons_trip);
3785                 REG_WR(sc, base + BCE_HC_RX_QUICK_CONS_TRIP_OFF,
3786                     (sc->bce_rx_quick_cons_trip_int << 16) |
3787                     sc->bce_rx_quick_cons_trip);
3788                 REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
3789                     (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
3790                 REG_WR(sc, base + BCE_HC_RX_TICKS_OFF,
3791                     (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
3792         }
3793
3794         /* Clear the internal statistics counters. */
3795         REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
3796
3797         /* Verify that bootcode is running. */
3798         reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
3799
3800         if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3801             BCE_DEV_INFO_SIGNATURE_MAGIC) {
3802                 if_printf(&sc->arpcom.ac_if,
3803                           "Bootcode not running! Found: 0x%08X, "
3804                           "Expected: 08%08X\n",
3805                           reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK,
3806                           BCE_DEV_INFO_SIGNATURE_MAGIC);
3807                 return ENODEV;
3808         }
3809
3810         /* Enable DMA */
3811         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3812             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3813                 val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3814                 val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3815                 REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3816         }
3817
3818         /* Allow bootcode to apply any additional fixes before enabling MAC. */
3819         bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
3820
3821         /* Enable link state change interrupt generation. */
3822         REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3823
3824         /* Enable the RXP. */
3825         bce_start_rxp_cpu(sc);
3826
3827         /* Disable management frames (NC-SI) from flowing to the MCP. */
3828         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3829                 val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
3830                     ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3831                 REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3832         }
3833
3834         /* Enable all remaining blocks in the MAC. */
3835         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3836             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3837                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3838                     BCE_MISC_ENABLE_DEFAULT_XI);
3839         } else {
3840                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
3841         }
3842         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
3843         DELAY(20);
3844
3845         /* Save the current host coalescing block settings. */
3846         sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
3847
3848         return 0;
3849 }
3850
3851 /****************************************************************************/
3852 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3853 /*                                                                          */
3854 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3855 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3856 /* necessary.                                                               */
3857 /*                                                                          */
3858 /* Returns:                                                                 */
3859 /*   0 for success, positive value for failure.                             */
3860 /****************************************************************************/
3861 static int
3862 bce_newbuf_std(struct bce_rx_ring *rxr, uint16_t *prod, uint16_t chain_prod,
3863     uint32_t *prod_bseq, int init)
3864 {
3865         struct bce_rx_buf *rx_buf;
3866         bus_dmamap_t map;
3867         bus_dma_segment_t seg;
3868         struct mbuf *m_new;
3869         int error, nseg;
3870
3871         /* This is a new mbuf allocation. */
3872         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3873         if (m_new == NULL)
3874                 return ENOBUFS;
3875
3876         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
3877
3878         /* Map the mbuf cluster into device memory. */
3879         error = bus_dmamap_load_mbuf_segment(rxr->rx_mbuf_tag,
3880             rxr->rx_mbuf_tmpmap, m_new, &seg, 1, &nseg, BUS_DMA_NOWAIT);
3881         if (error) {
3882                 m_freem(m_new);
3883                 if (init) {
3884                         if_printf(&rxr->sc->arpcom.ac_if,
3885                             "Error mapping mbuf into RX chain!\n");
3886                 }
3887                 return error;
3888         }
3889
3890         rx_buf = &rxr->rx_bufs[chain_prod];
3891         if (rx_buf->rx_mbuf_ptr != NULL)
3892                 bus_dmamap_unload(rxr->rx_mbuf_tag, rx_buf->rx_mbuf_map);
3893
3894         map = rx_buf->rx_mbuf_map;
3895         rx_buf->rx_mbuf_map = rxr->rx_mbuf_tmpmap;
3896         rxr->rx_mbuf_tmpmap = map;
3897
3898         /* Save the mbuf and update our counter. */
3899         rx_buf->rx_mbuf_ptr = m_new;
3900         rx_buf->rx_mbuf_paddr = seg.ds_addr;
3901         rxr->free_rx_bd--;
3902
3903         bce_setup_rxdesc_std(rxr, chain_prod, prod_bseq);
3904
3905         return 0;
3906 }
3907
3908 static void
3909 bce_setup_rxdesc_std(struct bce_rx_ring *rxr, uint16_t chain_prod,
3910     uint32_t *prod_bseq)
3911 {
3912         const struct bce_rx_buf *rx_buf;
3913         struct rx_bd *rxbd;
3914         bus_addr_t paddr;
3915         int len;
3916
3917         rx_buf = &rxr->rx_bufs[chain_prod];
3918         paddr = rx_buf->rx_mbuf_paddr;
3919         len = rx_buf->rx_mbuf_ptr->m_len;
3920
3921         /* Setup the rx_bd for the first segment. */
3922         rxbd = &rxr->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
3923
3924         rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(paddr));
3925         rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(paddr));
3926         rxbd->rx_bd_len = htole32(len);
3927         rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3928         *prod_bseq += len;
3929
3930         rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3931 }
3932
3933 /****************************************************************************/
3934 /* Initialize the TX context memory.                                        */
3935 /*                                                                          */
3936 /* Returns:                                                                 */
3937 /*   Nothing                                                                */
3938 /****************************************************************************/
3939 static void
3940 bce_init_tx_context(struct bce_tx_ring *txr)
3941 {
3942         uint32_t val;
3943
3944         /* Initialize the context ID for an L2 TX chain. */
3945         if (BCE_CHIP_NUM(txr->sc) == BCE_CHIP_NUM_5709 ||
3946             BCE_CHIP_NUM(txr->sc) == BCE_CHIP_NUM_5716) {
3947                 /* Set the CID type to support an L2 connection. */
3948                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3949                 CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3950                     BCE_L2CTX_TX_TYPE_XI, val);
3951                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3952                 CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3953                     BCE_L2CTX_TX_CMD_TYPE_XI, val);
3954
3955                 /* Point the hardware to the first page in the chain. */
3956                 val = BCE_ADDR_HI(txr->tx_bd_chain_paddr[0]);
3957                 CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3958                     BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
3959                 val = BCE_ADDR_LO(txr->tx_bd_chain_paddr[0]);
3960                 CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3961                     BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
3962         } else {
3963                 /* Set the CID type to support an L2 connection. */
3964                 val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3965                 CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3966                     BCE_L2CTX_TX_TYPE, val);
3967                 val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3968                 CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3969                     BCE_L2CTX_TX_CMD_TYPE, val);
3970
3971                 /* Point the hardware to the first page in the chain. */
3972                 val = BCE_ADDR_HI(txr->tx_bd_chain_paddr[0]);
3973                 CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3974                     BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
3975                 val = BCE_ADDR_LO(txr->tx_bd_chain_paddr[0]);
3976                 CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3977                     BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
3978         }
3979 }
3980
3981 /****************************************************************************/
3982 /* Allocate memory and initialize the TX data structures.                   */
3983 /*                                                                          */
3984 /* Returns:                                                                 */
3985 /*   0 for success, positive value for failure.                             */
3986 /****************************************************************************/
3987 static int
3988 bce_init_tx_chain(struct bce_tx_ring *txr)
3989 {
3990         struct tx_bd *txbd;
3991         int i, rc = 0;
3992
3993         /* Set the initial TX producer/consumer indices. */
3994         txr->tx_prod = 0;
3995         txr->tx_cons = 0;
3996         txr->tx_prod_bseq = 0;
3997         txr->used_tx_bd = 0;
3998         txr->max_tx_bd = USABLE_TX_BD(txr);
3999
4000         /*
4001          * The NetXtreme II supports a linked-list structre called
4002          * a Buffer Descriptor Chain (or BD chain).  A BD chain
4003          * consists of a series of 1 or more chain pages, each of which
4004          * consists of a fixed number of BD entries.
4005          * The last BD entry on each page is a pointer to the next page
4006          * in the chain, and the last pointer in the BD chain
4007          * points back to the beginning of the chain.
4008          */
4009
4010         /* Set the TX next pointer chain entries. */
4011         for (i = 0; i < txr->tx_pages; i++) {
4012                 int j;
4013
4014                 txbd = &txr->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4015
4016                 /* Check if we've reached the last page. */
4017                 if (i == (txr->tx_pages - 1))
4018                         j = 0;
4019                 else
4020                         j = i + 1;
4021
4022                 txbd->tx_bd_haddr_hi =
4023                     htole32(BCE_ADDR_HI(txr->tx_bd_chain_paddr[j]));
4024                 txbd->tx_bd_haddr_lo =
4025                     htole32(BCE_ADDR_LO(txr->tx_bd_chain_paddr[j]));
4026         }
4027         bce_init_tx_context(txr);
4028
4029         return(rc);
4030 }
4031
4032 /****************************************************************************/
4033 /* Free memory and clear the TX data structures.                            */
4034 /*                                                                          */
4035 /* Returns:                                                                 */
4036 /*   Nothing.                                                               */
4037 /****************************************************************************/
4038 static void
4039 bce_free_tx_chain(struct bce_tx_ring *txr)
4040 {
4041         int i;
4042
4043         /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4044         for (i = 0; i < TOTAL_TX_BD(txr); i++) {
4045                 struct bce_tx_buf *tx_buf = &txr->tx_bufs[i];
4046
4047                 if (tx_buf->tx_mbuf_ptr != NULL) {
4048                         bus_dmamap_unload(txr->tx_mbuf_tag,
4049                             tx_buf->tx_mbuf_map);
4050                         m_freem(tx_buf->tx_mbuf_ptr);
4051                         tx_buf->tx_mbuf_ptr = NULL;
4052                 }
4053         }
4054
4055         /* Clear each TX chain page. */
4056         for (i = 0; i < txr->tx_pages; i++)
4057                 bzero(txr->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
4058         txr->used_tx_bd = 0;
4059 }
4060
4061 /****************************************************************************/
4062 /* Initialize the RX context memory.                                        */
4063 /*                                                                          */
4064 /* Returns:                                                                 */
4065 /*   Nothing                                                                */
4066 /****************************************************************************/
4067 static void
4068 bce_init_rx_context(struct bce_rx_ring *rxr)
4069 {
4070         uint32_t val;
4071
4072         /* Initialize the context ID for an L2 RX chain. */
4073         val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4074             BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4075
4076         /*
4077          * Set the level for generating pause frames
4078          * when the number of available rx_bd's gets
4079          * too low (the low watermark) and the level
4080          * when pause frames can be stopped (the high
4081          * watermark).
4082          */
4083         if (BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5709 ||
4084             BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5716) {
4085                 uint32_t lo_water, hi_water;
4086
4087                 lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4088                 hi_water = USABLE_RX_BD(rxr) / 4;
4089
4090                 lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
4091                 hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
4092
4093                 if (hi_water > 0xf)
4094                         hi_water = 0xf;
4095                 else if (hi_water == 0)
4096                         lo_water = 0;
4097                 val |= lo_water |
4098                     (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
4099         }
4100
4101         CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid),
4102             BCE_L2CTX_RX_CTX_TYPE, val);
4103
4104         /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4105         if (BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5709 ||
4106             BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5716) {
4107                 val = REG_RD(rxr->sc, BCE_MQ_MAP_L2_5);
4108                 REG_WR(rxr->sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
4109         }
4110
4111         /* Point the hardware to the first page in the chain. */
4112         val = BCE_ADDR_HI(rxr->rx_bd_chain_paddr[0]);
4113         CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid),
4114             BCE_L2CTX_RX_NX_BDHADDR_HI, val);
4115         val = BCE_ADDR_LO(rxr->rx_bd_chain_paddr[0]);
4116         CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid),
4117             BCE_L2CTX_RX_NX_BDHADDR_LO, val);
4118 }
4119
4120 /****************************************************************************/
4121 /* Allocate memory and initialize the RX data structures.                   */
4122 /*                                                                          */
4123 /* Returns:                                                                 */
4124 /*   0 for success, positive value for failure.                             */
4125 /****************************************************************************/
4126 static int
4127 bce_init_rx_chain(struct bce_rx_ring *rxr)
4128 {
4129         struct rx_bd *rxbd;
4130         int i, rc = 0;
4131         uint16_t prod, chain_prod;
4132         uint32_t prod_bseq;
4133
4134         /* Initialize the RX producer and consumer indices. */
4135         rxr->rx_prod = 0;
4136         rxr->rx_cons = 0;
4137         rxr->rx_prod_bseq = 0;
4138         rxr->free_rx_bd = USABLE_RX_BD(rxr);
4139         rxr->max_rx_bd = USABLE_RX_BD(rxr);
4140
4141         /* Clear cache status index */
4142         rxr->last_status_idx = 0;
4143
4144         /* Initialize the RX next pointer chain entries. */
4145         for (i = 0; i < rxr->rx_pages; i++) {
4146                 int j;
4147
4148                 rxbd = &rxr->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4149
4150                 /* Check if we've reached the last page. */
4151                 if (i == (rxr->rx_pages - 1))
4152                         j = 0;
4153                 else
4154                         j = i + 1;
4155
4156                 /* Setup the chain page pointers. */
4157                 rxbd->rx_bd_haddr_hi =
4158                     htole32(BCE_ADDR_HI(rxr->rx_bd_chain_paddr[j]));
4159                 rxbd->rx_bd_haddr_lo =
4160                     htole32(BCE_ADDR_LO(rxr->rx_bd_chain_paddr[j]));
4161         }
4162
4163         /* Allocate mbuf clusters for the rx_bd chain. */
4164         prod = prod_bseq = 0;
4165         while (prod < TOTAL_RX_BD(rxr)) {
4166                 chain_prod = RX_CHAIN_IDX(rxr, prod);
4167                 if (bce_newbuf_std(rxr, &prod, chain_prod, &prod_bseq, 1)) {
4168                         if_printf(&rxr->sc->arpcom.ac_if,
4169                             "Error filling RX chain: rx_bd[0x%04X]!\n",
4170                             chain_prod);
4171                         rc = ENOBUFS;
4172                         break;
4173                 }
4174                 prod = NEXT_RX_BD(prod);
4175         }
4176
4177         /* Save the RX chain producer index. */
4178         rxr->rx_prod = prod;
4179         rxr->rx_prod_bseq = prod_bseq;
4180
4181         /* Tell the chip about the waiting rx_bd's. */
4182         REG_WR16(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BDIDX,
4183             rxr->rx_prod);
4184         REG_WR(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BSEQ,
4185             rxr->rx_prod_bseq);
4186
4187         bce_init_rx_context(rxr);
4188
4189         return(rc);
4190 }
4191
4192 /****************************************************************************/
4193 /* Free memory and clear the RX data structures.                            */
4194 /*                                                                          */
4195 /* Returns:                                                                 */
4196 /*   Nothing.                                                               */
4197 /****************************************************************************/
4198 static void
4199 bce_free_rx_chain(struct bce_rx_ring *rxr)
4200 {
4201         int i;
4202
4203         /* Free any mbufs still in the RX mbuf chain. */
4204         for (i = 0; i < TOTAL_RX_BD(rxr); i++) {
4205                 struct bce_rx_buf *rx_buf = &rxr->rx_bufs[i];
4206
4207                 if (rx_buf->rx_mbuf_ptr != NULL) {
4208                         bus_dmamap_unload(rxr->rx_mbuf_tag,
4209                             rx_buf->rx_mbuf_map);
4210                         m_freem(rx_buf->rx_mbuf_ptr);
4211                         rx_buf->rx_mbuf_ptr = NULL;
4212                 }
4213         }
4214
4215         /* Clear each RX chain page. */
4216         for (i = 0; i < rxr->rx_pages; i++)
4217                 bzero(rxr->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
4218 }
4219
4220 /****************************************************************************/
4221 /* Set media options.                                                       */
4222 /*                                                                          */
4223 /* Returns:                                                                 */
4224 /*   0 for success, positive value for failure.                             */
4225 /****************************************************************************/
4226 static int
4227 bce_ifmedia_upd(struct ifnet *ifp)
4228 {
4229         struct bce_softc *sc = ifp->if_softc;
4230         struct mii_data *mii = device_get_softc(sc->bce_miibus);
4231         int error = 0;
4232
4233         /*
4234          * 'mii' will be NULL, when this function is called on following
4235          * code path: bce_attach() -> bce_mgmt_init()
4236          */
4237         if (mii != NULL) {
4238                 /* Make sure the MII bus has been enumerated. */
4239                 sc->bce_link = 0;
4240                 if (mii->mii_instance) {
4241                         struct mii_softc *miisc;
4242
4243                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4244                                 mii_phy_reset(miisc);
4245                 }
4246                 error = mii_mediachg(mii);
4247         }
4248         return error;
4249 }
4250
4251 /****************************************************************************/
4252 /* Reports current media status.                                            */
4253 /*                                                                          */
4254 /* Returns:                                                                 */
4255 /*   Nothing.                                                               */
4256 /****************************************************************************/
4257 static void
4258 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4259 {
4260         struct bce_softc *sc = ifp->if_softc;
4261         struct mii_data *mii = device_get_softc(sc->bce_miibus);
4262
4263         mii_pollstat(mii);
4264         ifmr->ifm_active = mii->mii_media_active;
4265         ifmr->ifm_status = mii->mii_media_status;
4266 }
4267
4268 /****************************************************************************/
4269 /* Handles PHY generated interrupt events.                                  */
4270 /*                                                                          */
4271 /* Returns:                                                                 */
4272 /*   Nothing.                                                               */
4273 /****************************************************************************/
4274 static void
4275 bce_phy_intr(struct bce_softc *sc)
4276 {
4277         uint32_t new_link_state, old_link_state;
4278         struct ifnet *ifp = &sc->arpcom.ac_if;
4279
4280         ASSERT_SERIALIZED(&sc->main_serialize);
4281
4282         new_link_state = sc->status_block->status_attn_bits &
4283                          STATUS_ATTN_BITS_LINK_STATE;
4284         old_link_state = sc->status_block->status_attn_bits_ack &
4285                          STATUS_ATTN_BITS_LINK_STATE;
4286
4287         /* Handle any changes if the link state has changed. */
4288         if (new_link_state != old_link_state) { /* XXX redundant? */
4289                 /* Update the status_attn_bits_ack field in the status block. */
4290                 if (new_link_state) {
4291                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
4292                                STATUS_ATTN_BITS_LINK_STATE);
4293                         if (bootverbose)
4294                                 if_printf(ifp, "Link is now UP.\n");
4295                 } else {
4296                         REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
4297                                STATUS_ATTN_BITS_LINK_STATE);
4298                         if (bootverbose)
4299                                 if_printf(ifp, "Link is now DOWN.\n");
4300                 }
4301
4302                 /*
4303                  * Assume link is down and allow tick routine to
4304                  * update the state based on the actual media state.
4305                  */
4306                 sc->bce_link = 0;
4307                 callout_stop(&sc->bce_tick_callout);
4308                 bce_tick_serialized(sc);
4309         }
4310
4311         /* Acknowledge the link change interrupt. */
4312         REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
4313 }
4314
4315 /****************************************************************************/
4316 /* Reads the receive consumer value from the status block (skipping over    */
4317 /* chain page pointer if necessary).                                        */
4318 /*                                                                          */
4319 /* Returns:                                                                 */
4320 /*   hw_cons                                                                */
4321 /****************************************************************************/
4322 static __inline uint16_t
4323 bce_get_hw_rx_cons(struct bce_rx_ring *rxr)
4324 {
4325         uint16_t hw_cons = *rxr->rx_hw_cons;
4326
4327         if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4328                 hw_cons++;
4329         return hw_cons;
4330 }
4331
4332 /****************************************************************************/
4333 /* Handles received frame interrupt events.                                 */
4334 /*                                                                          */
4335 /* Returns:                                                                 */
4336 /*   Nothing.                                                               */
4337 /****************************************************************************/
4338 static void
4339 bce_rx_intr(struct bce_rx_ring *rxr, int count, uint16_t hw_cons)
4340 {
4341         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
4342         uint16_t sw_cons, sw_chain_cons, sw_prod, sw_chain_prod;
4343         uint32_t sw_prod_bseq;
4344
4345         ASSERT_SERIALIZED(&rxr->rx_serialize);
4346
4347         /* Get working copies of the driver's view of the RX indices. */
4348         sw_cons = rxr->rx_cons;
4349         sw_prod = rxr->rx_prod;
4350         sw_prod_bseq = rxr->rx_prod_bseq;
4351
4352         /* Scan through the receive chain as long as there is work to do. */
4353         while (sw_cons != hw_cons) {
4354                 struct pktinfo pi0, *pi = NULL;
4355                 struct bce_rx_buf *rx_buf;
4356                 struct mbuf *m = NULL;
4357                 struct l2_fhdr *l2fhdr = NULL;
4358                 unsigned int len;
4359                 uint32_t status = 0;
4360
4361 #ifdef IFPOLL_ENABLE
4362                 if (count >= 0 && count-- == 0)
4363                         break;
4364 #endif
4365
4366                 /*
4367                  * Convert the producer/consumer indices
4368                  * to an actual rx_bd index.
4369                  */
4370                 sw_chain_cons = RX_CHAIN_IDX(rxr, sw_cons);
4371                 sw_chain_prod = RX_CHAIN_IDX(rxr, sw_prod);
4372                 rx_buf = &rxr->rx_bufs[sw_chain_cons];
4373
4374                 rxr->free_rx_bd++;
4375
4376                 /* The mbuf is stored with the last rx_bd entry of a packet. */
4377                 if (rx_buf->rx_mbuf_ptr != NULL) {
4378                         if (sw_chain_cons != sw_chain_prod) {
4379                                 if_printf(ifp, "RX cons(%d) != prod(%d), "
4380                                     "drop!\n", sw_chain_cons, sw_chain_prod);
4381                                 IFNET_STAT_INC(ifp, ierrors, 1);
4382
4383                                 bce_setup_rxdesc_std(rxr, sw_chain_cons,
4384                                     &sw_prod_bseq);
4385                                 m = NULL;
4386                                 goto bce_rx_int_next_rx;
4387                         }
4388
4389                         /* Unmap the mbuf from DMA space. */
4390                         bus_dmamap_sync(rxr->rx_mbuf_tag, rx_buf->rx_mbuf_map,
4391                             BUS_DMASYNC_POSTREAD);
4392
4393                         /* Save the mbuf from the driver's chain. */
4394                         m = rx_buf->rx_mbuf_ptr;
4395
4396                         /*
4397                          * Frames received on the NetXteme II are prepended 
4398                          * with an l2_fhdr structure which provides status
4399                          * information about the received frame (including
4400                          * VLAN tags and checksum info).  The frames are also
4401                          * automatically adjusted to align the IP header
4402                          * (i.e. two null bytes are inserted before the 
4403                          * Ethernet header).  As a result the data DMA'd by
4404                          * the controller into the mbuf is as follows:
4405                          *
4406                          * +---------+-----+---------------------+-----+
4407                          * | l2_fhdr | pad | packet data         | FCS |
4408                          * +---------+-----+---------------------+-----+
4409                          * 
4410                          * The l2_fhdr needs to be checked and skipped and the
4411                          * FCS needs to be stripped before sending the packet
4412                          * up the stack.
4413                          */
4414                         l2fhdr = mtod(m, struct l2_fhdr *);
4415
4416                         len = l2fhdr->l2_fhdr_pkt_len;
4417                         status = l2fhdr->l2_fhdr_status;
4418
4419                         len -= ETHER_CRC_LEN;
4420
4421                         /* Check the received frame for errors. */
4422                         if (status & (L2_FHDR_ERRORS_BAD_CRC |
4423                                       L2_FHDR_ERRORS_PHY_DECODE |
4424                                       L2_FHDR_ERRORS_ALIGNMENT |
4425                                       L2_FHDR_ERRORS_TOO_SHORT |
4426                                       L2_FHDR_ERRORS_GIANT_FRAME)) {
4427                                 IFNET_STAT_INC(ifp, ierrors, 1);
4428
4429                                 /* Reuse the mbuf for a new frame. */
4430                                 bce_setup_rxdesc_std(rxr, sw_chain_prod,
4431                                     &sw_prod_bseq);
4432                                 m = NULL;
4433                                 goto bce_rx_int_next_rx;
4434                         }
4435
4436                         /* 
4437                          * Get a new mbuf for the rx_bd.   If no new
4438                          * mbufs are available then reuse the current mbuf,
4439                          * log an ierror on the interface, and generate
4440                          * an error in the system log.
4441                          */
4442                         if (bce_newbuf_std(rxr, &sw_prod, sw_chain_prod,
4443                             &sw_prod_bseq, 0)) {
4444                                 IFNET_STAT_INC(ifp, ierrors, 1);
4445
4446                                 /* Try and reuse the exisitng mbuf. */
4447                                 bce_setup_rxdesc_std(rxr, sw_chain_prod,
4448                                     &sw_prod_bseq);
4449                                 m = NULL;
4450                                 goto bce_rx_int_next_rx;
4451                         }
4452
4453                         /*
4454                          * Skip over the l2_fhdr when passing
4455                          * the data up the stack.
4456                          */
4457                         m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4458
4459                         m->m_pkthdr.len = m->m_len = len;
4460                         m->m_pkthdr.rcvif = ifp;
4461
4462                         /* Validate the checksum if offload enabled. */
4463                         if (ifp->if_capenable & IFCAP_RXCSUM) {
4464                                 /* Check for an IP datagram. */
4465                                 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4466                                         m->m_pkthdr.csum_flags |=
4467                                                 CSUM_IP_CHECKED;
4468
4469                                         /* Check if the IP checksum is valid. */
4470                                         if ((l2fhdr->l2_fhdr_ip_xsum ^
4471                                              0xffff) == 0) {
4472                                                 m->m_pkthdr.csum_flags |=
4473                                                         CSUM_IP_VALID;
4474                                         }
4475                                 }
4476
4477                                 /* Check for a valid TCP/UDP frame. */
4478                                 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4479                                               L2_FHDR_STATUS_UDP_DATAGRAM)) {
4480
4481                                         /* Check for a good TCP/UDP checksum. */
4482                                         if ((status &
4483                                              (L2_FHDR_ERRORS_TCP_XSUM |
4484                                               L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4485                                                 m->m_pkthdr.csum_data =
4486                                                 l2fhdr->l2_fhdr_tcp_udp_xsum;
4487                                                 m->m_pkthdr.csum_flags |=
4488                                                         CSUM_DATA_VALID |
4489                                                         CSUM_PSEUDO_HDR;
4490                                         }
4491                                 }
4492                         }
4493                         if (ifp->if_capenable & IFCAP_RSS) {
4494                                 pi = bce_rss_pktinfo(&pi0, status, l2fhdr);
4495                                 if (pi != NULL &&
4496                                     (status & L2_FHDR_STATUS_RSS_HASH)) {
4497                                         m->m_flags |= M_HASH;
4498                                         m->m_pkthdr.hash =
4499                                             toeplitz_hash(l2fhdr->l2_fhdr_hash);
4500                                 }
4501                         }
4502
4503                         IFNET_STAT_INC(ifp, ipackets, 1);
4504 bce_rx_int_next_rx:
4505                         sw_prod = NEXT_RX_BD(sw_prod);
4506                 }
4507
4508                 sw_cons = NEXT_RX_BD(sw_cons);
4509
4510                 /* If we have a packet, pass it up the stack */
4511                 if (m) {
4512                         if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
4513                                 m->m_flags |= M_VLANTAG;
4514                                 m->m_pkthdr.ether_vlantag =
4515                                         l2fhdr->l2_fhdr_vlan_tag;
4516                         }
4517                         ether_input_pkt(ifp, m, pi);
4518 #ifdef BCE_RSS_DEBUG
4519                         rxr->rx_pkts++;
4520 #endif
4521                 }
4522         }
4523
4524         rxr->rx_cons = sw_cons;
4525         rxr->rx_prod = sw_prod;
4526         rxr->rx_prod_bseq = sw_prod_bseq;
4527
4528         REG_WR16(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BDIDX,
4529             rxr->rx_prod);
4530         REG_WR(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BSEQ,
4531             rxr->rx_prod_bseq);
4532 }
4533
4534 /****************************************************************************/
4535 /* Reads the transmit consumer value from the status block (skipping over   */
4536 /* chain page pointer if necessary).                                        */
4537 /*                                                                          */
4538 /* Returns:                                                                 */
4539 /*   hw_cons                                                                */
4540 /****************************************************************************/
4541 static __inline uint16_t
4542 bce_get_hw_tx_cons(struct bce_tx_ring *txr)
4543 {
4544         uint16_t hw_cons = *txr->tx_hw_cons;
4545
4546         if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4547                 hw_cons++;
4548         return hw_cons;
4549 }
4550
4551 /****************************************************************************/
4552 /* Handles transmit completion interrupt events.                            */
4553 /*                                                                          */
4554 /* Returns:                                                                 */
4555 /*   Nothing.                                                               */
4556 /****************************************************************************/
4557 static void
4558 bce_tx_intr(struct bce_tx_ring *txr, uint16_t hw_tx_cons)
4559 {
4560         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
4561         uint16_t sw_tx_cons, sw_tx_chain_cons;
4562
4563         ASSERT_SERIALIZED(&txr->tx_serialize);
4564
4565         /* Get the hardware's view of the TX consumer index. */
4566         sw_tx_cons = txr->tx_cons;
4567
4568         /* Cycle through any completed TX chain page entries. */
4569         while (sw_tx_cons != hw_tx_cons) {
4570                 struct bce_tx_buf *tx_buf;
4571
4572                 sw_tx_chain_cons = TX_CHAIN_IDX(txr, sw_tx_cons);
4573                 tx_buf = &txr->tx_bufs[sw_tx_chain_cons];
4574
4575                 /*
4576                  * Free the associated mbuf. Remember
4577                  * that only the last tx_bd of a packet
4578                  * has an mbuf pointer and DMA map.
4579                  */
4580                 if (tx_buf->tx_mbuf_ptr != NULL) {
4581                         /* Unmap the mbuf. */
4582                         bus_dmamap_unload(txr->tx_mbuf_tag,
4583                             tx_buf->tx_mbuf_map);
4584
4585                         /* Free the mbuf. */
4586                         m_freem(tx_buf->tx_mbuf_ptr);
4587                         tx_buf->tx_mbuf_ptr = NULL;
4588
4589                         IFNET_STAT_INC(ifp, opackets, 1);
4590 #ifdef BCE_TSS_DEBUG
4591                         txr->tx_pkts++;
4592 #endif
4593                 }
4594
4595                 txr->used_tx_bd--;
4596                 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4597         }
4598
4599         if (txr->used_tx_bd == 0) {
4600                 /* Clear the TX timeout timer. */
4601                 txr->tx_watchdog.wd_timer = 0;
4602         }
4603
4604         /* Clear the tx hardware queue full flag. */
4605         if (txr->max_tx_bd - txr->used_tx_bd >= BCE_TX_SPARE_SPACE)
4606                 ifsq_clr_oactive(txr->ifsq);
4607         txr->tx_cons = sw_tx_cons;
4608 }
4609
4610 /****************************************************************************/
4611 /* Disables interrupt generation.                                           */
4612 /*                                                                          */
4613 /* Returns:                                                                 */
4614 /*   Nothing.                                                               */
4615 /****************************************************************************/
4616 static void
4617 bce_disable_intr(struct bce_softc *sc)
4618 {
4619         int i;
4620
4621         for (i = 0; i < sc->rx_ring_cnt; ++i) {
4622                 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4623                     (sc->rx_rings[i].idx << 24) |
4624                     BCE_PCICFG_INT_ACK_CMD_MASK_INT);
4625         }
4626         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
4627
4628         callout_stop(&sc->bce_ckmsi_callout);
4629         sc->bce_msi_maylose = FALSE;
4630         sc->bce_check_rx_cons = 0;
4631         sc->bce_check_tx_cons = 0;
4632         sc->bce_check_status_idx = 0xffff;
4633
4634         for (i = 0; i < sc->rx_ring_cnt; ++i)
4635                 lwkt_serialize_handler_disable(sc->bce_msix[i].msix_serialize);
4636 }
4637
4638 /****************************************************************************/
4639 /* Enables interrupt generation.                                            */
4640 /*                                                                          */
4641 /* Returns:                                                                 */
4642 /*   Nothing.                                                               */
4643 /****************************************************************************/
4644 static void
4645 bce_enable_intr(struct bce_softc *sc)
4646 {
4647         int i;
4648
4649         for (i = 0; i < sc->rx_ring_cnt; ++i)
4650                 lwkt_serialize_handler_enable(sc->bce_msix[i].msix_serialize);
4651
4652         for (i = 0; i < sc->rx_ring_cnt; ++i) {
4653                 struct bce_rx_ring *rxr = &sc->rx_rings[i];
4654
4655                 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) |
4656                        BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4657                        BCE_PCICFG_INT_ACK_CMD_MASK_INT |
4658                        rxr->last_status_idx);
4659                 REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) |
4660                        BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4661                        rxr->last_status_idx);
4662         }
4663         REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
4664
4665         if (sc->bce_flags & BCE_CHECK_MSI_FLAG) {
4666                 sc->bce_msi_maylose = FALSE;
4667                 sc->bce_check_rx_cons = 0;
4668                 sc->bce_check_tx_cons = 0;
4669                 sc->bce_check_status_idx = 0xffff;
4670
4671                 if (bootverbose)
4672                         if_printf(&sc->arpcom.ac_if, "check msi\n");
4673
4674                 callout_reset_bycpu(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL,
4675                     bce_check_msi, sc, sc->bce_msix[0].msix_cpuid);
4676         }
4677 }
4678
4679 /****************************************************************************/
4680 /* Reenables interrupt generation during interrupt handling.                */
4681 /*                                                                          */
4682 /* Returns:                                                                 */
4683 /*   Nothing.                                                               */
4684 /****************************************************************************/
4685 static void
4686 bce_reenable_intr(struct bce_rx_ring *rxr)
4687 {
4688         REG_WR(rxr->sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) |
4689                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | rxr->last_status_idx);
4690 }
4691
4692 /****************************************************************************/
4693 /* Handles controller initialization.                                       */
4694 /*                                                                          */
4695 /* Returns:                                                                 */
4696 /*   Nothing.                                                               */
4697 /****************************************************************************/
4698 static void
4699 bce_init(void *xsc)
4700 {
4701         struct bce_softc *sc = xsc;
4702         struct ifnet *ifp = &sc->arpcom.ac_if;
4703         uint32_t ether_mtu;
4704         int error, i;
4705         boolean_t polling;
4706
4707         ASSERT_IFNET_SERIALIZED_ALL(ifp);
4708
4709         /* Check if the driver is still running and bail out if it is. */
4710         if (ifp->if_flags & IFF_RUNNING)
4711                 return;
4712
4713         bce_stop(sc);
4714
4715         error = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
4716         if (error) {
4717                 if_printf(ifp, "Controller reset failed!\n");
4718                 goto back;
4719         }
4720
4721         error = bce_chipinit(sc);
4722         if (error) {
4723                 if_printf(ifp, "Controller initialization failed!\n");
4724                 goto back;
4725         }
4726
4727         error = bce_blockinit(sc);
4728         if (error) {
4729                 if_printf(ifp, "Block initialization failed!\n");
4730                 goto back;
4731         }
4732
4733         /* Load our MAC address. */
4734         bcopy(IF_LLADDR(ifp), sc->eaddr, ETHER_ADDR_LEN);
4735         bce_set_mac_addr(sc);
4736
4737         /* Calculate and program the Ethernet MTU size. */
4738         ether_mtu = ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN;
4739
4740         /* 
4741          * Program the mtu, enabling jumbo frame 
4742          * support if necessary.  Also set the mbuf
4743          * allocation count for RX frames.
4744          */
4745         if (ether_mtu > ETHER_MAX_LEN + EVL_ENCAPLEN) {
4746 #ifdef notyet
4747                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
4748                        min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
4749                        BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4750 #else
4751                 panic("jumbo buffer is not supported yet");
4752 #endif
4753         } else {
4754                 REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
4755         }
4756
4757         /* Program appropriate promiscuous/multicast filtering. */
4758         bce_set_rx_mode(sc);
4759
4760         /*
4761          * Init RX buffer descriptor chain.
4762          */
4763         REG_WR(sc, BCE_RLUP_RSS_CONFIG, 0);
4764         bce_reg_wr_ind(sc, BCE_RXP_SCRATCH_RSS_TBL_SZ, 0);
4765
4766         for (i = 0; i < sc->rx_ring_cnt; ++i)
4767                 bce_init_rx_chain(&sc->rx_rings[i]);    /* XXX return value */
4768
4769         if (sc->rx_ring_cnt > 1)
4770                 bce_init_rss(sc);
4771
4772         /*
4773          * Init TX buffer descriptor chain.
4774          */
4775         REG_WR(sc, BCE_TSCH_TSS_CFG, 0);
4776
4777         for (i = 0; i < sc->tx_ring_cnt; ++i)
4778                 bce_init_tx_chain(&sc->tx_rings[i]);
4779
4780         if (sc->tx_ring_cnt > 1) {
4781                 REG_WR(sc, BCE_TSCH_TSS_CFG,
4782                     ((sc->tx_ring_cnt - 1) << 24) | (TX_TSS_CID << 7));
4783         }
4784
4785         polling = FALSE;
4786 #ifdef IFPOLL_ENABLE
4787         if (ifp->if_flags & IFF_NPOLLING)
4788                 polling = TRUE;
4789 #endif
4790
4791         if (polling) {
4792                 /* Disable interrupts if we are polling. */
4793                 bce_disable_intr(sc);
4794
4795                 /* Change coalesce parameters */
4796                 bce_npoll_coal_change(sc);
4797         } else {
4798                 /* Enable host interrupts. */
4799                 bce_enable_intr(sc);
4800         }
4801         bce_set_timer_cpuid(sc, polling);
4802
4803         bce_ifmedia_upd(ifp);
4804
4805         ifp->if_flags |= IFF_RUNNING;
4806         for (i = 0; i < sc->tx_ring_cnt; ++i) {
4807                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
4808                 ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
4809         }
4810
4811         callout_reset_bycpu(&sc->bce_tick_callout, hz, bce_tick, sc,
4812             sc->bce_timer_cpuid);
4813 back:
4814         if (error)
4815                 bce_stop(sc);
4816 }
4817
4818 /****************************************************************************/
4819 /* Initialize the controller just enough so that any management firmware    */
4820 /* running on the device will continue to operate corectly.                 */
4821 /*                                                                          */
4822 /* Returns:                                                                 */
4823 /*   Nothing.                                                               */
4824 /****************************************************************************/
4825 static void
4826 bce_mgmt_init(struct bce_softc *sc)
4827 {
4828         struct ifnet *ifp = &sc->arpcom.ac_if;
4829
4830         /* Bail out if management firmware is not running. */
4831         if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
4832                 return;
4833
4834         /* Enable all critical blocks in the MAC. */
4835         if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4836             BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4837                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4838                     BCE_MISC_ENABLE_DEFAULT_XI);
4839         } else {
4840                 REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
4841         }
4842         REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4843         DELAY(20);
4844
4845         bce_ifmedia_upd(ifp);
4846 }
4847
4848 /****************************************************************************/
4849 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4850 /* memory visible to the controller.                                        */
4851 /*                                                                          */
4852 /* Returns:                                                                 */
4853 /*   0 for success, positive value for failure.                             */
4854 /****************************************************************************/
4855 static int
4856 bce_encap(struct bce_tx_ring *txr, struct mbuf **m_head, int *nsegs_used)
4857 {
4858         bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4859         bus_dmamap_t map, tmp_map;
4860         struct mbuf *m0 = *m_head;
4861         struct tx_bd *txbd = NULL;
4862         uint16_t vlan_tag = 0, flags = 0, mss = 0;
4863         uint16_t chain_prod, chain_prod_start, prod;
4864         uint32_t prod_bseq;
4865         int i, error, maxsegs, nsegs;
4866
4867         /* Transfer any checksum offload flags to the bd. */
4868         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
4869                 error = bce_tso_setup(txr, m_head, &flags, &mss);
4870                 if (error)
4871                         return ENOBUFS;
4872                 m0 = *m_head;
4873         } else if (m0->m_pkthdr.csum_flags & BCE_CSUM_FEATURES) {
4874                 if (m0->m_pkthdr.csum_flags & CSUM_IP)
4875                         flags |= TX_BD_FLAGS_IP_CKSUM;
4876                 if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
4877                         flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4878         }
4879
4880         /* Transfer any VLAN tags to the bd. */
4881         if (m0->m_flags & M_VLANTAG) {
4882                 flags |= TX_BD_FLAGS_VLAN_TAG;
4883                 vlan_tag = m0->m_pkthdr.ether_vlantag;
4884         }
4885
4886         prod = txr->tx_prod;
4887         chain_prod_start = chain_prod = TX_CHAIN_IDX(txr, prod);
4888
4889         /* Map the mbuf into DMAable memory. */
4890         map = txr->tx_bufs[chain_prod_start].tx_mbuf_map;
4891
4892         maxsegs = txr->max_tx_bd - txr->used_tx_bd;
4893         KASSERT(maxsegs >= BCE_TX_SPARE_SPACE,
4894                 ("not enough segments %d", maxsegs));
4895         if (maxsegs > BCE_MAX_SEGMENTS)
4896                 maxsegs = BCE_MAX_SEGMENTS;
4897
4898         /* Map the mbuf into our DMA address space. */
4899         error = bus_dmamap_load_mbuf_defrag(txr->tx_mbuf_tag, map, m_head,
4900                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
4901         if (error)
4902                 goto back;
4903         bus_dmamap_sync(txr->tx_mbuf_tag, map, BUS_DMASYNC_PREWRITE);
4904
4905         *nsegs_used += nsegs;
4906
4907         /* Reset m0 */
4908         m0 = *m_head;
4909
4910         /* prod points to an empty tx_bd at this point. */
4911         prod_bseq  = txr->tx_prod_bseq;
4912
4913         /*
4914          * Cycle through each mbuf segment that makes up
4915          * the outgoing frame, gathering the mapping info
4916          * for that segment and creating a tx_bd to for
4917          * the mbuf.
4918          */
4919         for (i = 0; i < nsegs; i++) {
4920                 chain_prod = TX_CHAIN_IDX(txr, prod);
4921                 txbd =
4922                 &txr->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4923
4924                 txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
4925                 txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
4926                 txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
4927                     htole16(segs[i].ds_len);
4928                 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4929                 txbd->tx_bd_flags = htole16(flags);
4930
4931                 prod_bseq += segs[i].ds_len;
4932                 if (i == 0)
4933                         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4934                 prod = NEXT_TX_BD(prod);
4935         }
4936
4937         /* Set the END flag on the last TX buffer descriptor. */
4938         txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4939
4940         /*
4941          * Ensure that the mbuf pointer for this transmission
4942          * is placed at the array index of the last
4943          * descriptor in this chain.  This is done
4944          * because a single map is used for all 
4945          * segments of the mbuf and we don't want to
4946          * unload the map before all of the segments
4947          * have been freed.
4948          */
4949         txr->tx_bufs[chain_prod].tx_mbuf_ptr = m0;
4950
4951         tmp_map = txr->tx_bufs[chain_prod].tx_mbuf_map;
4952         txr->tx_bufs[chain_prod].tx_mbuf_map = map;
4953         txr->tx_bufs[chain_prod_start].tx_mbuf_map = tmp_map;
4954
4955         txr->used_tx_bd += nsegs;
4956
4957         /* prod points to the next free tx_bd at this point. */
4958         txr->tx_prod = prod;
4959         txr->tx_prod_bseq = prod_bseq;
4960 back:
4961         if (error) {
4962                 m_freem(*m_head);
4963                 *m_head = NULL;
4964         }
4965         return error;
4966 }
4967
4968 static void
4969 bce_xmit(struct bce_tx_ring *txr)
4970 {
4971         /* Start the transmit. */
4972         REG_WR16(txr->sc, MB_GET_CID_ADDR(txr->tx_cid) + BCE_L2CTX_TX_HOST_BIDX,
4973             txr->tx_prod);
4974         REG_WR(txr->sc, MB_GET_CID_ADDR(txr->tx_cid) + BCE_L2CTX_TX_HOST_BSEQ,
4975             txr->tx_prod_bseq);
4976 }
4977
4978 /****************************************************************************/
4979 /* Main transmit routine when called from another routine with a lock.      */
4980 /*                                                                          */
4981 /* Returns:                                                                 */
4982 /*   Nothing.                                                               */
4983 /****************************************************************************/
4984 static void
4985 bce_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4986 {
4987         struct bce_softc *sc = ifp->if_softc;
4988         struct bce_tx_ring *txr = ifsq_get_priv(ifsq);
4989         int count = 0;
4990
4991         KKASSERT(txr->ifsq == ifsq);
4992         ASSERT_SERIALIZED(&txr->tx_serialize);
4993
4994         /* If there's no link or the transmit queue is empty then just exit. */
4995         if (!sc->bce_link) {
4996                 ifsq_purge(ifsq);
4997                 return;
4998         }
4999
5000         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
5001                 return;
5002
5003         for (;;) {
5004                 struct mbuf *m_head;
5005
5006                 /*
5007                  * We keep BCE_TX_SPARE_SPACE entries, so bce_encap() is
5008                  * unlikely to fail.
5009                  */
5010                 if (txr->max_tx_bd - txr->used_tx_bd < BCE_TX_SPARE_SPACE) {
5011                         ifsq_set_oactive(ifsq);
5012                         break;
5013                 }
5014
5015                 /* Check for any frames to send. */
5016                 m_head = ifsq_dequeue(ifsq, NULL);
5017                 if (m_head == NULL)
5018                         break;
5019
5020                 /*
5021                  * Pack the data into the transmit ring. If we
5022                  * don't have room, place the mbuf back at the
5023                  * head of the queue and set the OACTIVE flag
5024                  * to wait for the NIC to drain the chain.
5025                  */
5026                 if (bce_encap(txr, &m_head, &count)) {
5027                         IFNET_STAT_INC(ifp, oerrors, 1);
5028                         if (txr->used_tx_bd == 0) {
5029                                 continue;
5030                         } else {
5031                                 ifsq_set_oactive(ifsq);
5032                                 break;
5033                         }
5034                 }
5035
5036                 if (count >= txr->tx_wreg) {
5037                         bce_xmit(txr);
5038                         count = 0;
5039                 }
5040
5041                 /* Send a copy of the frame to any BPF listeners. */
5042                 ETHER_BPF_MTAP(ifp, m_head);
5043
5044                 /* Set the tx timeout. */
5045                 txr->tx_watchdog.wd_timer = BCE_TX_TIMEOUT;
5046         }
5047         if (count > 0)
5048                 bce_xmit(txr);
5049 }
5050
5051 /****************************************************************************/
5052 /* Handles any IOCTL calls from the operating system.                       */
5053 /*                                                                          */
5054 /* Returns:                                                                 */
5055 /*   0 for success, positive value for failure.                             */
5056 /****************************************************************************/
5057 static int
5058 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
5059 {
5060         struct bce_softc *sc = ifp->if_softc;
5061         struct ifreq *ifr = (struct ifreq *)data;
5062         struct mii_data *mii;
5063         int mask, error = 0;
5064
5065         ASSERT_IFNET_SERIALIZED_ALL(ifp);
5066
5067         switch(command) {
5068         case SIOCSIFMTU:
5069                 /* Check that the MTU setting is supported. */
5070                 if (ifr->ifr_mtu < BCE_MIN_MTU ||
5071 #ifdef notyet
5072                     ifr->ifr_mtu > BCE_MAX_JUMBO_MTU
5073 #else
5074                     ifr->ifr_mtu > ETHERMTU
5075 #endif
5076                    ) {
5077                         error = EINVAL;
5078                         break;
5079                 }
5080
5081                 ifp->if_mtu = ifr->ifr_mtu;
5082                 ifp->if_flags &= ~IFF_RUNNING;  /* Force reinitialize */
5083                 bce_init(sc);
5084                 break;
5085
5086         case SIOCSIFFLAGS:
5087                 if (ifp->if_flags & IFF_UP) {
5088                         if (ifp->if_flags & IFF_RUNNING) {
5089                                 mask = ifp->if_flags ^ sc->bce_if_flags;
5090
5091                                 if (mask & (IFF_PROMISC | IFF_ALLMULTI))
5092                                         bce_set_rx_mode(sc);
5093                         } else {
5094                                 bce_init(sc);
5095                         }
5096                 } else if (ifp->if_flags & IFF_RUNNING) {
5097                         bce_stop(sc);
5098
5099                         /* If MFW is running, restart the controller a bit. */
5100                         if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5101                                 bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
5102                                 bce_chipinit(sc);
5103                                 bce_mgmt_init(sc);
5104                         }
5105                 }
5106                 sc->bce_if_flags = ifp->if_flags;
5107                 break;
5108
5109         case SIOCADDMULTI:
5110         case SIOCDELMULTI:
5111                 if (ifp->if_flags & IFF_RUNNING)
5112                         bce_set_rx_mode(sc);
5113                 break;
5114
5115         case SIOCSIFMEDIA:
5116         case SIOCGIFMEDIA:
5117                 mii = device_get_softc(sc->bce_miibus);
5118                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5119                 break;
5120
5121         case SIOCSIFCAP:
5122                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5123                 if (mask & IFCAP_HWCSUM) {
5124                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
5125                         if (ifp->if_capenable & IFCAP_TXCSUM)
5126                                 ifp->if_hwassist |= BCE_CSUM_FEATURES;
5127                         else
5128                                 ifp->if_hwassist &= ~BCE_CSUM_FEATURES;
5129                 }
5130                 if (mask & IFCAP_TSO) {
5131                         ifp->if_capenable ^= IFCAP_TSO;
5132                         if (ifp->if_capenable & IFCAP_TSO)
5133                                 ifp->if_hwassist |= CSUM_TSO;
5134                         else
5135                                 ifp->if_hwassist &= ~CSUM_TSO;
5136                 }
5137                 if (mask & IFCAP_RSS)
5138                         ifp->if_capenable ^= IFCAP_RSS;
5139                 break;
5140
5141         default:
5142                 error = ether_ioctl(ifp, command, data);
5143                 break;
5144         }
5145         return error;
5146 }
5147
5148 /****************************************************************************/
5149 /* Transmit timeout handler.                                                */
5150 /*                                                                          */
5151 /* Returns:                                                                 */
5152 /*   Nothing.                                                               */
5153 /****************************************************************************/
5154 static void
5155 bce_watchdog(struct ifaltq_subque *ifsq)
5156 {
5157         struct ifnet *ifp = ifsq_get_ifp(ifsq);
5158         struct bce_softc *sc = ifp->if_softc;
5159         int i;
5160
5161         ASSERT_IFNET_SERIALIZED_ALL(ifp);
5162
5163         /*
5164          * If we are in this routine because of pause frames, then
5165          * don't reset the hardware.
5166          */
5167         if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED) 
5168                 return;
5169
5170         if_printf(ifp, "Watchdog timeout occurred, resetting!\n");
5171
5172         ifp->if_flags &= ~IFF_RUNNING;  /* Force reinitialize */
5173         bce_init(sc);
5174
5175         IFNET_STAT_INC(ifp, oerrors, 1);
5176
5177         for (i = 0; i < sc->tx_ring_cnt; ++i)
5178                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
5179 }
5180
5181 #ifdef IFPOLL_ENABLE
5182
5183 static void
5184 bce_npoll_status(struct ifnet *ifp)
5185 {
5186         struct bce_softc *sc = ifp->if_softc;
5187         struct status_block *sblk = sc->status_block;
5188         uint32_t status_attn_bits;
5189
5190         ASSERT_SERIALIZED(&sc->main_serialize);
5191
5192         status_attn_bits = sblk->status_attn_bits;
5193
5194         /* Was it a link change interrupt? */
5195         if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5196             (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5197                 bce_phy_intr(sc);
5198
5199                 /*
5200                  * Clear any transient status updates during link state change.
5201                  */
5202                 REG_WR(sc, BCE_HC_COMMAND,
5203                     sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5204                 REG_RD(sc, BCE_HC_COMMAND);
5205         }
5206
5207         /*
5208          * If any other attention is asserted then the chip is toast.
5209          */
5210         if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5211              (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) {
5212                 if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5213                     sblk->status_attn_bits);
5214                 bce_serialize_skipmain(sc);
5215                 bce_init(sc);
5216                 bce_deserialize_skipmain(sc);
5217         }
5218 }
5219
5220 static void
5221 bce_npoll_rx(struct ifnet *ifp, void *arg, int count)
5222 {
5223         struct bce_rx_ring *rxr = arg;
5224         uint16_t hw_rx_cons;
5225
5226         ASSERT_SERIALIZED(&rxr->rx_serialize);
5227
5228         /*
5229          * Save the status block index value for use when enabling
5230          * the interrupt.
5231          */
5232         rxr->last_status_idx = *rxr->hw_status_idx;
5233
5234         /* Make sure status index is extracted before RX/TX cons */
5235         cpu_lfence();
5236
5237         hw_rx_cons = bce_get_hw_rx_cons(rxr);
5238
5239         /* Check for any completed RX frames. */
5240         if (hw_rx_cons != rxr->rx_cons)
5241                 bce_rx_intr(rxr, count, hw_rx_cons);
5242 }
5243
5244 static void
5245 bce_npoll_rx_pack(struct ifnet *ifp, void *arg, int count)
5246 {
5247         struct bce_rx_ring *rxr = arg;
5248
5249         KASSERT(rxr->idx == 0, ("not the first RX ring, but %d", rxr->idx));
5250         bce_npoll_rx(ifp, rxr, count);
5251
5252         KASSERT(rxr->sc->rx_ring_cnt != rxr->sc->rx_ring_cnt2,
5253             ("RX ring count %d, count2 %d", rxr->sc->rx_ring_cnt,
5254              rxr->sc->rx_ring_cnt2));
5255
5256         /* Last ring carries packets whose masked hash is 0 */
5257         rxr = &rxr->sc->rx_rings[rxr->sc->rx_ring_cnt - 1];
5258
5259         lwkt_serialize_enter(&rxr->rx_serialize);
5260         bce_npoll_rx(ifp, rxr, count);
5261         lwkt_serialize_exit(&rxr->rx_serialize);
5262 }
5263
5264 static void
5265 bce_npoll_tx(struct ifnet *ifp, void *arg, int count __unused)
5266 {
5267         struct bce_tx_ring *txr = arg;
5268         uint16_t hw_tx_cons;
5269
5270         ASSERT_SERIALIZED(&txr->tx_serialize);
5271
5272         hw_tx_cons = bce_get_hw_tx_cons(txr);
5273
5274         /* Check for any completed TX frames. */
5275         if (hw_tx_cons != txr->tx_cons) {
5276                 bce_tx_intr(txr, hw_tx_cons);
5277                 if (!ifsq_is_empty(txr->ifsq))
5278                         ifsq_devstart(txr->ifsq);
5279         }
5280 }
5281
5282 static void
5283 bce_npoll(struct ifnet *ifp, struct ifpoll_info *info)
5284 {
5285         struct bce_softc *sc = ifp->if_softc;
5286         int i;
5287
5288         ASSERT_IFNET_SERIALIZED_ALL(ifp);
5289
5290         if (info != NULL) {
5291                 info->ifpi_status.status_func = bce_npoll_status;
5292                 info->ifpi_status.serializer = &sc->main_serialize;
5293
5294                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
5295                         struct bce_tx_ring *txr = &sc->tx_rings[i];
5296                         int idx = i + sc->npoll_ofs;
5297
5298                         KKASSERT(idx < ncpus2);
5299                         info->ifpi_tx[idx].poll_func = bce_npoll_tx;
5300                         info->ifpi_tx[idx].arg = txr;
5301                         info->ifpi_tx[idx].serializer = &txr->tx_serialize;
5302                         ifsq_set_cpuid(txr->ifsq, idx);
5303                 }
5304
5305                 for (i = 0; i < sc->rx_ring_cnt2; ++i) {
5306                         struct bce_rx_ring *rxr = &sc->rx_rings[i];
5307                         int idx = i + sc->npoll_ofs;
5308
5309                         KKASSERT(idx < ncpus2);
5310                         if (i == 0 && sc->rx_ring_cnt2 != sc->rx_ring_cnt) {
5311                                 /*
5312                                  * If RSS is enabled, the packets whose
5313                                  * masked hash are 0 are queued to the
5314                                  * last RX ring; piggyback the last RX
5315                                  * ring's processing in the first RX
5316                                  * polling handler. (see also: comment
5317                                  * in bce_setup_ring_cnt())
5318                                  */
5319                                 if (bootverbose) {
5320                                         if_printf(ifp, "npoll pack last "
5321                                             "RX ring on cpu%d\n", idx);
5322                                 }
5323                                 info->ifpi_rx[idx].poll_func =
5324                                     bce_npoll_rx_pack;
5325                         } else {
5326                                 info->ifpi_rx[idx].poll_func = bce_npoll_rx;
5327                         }
5328                         info->ifpi_rx[idx].arg = rxr;
5329                         info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
5330                 }
5331
5332                 if (ifp->if_flags & IFF_RUNNING) {
5333                         bce_set_timer_cpuid(sc, TRUE);
5334                         bce_disable_intr(sc);
5335                         bce_npoll_coal_change(sc);
5336                 }
5337         } else {
5338                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
5339                         ifsq_set_cpuid(sc->tx_rings[i].ifsq,
5340                             sc->bce_msix[i].msix_cpuid);
5341                 }
5342
5343                 if (ifp->if_flags & IFF_RUNNING) {
5344                         bce_set_timer_cpuid(sc, FALSE);
5345                         bce_enable_intr(sc);
5346
5347                         sc->bce_coalchg_mask |= BCE_COALMASK_TX_BDS_INT |
5348                             BCE_COALMASK_RX_BDS_INT;
5349                         bce_coal_change(sc);
5350                 }
5351         }
5352 }
5353
5354 #endif  /* IFPOLL_ENABLE */
5355
5356 /*
5357  * Interrupt handler.
5358  */
5359 /****************************************************************************/
5360 /* Main interrupt entry point.  Verifies that the controller generated the  */
5361 /* interrupt and then calls a separate routine for handle the various       */
5362 /* interrupt causes (PHY, TX, RX).                                          */
5363 /*                                                                          */
5364 /* Returns:                                                                 */
5365 /*   0 for success, positive value for failure.                             */
5366 /****************************************************************************/
5367 static void
5368 bce_intr(struct bce_softc *sc)
5369 {
5370         struct ifnet *ifp = &sc->arpcom.ac_if;
5371         struct status_block *sblk;
5372         uint16_t hw_rx_cons, hw_tx_cons;
5373         uint32_t status_attn_bits;
5374         struct bce_tx_ring *txr = &sc->tx_rings[0];
5375         struct bce_rx_ring *rxr = &sc->rx_rings[0];
5376
5377         ASSERT_SERIALIZED(&sc->main_serialize);
5378
5379         sblk = sc->status_block;
5380
5381         /*
5382          * Save the status block index value for use during
5383          * the next interrupt.
5384          */
5385         rxr->last_status_idx = *rxr->hw_status_idx;
5386
5387         /* Make sure status index is extracted before RX/TX cons */
5388         cpu_lfence();
5389
5390         /* Check if the hardware has finished any work. */
5391         hw_rx_cons = bce_get_hw_rx_cons(rxr);
5392         hw_tx_cons = bce_get_hw_tx_cons(txr);
5393
5394         status_attn_bits = sblk->status_attn_bits;
5395
5396         /* Was it a link change interrupt? */
5397         if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5398             (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5399                 bce_phy_intr(sc);
5400
5401                 /*
5402                  * Clear any transient status updates during link state
5403                  * change.
5404                  */
5405                 REG_WR(sc, BCE_HC_COMMAND,
5406                     sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5407                 REG_RD(sc, BCE_HC_COMMAND);
5408         }
5409
5410         /*
5411          * If any other attention is asserted then
5412          * the chip is toast.
5413          */
5414         if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5415             (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) {
5416                 if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5417                           sblk->status_attn_bits);
5418                 bce_serialize_skipmain(sc);
5419                 bce_init(sc);
5420                 bce_deserialize_skipmain(sc);
5421                 return;
5422         }
5423
5424         /* Check for any completed RX frames. */
5425         lwkt_serialize_enter(&rxr->rx_serialize);
5426         if (hw_rx_cons != rxr->rx_cons)
5427                 bce_rx_intr(rxr, -1, hw_rx_cons);
5428         lwkt_serialize_exit(&rxr->rx_serialize);
5429
5430         /* Check for any completed TX frames. */
5431         lwkt_serialize_enter(&txr->tx_serialize);
5432         if (hw_tx_cons != txr->tx_cons) {
5433                 bce_tx_intr(txr, hw_tx_cons);
5434                 if (!ifsq_is_empty(txr->ifsq))
5435                         ifsq_devstart(txr->ifsq);
5436         }
5437         lwkt_serialize_exit(&txr->tx_serialize);
5438 }
5439
5440 static void
5441 bce_intr_legacy(void *xsc)
5442 {
5443         struct bce_softc *sc = xsc;
5444         struct bce_rx_ring *rxr = &sc->rx_rings[0];
5445         struct status_block *sblk;
5446
5447         sblk = sc->status_block;
5448
5449         /*
5450          * If the hardware status block index matches the last value
5451          * read by the driver and we haven't asserted our interrupt
5452          * then there's nothing to do.
5453          */
5454         if (sblk->status_idx == rxr->last_status_idx &&
5455             (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
5456              BCE_PCICFG_MISC_STATUS_INTA_VALUE))
5457                 return;
5458
5459         /* Ack the interrupt and stop others from occuring. */
5460         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5461                BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5462                BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5463
5464         /*
5465          * Read back to deassert IRQ immediately to avoid too
5466          * many spurious interrupts.
5467          */
5468         REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
5469
5470         bce_intr(sc);
5471
5472         /* Re-enable interrupts. */
5473         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5474                BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
5475                BCE_PCICFG_INT_ACK_CMD_MASK_INT | rxr->last_status_idx);
5476         bce_reenable_intr(rxr);
5477 }
5478
5479 static void
5480 bce_intr_msi(void *xsc)
5481 {
5482         struct bce_softc *sc = xsc;
5483
5484         /* Ack the interrupt and stop others from occuring. */
5485         REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5486                BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5487                BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5488
5489         bce_intr(sc);
5490
5491         /* Re-enable interrupts */
5492         bce_reenable_intr(&sc->rx_rings[0]);
5493 }
5494
5495 static void
5496 bce_intr_msi_oneshot(void *xsc)
5497 {
5498         struct bce_softc *sc = xsc;
5499
5500         bce_intr(sc);
5501
5502         /* Re-enable interrupts */
5503         bce_reenable_intr(&sc->rx_rings[0]);
5504 }
5505
5506 static void
5507 bce_intr_msix_rxtx(void *xrxr)
5508 {
5509         struct bce_rx_ring *rxr = xrxr;
5510         struct bce_tx_ring *txr;
5511         uint16_t hw_rx_cons, hw_tx_cons;
5512
5513         ASSERT_SERIALIZED(&rxr->rx_serialize);
5514
5515         KKASSERT(rxr->idx < rxr->sc->tx_ring_cnt);
5516         txr = &rxr->sc->tx_rings[rxr->idx];
5517
5518         /*
5519          * Save the status block index value for use during
5520          * the next interrupt.
5521          */
5522         rxr->last_status_idx = *rxr->hw_status_idx;
5523
5524         /* Make sure status index is extracted before RX/TX cons */
5525         cpu_lfence();
5526
5527         /* Check if the hardware has finished any work. */
5528         hw_rx_cons = bce_get_hw_rx_cons(rxr);
5529         if (hw_rx_cons != rxr->rx_cons)
5530                 bce_rx_intr(rxr, -1, hw_rx_cons);
5531
5532         /* Check for any completed TX frames. */
5533         hw_tx_cons = bce_get_hw_tx_cons(txr);
5534         lwkt_serialize_enter(&txr->tx_serialize);
5535         if (hw_tx_cons != txr->tx_cons) {
5536                 bce_tx_intr(txr, hw_tx_cons);
5537                 if (!ifsq_is_empty(txr->ifsq))
5538                         ifsq_devstart(txr->ifsq);
5539         }
5540         lwkt_serialize_exit(&txr->tx_serialize);
5541
5542         /* Re-enable interrupts */
5543         bce_reenable_intr(rxr);
5544 }
5545
5546 static void
5547 bce_intr_msix_rx(void *xrxr)
5548 {
5549         struct bce_rx_ring *rxr = xrxr;
5550         uint16_t hw_rx_cons;
5551
5552         ASSERT_SERIALIZED(&rxr->rx_serialize);
5553
5554         /*
5555          * Save the status block index value for use during
5556          * the next interrupt.
5557          */
5558         rxr->last_status_idx = *rxr->hw_status_idx;
5559
5560         /* Make sure status index is extracted before RX cons */
5561         cpu_lfence();
5562
5563         /* Check if the hardware has finished any work. */
5564         hw_rx_cons = bce_get_hw_rx_cons(rxr);
5565         if (hw_rx_cons != rxr->rx_cons)
5566                 bce_rx_intr(rxr, -1, hw_rx_cons);
5567
5568         /* Re-enable interrupts */
5569         bce_reenable_intr(rxr);
5570 }
5571
5572 /****************************************************************************/
5573 /* Programs the various packet receive modes (broadcast and multicast).     */
5574 /*                                                                          */
5575 /* Returns:                                                                 */
5576 /*   Nothing.                                                               */
5577 /****************************************************************************/
5578 static void
5579 bce_set_rx_mode(struct bce_softc *sc)
5580 {
5581         struct ifnet *ifp = &sc->arpcom.ac_if;
5582         struct ifmultiaddr *ifma;
5583         uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5584         uint32_t rx_mode, sort_mode;
5585         int h, i;
5586
5587         ASSERT_IFNET_SERIALIZED_ALL(ifp);
5588
5589         /* Initialize receive mode default settings. */
5590         rx_mode = sc->rx_mode &
5591                   ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
5592                     BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
5593         sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
5594
5595         /*
5596          * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5597          * be enbled.
5598          */
5599         if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
5600             !(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
5601                 rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
5602
5603         /*
5604          * Check for promiscuous, all multicast, or selected
5605          * multicast address filtering.
5606          */
5607         if (ifp->if_flags & IFF_PROMISC) {
5608                 /* Enable promiscuous mode. */
5609                 rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
5610                 sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
5611         } else if (ifp->if_flags & IFF_ALLMULTI) {
5612                 /* Enable all multicast addresses. */
5613                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5614                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5615                                0xffffffff);
5616                 }
5617                 sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
5618         } else {
5619                 /* Accept one or more multicast(s). */
5620                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
5621                         if (ifma->ifma_addr->sa_family != AF_LINK)
5622                                 continue;
5623                         h = ether_crc32_le(
5624                             LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
5625                             ETHER_ADDR_LEN) & 0xFF;
5626                         hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5627                 }
5628
5629                 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5630                         REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5631                                hashes[i]);
5632                 }
5633                 sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
5634         }
5635
5636         /* Only make changes if the recive mode has actually changed. */
5637         if (rx_mode != sc->rx_mode) {
5638                 sc->rx_mode = rx_mode;
5639                 REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
5640         }
5641
5642         /* Disable and clear the exisitng sort before enabling a new sort. */
5643         REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
5644         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
5645         REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
5646 }
5647
5648 /****************************************************************************/
5649 /* Called periodically to updates statistics from the controllers           */
5650 /* statistics block.                                                        */
5651 /*                                                                          */
5652 /* Returns:                                                                 */
5653 /*   Nothing.                                                               */
5654 /****************************************************************************/
5655 static void
5656 bce_stats_update(struct bce_softc *sc)
5657 {
5658         struct ifnet *ifp = &sc->arpcom.ac_if;
5659         struct statistics_block *stats = sc->stats_block;
5660
5661         ASSERT_SERIALIZED(&sc->main_serialize);
5662
5663         /* 
5664          * Certain controllers don't report carrier sense errors correctly.
5665          * See errata E11_5708CA0_1165.
5666          */
5667         if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5668             !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) {
5669                 IFNET_STAT_INC(ifp, oerrors,
5670                         (u_long)stats->stat_Dot3StatsCarrierSenseErrors);
5671         }
5672
5673         /*
5674          * Update the sysctl statistics from the hardware statistics.
5675          */
5676         sc->stat_IfHCInOctets =
5677                 ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5678                  (uint64_t)stats->stat_IfHCInOctets_lo;
5679
5680         sc->stat_IfHCInBadOctets =
5681                 ((uint64_t)stats->stat_IfHCInBadOctets_hi << 32) +
5682                  (uint64_t)stats->stat_IfHCInBadOctets_lo;
5683
5684         sc->stat_IfHCOutOctets =
5685                 ((uint64_t)stats->stat_IfHCOutOctets_hi << 32) +
5686                  (uint64_t)stats->stat_IfHCOutOctets_lo;
5687
5688         sc->stat_IfHCOutBadOctets =
5689                 ((uint64_t)stats->stat_IfHCOutBadOctets_hi << 32) +
5690                  (uint64_t)stats->stat_IfHCOutBadOctets_lo;
5691
5692         sc->stat_IfHCInUcastPkts =
5693                 ((uint64_t)stats->stat_IfHCInUcastPkts_hi << 32) +
5694                  (uint64_t)stats->stat_IfHCInUcastPkts_lo;
5695
5696         sc->stat_IfHCInMulticastPkts =
5697                 ((uint64_t)stats->stat_IfHCInMulticastPkts_hi << 32) +
5698                  (uint64_t)stats->stat_IfHCInMulticastPkts_lo;
5699
5700         sc->stat_IfHCInBroadcastPkts =
5701                 ((uint64_t)stats->stat_IfHCInBroadcastPkts_hi << 32) +
5702                  (uint64_t)stats->stat_IfHCInBroadcastPkts_lo;
5703
5704         sc->stat_IfHCOutUcastPkts =
5705                 ((uint64_t)stats->stat_IfHCOutUcastPkts_hi << 32) +
5706                  (uint64_t)stats->stat_IfHCOutUcastPkts_lo;
5707
5708         sc->stat_IfHCOutMulticastPkts =
5709                 ((uint64_t)stats->stat_IfHCOutMulticastPkts_hi << 32) +
5710                  (uint64_t)stats->stat_IfHCOutMulticastPkts_lo;
5711
5712         sc->stat_IfHCOutBroadcastPkts =
5713                 ((uint64_t)stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5714                  (uint64_t)stats->stat_IfHCOutBroadcastPkts_lo;
5715
5716         sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5717                 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5718
5719         sc->stat_Dot3StatsCarrierSenseErrors =
5720                 stats->stat_Dot3StatsCarrierSenseErrors;
5721
5722         sc->stat_Dot3StatsFCSErrors =
5723                 stats->stat_Dot3StatsFCSErrors;
5724
5725         sc->stat_Dot3StatsAlignmentErrors =
5726                 stats->stat_Dot3StatsAlignmentErrors;
5727
5728         sc->stat_Dot3StatsSingleCollisionFrames =
5729                 stats->stat_Dot3StatsSingleCollisionFrames;
5730
5731         sc->stat_Dot3StatsMultipleCollisionFrames =
5732                 stats->stat_Dot3StatsMultipleCollisionFrames;
5733
5734         sc->stat_Dot3StatsDeferredTransmissions =
5735                 stats->stat_Dot3StatsDeferredTransmissions;
5736
5737         sc->stat_Dot3StatsExcessiveCollisions =
5738                 stats->stat_Dot3StatsExcessiveCollisions;
5739
5740         sc->stat_Dot3StatsLateCollisions =
5741                 stats->stat_Dot3StatsLateCollisions;
5742
5743         sc->stat_EtherStatsCollisions =
5744                 stats->stat_EtherStatsCollisions;
5745
5746         sc->stat_EtherStatsFragments =
5747                 stats->stat_EtherStatsFragments;
5748
5749         sc->stat_EtherStatsJabbers =
5750                 stats->stat_EtherStatsJabbers;
5751
5752         sc->stat_EtherStatsUndersizePkts =
5753                 stats->stat_EtherStatsUndersizePkts;
5754
5755         sc->stat_EtherStatsOverrsizePkts =
5756                 stats->stat_EtherStatsOverrsizePkts;
5757
5758         sc->stat_EtherStatsPktsRx64Octets =
5759                 stats->stat_EtherStatsPktsRx64Octets;
5760
5761         sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5762                 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5763
5764         sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5765                 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5766
5767         sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5768                 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5769
5770         sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5771                 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5772
5773         sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5774                 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5775
5776         sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5777                 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5778
5779         sc->stat_EtherStatsPktsTx64Octets =
5780                 stats->stat_EtherStatsPktsTx64Octets;
5781
5782         sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5783                 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5784
5785         sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5786                 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5787
5788         sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5789                 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5790
5791         sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5792                 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5793
5794         sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5795                 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5796
5797         sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5798                 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5799
5800         sc->stat_XonPauseFramesReceived =
5801                 stats->stat_XonPauseFramesReceived;
5802
5803         sc->stat_XoffPauseFramesReceived =
5804                 stats->stat_XoffPauseFramesReceived;
5805
5806         sc->stat_OutXonSent =
5807                 stats->stat_OutXonSent;
5808
5809         sc->stat_OutXoffSent =
5810                 stats->stat_OutXoffSent;
5811
5812         sc->stat_FlowControlDone =
5813                 stats->stat_FlowControlDone;
5814
5815         sc->stat_MacControlFramesReceived =
5816                 stats->stat_MacControlFramesReceived;
5817
5818         sc->stat_XoffStateEntered =
5819                 stats->stat_XoffStateEntered;
5820
5821         sc->stat_IfInFramesL2FilterDiscards =
5822                 stats->stat_IfInFramesL2FilterDiscards;
5823
5824         sc->stat_IfInRuleCheckerDiscards =
5825                 stats->stat_IfInRuleCheckerDiscards;
5826
5827         sc->stat_IfInFTQDiscards =
5828                 stats->stat_IfInFTQDiscards;
5829
5830         sc->stat_IfInMBUFDiscards =
5831                 stats->stat_IfInMBUFDiscards;
5832
5833         sc->stat_IfInRuleCheckerP4Hit =
5834                 stats->stat_IfInRuleCheckerP4Hit;
5835
5836         sc->stat_CatchupInRuleCheckerDiscards =
5837                 stats->stat_CatchupInRuleCheckerDiscards;
5838
5839         sc->stat_CatchupInFTQDiscards =
5840                 stats->stat_CatchupInFTQDiscards;
5841
5842         sc->stat_CatchupInMBUFDiscards =
5843                 stats->stat_CatchupInMBUFDiscards;
5844
5845         sc->stat_CatchupInRuleCheckerP4Hit =
5846                 stats->stat_CatchupInRuleCheckerP4Hit;
5847
5848         sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
5849
5850         /*
5851          * Update the interface statistics from the
5852          * hardware statistics.
5853          */
5854         IFNET_STAT_SET(ifp, collisions, (u_long)sc->stat_EtherStatsCollisions);
5855
5856         IFNET_STAT_SET(ifp, ierrors, (u_long)sc->stat_EtherStatsUndersizePkts +
5857             (u_long)sc->stat_EtherStatsOverrsizePkts +
5858             (u_long)sc->stat_IfInMBUFDiscards +
5859             (u_long)sc->stat_Dot3StatsAlignmentErrors +
5860             (u_long)sc->stat_Dot3StatsFCSErrors +
5861             (u_long)sc->stat_IfInRuleCheckerDiscards +
5862             (u_long)sc->stat_IfInFTQDiscards +
5863             (u_long)sc->com_no_buffers);
5864
5865         IFNET_STAT_SET(ifp, oerrors,
5866             (u_long)sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5867             (u_long)sc->stat_Dot3StatsExcessiveCollisions +
5868             (u_long)sc->stat_Dot3StatsLateCollisions);
5869 }
5870
5871 /****************************************************************************/
5872 /* Periodic function to notify the bootcode that the driver is still        */
5873 /* present.                                                                 */
5874 /*                                                                          */
5875 /* Returns:                                                                 */
5876 /*   Nothing.                                                               */
5877 /****************************************************************************/
5878 static void
5879 bce_pulse(void *xsc)
5880 {
5881         struct bce_softc *sc = xsc;
5882         struct ifnet *ifp = &sc->arpcom.ac_if;
5883         uint32_t msg;
5884
5885         lwkt_serialize_enter(&sc->main_serialize);
5886
5887         /* Tell the firmware that the driver is still running. */
5888         msg = (uint32_t)++sc->bce_fw_drv_pulse_wr_seq;
5889         bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
5890
5891         /* Update the bootcode condition. */
5892         sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
5893
5894         /* Report whether the bootcode still knows the driver is running. */
5895         if (!sc->bce_drv_cardiac_arrest) {
5896                 if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
5897                         sc->bce_drv_cardiac_arrest = 1;
5898                         if_printf(ifp, "Bootcode lost the driver pulse! "
5899                             "(bc_state = 0x%08X)\n", sc->bc_state);
5900                 }
5901         } else {
5902                 /*
5903                  * Not supported by all bootcode versions.
5904                  * (v5.0.11+ and v5.2.1+)  Older bootcode
5905                  * will require the driver to reset the
5906                  * controller to clear this condition.
5907                  */
5908                 if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
5909                         sc->bce_drv_cardiac_arrest = 0;
5910                         if_printf(ifp, "Bootcode found the driver pulse! "
5911                             "(bc_state = 0x%08X)\n", sc->bc_state);
5912                 }
5913         }
5914
5915         /* Schedule the next pulse. */
5916         callout_reset_bycpu(&sc->bce_pulse_callout, hz, bce_pulse, sc,
5917             sc->bce_timer_cpuid);
5918
5919         lwkt_serialize_exit(&sc->main_serialize);
5920 }
5921
5922 /****************************************************************************/
5923 /* Periodic function to check whether MSI is lost                           */
5924 /*                                                                          */
5925 /* Returns:                                                                 */
5926 /*   Nothing.                                                               */
5927 /****************************************************************************/
5928 static void
5929 bce_check_msi(void *xsc)
5930 {
5931         struct bce_softc *sc = xsc;
5932         struct ifnet *ifp = &sc->arpcom.ac_if;
5933         struct status_block *sblk = sc->status_block;
5934         struct bce_tx_ring *txr = &sc->tx_rings[0];
5935         struct bce_rx_ring *rxr = &sc->rx_rings[0];
5936
5937         lwkt_serialize_enter(&sc->main_serialize);
5938
5939         KKASSERT(mycpuid == sc->bce_msix[0].msix_cpuid);
5940
5941         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
5942                 lwkt_serialize_exit(&sc->main_serialize);
5943                 return;
5944         }
5945
5946         if (bce_get_hw_rx_cons(rxr) != rxr->rx_cons ||
5947             bce_get_hw_tx_cons(txr) != txr->tx_cons ||
5948             (sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5949             (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5950                 if (sc->bce_check_rx_cons == rxr->rx_cons &&
5951                     sc->bce_check_tx_cons == txr->tx_cons &&
5952                     sc->bce_check_status_idx == rxr->last_status_idx) {
5953                         uint32_t msi_ctrl;
5954
5955                         if (!sc->bce_msi_maylose) {
5956                                 sc->bce_msi_maylose = TRUE;
5957                                 goto done;
5958                         }
5959
5960                         msi_ctrl = REG_RD(sc, BCE_PCICFG_MSI_CONTROL);
5961                         if (msi_ctrl & BCE_PCICFG_MSI_CONTROL_ENABLE) {
5962                                 if (bootverbose)
5963                                         if_printf(ifp, "lost MSI\n");
5964
5965                                 REG_WR(sc, BCE_PCICFG_MSI_CONTROL,
5966                                     msi_ctrl & ~BCE_PCICFG_MSI_CONTROL_ENABLE);
5967                                 REG_WR(sc, BCE_PCICFG_MSI_CONTROL, msi_ctrl);
5968
5969                                 bce_intr_msi(sc);
5970                         } else if (bootverbose) {
5971                                 if_printf(ifp, "MSI may be lost\n");
5972                         }
5973                 }
5974         }
5975         sc->bce_msi_maylose = FALSE;
5976         sc->bce_check_rx_cons = rxr->rx_cons;
5977         sc->bce_check_tx_cons = txr->tx_cons;
5978         sc->bce_check_status_idx = rxr->last_status_idx;
5979
5980 done:
5981         callout_reset(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL,
5982             bce_check_msi, sc);
5983         lwkt_serialize_exit(&sc->main_serialize);
5984 }
5985
5986 /****************************************************************************/
5987 /* Periodic function to perform maintenance tasks.                          */
5988 /*                                                                          */
5989 /* Returns:                                                                 */
5990 /*   Nothing.                                                               */
5991 /****************************************************************************/
5992 static void
5993 bce_tick_serialized(struct bce_softc *sc)
5994 {
5995         struct mii_data *mii;
5996
5997         ASSERT_SERIALIZED(&sc->main_serialize);
5998
5999         /* Update the statistics from the hardware statistics block. */
6000         bce_stats_update(sc);
6001
6002         /* Schedule the next tick. */
6003         callout_reset_bycpu(&sc->bce_tick_callout, hz, bce_tick, sc,
6004             sc->bce_timer_cpuid);
6005
6006         /* If link is up already up then we're done. */
6007         if (sc->bce_link)
6008                 return;
6009
6010         mii = device_get_softc(sc->bce_miibus);
6011         mii_tick(mii);
6012
6013         /* Check if the link has come up. */
6014         if ((mii->mii_media_status & IFM_ACTIVE) &&
6015             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6016                 int i;
6017
6018                 sc->bce_link++;
6019                 /* Now that link is up, handle any outstanding TX traffic. */
6020                 for (i = 0; i < sc->tx_ring_cnt; ++i)
6021                         ifsq_devstart_sched(sc->tx_rings[i].ifsq);
6022         }
6023 }
6024
6025 static void
6026 bce_tick(void *xsc)
6027 {
6028         struct bce_softc *sc = xsc;
6029
6030         lwkt_serialize_enter(&sc->main_serialize);
6031         bce_tick_serialized(sc);
6032         lwkt_serialize_exit(&sc->main_serialize);
6033 }
6034
6035 /****************************************************************************/
6036 /* Adds any sysctl parameters for tuning or debugging purposes.             */
6037 /*                                                                          */
6038 /* Returns:                                                                 */
6039 /*   0 for success, positive value for failure.                             */
6040 /****************************************************************************/
6041 static void
6042 bce_add_sysctls(struct bce_softc *sc)
6043 {
6044         struct sysctl_ctx_list *ctx;
6045         struct sysctl_oid_list *children;
6046 #if defined(BCE_TSS_DEBUG) || defined(BCE_RSS_DEBUG)
6047         char node[32];
6048         int i;
6049 #endif
6050
6051         sysctl_ctx_init(&sc->bce_sysctl_ctx);
6052         sc->bce_sysctl_tree = SYSCTL_ADD_NODE(&sc->bce_sysctl_ctx,
6053                                               SYSCTL_STATIC_CHILDREN(_hw),
6054                                               OID_AUTO,
6055                                               device_get_nameunit(sc->bce_dev),
6056                                               CTLFLAG_RD, 0, "");
6057         if (sc->bce_sysctl_tree == NULL) {
6058                 device_printf(sc->bce_dev, "can't add sysctl node\n");
6059                 return;
6060         }
6061
6062         ctx = &sc->bce_sysctl_ctx;
6063         children = SYSCTL_CHILDREN(sc->bce_sysctl_tree);
6064
6065         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds_int",
6066                         CTLTYPE_INT | CTLFLAG_RW,
6067                         sc, 0, bce_sysctl_tx_bds_int, "I",
6068                         "Send max coalesced BD count during interrupt");
6069         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds",
6070                         CTLTYPE_INT | CTLFLAG_RW,
6071                         sc, 0, bce_sysctl_tx_bds, "I",
6072                         "Send max coalesced BD count");
6073         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks_int",
6074                         CTLTYPE_INT | CTLFLAG_RW,
6075                         sc, 0, bce_sysctl_tx_ticks_int, "I",
6076                         "Send coalescing ticks during interrupt");
6077         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks",
6078                         CTLTYPE_INT | CTLFLAG_RW,
6079                         sc, 0, bce_sysctl_tx_ticks, "I",
6080                         "Send coalescing ticks");
6081
6082         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds_int",
6083                         CTLTYPE_INT | CTLFLAG_RW,
6084                         sc, 0, bce_sysctl_rx_bds_int, "I",
6085                         "Receive max coalesced BD count during interrupt");
6086         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds",
6087                         CTLTYPE_INT | CTLFLAG_RW,
6088                         sc, 0, bce_sysctl_rx_bds, "I",
6089                         "Receive max coalesced BD count");
6090         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks_int",
6091                         CTLTYPE_INT | CTLFLAG_RW,
6092                         sc, 0, bce_sysctl_rx_ticks_int, "I",
6093                         "Receive coalescing ticks during interrupt");
6094         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks",
6095                         CTLTYPE_INT | CTLFLAG_RW,
6096                         sc, 0, bce_sysctl_rx_ticks, "I",
6097                         "Receive coalescing ticks");
6098
6099         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_rings",
6100                 CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
6101         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_pages",
6102                 CTLFLAG_RD, &sc->rx_rings[0].rx_pages, 0, "# of RX pages");
6103
6104         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_rings",
6105                 CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
6106         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_pages",
6107                 CTLFLAG_RD, &sc->tx_rings[0].tx_pages, 0, "# of TX pages");
6108
6109         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_wreg",
6110                 CTLFLAG_RW, &sc->tx_rings[0].tx_wreg, 0,
6111                 "# segments before write to hardware registers");
6112
6113 #ifdef IFPOLL_ENABLE
6114         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "npoll_offset",
6115             CTLTYPE_INT|CTLFLAG_RW, sc, 0, bce_sysctl_npoll_offset,
6116             "I", "NPOLLING cpu offset");
6117 #endif
6118
6119 #ifdef BCE_RSS_DEBUG
6120         SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rss_debug",
6121             CTLFLAG_RW, &sc->rss_debug, 0, "RSS debug level");
6122         for (i = 0; i < sc->rx_ring_cnt; ++i) {
6123                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
6124                 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, node,
6125                     CTLFLAG_RW, &sc->rx_rings[i].rx_pkts,
6126                     "RXed packets");
6127         }
6128 #endif
6129
6130 #ifdef BCE_TSS_DEBUG
6131         for (i = 0; i < sc->tx_ring_cnt; ++i) {
6132                 ksnprintf(node, sizeof(node), "tx%d_pkt", i);
6133                 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, node,
6134                     CTLFLAG_RW, &sc->tx_rings[i].tx_pkts,
6135                     "TXed packets");
6136         }
6137 #endif
6138
6139         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6140                 "stat_IfHCInOctets",
6141                 CTLFLAG_RD, &sc->stat_IfHCInOctets,
6142                 "Bytes received");
6143
6144         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6145                 "stat_IfHCInBadOctets",
6146                 CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
6147                 "Bad bytes received");
6148
6149         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6150                 "stat_IfHCOutOctets",
6151                 CTLFLAG_RD, &sc->stat_IfHCOutOctets,
6152                 "Bytes sent");
6153
6154         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6155                 "stat_IfHCOutBadOctets",
6156                 CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
6157                 "Bad bytes sent");
6158
6159         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6160                 "stat_IfHCInUcastPkts",
6161                 CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
6162                 "Unicast packets received");
6163
6164         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6165                 "stat_IfHCInMulticastPkts",
6166                 CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
6167                 "Multicast packets received");
6168
6169         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6170                 "stat_IfHCInBroadcastPkts",
6171                 CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
6172                 "Broadcast packets received");
6173
6174         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6175                 "stat_IfHCOutUcastPkts",
6176                 CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
6177                 "Unicast packets sent");
6178
6179         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6180                 "stat_IfHCOutMulticastPkts",
6181                 CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
6182                 "Multicast packets sent");
6183
6184         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, 
6185                 "stat_IfHCOutBroadcastPkts",
6186                 CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
6187                 "Broadcast packets sent");
6188
6189         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6190                 "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
6191                 CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
6192                 0, "Internal MAC transmit errors");
6193
6194         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6195                 "stat_Dot3StatsCarrierSenseErrors",
6196                 CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
6197                 0, "Carrier sense errors");
6198
6199         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6200                 "stat_Dot3StatsFCSErrors",
6201                 CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
6202                 0, "Frame check sequence errors");
6203
6204         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6205                 "stat_Dot3StatsAlignmentErrors",
6206                 CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
6207                 0, "Alignment errors");
6208
6209         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6210                 "stat_Dot3StatsSingleCollisionFrames",
6211                 CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
6212                 0, "Single Collision Frames");
6213
6214         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6215                 "stat_Dot3StatsMultipleCollisionFrames",
6216                 CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
6217                 0, "Multiple Collision Frames");
6218
6219         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6220                 "stat_Dot3StatsDeferredTransmissions",
6221                 CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
6222                 0, "Deferred Transmissions");
6223
6224         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6225                 "stat_Dot3StatsExcessiveCollisions",
6226                 CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
6227                 0, "Excessive Collisions");
6228
6229         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6230                 "stat_Dot3StatsLateCollisions",
6231                 CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
6232                 0, "Late Collisions");
6233
6234         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6235                 "stat_EtherStatsCollisions",
6236                 CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
6237                 0, "Collisions");
6238
6239         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6240                 "stat_EtherStatsFragments",
6241                 CTLFLAG_RD, &sc->stat_EtherStatsFragments,
6242                 0, "Fragments");
6243
6244         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6245                 "stat_EtherStatsJabbers",
6246                 CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
6247                 0, "Jabbers");
6248
6249         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6250                 "stat_EtherStatsUndersizePkts",
6251                 CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
6252                 0, "Undersize packets");
6253
6254         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6255                 "stat_EtherStatsOverrsizePkts",
6256                 CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
6257                 0, "stat_EtherStatsOverrsizePkts");
6258
6259         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6260                 "stat_EtherStatsPktsRx64Octets",
6261                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
6262                 0, "Bytes received in 64 byte packets");
6263
6264         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6265                 "stat_EtherStatsPktsRx65Octetsto127Octets",
6266                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
6267                 0, "Bytes received in 65 to 127 byte packets");
6268
6269         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6270                 "stat_EtherStatsPktsRx128Octetsto255Octets",
6271                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
6272                 0, "Bytes received in 128 to 255 byte packets");
6273
6274         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6275                 "stat_EtherStatsPktsRx256Octetsto511Octets",
6276                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
6277                 0, "Bytes received in 256 to 511 byte packets");
6278
6279         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6280                 "stat_EtherStatsPktsRx512Octetsto1023Octets",
6281                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
6282                 0, "Bytes received in 512 to 1023 byte packets");
6283
6284         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6285                 "stat_EtherStatsPktsRx1024Octetsto1522Octets",
6286                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
6287                 0, "Bytes received in 1024 t0 1522 byte packets");
6288
6289         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6290                 "stat_EtherStatsPktsRx1523Octetsto9022Octets",
6291                 CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
6292                 0, "Bytes received in 1523 to 9022 byte packets");
6293
6294         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6295                 "stat_EtherStatsPktsTx64Octets",
6296                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
6297                 0, "Bytes sent in 64 byte packets");
6298
6299         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6300                 "stat_EtherStatsPktsTx65Octetsto127Octets",
6301                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
6302                 0, "Bytes sent in 65 to 127 byte packets");
6303
6304         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6305                 "stat_EtherStatsPktsTx128Octetsto255Octets",
6306                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
6307                 0, "Bytes sent in 128 to 255 byte packets");
6308
6309         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6310                 "stat_EtherStatsPktsTx256Octetsto511Octets",
6311                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
6312                 0, "Bytes sent in 256 to 511 byte packets");
6313
6314         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6315                 "stat_EtherStatsPktsTx512Octetsto1023Octets",
6316                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
6317                 0, "Bytes sent in 512 to 1023 byte packets");
6318
6319         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6320                 "stat_EtherStatsPktsTx1024Octetsto1522Octets",
6321                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
6322                 0, "Bytes sent in 1024 to 1522 byte packets");
6323
6324         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6325                 "stat_EtherStatsPktsTx1523Octetsto9022Octets",
6326                 CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
6327                 0, "Bytes sent in 1523 to 9022 byte packets");
6328
6329         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6330                 "stat_XonPauseFramesReceived",
6331                 CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
6332                 0, "XON pause frames receved");
6333
6334         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6335                 "stat_XoffPauseFramesReceived",
6336                 CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
6337                 0, "XOFF pause frames received");
6338
6339         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6340                 "stat_OutXonSent",
6341                 CTLFLAG_RD, &sc->stat_OutXonSent,
6342                 0, "XON pause frames sent");
6343
6344         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6345                 "stat_OutXoffSent",
6346                 CTLFLAG_RD, &sc->stat_OutXoffSent,
6347                 0, "XOFF pause frames sent");
6348
6349         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6350                 "stat_FlowControlDone",
6351                 CTLFLAG_RD, &sc->stat_FlowControlDone,
6352                 0, "Flow control done");
6353
6354         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6355                 "stat_MacControlFramesReceived",
6356                 CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
6357                 0, "MAC control frames received");
6358
6359         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6360                 "stat_XoffStateEntered",
6361                 CTLFLAG_RD, &sc->stat_XoffStateEntered,
6362                 0, "XOFF state entered");
6363
6364         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6365                 "stat_IfInFramesL2FilterDiscards",
6366                 CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
6367                 0, "Received L2 packets discarded");
6368
6369         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6370                 "stat_IfInRuleCheckerDiscards",
6371                 CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
6372                 0, "Received packets discarded by rule");
6373
6374         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6375                 "stat_IfInFTQDiscards",
6376                 CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
6377                 0, "Received packet FTQ discards");
6378
6379         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6380                 "stat_IfInMBUFDiscards",
6381                 CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
6382                 0, "Received packets discarded due to lack of controller buffer memory");
6383
6384         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6385                 "stat_IfInRuleCheckerP4Hit",
6386                 CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
6387                 0, "Received packets rule checker hits");
6388
6389         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6390                 "stat_CatchupInRuleCheckerDiscards",
6391                 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
6392                 0, "Received packets discarded in Catchup path");
6393
6394         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6395                 "stat_CatchupInFTQDiscards",
6396                 CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
6397                 0, "Received packets discarded in FTQ in Catchup path");
6398
6399         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6400                 "stat_CatchupInMBUFDiscards",
6401                 CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
6402                 0, "Received packets discarded in controller buffer memory in Catchup path");
6403
6404         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6405                 "stat_CatchupInRuleCheckerP4Hit",
6406                 CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
6407                 0, "Received packets rule checker hits in Catchup path");
6408
6409         SYSCTL_ADD_UINT(ctx, children, OID_AUTO, 
6410                 "com_no_buffers",
6411                 CTLFLAG_RD, &sc->com_no_buffers,
6412                 0, "Valid packets received but no RX buffers available");
6413 }
6414
6415 static int
6416 bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS)
6417 {
6418         struct bce_softc *sc = arg1;
6419
6420         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6421                         &sc->bce_tx_quick_cons_trip_int,
6422                         BCE_COALMASK_TX_BDS_INT);
6423 }
6424
6425 static int
6426 bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS)
6427 {
6428         struct bce_softc *sc = arg1;
6429
6430         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6431                         &sc->bce_tx_quick_cons_trip,
6432                         BCE_COALMASK_TX_BDS);
6433 }
6434
6435 static int
6436 bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS)
6437 {
6438         struct bce_softc *sc = arg1;
6439
6440         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6441                         &sc->bce_tx_ticks_int,
6442                         BCE_COALMASK_TX_TICKS_INT);
6443 }
6444
6445 static int
6446 bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS)
6447 {
6448         struct bce_softc *sc = arg1;
6449
6450         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6451                         &sc->bce_tx_ticks,
6452                         BCE_COALMASK_TX_TICKS);
6453 }
6454
6455 static int
6456 bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS)
6457 {
6458         struct bce_softc *sc = arg1;
6459
6460         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6461                         &sc->bce_rx_quick_cons_trip_int,
6462                         BCE_COALMASK_RX_BDS_INT);
6463 }
6464
6465 static int
6466 bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS)
6467 {
6468         struct bce_softc *sc = arg1;
6469
6470         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6471                         &sc->bce_rx_quick_cons_trip,
6472                         BCE_COALMASK_RX_BDS);
6473 }
6474
6475 static int
6476 bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS)
6477 {
6478         struct bce_softc *sc = arg1;
6479
6480         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6481                         &sc->bce_rx_ticks_int,
6482                         BCE_COALMASK_RX_TICKS_INT);
6483 }
6484
6485 static int
6486 bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS)
6487 {
6488         struct bce_softc *sc = arg1;
6489
6490         return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6491                         &sc->bce_rx_ticks,
6492                         BCE_COALMASK_RX_TICKS);
6493 }
6494
6495 static int
6496 bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS, uint32_t *coal,
6497     uint32_t coalchg_mask)
6498 {
6499         struct bce_softc *sc = arg1;
6500         struct ifnet *ifp = &sc->arpcom.ac_if;
6501         int error = 0, v;
6502
6503         ifnet_serialize_all(ifp);
6504
6505         v = *coal;
6506         error = sysctl_handle_int(oidp, &v, 0, req);
6507         if (!error && req->newptr != NULL) {
6508                 if (v < 0) {
6509                         error = EINVAL;
6510                 } else {
6511                         *coal = v;
6512                         sc->bce_coalchg_mask |= coalchg_mask;
6513
6514                         /* Commit changes */
6515                         bce_coal_change(sc);
6516                 }
6517         }
6518
6519         ifnet_deserialize_all(ifp);
6520         return error;
6521 }
6522
6523 static void
6524 bce_coal_change(struct bce_softc *sc)
6525 {
6526         struct ifnet *ifp = &sc->arpcom.ac_if;
6527         int i;
6528
6529         ASSERT_SERIALIZED(&sc->main_serialize);
6530
6531         if ((ifp->if_flags & IFF_RUNNING) == 0) {
6532                 sc->bce_coalchg_mask = 0;
6533                 return;
6534         }
6535
6536         if (sc->bce_coalchg_mask &
6537             (BCE_COALMASK_TX_BDS | BCE_COALMASK_TX_BDS_INT)) {
6538                 REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
6539                        (sc->bce_tx_quick_cons_trip_int << 16) |
6540                        sc->bce_tx_quick_cons_trip);
6541                 for (i = 1; i < sc->rx_ring_cnt; ++i) {
6542                         uint32_t base;
6543
6544                         base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) +
6545                             BCE_HC_SB_CONFIG_1;
6546                         REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
6547                             (sc->bce_tx_quick_cons_trip_int << 16) |
6548                             sc->bce_tx_quick_cons_trip);
6549                 }
6550                 if (bootverbose) {
6551                         if_printf(ifp, "tx_bds %u, tx_bds_int %u\n",
6552                                   sc->bce_tx_quick_cons_trip,
6553                                   sc->bce_tx_quick_cons_trip_int);
6554                 }
6555         }
6556
6557         if (sc->bce_coalchg_mask &
6558             (BCE_COALMASK_TX_TICKS | BCE_COALMASK_TX_TICKS_INT)) {
6559                 REG_WR(sc, BCE_HC_TX_TICKS,
6560                        (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
6561                 for (i = 1; i < sc->rx_ring_cnt; ++i) {
6562                         uint32_t base;
6563
6564                         base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) +
6565                             BCE_HC_SB_CONFIG_1;
6566                         REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
6567                             (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
6568                 }
6569                 if (bootverbose) {
6570                         if_printf(ifp, "tx_ticks %u, tx_ticks_int %u\n",
6571                                   sc->bce_tx_ticks, sc->bce_tx_ticks_int);
6572                 }
6573         }
6574
6575         if (sc->bce_coalchg_mask &
6576             (BCE_COALMASK_RX_BDS | BCE_COALMASK_RX_BDS_INT)) {
6577                 REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
6578                        (sc->bce_rx_quick_cons_trip_int << 16) |
6579                        sc->bce_rx_quick_cons_trip);
6580                 for (i = 1; i < sc->rx_ring_cnt; ++i) {
6581                         uint32_t base;
6582
6583                         base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) +
6584                             BCE_HC_SB_CONFIG_1;
6585                         REG_WR(sc, base + BCE_HC_RX_QUICK_CONS_TRIP_OFF,
6586                             (sc->bce_rx_quick_cons_trip_int << 16) |
6587                             sc->bce_rx_quick_cons_trip);
6588                 }
6589                 if (bootverbose) {
6590                         if_printf(ifp, "rx_bds %u, rx_bds_int %u\n",
6591                                   sc->bce_rx_quick_cons_trip,
6592                                   sc->bce_rx_quick_cons_trip_int);
6593                 }
6594         }
6595
6596         if (sc->bce_coalchg_mask &
6597             (BCE_COALMASK_RX_TICKS | BCE_COALMASK_RX_TICKS_INT)) {
6598                 REG_WR(sc, BCE_HC_RX_TICKS,
6599                        (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
6600                 for (i = 1; i < sc->rx_ring_cnt; ++i) {
6601                         uint32_t base;
6602
6603                         base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) +
6604                             BCE_HC_SB_CONFIG_1;
6605                         REG_WR(sc, base + BCE_HC_RX_TICKS_OFF,
6606                             (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
6607                 }
6608                 if (bootverbose) {
6609                         if_printf(ifp, "rx_ticks %u, rx_ticks_int %u\n",
6610                                   sc->bce_rx_ticks, sc->bce_rx_ticks_int);
6611                 }
6612         }
6613
6614         sc->bce_coalchg_mask = 0;
6615 }
6616
6617 static int
6618 bce_tso_setup(struct bce_tx_ring *txr, struct mbuf **mp,
6619     uint16_t *flags0, uint16_t *mss0)
6620 {
6621         struct mbuf *m;
6622         uint16_t flags;
6623         int thoff, iphlen, hoff;
6624
6625         m = *mp;
6626         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
6627
6628         hoff = m->m_pkthdr.csum_lhlen;
6629         iphlen = m->m_pkthdr.csum_iphlen;
6630         thoff = m->m_pkthdr.csum_thlen;
6631
6632         KASSERT(hoff >= sizeof(struct ether_header),
6633             ("invalid ether header len %d", hoff));
6634         KASSERT(iphlen >= sizeof(struct ip),
6635             ("invalid ip header len %d", iphlen));
6636         KASSERT(thoff >= sizeof(struct tcphdr),
6637             ("invalid tcp header len %d", thoff));
6638
6639         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
6640                 m = m_pullup(m, hoff + iphlen + thoff);
6641                 if (m == NULL) {
6642                         *mp = NULL;
6643                         return ENOBUFS;
6644                 }
6645                 *mp = m;
6646         }
6647
6648         /* Set the LSO flag in the TX BD */
6649         flags = TX_BD_FLAGS_SW_LSO;
6650
6651         /* Set the length of IP + TCP options (in 32 bit words) */
6652         flags |= (((iphlen + thoff -
6653             sizeof(struct ip) - sizeof(struct tcphdr)) >> 2) << 8);
6654
6655         *mss0 = htole16(m->m_pkthdr.tso_segsz);
6656         *flags0 = flags;
6657
6658         return 0;
6659 }
6660
6661 static void
6662 bce_setup_serialize(struct bce_softc *sc)
6663 {
6664         int i, j;
6665
6666         /*
6667          * Allocate serializer array
6668          */
6669
6670         /* Main + TX + RX */
6671         sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
6672
6673         sc->serializes =
6674             kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
6675                 M_DEVBUF, M_WAITOK | M_ZERO);
6676
6677         /*
6678          * Setup serializers
6679          *
6680          * NOTE: Order is critical
6681          */
6682
6683         i = 0;
6684         KKASSERT(i < sc->serialize_cnt);
6685         sc->serializes[i++] = &sc->main_serialize;
6686
6687         sc->rx_serialize = i;
6688         for (j = 0; j < sc->rx_ring_cnt; ++j) {
6689                 KKASSERT(i < sc->serialize_cnt);
6690                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
6691         }
6692
6693         sc->tx_serialize = i;
6694         for (j = 0; j < sc->tx_ring_cnt; ++j) {
6695                 KKASSERT(i < sc->serialize_cnt);
6696                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
6697         }
6698
6699         KKASSERT(i == sc->serialize_cnt);
6700 }
6701
6702 static void
6703 bce_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
6704 {
6705         struct bce_softc *sc = ifp->if_softc;
6706
6707         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
6708             sc->tx_serialize, sc->rx_serialize, slz);
6709 }
6710
6711 static void
6712 bce_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
6713 {
6714         struct bce_softc *sc = ifp->if_softc;
6715
6716         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
6717             sc->tx_serialize, sc->rx_serialize, slz);
6718 }
6719
6720 static int
6721 bce_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
6722 {
6723         struct bce_softc *sc = ifp->if_softc;
6724
6725         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
6726             sc->tx_serialize, sc->rx_serialize, slz);
6727 }
6728
6729 #ifdef INVARIANTS
6730
6731 static void
6732 bce_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
6733     boolean_t serialized)
6734 {
6735         struct bce_softc *sc = ifp->if_softc;
6736
6737         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
6738             sc->tx_serialize, sc->rx_serialize, slz, serialized);
6739 }
6740
6741 #endif  /* INVARIANTS */
6742
6743 static void
6744 bce_serialize_skipmain(struct bce_softc *sc)
6745 {
6746         lwkt_serialize_array_enter(sc->serializes, sc->serialize_cnt, 1);
6747 }
6748
6749 static void
6750 bce_deserialize_skipmain(struct bce_softc *sc)
6751 {
6752         lwkt_serialize_array_exit(sc->serializes, sc->serialize_cnt, 1);
6753 }
6754
6755 #ifdef IFPOLL_ENABLE
6756
6757 static int
6758 bce_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS)
6759 {
6760         struct bce_softc *sc = (void *)arg1;
6761         struct ifnet *ifp = &sc->arpcom.ac_if;
6762         int error, off;
6763
6764         off = sc->npoll_ofs;
6765         error = sysctl_handle_int(oidp, &off, 0, req);
6766         if (error || req->newptr == NULL)
6767                 return error;
6768         if (off < 0)
6769                 return EINVAL;
6770
6771         ifnet_serialize_all(ifp);
6772         if (off >= ncpus2 || off % sc->rx_ring_cnt2 != 0) {
6773                 error = EINVAL;
6774         } else {
6775                 error = 0;
6776                 sc->npoll_ofs = off;
6777         }
6778         ifnet_deserialize_all(ifp);
6779
6780         return error;
6781 }
6782
6783 #endif  /* IFPOLL_ENABLE */
6784
6785 static void
6786 bce_set_timer_cpuid(struct bce_softc *sc, boolean_t polling)
6787 {
6788         if (polling)
6789                 sc->bce_timer_cpuid = 0; /* XXX */
6790         else
6791                 sc->bce_timer_cpuid = sc->bce_msix[0].msix_cpuid;
6792 }
6793
6794 static int
6795 bce_alloc_intr(struct bce_softc *sc)
6796 {
6797         u_int irq_flags;
6798
6799         bce_try_alloc_msix(sc);
6800         if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX)
6801                 return 0;
6802
6803         sc->bce_irq_type = pci_alloc_1intr(sc->bce_dev, bce_msi_enable,
6804             &sc->bce_irq_rid, &irq_flags);
6805
6806         sc->bce_res_irq = bus_alloc_resource_any(sc->bce_dev, SYS_RES_IRQ,
6807             &sc->bce_irq_rid, irq_flags);
6808         if (sc->bce_res_irq == NULL) {
6809                 device_printf(sc->bce_dev, "PCI map interrupt failed\n");
6810                 return ENXIO;
6811         }
6812         sc->bce_msix[0].msix_cpuid = rman_get_cpuid(sc->bce_res_irq);
6813         sc->bce_msix[0].msix_serialize = &sc->main_serialize;
6814
6815         return 0;
6816 }
6817
6818 static void
6819 bce_try_alloc_msix(struct bce_softc *sc)
6820 {
6821         struct bce_msix_data *msix;
6822         int offset, i, error;
6823         boolean_t setup = FALSE;
6824
6825         if (sc->rx_ring_cnt == 1)
6826                 return;
6827
6828         if (sc->rx_ring_cnt2 == ncpus2) {
6829                 offset = 0;
6830         } else {
6831                 int offset_def =
6832                     (sc->rx_ring_cnt2 * device_get_unit(sc->bce_dev)) % ncpus2;
6833
6834                 offset = device_getenv_int(sc->bce_dev,
6835                     "msix.offset", offset_def);
6836                 if (offset >= ncpus2 || offset % sc->rx_ring_cnt2 != 0) {
6837                         device_printf(sc->bce_dev,
6838                             "invalid msix.offset %d, use %d\n",
6839                             offset, offset_def);
6840                         offset = offset_def;
6841                 }
6842         }
6843
6844         msix = &sc->bce_msix[0];
6845         msix->msix_serialize = &sc->main_serialize;
6846         msix->msix_func = bce_intr_msi_oneshot;
6847         msix->msix_arg = sc;
6848         KKASSERT(offset < ncpus2);
6849         msix->msix_cpuid = offset;
6850         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s combo",
6851             device_get_nameunit(sc->bce_dev));
6852
6853         for (i = 1; i < sc->rx_ring_cnt; ++i) {
6854                 struct bce_rx_ring *rxr = &sc->rx_rings[i];
6855
6856                 msix = &sc->bce_msix[i];
6857
6858                 msix->msix_serialize = &rxr->rx_serialize;
6859                 msix->msix_arg = rxr;
6860                 msix->msix_cpuid = offset + (i % sc->rx_ring_cnt2);
6861                 KKASSERT(msix->msix_cpuid < ncpus2);
6862
6863                 if (i < sc->tx_ring_cnt) {
6864                         msix->msix_func = bce_intr_msix_rxtx;
6865                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
6866                             "%s rxtx%d", device_get_nameunit(sc->bce_dev), i);
6867                 } else {
6868                         msix->msix_func = bce_intr_msix_rx;
6869                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
6870                             "%s rx%d", device_get_nameunit(sc->bce_dev), i);
6871                 }
6872         }
6873
6874         /*
6875          * Setup MSI-X table
6876          */
6877         bce_setup_msix_table(sc);
6878         REG_WR(sc, BCE_PCI_MSIX_CONTROL, BCE_MSIX_MAX - 1);
6879         REG_WR(sc, BCE_PCI_MSIX_TBL_OFF_BIR, BCE_PCI_GRC_WINDOW2_BASE);
6880         REG_WR(sc, BCE_PCI_MSIX_PBA_OFF_BIT, BCE_PCI_GRC_WINDOW3_BASE);
6881         /* Flush */
6882         REG_RD(sc, BCE_PCI_MSIX_CONTROL);
6883
6884         error = pci_setup_msix(sc->bce_dev);
6885         if (error) {
6886                 device_printf(sc->bce_dev, "Setup MSI-X failed\n");
6887                 goto back;
6888         }
6889         setup = TRUE;
6890
6891         for (i = 0; i < sc->rx_ring_cnt; ++i) {
6892                 msix = &sc->bce_msix[i];
6893
6894                 error = pci_alloc_msix_vector(sc->bce_dev, i, &msix->msix_rid,
6895                     msix->msix_cpuid);
6896                 if (error) {
6897                         device_printf(sc->bce_dev,
6898                             "Unable to allocate MSI-X %d on cpu%d\n",
6899                             i, msix->msix_cpuid);
6900                         goto back;
6901                 }
6902
6903                 msix->msix_res = bus_alloc_resource_any(sc->bce_dev,
6904                     SYS_RES_IRQ, &msix->msix_rid, RF_ACTIVE);
6905                 if (msix->msix_res == NULL) {
6906                         device_printf(sc->bce_dev,
6907                             "Unable to allocate MSI-X %d resource\n", i);
6908                         error = ENOMEM;
6909                         goto back;
6910                 }
6911         }
6912
6913         pci_enable_msix(sc->bce_dev);
6914         sc->bce_irq_type = PCI_INTR_TYPE_MSIX;
6915 back:
6916         if (error)
6917                 bce_free_msix(sc, setup);
6918 }
6919
6920 static void
6921 bce_setup_ring_cnt(struct bce_softc *sc)
6922 {
6923         int msix_enable, ring_max, msix_cnt2, msix_cnt, i;
6924
6925         sc->rx_ring_cnt = 1;
6926         sc->rx_ring_cnt2 = 1;
6927         sc->tx_ring_cnt = 1;
6928
6929         if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5709)
6930                 return;
6931
6932         msix_enable = device_getenv_int(sc->bce_dev, "msix.enable",
6933             bce_msix_enable);
6934         if (!msix_enable)
6935                 return;
6936
6937         if (ncpus2 == 1)
6938                 return;
6939
6940         msix_cnt = pci_msix_count(sc->bce_dev);
6941         if (msix_cnt <= 1)
6942                 return;
6943
6944         i = 0;
6945         while ((1 << (i + 1)) <= msix_cnt)
6946                 ++i;
6947         msix_cnt2 = 1 << i;
6948
6949         /*
6950          * One extra RX ring will be needed (see below), so make sure
6951          * that there are enough MSI-X vectors.
6952          */
6953         if (msix_cnt == msix_cnt2) {
6954                 /*
6955                  * XXX
6956                  * This probably will not happen; 5709/5716
6957                  * come with 9 MSI-X vectors.
6958                  */
6959                 msix_cnt2 >>= 1;
6960                 if (msix_cnt2 <= 1) {
6961                         device_printf(sc->bce_dev,
6962                             "MSI-X count %d could not be used\n", msix_cnt);
6963                         return;
6964                 }
6965                 device_printf(sc->bce_dev, "MSI-X count %d is power of 2\n",
6966                     msix_cnt);
6967         }
6968
6969         /*
6970          * Setup RX ring count
6971          */
6972         ring_max = BCE_RX_RING_MAX;
6973         if (ring_max > msix_cnt2)
6974                 ring_max = msix_cnt2;
6975         sc->rx_ring_cnt2 = device_getenv_int(sc->bce_dev, "rx_rings",
6976             bce_rx_rings);
6977         sc->rx_ring_cnt2 = if_ring_count2(sc->rx_ring_cnt2, ring_max);
6978
6979         /*
6980          * One extra RX ring is allocated, since the first RX ring
6981          * could not be used for RSS hashed packets whose masked
6982          * hash is 0.  The first RX ring is only used for packets
6983          * whose RSS hash could not be calculated, e.g. ARP packets.
6984          * This extra RX ring will be used for packets whose masked
6985          * hash is 0.  The effective RX ring count involved in RSS
6986          * is still sc->rx_ring_cnt2.
6987          */
6988         KKASSERT(sc->rx_ring_cnt2 + 1 <= msix_cnt);
6989         sc->rx_ring_cnt = sc->rx_ring_cnt2 + 1;
6990
6991         /*
6992          * Setup TX ring count
6993          *
6994          * NOTE:
6995          * TX ring count must be less than the effective RSS RX ring
6996          * count, since we use RX ring software data struct to save
6997          * status index and various other MSI-X related stuffs.
6998          */
6999         ring_max = BCE_TX_RING_MAX;
7000         if (ring_max > msix_cnt2)
7001                 ring_max = msix_cnt2;
7002         if (ring_max > sc->rx_ring_cnt2)
7003                 ring_max = sc->rx_ring_cnt2;
7004         sc->tx_ring_cnt = device_getenv_int(sc->bce_dev, "tx_rings",
7005             bce_tx_rings);
7006         sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
7007 }
7008
7009 static void
7010 bce_free_msix(struct bce_softc *sc, boolean_t setup)
7011 {
7012         int i;
7013
7014         KKASSERT(sc->rx_ring_cnt > 1);
7015
7016         for (i = 0; i < sc->rx_ring_cnt; ++i) {
7017                 struct bce_msix_data *msix = &sc->bce_msix[i];
7018
7019                 if (msix->msix_res != NULL) {
7020                         bus_release_resource(sc->bce_dev, SYS_RES_IRQ,
7021                             msix->msix_rid, msix->msix_res);
7022                 }
7023                 if (msix->msix_rid >= 0)
7024                         pci_release_msix_vector(sc->bce_dev, msix->msix_rid);
7025         }
7026         if (setup)
7027                 pci_teardown_msix(sc->bce_dev);
7028 }
7029
7030 static void
7031 bce_free_intr(struct bce_softc *sc)
7032 {
7033         if (sc->bce_irq_type != PCI_INTR_TYPE_MSIX) {
7034                 if (sc->bce_res_irq != NULL) {
7035                         bus_release_resource(sc->bce_dev, SYS_RES_IRQ,
7036                             sc->bce_irq_rid, sc->bce_res_irq);
7037                 }
7038                 if (sc->bce_irq_type == PCI_INTR_TYPE_MSI)
7039                         pci_release_msi(sc->bce_dev);
7040         } else {
7041                 bce_free_msix(sc, TRUE);
7042         }
7043 }
7044
7045 static void
7046 bce_setup_msix_table(struct bce_softc *sc)
7047 {
7048         REG_WR(sc, BCE_PCI_GRC_WINDOW_ADDR, BCE_PCI_GRC_WINDOW_ADDR_SEP_WIN);
7049         REG_WR(sc, BCE_PCI_GRC_WINDOW2_ADDR, BCE_MSIX_TABLE_ADDR);
7050         REG_WR(sc, BCE_PCI_GRC_WINDOW3_ADDR, BCE_MSIX_PBA_ADDR);
7051 }
7052
7053 static int
7054 bce_setup_intr(struct bce_softc *sc)
7055 {
7056         void (*irq_handle)(void *);
7057         int error;
7058
7059         if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX)
7060                 return bce_setup_msix(sc);
7061
7062         if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) {
7063                 irq_handle = bce_intr_legacy;
7064         } else if (sc->bce_irq_type == PCI_INTR_TYPE_MSI) {
7065                 if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
7066                         irq_handle = bce_intr_msi_oneshot;
7067                         sc->bce_flags |= BCE_ONESHOT_MSI_FLAG;
7068                 } else {
7069                         irq_handle = bce_intr_msi;
7070                         sc->bce_flags |= BCE_CHECK_MSI_FLAG;
7071                 }
7072         } else {
7073                 panic("%s: unsupported intr type %d",
7074                     device_get_nameunit(sc->bce_dev), sc->bce_irq_type);
7075         }
7076
7077         error = bus_setup_intr(sc->bce_dev, sc->bce_res_irq, INTR_MPSAFE,
7078             irq_handle, sc, &sc->bce_intrhand, &sc->main_serialize);
7079         if (error != 0) {
7080                 device_printf(sc->bce_dev, "Failed to setup IRQ!\n");
7081                 return error;
7082         }
7083
7084         return 0;
7085 }
7086
7087 static void
7088 bce_teardown_intr(struct bce_softc *sc)
7089 {
7090         if (sc->bce_irq_type != PCI_INTR_TYPE_MSIX)
7091                 bus_teardown_intr(sc->bce_dev, sc->bce_res_irq, sc->bce_intrhand);
7092         else
7093                 bce_teardown_msix(sc, sc->rx_ring_cnt);
7094 }
7095
7096 static int
7097 bce_setup_msix(struct bce_softc *sc)
7098 {
7099         int i;
7100
7101         for (i = 0; i < sc->rx_ring_cnt; ++i) {
7102                 struct bce_msix_data *msix = &sc->bce_msix[i];
7103                 int error;
7104
7105                 error = bus_setup_intr_descr(sc->bce_dev, msix->msix_res,
7106                     INTR_MPSAFE, msix->msix_func, msix->msix_arg,
7107                     &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
7108                 if (error) {
7109                         device_printf(sc->bce_dev, "could not set up %s "
7110                             "interrupt handler.\n", msix->msix_desc);
7111                         bce_teardown_msix(sc, i);
7112                         return error;
7113                 }
7114         }
7115         return 0;
7116 }
7117
7118 static void
7119 bce_teardown_msix(struct bce_softc *sc, int msix_cnt)
7120 {
7121         int i;
7122
7123         for (i = 0; i < msix_cnt; ++i) {
7124                 struct bce_msix_data *msix = &sc->bce_msix[i];
7125
7126                 bus_teardown_intr(sc->bce_dev, msix->msix_res,
7127                     msix->msix_handle);
7128         }
7129 }
7130
7131 static void
7132 bce_init_rss(struct bce_softc *sc)
7133 {
7134         uint8_t key[BCE_RLUP_RSS_KEY_CNT * BCE_RLUP_RSS_KEY_SIZE];
7135         uint32_t tbl = 0;
7136         int i;
7137
7138         KKASSERT(sc->rx_ring_cnt > 2);
7139
7140         /*
7141          * Configure RSS keys
7142          */
7143         toeplitz_get_key(key, sizeof(key));
7144         for (i = 0; i < BCE_RLUP_RSS_KEY_CNT; ++i) {
7145                 uint32_t rss_key;
7146
7147                 rss_key = BCE_RLUP_RSS_KEYVAL(key, i);
7148                 BCE_RSS_DPRINTF(sc, 1, "rss_key%d 0x%08x\n", i, rss_key);
7149
7150                 REG_WR(sc, BCE_RLUP_RSS_KEY(i), rss_key);
7151         }
7152
7153         /*
7154          * Configure the redirect table
7155          *
7156          * NOTE:
7157          * - The "queue ID" in redirect table is the software RX ring's
7158          *   index _minus_ one.
7159          * - The last RX ring, whose "queue ID" is (sc->rx_ring_cnt - 2)
7160          *   will be used for packets whose masked hash is 0.
7161          *   (see also: comment in bce_setup_ring_cnt())
7162          *
7163          * The redirect table is configured in following fashion, except
7164          * for the masked hash 0, which is noted above:
7165          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
7166          */
7167         for (i = 0; i < BCE_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
7168                 int shift = (i % 8) << 2, qid;
7169
7170                 qid = i % sc->rx_ring_cnt2;
7171                 if (qid > 0)
7172                         --qid;
7173                 else
7174                         qid = sc->rx_ring_cnt - 2;
7175                 KKASSERT(qid < (sc->rx_ring_cnt - 1));
7176
7177                 tbl |= qid << shift;
7178                 if (i % 8 == 7) {
7179                         BCE_RSS_DPRINTF(sc, 1, "tbl 0x%08x\n", tbl);
7180                         REG_WR(sc, BCE_RLUP_RSS_DATA, tbl);
7181                         REG_WR(sc, BCE_RLUP_RSS_COMMAND, (i >> 3) |
7182                             BCE_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
7183                             BCE_RLUP_RSS_COMMAND_WRITE |
7184                             BCE_RLUP_RSS_COMMAND_HASH_MASK);
7185                         tbl = 0;
7186                 }
7187         }
7188         REG_WR(sc, BCE_RLUP_RSS_CONFIG,
7189             BCE_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI);
7190 }
7191
7192 static void
7193 bce_npoll_coal_change(struct bce_softc *sc)
7194 {
7195         uint32_t old_rx_cons, old_tx_cons;
7196
7197         old_rx_cons = sc->bce_rx_quick_cons_trip_int;
7198         old_tx_cons = sc->bce_tx_quick_cons_trip_int;
7199         sc->bce_rx_quick_cons_trip_int = 1;
7200         sc->bce_tx_quick_cons_trip_int = 1;
7201
7202         sc->bce_coalchg_mask |= BCE_COALMASK_TX_BDS_INT |
7203             BCE_COALMASK_RX_BDS_INT;
7204         bce_coal_change(sc);
7205
7206         sc->bce_rx_quick_cons_trip_int = old_rx_cons;
7207         sc->bce_tx_quick_cons_trip_int = old_tx_cons;
7208 }
7209
7210 static struct pktinfo *
7211 bce_rss_pktinfo(struct pktinfo *pi, uint32_t status,
7212     const struct l2_fhdr *l2fhdr)
7213 {
7214         /* Check for an IP datagram. */
7215         if ((status & L2_FHDR_STATUS_IP_DATAGRAM) == 0)
7216                 return NULL;
7217
7218         /* Check if the IP checksum is valid. */
7219         if (l2fhdr->l2_fhdr_ip_xsum != 0xffff)
7220                 return NULL;
7221
7222         /* Check for a valid TCP/UDP frame. */
7223         if (status & L2_FHDR_STATUS_TCP_SEGMENT) {
7224                 if (status & L2_FHDR_ERRORS_TCP_XSUM)
7225                         return NULL;
7226                 if (l2fhdr->l2_fhdr_tcp_udp_xsum != 0xffff)
7227                         return NULL;
7228                 pi->pi_l3proto = IPPROTO_TCP;
7229         } else if (status & L2_FHDR_STATUS_UDP_DATAGRAM) {
7230                 if (status & L2_FHDR_ERRORS_UDP_XSUM)
7231                         return NULL;
7232                 if (l2fhdr->l2_fhdr_tcp_udp_xsum != 0xffff)
7233                         return NULL;
7234                 pi->pi_l3proto = IPPROTO_UDP;
7235         } else {
7236                 return NULL;
7237         }
7238         pi->pi_netisr = NETISR_IP;
7239         pi->pi_flags = 0;
7240
7241         return pi;
7242 }