af64b4f52651fdcbcfe386b91d4da8517ddda8db
[dragonfly.git] / sys / dev / disk / advansys / advlib.c
1 /*
2  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
3  *
4  * Copyright (c) 1996-1997, 1999-2000 Justin Gibbs.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * $FreeBSD: src/sys/dev/advansys/advlib.c,v 1.15.2.1 2000/04/14 13:32:49 nyan Exp $
32  * $DragonFly: src/sys/dev/disk/advansys/advlib.c,v 1.9 2007/12/23 07:00:55 pavalos Exp $
33  */
34 /*
35  * Ported from:
36  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
37  *     
38  * Copyright (c) 1995-1996 Advanced System Products, Inc.
39  * All Rights Reserved.
40  *   
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that redistributions of source
43  * code retain the above copyright notice and this comment without
44  * modification.
45  */
46
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/systm.h>
50 #include <sys/thread2.h>
51 #include <sys/bus.h> 
52 #include <sys/rman.h> 
53
54 #include <machine/clock.h>
55
56 #include <bus/cam/cam.h>
57 #include <bus/cam/cam_ccb.h>
58 #include <bus/cam/cam_sim.h>
59 #include <bus/cam/cam_xpt_sim.h>
60
61 #include <bus/cam/scsi/scsi_all.h>
62 #include <bus/cam/scsi/scsi_message.h>
63 #include <bus/cam/scsi/scsi_da.h>
64 #include <bus/cam/scsi/scsi_cd.h>
65
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <vm/pmap.h>
69
70 #include "advansys.h"
71 #include "advmcode.h"
72
73 struct adv_quirk_entry {
74         struct scsi_inquiry_pattern inq_pat;
75         u_int8_t quirks;
76 #define ADV_QUIRK_FIX_ASYN_XFER_ALWAYS  0x01
77 #define ADV_QUIRK_FIX_ASYN_XFER         0x02
78 };
79
80 static struct adv_quirk_entry adv_quirk_table[] =
81 {
82         {
83                 { T_CDROM, SIP_MEDIA_REMOVABLE, "HP", "*", "*" },
84                 ADV_QUIRK_FIX_ASYN_XFER_ALWAYS|ADV_QUIRK_FIX_ASYN_XFER
85         },
86         {
87                 { T_CDROM, SIP_MEDIA_REMOVABLE, "NEC", "CD-ROM DRIVE", "*" },
88                 0
89         },
90         {
91                 {
92                   T_SEQUENTIAL, SIP_MEDIA_REMOVABLE,
93                   "TANDBERG", " TDC 36", "*"
94                 },
95                 0
96         },
97         {
98                 { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "WANGTEK", "*", "*" },
99                 0
100         },
101         {
102                 {
103                   T_PROCESSOR, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
104                   "*", "*", "*"
105                 },
106                 0
107         },
108         {
109                 {
110                   T_SCANNER, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
111                   "*", "*", "*"
112                 },
113                 0
114         },
115         {
116                 /* Default quirk entry */
117                 {
118                   T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
119                   /*vendor*/"*", /*product*/"*", /*revision*/"*"
120                 }, 
121                 ADV_QUIRK_FIX_ASYN_XFER,
122         }
123 };
124
125 /*
126  * Allowable periods in ns
127  */
128 static u_int8_t adv_sdtr_period_tbl[] =
129 {
130         25,
131         30,
132         35,
133         40,
134         50,
135         60,
136         70,
137         85
138 };
139
140 static u_int8_t adv_sdtr_period_tbl_ultra[] =
141 {
142         12,
143         19,
144         25,
145         32,
146         38,
147         44,
148         50,
149         57,
150         63,
151         69,
152         75,
153         82,
154         88, 
155         94,
156         100,
157         107
158 };
159
160 struct ext_msg {
161         u_int8_t msg_type;
162         u_int8_t msg_len;
163         u_int8_t msg_req;
164         union {
165                 struct {
166                         u_int8_t sdtr_xfer_period;
167                         u_int8_t sdtr_req_ack_offset;
168                 } sdtr;
169                 struct {
170                         u_int8_t wdtr_width;
171                 } wdtr;
172                 struct {
173                         u_int8_t mdp[4];
174                 } mdp;
175         } u_ext_msg;
176         u_int8_t res;
177 };
178
179 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
180 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
181 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
182 #define mdp_b3          u_ext_msg.mdp_b3
183 #define mdp_b2          u_ext_msg.mdp_b2
184 #define mdp_b1          u_ext_msg.mdp_b1
185 #define mdp_b0          u_ext_msg.mdp_b0
186
187 /*
188  * Some of the early PCI adapters have problems with
189  * async transfers.  Instead use an offset of 1.
190  */
191 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
192
193 /* LRAM routines */
194 static void      adv_read_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
195                                         u_int16_t *buffer, int count);
196 static void      adv_write_lram_16_multi(struct adv_softc *adv,
197                                          u_int16_t s_addr, u_int16_t *buffer,
198                                          int count);
199 static void      adv_mset_lram_16(struct adv_softc *adv, u_int16_t s_addr,
200                                   u_int16_t set_value, int count);
201 static u_int32_t adv_msum_lram_16(struct adv_softc *adv, u_int16_t s_addr,
202                                   int count);
203
204 static int       adv_write_and_verify_lram_16(struct adv_softc *adv,
205                                               u_int16_t addr, u_int16_t value);
206 static u_int32_t adv_read_lram_32(struct adv_softc *adv, u_int16_t addr);
207
208
209 static void      adv_write_lram_32(struct adv_softc *adv, u_int16_t addr,
210                                    u_int32_t value);
211 static void      adv_write_lram_32_multi(struct adv_softc *adv,
212                                          u_int16_t s_addr, u_int32_t *buffer,
213                                          int count);
214
215 /* EEPROM routines */
216 static u_int16_t adv_read_eeprom_16(struct adv_softc *adv, u_int8_t addr);
217 static u_int16_t adv_write_eeprom_16(struct adv_softc *adv, u_int8_t addr,
218                                      u_int16_t value);
219 static int       adv_write_eeprom_cmd_reg(struct adv_softc *adv,
220                                           u_int8_t cmd_reg);
221 static int       adv_set_eeprom_config_once(struct adv_softc *adv,
222                                             struct adv_eeprom_config *eeconfig);
223
224 /* Initialization */
225 static u_int32_t adv_load_microcode(struct adv_softc *adv, u_int16_t s_addr,
226                                     u_int16_t *mcode_buf, u_int16_t mcode_size);
227
228 static void      adv_reinit_lram(struct adv_softc *adv);
229 static void      adv_init_lram(struct adv_softc *adv);
230 static int       adv_init_microcode_var(struct adv_softc *adv);
231 static void      adv_init_qlink_var(struct adv_softc *adv);
232
233 /* Interrupts */
234 static void      adv_disable_interrupt(struct adv_softc *adv);
235 static void      adv_enable_interrupt(struct adv_softc *adv);
236 static void      adv_toggle_irq_act(struct adv_softc *adv);
237
238 /* Chip Control */
239 static int       adv_host_req_chip_halt(struct adv_softc *adv);
240 static void      adv_set_chip_ih(struct adv_softc *adv, u_int16_t ins_code);
241 #if UNUSED
242 static u_int8_t  adv_get_chip_scsi_ctrl(struct adv_softc *adv);
243 #endif
244
245 /* Queue handling and execution */
246 static __inline int
247                  adv_sgcount_to_qcount(int sgcount);
248
249 static __inline int
250 adv_sgcount_to_qcount(int sgcount)
251 {
252         int     n_sg_list_qs;
253
254         n_sg_list_qs = ((sgcount - 1) / ADV_SG_LIST_PER_Q);
255         if (((sgcount - 1) % ADV_SG_LIST_PER_Q) != 0)
256                 n_sg_list_qs++;
257         return (n_sg_list_qs + 1);
258 }
259
260 static void      adv_get_q_info(struct adv_softc *adv, u_int16_t s_addr,
261                                 u_int16_t *inbuf, int words);
262 static u_int     adv_get_num_free_queues(struct adv_softc *adv, u_int8_t n_qs);
263 static u_int8_t  adv_alloc_free_queues(struct adv_softc *adv,
264                                        u_int8_t free_q_head, u_int8_t n_free_q);
265 static u_int8_t  adv_alloc_free_queue(struct adv_softc *adv,
266                                       u_int8_t free_q_head);
267 static int       adv_send_scsi_queue(struct adv_softc *adv,
268                                      struct adv_scsi_q *scsiq,
269                                      u_int8_t n_q_required);
270 static void      adv_put_ready_sg_list_queue(struct adv_softc *adv,
271                                              struct adv_scsi_q *scsiq,
272                                              u_int q_no);
273 static void      adv_put_ready_queue(struct adv_softc *adv,
274                                      struct adv_scsi_q *scsiq, u_int q_no);
275 static void      adv_put_scsiq(struct adv_softc *adv, u_int16_t s_addr,
276                                u_int16_t *buffer, int words);
277
278 /* Messages */
279 static void      adv_handle_extmsg_in(struct adv_softc *adv,
280                                       u_int16_t halt_q_addr, u_int8_t q_cntl,
281                                       target_bit_vector target_id,
282                                       int tid);
283 static void      adv_msgout_sdtr(struct adv_softc *adv, u_int8_t sdtr_period,
284                                  u_int8_t sdtr_offset);
285 static void      adv_set_sdtr_reg_at_id(struct adv_softc *adv, int id,
286                                         u_int8_t sdtr_data);
287
288
289 /* Exported functions first */
290
291 void
292 advasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
293 {
294         struct adv_softc *adv;
295
296         adv = (struct adv_softc *)callback_arg;
297         switch (code) {
298         case AC_FOUND_DEVICE:
299         {
300                 struct ccb_getdev *cgd;
301                 target_bit_vector target_mask;
302                 int num_entries;
303                 caddr_t match;
304                 struct adv_quirk_entry *entry;
305                 struct adv_target_transinfo* tinfo;
306  
307                 cgd = (struct ccb_getdev *)arg;
308
309                 target_mask = ADV_TID_TO_TARGET_MASK(cgd->ccb_h.target_id);
310
311                 num_entries = sizeof(adv_quirk_table)/sizeof(*adv_quirk_table);
312                 match = cam_quirkmatch((caddr_t)&cgd->inq_data,
313                                        (caddr_t)adv_quirk_table,
314                                        num_entries, sizeof(*adv_quirk_table),
315                                        scsi_inquiry_match);
316         
317                 if (match == NULL)
318                         panic("advasync: device didn't match wildcard entry!!");
319
320                 entry = (struct adv_quirk_entry *)match;
321
322                 if (adv->bug_fix_control & ADV_BUG_FIX_ASYN_USE_SYN) {
323                         if ((entry->quirks & ADV_QUIRK_FIX_ASYN_XFER_ALWAYS)!=0)
324                                 adv->fix_asyn_xfer_always |= target_mask;
325                         else
326                                 adv->fix_asyn_xfer_always &= ~target_mask;
327                         /*
328                          * We start out life with all bits set and clear them
329                          * after we've determined that the fix isn't necessary.
330                          * It may well be that we've already cleared a target
331                          * before the full inquiry session completes, so don't
332                          * gratuitously set a target bit even if it has this
333                          * quirk.  But, if the quirk exonerates a device, clear
334                          * the bit now.
335                          */
336                         if ((entry->quirks & ADV_QUIRK_FIX_ASYN_XFER) == 0)
337                                 adv->fix_asyn_xfer &= ~target_mask;
338                 }
339                 /*
340                  * Reset our sync settings now that we've determined
341                  * what quirks are in effect for the device.
342                  */
343                 tinfo = &adv->tinfo[cgd->ccb_h.target_id];
344                 adv_set_syncrate(adv, cgd->ccb_h.path,
345                                  cgd->ccb_h.target_id,
346                                  tinfo->current.period,
347                                  tinfo->current.offset,
348                                  ADV_TRANS_CUR);
349                 break;
350         }
351         case AC_LOST_DEVICE:
352         {
353                 u_int target_mask;
354
355                 if (adv->bug_fix_control & ADV_BUG_FIX_ASYN_USE_SYN) {
356                         target_mask = 0x01 << xpt_path_target_id(path);
357                         adv->fix_asyn_xfer |= target_mask;
358                 }
359
360                 /*
361                  * Revert to async transfers
362                  * for the next device.
363                  */
364                 adv_set_syncrate(adv, /*path*/NULL,
365                                  xpt_path_target_id(path),
366                                  /*period*/0,
367                                  /*offset*/0,
368                                  ADV_TRANS_GOAL|ADV_TRANS_CUR);
369         }
370         default:
371                 break;
372         }
373 }
374
375 void
376 adv_set_bank(struct adv_softc *adv, u_int8_t bank)
377 {
378         u_int8_t control;
379
380         /*
381          * Start out with the bank reset to 0
382          */
383         control = ADV_INB(adv, ADV_CHIP_CTRL)
384                   &  (~(ADV_CC_SINGLE_STEP | ADV_CC_TEST
385                         | ADV_CC_DIAG | ADV_CC_SCSI_RESET
386                         | ADV_CC_CHIP_RESET | ADV_CC_BANK_ONE));
387         if (bank == 1) {
388                 control |= ADV_CC_BANK_ONE;
389         } else if (bank == 2) {
390                 control |= ADV_CC_DIAG | ADV_CC_BANK_ONE;
391         }
392         ADV_OUTB(adv, ADV_CHIP_CTRL, control);
393 }
394
395 u_int8_t
396 adv_read_lram_8(struct adv_softc *adv, u_int16_t addr)
397 {
398         u_int8_t   byte_data;
399         u_int16_t  word_data;
400
401         /*
402          * LRAM is accessed on 16bit boundaries.
403          */
404         ADV_OUTW(adv, ADV_LRAM_ADDR, addr & 0xFFFE);
405         word_data = ADV_INW(adv, ADV_LRAM_DATA);
406         if (addr & 1) {
407 #if BYTE_ORDER == BIG_ENDIAN
408                 byte_data = (u_int8_t)(word_data & 0xFF);
409 #else
410                 byte_data = (u_int8_t)((word_data >> 8) & 0xFF);
411 #endif
412         } else {
413 #if BYTE_ORDER == BIG_ENDIAN
414                 byte_data = (u_int8_t)((word_data >> 8) & 0xFF);
415 #else           
416                 byte_data = (u_int8_t)(word_data & 0xFF);
417 #endif
418         }
419         return (byte_data);
420 }
421
422 void
423 adv_write_lram_8(struct adv_softc *adv, u_int16_t addr, u_int8_t value)
424 {
425         u_int16_t word_data;
426
427         word_data = adv_read_lram_16(adv, addr & 0xFFFE);
428         if (addr & 1) {
429                 word_data &= 0x00FF;
430                 word_data |= (((u_int8_t)value << 8) & 0xFF00);
431         } else {
432                 word_data &= 0xFF00;
433                 word_data |= ((u_int8_t)value & 0x00FF);
434         }
435         adv_write_lram_16(adv, addr & 0xFFFE, word_data);
436 }
437
438
439 u_int16_t
440 adv_read_lram_16(struct adv_softc *adv, u_int16_t addr)
441 {
442         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
443         return (ADV_INW(adv, ADV_LRAM_DATA));
444 }
445
446 void
447 adv_write_lram_16(struct adv_softc *adv, u_int16_t addr, u_int16_t value)
448 {
449         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
450         ADV_OUTW(adv, ADV_LRAM_DATA, value);
451 }
452
453 /*
454  * Determine if there is a board at "iobase" by looking
455  * for the AdvanSys signatures.  Return 1 if a board is
456  * found, 0 otherwise.
457  */
458 int                         
459 adv_find_signature(bus_space_tag_t tag, bus_space_handle_t bsh)
460 {                            
461         u_int16_t signature;
462
463         if (bus_space_read_1(tag, bsh, ADV_SIGNATURE_BYTE) == ADV_1000_ID1B) {
464                 signature = bus_space_read_2(tag, bsh, ADV_SIGNATURE_WORD);
465                 if ((signature == ADV_1000_ID0W)
466                  || (signature == ADV_1000_ID0W_FIX))
467                         return (1);
468         }
469         return (0);
470 }
471
472 void
473 adv_lib_init(struct adv_softc *adv)
474 {
475         if ((adv->type & ADV_ULTRA) != 0) {
476                 adv->sdtr_period_tbl = adv_sdtr_period_tbl_ultra;
477                 adv->sdtr_period_tbl_size = sizeof(adv_sdtr_period_tbl_ultra);
478         } else {
479                 adv->sdtr_period_tbl = adv_sdtr_period_tbl;
480                 adv->sdtr_period_tbl_size = sizeof(adv_sdtr_period_tbl);                
481         }
482 }
483
484 u_int16_t
485 adv_get_eeprom_config(struct adv_softc *adv, struct
486                       adv_eeprom_config  *eeprom_config)
487 {
488         u_int16_t       sum;
489         u_int16_t       *wbuf;
490         u_int8_t        cfg_beg;
491         u_int8_t        cfg_end;
492         u_int8_t        s_addr;
493
494         wbuf = (u_int16_t *)eeprom_config;
495         sum = 0;
496
497         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
498                 *wbuf = adv_read_eeprom_16(adv, s_addr);
499                 sum += *wbuf;
500         }
501
502         if (adv->type & ADV_VL) {
503                 cfg_beg = ADV_EEPROM_CFG_BEG_VL;
504                 cfg_end = ADV_EEPROM_MAX_ADDR_VL;
505         } else {
506                 cfg_beg = ADV_EEPROM_CFG_BEG;
507                 cfg_end = ADV_EEPROM_MAX_ADDR;
508         }
509
510         for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
511                 *wbuf = adv_read_eeprom_16(adv, s_addr);
512                 sum += *wbuf;
513 #if ADV_DEBUG_EEPROM
514                 kprintf("Addr 0x%x: 0x%04x\n", s_addr, *wbuf);
515 #endif
516         }
517         *wbuf = adv_read_eeprom_16(adv, s_addr);
518         return (sum);
519 }
520
521 int
522 adv_set_eeprom_config(struct adv_softc *adv,
523                       struct adv_eeprom_config *eeprom_config)
524 {
525         int     retry;
526
527         retry = 0;
528         while (1) {
529                 if (adv_set_eeprom_config_once(adv, eeprom_config) == 0) {
530                         break;
531                 }
532                 if (++retry > ADV_EEPROM_MAX_RETRY) {
533                         break;
534                 }
535         }
536         return (retry > ADV_EEPROM_MAX_RETRY);
537 }
538
539 int
540 adv_reset_chip(struct adv_softc *adv, int reset_bus)
541 {
542         adv_stop_chip(adv);
543         ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_CHIP_RESET | ADV_CC_HALT
544                                      | (reset_bus ? ADV_CC_SCSI_RESET : 0));
545         DELAY(60);
546
547         adv_set_chip_ih(adv, ADV_INS_RFLAG_WTM);
548         adv_set_chip_ih(adv, ADV_INS_HALT);
549
550         if (reset_bus)
551                 ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_CHIP_RESET | ADV_CC_HALT);
552
553         ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_HALT);
554         if (reset_bus)
555                 DELAY(200 * 1000);
556
557         ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_CLR_SCSI_RESET_INT);
558         ADV_OUTW(adv, ADV_CHIP_STATUS, 0);
559         return (adv_is_chip_halted(adv));
560 }
561
562 int
563 adv_test_external_lram(struct adv_softc* adv)
564 {
565         u_int16_t       q_addr;
566         u_int16_t       saved_value;
567         int             success;
568
569         success = 0;
570
571         q_addr = ADV_QNO_TO_QADDR(241);
572         saved_value = adv_read_lram_16(adv, q_addr);
573         if (adv_write_and_verify_lram_16(adv, q_addr, 0x55AA) == 0) {
574                 success = 1;
575                 adv_write_lram_16(adv, q_addr, saved_value);
576         }
577         return (success);
578 }
579
580
581 int
582 adv_init_lram_and_mcode(struct adv_softc *adv)
583 {
584         u_int32_t       retval;
585
586         adv_disable_interrupt(adv);
587
588         adv_init_lram(adv);
589
590         retval = adv_load_microcode(adv, 0, (u_int16_t *)adv_mcode,
591                                     adv_mcode_size);
592         if (retval != adv_mcode_chksum) {
593                 kprintf("adv%d: Microcode download failed checksum!\n",
594                        adv->unit);
595                 return (1);
596         }
597         
598         if (adv_init_microcode_var(adv) != 0)
599                 return (1);
600
601         adv_enable_interrupt(adv);
602         return (0);
603 }
604
605 u_int8_t
606 adv_get_chip_irq(struct adv_softc *adv)
607 {
608         u_int16_t       cfg_lsw;
609         u_int8_t        chip_irq;
610
611         cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
612
613         if ((adv->type & ADV_VL) != 0) {
614                 chip_irq = (u_int8_t)(((cfg_lsw >> 2) & 0x07));
615                 if ((chip_irq == 0) ||
616                     (chip_irq == 4) ||
617                     (chip_irq == 7)) {
618                         return (0);
619                 }
620                 return (chip_irq + (ADV_MIN_IRQ_NO - 1));
621         }
622         chip_irq = (u_int8_t)(((cfg_lsw >> 2) & 0x03));
623         if (chip_irq == 3)
624                 chip_irq += 2;
625         return (chip_irq + ADV_MIN_IRQ_NO);
626 }
627
628 u_int8_t
629 adv_set_chip_irq(struct adv_softc *adv, u_int8_t irq_no)
630 {
631         u_int16_t       cfg_lsw;
632
633         if ((adv->type & ADV_VL) != 0) {
634                 if (irq_no != 0) {
635                         if ((irq_no < ADV_MIN_IRQ_NO)
636                          || (irq_no > ADV_MAX_IRQ_NO)) {
637                                 irq_no = 0;
638                         } else {
639                                 irq_no -= ADV_MIN_IRQ_NO - 1;
640                         }
641                 }
642                 cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFE3;
643                 cfg_lsw |= 0x0010;
644                 ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
645                 adv_toggle_irq_act(adv);
646
647                 cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFE0;
648                 cfg_lsw |= (irq_no & 0x07) << 2;
649                 ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
650                 adv_toggle_irq_act(adv);
651         } else if ((adv->type & ADV_ISA) != 0) {
652                 if (irq_no == 15)
653                         irq_no -= 2;
654                 irq_no -= ADV_MIN_IRQ_NO;
655                 cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFF3;
656                 cfg_lsw |= (irq_no & 0x03) << 2;
657                 ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
658         }
659         return (adv_get_chip_irq(adv));
660 }
661
662 void
663 adv_set_chip_scsiid(struct adv_softc *adv, int new_id)
664 {
665         u_int16_t cfg_lsw;
666
667         cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
668         if (ADV_CONFIG_SCSIID(cfg_lsw) == new_id)
669                 return;
670         cfg_lsw &= ~ADV_CFG_LSW_SCSIID;
671         cfg_lsw |= (new_id & ADV_MAX_TID) << ADV_CFG_LSW_SCSIID_SHIFT;
672         ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
673 }
674
675 int
676 adv_execute_scsi_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
677                        u_int32_t datalen)
678 {
679         struct          adv_target_transinfo* tinfo;
680         u_int32_t       *p_data_addr;
681         u_int32_t       *p_data_bcount;
682         int             disable_syn_offset_one_fix;
683         int             retval;
684         u_int           n_q_required;
685         u_int32_t       addr;
686         u_int8_t        sg_entry_cnt;
687         u_int8_t        target_ix;
688         u_int8_t        sg_entry_cnt_minus_one;
689         u_int8_t        tid_no;
690
691         scsiq->q1.q_no = 0;
692         retval = 1;  /* Default to error case */
693         target_ix = scsiq->q2.target_ix;
694         tid_no = ADV_TIX_TO_TID(target_ix);
695         tinfo = &adv->tinfo[tid_no];
696
697         if (scsiq->cdbptr[0] == REQUEST_SENSE) {
698                 /* Renegotiate if appropriate. */
699                 adv_set_syncrate(adv, /*struct cam_path */NULL,
700                                  tid_no, /*period*/0, /*offset*/0,
701                                  ADV_TRANS_CUR);
702                 if (tinfo->current.period != tinfo->goal.period) {
703                         adv_msgout_sdtr(adv, tinfo->goal.period,
704                                         tinfo->goal.offset);
705                         scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
706                 }
707         }
708
709         if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
710                 sg_entry_cnt = scsiq->sg_head->entry_cnt;
711                 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
712
713 #ifdef DIAGNOSTIC
714                 if (sg_entry_cnt <= 1) 
715                         panic("adv_execute_scsi_queue: Queue "
716                               "with QC_SG_HEAD set but %d segs.", sg_entry_cnt);
717
718                 if (sg_entry_cnt > ADV_MAX_SG_LIST)
719                         panic("adv_execute_scsi_queue: "
720                               "Queue with too many segs.");
721
722                 if ((adv->type & (ADV_ISA | ADV_VL | ADV_EISA)) != 0) {
723                         int i;
724
725                         for (i = 0; i < sg_entry_cnt_minus_one; i++) {
726                                 addr = scsiq->sg_head->sg_list[i].addr +
727                                        scsiq->sg_head->sg_list[i].bytes;
728
729                                 if ((addr & 0x0003) != 0)
730                                         panic("adv_execute_scsi_queue: SG "
731                                               "with odd address or byte count");
732                         }
733                 }
734 #endif
735                 p_data_addr =
736                     &scsiq->sg_head->sg_list[sg_entry_cnt_minus_one].addr;
737                 p_data_bcount =
738                     &scsiq->sg_head->sg_list[sg_entry_cnt_minus_one].bytes;
739
740                 n_q_required = adv_sgcount_to_qcount(sg_entry_cnt);
741                 scsiq->sg_head->queue_cnt = n_q_required - 1;
742         } else {
743                 p_data_addr = &scsiq->q1.data_addr;
744                 p_data_bcount = &scsiq->q1.data_cnt;
745                 n_q_required = 1;
746         }
747
748         disable_syn_offset_one_fix = FALSE;
749
750         if ((adv->fix_asyn_xfer & scsiq->q1.target_id) != 0
751          && (adv->fix_asyn_xfer_always & scsiq->q1.target_id) == 0) {
752
753                 if (datalen != 0) {
754                         if (datalen < 512) {
755                                 disable_syn_offset_one_fix = TRUE;
756                         } else {
757                                 if (scsiq->cdbptr[0] == INQUIRY
758                                  || scsiq->cdbptr[0] == REQUEST_SENSE
759                                  || scsiq->cdbptr[0] == READ_CAPACITY
760                                  || scsiq->cdbptr[0] == MODE_SELECT_6 
761                                  || scsiq->cdbptr[0] == MODE_SENSE_6
762                                  || scsiq->cdbptr[0] == MODE_SENSE_10 
763                                  || scsiq->cdbptr[0] == MODE_SELECT_10 
764                                  || scsiq->cdbptr[0] == READ_TOC) {
765                                         disable_syn_offset_one_fix = TRUE;
766                                 }
767                         }
768                 }
769         }
770
771         if (disable_syn_offset_one_fix) {
772                 scsiq->q2.tag_code &=
773                     ~(MSG_SIMPLE_Q_TAG|MSG_HEAD_OF_Q_TAG|MSG_ORDERED_Q_TAG);
774                 scsiq->q2.tag_code |= (ADV_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
775                                      | ADV_TAG_FLAG_DISABLE_DISCONNECT);
776         }
777
778         if ((adv->bug_fix_control & ADV_BUG_FIX_IF_NOT_DWB) != 0
779          && (scsiq->cdbptr[0] == READ_10 || scsiq->cdbptr[0] == READ_6)) {
780                 u_int8_t extra_bytes;
781
782                 addr = *p_data_addr + *p_data_bcount;
783                 extra_bytes = addr & 0x0003;
784                 if (extra_bytes != 0
785                  && ((scsiq->q1.cntl & QC_SG_HEAD) != 0
786                   || (scsiq->q1.data_cnt & 0x01FF) == 0)) {
787                         scsiq->q2.tag_code |= ADV_TAG_FLAG_EXTRA_BYTES;
788                         scsiq->q1.extra_bytes = extra_bytes;
789                         *p_data_bcount -= extra_bytes;
790                 }
791         }
792
793         if ((adv_get_num_free_queues(adv, n_q_required) >= n_q_required)
794          || ((scsiq->q1.cntl & QC_URGENT) != 0))
795                 retval = adv_send_scsi_queue(adv, scsiq, n_q_required);
796         
797         return (retval);
798 }
799
800
801 u_int8_t
802 adv_copy_lram_doneq(struct adv_softc *adv, u_int16_t q_addr,
803                     struct adv_q_done_info *scsiq, u_int32_t max_dma_count)
804 {
805         u_int16_t val;
806         u_int8_t  sg_queue_cnt;
807
808         adv_get_q_info(adv, q_addr + ADV_SCSIQ_DONE_INFO_BEG,
809                        (u_int16_t *)scsiq,
810                        (sizeof(scsiq->d2) + sizeof(scsiq->d3)) / 2);
811
812 #if BYTE_ORDER == BIG_ENDIAN
813         adv_adj_endian_qdone_info(scsiq);
814 #endif
815
816         val = adv_read_lram_16(adv, q_addr + ADV_SCSIQ_B_STATUS);
817         scsiq->q_status = val & 0xFF;
818         scsiq->q_no = (val >> 8) & 0XFF;
819
820         val = adv_read_lram_16(adv, q_addr + ADV_SCSIQ_B_CNTL);
821         scsiq->cntl = val & 0xFF;
822         sg_queue_cnt = (val >> 8) & 0xFF;
823
824         val = adv_read_lram_16(adv,q_addr + ADV_SCSIQ_B_SENSE_LEN);
825         scsiq->sense_len = val & 0xFF;
826         scsiq->extra_bytes = (val >> 8) & 0xFF;
827
828         /*
829          * Due to a bug in accessing LRAM on the 940UA, the residual
830          * is split into separate high and low 16bit quantities.
831          */
832         scsiq->remain_bytes =
833             adv_read_lram_16(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_CNT);
834         scsiq->remain_bytes |=
835             adv_read_lram_16(adv, q_addr + ADV_SCSIQ_W_ALT_DC1) << 16;
836
837         /*
838          * XXX Is this just a safeguard or will the counter really
839          * have bogus upper bits?
840          */
841         scsiq->remain_bytes &= max_dma_count;
842
843         return (sg_queue_cnt);
844 }
845
846 int
847 adv_start_chip(struct adv_softc *adv)
848 {
849         ADV_OUTB(adv, ADV_CHIP_CTRL, 0);
850         if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) != 0)
851                 return (0);
852         return (1);
853 }
854
855 int
856 adv_stop_execution(struct adv_softc *adv)
857 {
858         int count;
859
860         count = 0;
861         if (adv_read_lram_8(adv, ADV_STOP_CODE_B) == 0) {
862                 adv_write_lram_8(adv, ADV_STOP_CODE_B,
863                                  ADV_STOP_REQ_RISC_STOP);
864                 do {
865                         if (adv_read_lram_8(adv, ADV_STOP_CODE_B) &
866                                 ADV_STOP_ACK_RISC_STOP) {
867                                 return (1);
868                         }
869                         DELAY(1000);
870                 } while (count++ < 20);
871         }
872         return (0);
873 }
874
875 int
876 adv_is_chip_halted(struct adv_softc *adv)
877 {
878         if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) != 0) {
879                 if ((ADV_INB(adv, ADV_CHIP_CTRL) & ADV_CC_HALT) != 0) {
880                         return (1);
881                 }
882         }
883         return (0);
884 }
885
886 /*
887  * XXX The numeric constants and the loops in this routine
888  * need to be documented.
889  */
890 void
891 adv_ack_interrupt(struct adv_softc *adv)
892 {
893         u_int8_t        host_flag;
894         u_int8_t        risc_flag;
895         int             loop;
896
897         loop = 0;
898         do {
899                 risc_flag = adv_read_lram_8(adv, ADVV_RISC_FLAG_B);
900                 if (loop++ > 0x7FFF) {
901                         break;
902                 }
903         } while ((risc_flag & ADV_RISC_FLAG_GEN_INT) != 0);
904
905         host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
906         adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
907                          host_flag | ADV_HOST_FLAG_ACK_INT);
908
909         ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_INT_ACK);
910         loop = 0;
911         while (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_INT_PENDING) {
912                 ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_INT_ACK);
913                 if (loop++ > 3) {
914                         break;
915                 }
916         }
917
918         adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
919 }
920
921 /*
922  * Handle all conditions that may halt the chip waiting
923  * for us to intervene.
924  */
925 void
926 adv_isr_chip_halted(struct adv_softc *adv)
927 {
928         u_int16_t         int_halt_code;
929         u_int16_t         halt_q_addr;
930         target_bit_vector target_mask;
931         target_bit_vector scsi_busy;
932         u_int8_t          halt_qp;
933         u_int8_t          target_ix;
934         u_int8_t          q_cntl;
935         u_int8_t          tid_no;
936
937         int_halt_code = adv_read_lram_16(adv, ADVV_HALTCODE_W);
938         halt_qp = adv_read_lram_8(adv, ADVV_CURCDB_B);
939         halt_q_addr = ADV_QNO_TO_QADDR(halt_qp);
940         target_ix = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TARGET_IX);
941         q_cntl = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL);
942         tid_no = ADV_TIX_TO_TID(target_ix);
943         target_mask = ADV_TID_TO_TARGET_MASK(tid_no);
944         if (int_halt_code == ADV_HALT_DISABLE_ASYN_USE_SYN_FIX) {
945                 /*
946                  * Temporarily disable the async fix by removing
947                  * this target from the list of affected targets,
948                  * setting our async rate, and then putting us
949                  * back into the mask.
950                  */
951                 adv->fix_asyn_xfer &= ~target_mask;
952                 adv_set_syncrate(adv, /*struct cam_path */NULL,
953                                  tid_no, /*period*/0, /*offset*/0,
954                                  ADV_TRANS_ACTIVE);
955                 adv->fix_asyn_xfer |= target_mask;
956         } else if (int_halt_code == ADV_HALT_ENABLE_ASYN_USE_SYN_FIX) {
957                 adv_set_syncrate(adv, /*struct cam_path */NULL,
958                                  tid_no, /*period*/0, /*offset*/0,
959                                  ADV_TRANS_ACTIVE);
960         } else if (int_halt_code == ADV_HALT_EXTMSG_IN) {
961                 adv_handle_extmsg_in(adv, halt_q_addr, q_cntl,
962                                      target_mask, tid_no);
963         } else if (int_halt_code == ADV_HALT_CHK_CONDITION) {
964                 struct    adv_target_transinfo* tinfo;
965                 union     ccb *ccb;
966                 u_int32_t cinfo_index;
967                 u_int8_t  tag_code;
968                 u_int8_t  q_status;
969
970                 tinfo = &adv->tinfo[tid_no];
971                 q_cntl |= QC_REQ_SENSE;
972
973                 /* Renegotiate if appropriate. */
974                 adv_set_syncrate(adv, /*struct cam_path */NULL,
975                                  tid_no, /*period*/0, /*offset*/0,
976                                  ADV_TRANS_CUR);
977                 if (tinfo->current.period != tinfo->goal.period) {
978                         adv_msgout_sdtr(adv, tinfo->goal.period,
979                                         tinfo->goal.offset);
980                         q_cntl |= QC_MSG_OUT;
981                 }
982                 adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
983
984                 /* Don't tag request sense commands */
985                 tag_code = adv_read_lram_8(adv,
986                                            halt_q_addr + ADV_SCSIQ_B_TAG_CODE);
987                 tag_code &=
988                     ~(MSG_SIMPLE_Q_TAG|MSG_HEAD_OF_Q_TAG|MSG_ORDERED_Q_TAG);
989
990                 if ((adv->fix_asyn_xfer & target_mask) != 0
991                  && (adv->fix_asyn_xfer_always & target_mask) == 0) {
992                         tag_code |= (ADV_TAG_FLAG_DISABLE_DISCONNECT
993                                  | ADV_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
994                 }
995                 adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TAG_CODE,
996                                  tag_code);
997                 q_status = adv_read_lram_8(adv,
998                                            halt_q_addr + ADV_SCSIQ_B_STATUS);
999                 q_status |= (QS_READY | QS_BUSY);
1000                 adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_STATUS,
1001                                  q_status);
1002                 /*
1003                  * Freeze the devq until we can handle the sense condition.
1004                  */
1005                 cinfo_index =
1006                     adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
1007                 ccb = adv->ccb_infos[cinfo_index].ccb;
1008                 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1009                 ccb->ccb_h.status |= CAM_DEV_QFRZN;
1010                 adv_abort_ccb(adv, tid_no, ADV_TIX_TO_LUN(target_ix),
1011                               /*ccb*/NULL, CAM_REQUEUE_REQ,
1012                               /*queued_only*/TRUE);
1013                 scsi_busy = adv_read_lram_8(adv, ADVV_SCSIBUSY_B);
1014                 scsi_busy &= ~target_mask;
1015                 adv_write_lram_8(adv, ADVV_SCSIBUSY_B, scsi_busy);
1016                 /*
1017                  * Ensure we have enough time to actually
1018                  * retrieve the sense.
1019                  */
1020                 callout_reset(&ccb->ccb_h.timeout_ch, 5 * hz, adv_timeout, ccb);
1021         } else if (int_halt_code == ADV_HALT_SDTR_REJECTED) {
1022                 struct  ext_msg out_msg;
1023
1024                 adv_read_lram_16_multi(adv, ADVV_MSGOUT_BEG,
1025                                        (u_int16_t *) &out_msg,
1026                                        sizeof(out_msg)/2);
1027
1028                 if ((out_msg.msg_type == MSG_EXTENDED)
1029                  && (out_msg.msg_len == MSG_EXT_SDTR_LEN)
1030                  && (out_msg.msg_req == MSG_EXT_SDTR)) {
1031
1032                         /* Revert to Async */
1033                         adv_set_syncrate(adv, /*struct cam_path */NULL,
1034                                          tid_no, /*period*/0, /*offset*/0,
1035                                          ADV_TRANS_GOAL|ADV_TRANS_ACTIVE);
1036                 }
1037                 q_cntl &= ~QC_MSG_OUT;
1038                 adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
1039         } else if (int_halt_code == ADV_HALT_SS_QUEUE_FULL) {
1040                 u_int8_t scsi_status;
1041                 union ccb *ccb;
1042                 u_int32_t cinfo_index;
1043                 
1044                 scsi_status = adv_read_lram_8(adv, halt_q_addr
1045                                               + ADV_SCSIQ_SCSI_STATUS);
1046                 cinfo_index =
1047                     adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
1048                 ccb = adv->ccb_infos[cinfo_index].ccb;
1049                 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1050                 ccb->ccb_h.status |= CAM_DEV_QFRZN|CAM_SCSI_STATUS_ERROR;
1051                 ccb->csio.scsi_status = SCSI_STATUS_QUEUE_FULL; 
1052                 adv_abort_ccb(adv, tid_no, ADV_TIX_TO_LUN(target_ix),
1053                               /*ccb*/NULL, CAM_REQUEUE_REQ,
1054                               /*queued_only*/TRUE);
1055                 scsi_busy = adv_read_lram_8(adv, ADVV_SCSIBUSY_B);
1056                 scsi_busy &= ~target_mask;
1057                 adv_write_lram_8(adv, ADVV_SCSIBUSY_B, scsi_busy);              
1058         } else {
1059                 kprintf("Unhandled Halt Code %x\n", int_halt_code);
1060         }
1061         adv_write_lram_16(adv, ADVV_HALTCODE_W, 0);
1062 }
1063
1064 void
1065 adv_sdtr_to_period_offset(struct adv_softc *adv,
1066                           u_int8_t sync_data, u_int8_t *period,
1067                           u_int8_t *offset, int tid)
1068 {
1069         if (adv->fix_asyn_xfer & ADV_TID_TO_TARGET_MASK(tid)
1070          && (sync_data == ASYN_SDTR_DATA_FIX_PCI_REV_AB)) {
1071                 *period = *offset = 0;
1072         } else {
1073                 *period = adv->sdtr_period_tbl[((sync_data >> 4) & 0xF)];
1074                 *offset = sync_data & 0xF;
1075         }
1076 }
1077
1078 void
1079 adv_set_syncrate(struct adv_softc *adv, struct cam_path *path,
1080                  u_int tid, u_int period, u_int offset, u_int type)
1081 {
1082         struct adv_target_transinfo* tinfo;
1083         u_int old_period;
1084         u_int old_offset;
1085         u_int8_t sdtr_data;
1086
1087         tinfo = &adv->tinfo[tid];
1088
1089         /* Filter our input */
1090         sdtr_data = adv_period_offset_to_sdtr(adv, &period,
1091                                               &offset, tid);
1092
1093         old_period = tinfo->current.period;
1094         old_offset = tinfo->current.offset;
1095
1096         if ((type & ADV_TRANS_CUR) != 0
1097          && ((old_period != period || old_offset != offset)
1098           || period == 0 || offset == 0) /*Changes in asyn fix settings*/) {
1099                 int halted;
1100
1101                 crit_enter();
1102                 halted = adv_is_chip_halted(adv);
1103                 if (halted == 0)
1104                         /* Must halt the chip first */
1105                         adv_host_req_chip_halt(adv);
1106
1107                 /* Update current hardware settings */
1108                 adv_set_sdtr_reg_at_id(adv, tid, sdtr_data);
1109
1110                 /*
1111                  * If a target can run in sync mode, we don't need
1112                  * to check it for sync problems.
1113                  */
1114                 if (offset != 0)
1115                         adv->fix_asyn_xfer &= ~ADV_TID_TO_TARGET_MASK(tid);
1116
1117                 if (halted == 0)
1118                         /* Start the chip again */
1119                         adv_start_chip(adv);
1120
1121                 crit_exit();
1122                 tinfo->current.period = period;
1123                 tinfo->current.offset = offset;
1124
1125                 if (path != NULL) {
1126                         /*
1127                          * Tell the SCSI layer about the
1128                          * new transfer parameters.
1129                          */
1130                         struct  ccb_trans_settings neg;
1131                         memset(&neg, 0, sizeof (neg));
1132 #ifdef  CAM_NEW_TRAN_CODE
1133                         struct ccb_trans_settings_spi *spi =
1134                             &neg.xport_specific.spi;
1135
1136                         neg.protocol = PROTO_SCSI;
1137                         neg.protocol_version = SCSI_REV_2;
1138                         neg.transport = XPORT_SPI;
1139                         neg.transport_version = 2;
1140
1141                         spi->sync_offset = offset;
1142                         spi->sync_period = period;
1143                         spi->valid |= CTS_SPI_VALID_SYNC_OFFSET;
1144                         spi->valid |= CTS_SPI_VALID_SYNC_RATE;
1145 #else
1146                         neg.sync_period = period;
1147                         neg.sync_offset = offset;
1148                         neg.valid = CCB_TRANS_SYNC_RATE_VALID
1149                                   | CCB_TRANS_SYNC_OFFSET_VALID;
1150 #endif
1151                         xpt_setup_ccb(&neg.ccb_h, path, /*priority*/1);
1152                         xpt_async(AC_TRANSFER_NEG, path, &neg);
1153                 }
1154         }
1155
1156         if ((type & ADV_TRANS_GOAL) != 0) {
1157                 tinfo->goal.period = period;
1158                 tinfo->goal.offset = offset;
1159         }
1160
1161         if ((type & ADV_TRANS_USER) != 0) {
1162                 tinfo->user.period = period;
1163                 tinfo->user.offset = offset;
1164         }
1165 }
1166
1167 u_int8_t
1168 adv_period_offset_to_sdtr(struct adv_softc *adv, u_int *period,
1169                           u_int *offset, int tid)
1170 {
1171         u_int i;
1172         u_int dummy_offset;
1173         u_int dummy_period;
1174
1175         if (offset == NULL) {
1176                 dummy_offset = 0;
1177                 offset = &dummy_offset;
1178         }
1179
1180         if (period == NULL) {
1181                 dummy_period = 0;
1182                 period = &dummy_period;
1183         }
1184
1185         *offset = MIN(ADV_SYN_MAX_OFFSET, *offset);
1186         if (*period != 0 && *offset != 0) {
1187                 for (i = 0; i < adv->sdtr_period_tbl_size; i++) {
1188                         if (*period <= adv->sdtr_period_tbl[i]) {
1189                                 /*       
1190                                  * When responding to a target that requests
1191                                  * sync, the requested  rate may fall between
1192                                  * two rates that we can output, but still be
1193                                  * a rate that we can receive.  Because of this,
1194                                  * we want to respond to the target with
1195                                  * the same rate that it sent to us even
1196                                  * if the period we use to send data to it
1197                                  * is lower.  Only lower the response period
1198                                  * if we must.
1199                                  */        
1200                                 if (i == 0 /* Our maximum rate */)
1201                                         *period = adv->sdtr_period_tbl[0];
1202                                 return ((i << 4) | *offset);
1203                         }
1204                 }
1205         }
1206         
1207         /* Must go async */
1208         *period = 0;
1209         *offset = 0;
1210         if (adv->fix_asyn_xfer & ADV_TID_TO_TARGET_MASK(tid))
1211                 return (ASYN_SDTR_DATA_FIX_PCI_REV_AB);
1212         return (0);
1213 }
1214
1215 /* Internal Routines */
1216
1217 static void
1218 adv_read_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
1219                        u_int16_t *buffer, int count)
1220 {
1221         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1222         ADV_INSW(adv, ADV_LRAM_DATA, buffer, count);
1223 }
1224
1225 static void
1226 adv_write_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
1227                         u_int16_t *buffer, int count)
1228 {
1229         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1230         ADV_OUTSW(adv, ADV_LRAM_DATA, buffer, count);
1231 }
1232
1233 static void
1234 adv_mset_lram_16(struct adv_softc *adv, u_int16_t s_addr,
1235                  u_int16_t set_value, int count)
1236 {
1237         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1238         bus_space_set_multi_2(adv->tag, adv->bsh, ADV_LRAM_DATA,
1239                               set_value, count);
1240 }
1241
1242 static u_int32_t
1243 adv_msum_lram_16(struct adv_softc *adv, u_int16_t s_addr, int count)
1244 {
1245         u_int32_t       sum;
1246         int             i;
1247
1248         sum = 0;
1249         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1250         for (i = 0; i < count; i++)
1251                 sum += ADV_INW(adv, ADV_LRAM_DATA);
1252         return (sum);
1253 }
1254
1255 static int
1256 adv_write_and_verify_lram_16(struct adv_softc *adv, u_int16_t addr,
1257                              u_int16_t value)
1258 {
1259         int     retval;
1260
1261         retval = 0;
1262         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
1263         ADV_OUTW(adv, ADV_LRAM_DATA, value);
1264         DELAY(10000);
1265         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
1266         if (value != ADV_INW(adv, ADV_LRAM_DATA))
1267                 retval = 1;
1268         return (retval);
1269 }
1270
1271 static u_int32_t
1272 adv_read_lram_32(struct adv_softc *adv, u_int16_t addr)
1273 {
1274         u_int16_t           val_low, val_high;
1275
1276         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
1277
1278 #if BYTE_ORDER == BIG_ENDIAN
1279         val_high = ADV_INW(adv, ADV_LRAM_DATA);
1280         val_low = ADV_INW(adv, ADV_LRAM_DATA);
1281 #else
1282         val_low = ADV_INW(adv, ADV_LRAM_DATA);
1283         val_high = ADV_INW(adv, ADV_LRAM_DATA);
1284 #endif
1285
1286         return (((u_int32_t)val_high << 16) | (u_int32_t)val_low);
1287 }
1288
1289 static void
1290 adv_write_lram_32(struct adv_softc *adv, u_int16_t addr, u_int32_t value)
1291 {
1292         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
1293
1294 #if BYTE_ORDER == BIG_ENDIAN
1295         ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)((value >> 16) & 0xFFFF));
1296         ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)(value & 0xFFFF));
1297 #else
1298         ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)(value & 0xFFFF));
1299         ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)((value >> 16) & 0xFFFF));
1300 #endif
1301 }
1302
1303 static void
1304 adv_write_lram_32_multi(struct adv_softc *adv, u_int16_t s_addr,
1305                         u_int32_t *buffer, int count)
1306 {
1307         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1308         ADV_OUTSW(adv, ADV_LRAM_DATA, (u_int16_t *)buffer, count * 2);
1309 }
1310
1311 static u_int16_t
1312 adv_read_eeprom_16(struct adv_softc *adv, u_int8_t addr)
1313 {
1314         u_int16_t read_wval;
1315         u_int8_t  cmd_reg;
1316
1317         adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_DISABLE);
1318         DELAY(1000);
1319         cmd_reg = addr | ADV_EEPROM_CMD_READ;
1320         adv_write_eeprom_cmd_reg(adv, cmd_reg);
1321         DELAY(1000);
1322         read_wval = ADV_INW(adv, ADV_EEPROM_DATA);
1323         DELAY(1000);
1324         return (read_wval);
1325 }
1326
1327 static u_int16_t
1328 adv_write_eeprom_16(struct adv_softc *adv, u_int8_t addr, u_int16_t value)
1329 {
1330         u_int16_t       read_value;
1331
1332         read_value = adv_read_eeprom_16(adv, addr);
1333         if (read_value != value) {
1334                 adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_ENABLE);
1335                 DELAY(1000);
1336                 
1337                 ADV_OUTW(adv, ADV_EEPROM_DATA, value);
1338                 DELAY(1000);
1339
1340                 adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE | addr);
1341                 DELAY(20 * 1000);
1342
1343                 adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_DISABLE);
1344                 DELAY(1000);
1345                 read_value = adv_read_eeprom_16(adv, addr);
1346         }
1347         return (read_value);
1348 }
1349
1350 static int
1351 adv_write_eeprom_cmd_reg(struct adv_softc *adv, u_int8_t cmd_reg)
1352 {
1353         u_int8_t read_back;
1354         int      retry;
1355
1356         retry = 0;
1357         while (1) {
1358                 ADV_OUTB(adv, ADV_EEPROM_CMD, cmd_reg);
1359                 DELAY(1000);
1360                 read_back = ADV_INB(adv, ADV_EEPROM_CMD);
1361                 if (read_back == cmd_reg) {
1362                         return (1);
1363                 }
1364                 if (retry++ > ADV_EEPROM_MAX_RETRY) {
1365                         return (0);
1366                 }
1367         }
1368 }
1369
1370 static int
1371 adv_set_eeprom_config_once(struct adv_softc *adv,
1372                            struct adv_eeprom_config *eeprom_config)
1373 {
1374         int             n_error;
1375         u_int16_t       *wbuf;
1376         u_int16_t       sum;
1377         u_int8_t        s_addr;
1378         u_int8_t        cfg_beg;
1379         u_int8_t        cfg_end;
1380
1381         wbuf = (u_int16_t *)eeprom_config;
1382         n_error = 0;
1383         sum = 0;
1384         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
1385                 sum += *wbuf;
1386                 if (*wbuf != adv_write_eeprom_16(adv, s_addr, *wbuf)) {
1387                         n_error++;
1388                 }
1389         }
1390         if (adv->type & ADV_VL) {
1391                 cfg_beg = ADV_EEPROM_CFG_BEG_VL;
1392                 cfg_end = ADV_EEPROM_MAX_ADDR_VL;
1393         } else {
1394                 cfg_beg = ADV_EEPROM_CFG_BEG;
1395                 cfg_end = ADV_EEPROM_MAX_ADDR;
1396         }
1397
1398         for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
1399                 sum += *wbuf;
1400                 if (*wbuf != adv_write_eeprom_16(adv, s_addr, *wbuf)) {
1401                         n_error++;
1402                 }
1403         }
1404         *wbuf = sum;
1405         if (sum != adv_write_eeprom_16(adv, s_addr, sum)) {
1406                 n_error++;
1407         }
1408         wbuf = (u_int16_t *)eeprom_config;
1409         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
1410                 if (*wbuf != adv_read_eeprom_16(adv, s_addr)) {
1411                         n_error++;
1412                 }
1413         }
1414         for (s_addr = cfg_beg; s_addr <= cfg_end; s_addr++, wbuf++) {
1415                 if (*wbuf != adv_read_eeprom_16(adv, s_addr)) {
1416                         n_error++;
1417                 }
1418         }
1419         return (n_error);
1420 }
1421
1422 static u_int32_t
1423 adv_load_microcode(struct adv_softc *adv, u_int16_t s_addr,
1424                    u_int16_t *mcode_buf, u_int16_t mcode_size)
1425 {
1426         u_int32_t chksum;
1427         u_int16_t mcode_lram_size;
1428         u_int16_t mcode_chksum;
1429
1430         mcode_lram_size = mcode_size >> 1;
1431         /* XXX Why zero the memory just before you write the whole thing?? */
1432         adv_mset_lram_16(adv, s_addr, 0, mcode_lram_size);
1433         adv_write_lram_16_multi(adv, s_addr, mcode_buf, mcode_lram_size);
1434
1435         chksum = adv_msum_lram_16(adv, s_addr, mcode_lram_size);
1436         mcode_chksum = (u_int16_t)adv_msum_lram_16(adv, ADV_CODE_SEC_BEG,
1437                                                    ((mcode_size - s_addr
1438                                                      - ADV_CODE_SEC_BEG) >> 1));
1439         adv_write_lram_16(adv, ADVV_MCODE_CHKSUM_W, mcode_chksum);
1440         adv_write_lram_16(adv, ADVV_MCODE_SIZE_W, mcode_size);
1441         return (chksum);
1442 }
1443
1444 static void
1445 adv_reinit_lram(struct adv_softc *adv) {
1446         adv_init_lram(adv);
1447         adv_init_qlink_var(adv);
1448 }
1449
1450 static void
1451 adv_init_lram(struct adv_softc *adv)
1452 {
1453         u_int8_t  i;
1454         u_int16_t s_addr;
1455
1456         adv_mset_lram_16(adv, ADV_QADR_BEG, 0,
1457                          (((adv->max_openings + 2 + 1) * 64) >> 1));
1458         
1459         i = ADV_MIN_ACTIVE_QNO;
1460         s_addr = ADV_QADR_BEG + ADV_QBLK_SIZE;
1461
1462         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i + 1);
1463         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, adv->max_openings);
1464         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
1465         i++;
1466         s_addr += ADV_QBLK_SIZE;
1467         for (; i < adv->max_openings; i++, s_addr += ADV_QBLK_SIZE) {
1468                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i + 1);
1469                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, i - 1);
1470                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
1471         }
1472
1473         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, ADV_QLINK_END);
1474         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, adv->max_openings - 1);
1475         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, adv->max_openings);
1476         i++;
1477         s_addr += ADV_QBLK_SIZE;
1478
1479         for (; i <= adv->max_openings + 3; i++, s_addr += ADV_QBLK_SIZE) {
1480                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i);
1481                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, i);
1482                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
1483         }
1484 }
1485
1486 static int
1487 adv_init_microcode_var(struct adv_softc *adv)
1488 {
1489         int      i;
1490
1491         for (i = 0; i <= ADV_MAX_TID; i++) {
1492                 
1493                 /* Start out async all around */
1494                 adv_set_syncrate(adv, /*path*/NULL,
1495                                  i, 0, 0,
1496                                  ADV_TRANS_GOAL|ADV_TRANS_CUR);
1497         }
1498
1499         adv_init_qlink_var(adv);
1500
1501         adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
1502         adv_write_lram_8(adv, ADVV_HOSTSCSI_ID_B, 0x01 << adv->scsi_id);
1503
1504         adv_write_lram_32(adv, ADVV_OVERRUN_PADDR_D, adv->overrun_physbase);
1505
1506         adv_write_lram_32(adv, ADVV_OVERRUN_BSIZE_D, ADV_OVERRUN_BSIZE);
1507
1508         ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
1509         if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
1510                 kprintf("adv%d: Unable to set program counter. Aborting.\n",
1511                        adv->unit);
1512                 return (1);
1513         }
1514         return (0);
1515 }
1516
1517 static void
1518 adv_init_qlink_var(struct adv_softc *adv)
1519 {
1520         int       i;
1521         u_int16_t lram_addr;
1522
1523         adv_write_lram_8(adv, ADVV_NEXTRDY_B, 1);
1524         adv_write_lram_8(adv, ADVV_DONENEXT_B, adv->max_openings);
1525
1526         adv_write_lram_16(adv, ADVV_FREE_Q_HEAD_W, 1);
1527         adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, adv->max_openings);
1528
1529         adv_write_lram_8(adv, ADVV_BUSY_QHEAD_B,
1530                          (u_int8_t)((int) adv->max_openings + 1));
1531         adv_write_lram_8(adv, ADVV_DISC1_QHEAD_B,
1532                          (u_int8_t)((int) adv->max_openings + 2));
1533
1534         adv_write_lram_8(adv, ADVV_TOTAL_READY_Q_B, adv->max_openings);
1535
1536         adv_write_lram_16(adv, ADVV_ASCDVC_ERR_CODE_W, 0);
1537         adv_write_lram_16(adv, ADVV_HALTCODE_W, 0);
1538         adv_write_lram_8(adv, ADVV_STOP_CODE_B, 0);
1539         adv_write_lram_8(adv, ADVV_SCSIBUSY_B, 0);
1540         adv_write_lram_8(adv, ADVV_WTM_FLAG_B, 0);
1541         adv_write_lram_8(adv, ADVV_Q_DONE_IN_PROGRESS_B, 0);
1542
1543         lram_addr = ADV_QADR_BEG;
1544         for (i = 0; i < 32; i++, lram_addr += 2)
1545                 adv_write_lram_16(adv, lram_addr, 0);
1546 }
1547
1548 static void
1549 adv_disable_interrupt(struct adv_softc *adv)
1550 {
1551         u_int16_t cfg;
1552
1553         cfg = ADV_INW(adv, ADV_CONFIG_LSW);
1554         ADV_OUTW(adv, ADV_CONFIG_LSW, cfg & ~ADV_CFG_LSW_HOST_INT_ON);
1555 }
1556
1557 static void
1558 adv_enable_interrupt(struct adv_softc *adv)
1559 {
1560         u_int16_t cfg;
1561
1562         cfg = ADV_INW(adv, ADV_CONFIG_LSW);
1563         ADV_OUTW(adv, ADV_CONFIG_LSW, cfg | ADV_CFG_LSW_HOST_INT_ON);
1564 }
1565
1566 static void
1567 adv_toggle_irq_act(struct adv_softc *adv)
1568 {
1569         ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_IRQ_ACT);
1570         ADV_OUTW(adv, ADV_CHIP_STATUS, 0);
1571 }
1572
1573 void
1574 adv_start_execution(struct adv_softc *adv)
1575 {
1576         if (adv_read_lram_8(adv, ADV_STOP_CODE_B) != 0) {
1577                 adv_write_lram_8(adv, ADV_STOP_CODE_B, 0);
1578         }
1579 }
1580
1581 int
1582 adv_stop_chip(struct adv_softc *adv)
1583 {
1584         u_int8_t cc_val;
1585
1586         cc_val = ADV_INB(adv, ADV_CHIP_CTRL)
1587                  & (~(ADV_CC_SINGLE_STEP | ADV_CC_TEST | ADV_CC_DIAG));
1588         ADV_OUTB(adv, ADV_CHIP_CTRL, cc_val | ADV_CC_HALT);
1589         adv_set_chip_ih(adv, ADV_INS_HALT);
1590         adv_set_chip_ih(adv, ADV_INS_RFLAG_WTM);
1591         if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) == 0) {
1592                 return (0);
1593         }
1594         return (1);
1595 }
1596
1597 static int
1598 adv_host_req_chip_halt(struct adv_softc *adv)
1599 {       
1600         int      count;
1601         u_int8_t saved_stop_code;
1602
1603         if (adv_is_chip_halted(adv))
1604                 return (1);
1605
1606         count = 0;
1607         saved_stop_code = adv_read_lram_8(adv, ADVV_STOP_CODE_B);
1608         adv_write_lram_8(adv, ADVV_STOP_CODE_B,
1609                          ADV_STOP_HOST_REQ_RISC_HALT | ADV_STOP_REQ_RISC_STOP);
1610         while (adv_is_chip_halted(adv) == 0
1611             && count++ < 2000)
1612                 ;
1613
1614         adv_write_lram_8(adv, ADVV_STOP_CODE_B, saved_stop_code);
1615         return (count < 2000); 
1616 }
1617
1618 static void
1619 adv_set_chip_ih(struct adv_softc *adv, u_int16_t ins_code)
1620 {
1621         adv_set_bank(adv, 1);
1622         ADV_OUTW(adv, ADV_REG_IH, ins_code);
1623         adv_set_bank(adv, 0);
1624 }
1625
1626 #if UNUSED
1627 static u_int8_t
1628 adv_get_chip_scsi_ctrl(struct adv_softc *adv)
1629 {
1630         u_int8_t scsi_ctrl;
1631
1632         adv_set_bank(adv, 1);
1633         scsi_ctrl = ADV_INB(adv, ADV_REG_SC);
1634         adv_set_bank(adv, 0);
1635         return (scsi_ctrl);
1636 }
1637 #endif
1638
1639 /*
1640  * XXX Looks like more padding issues in this routine as well.
1641  *     There has to be a way to turn this into an insw.
1642  */
1643 static void
1644 adv_get_q_info(struct adv_softc *adv, u_int16_t s_addr,
1645                u_int16_t *inbuf, int words)
1646 {
1647         int     i;
1648
1649         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1650         for (i = 0; i < words; i++, inbuf++) {
1651                 if (i == 5) {
1652                         continue;
1653                 }
1654                 *inbuf = ADV_INW(adv, ADV_LRAM_DATA);
1655         }
1656 }
1657
1658 static u_int
1659 adv_get_num_free_queues(struct adv_softc *adv, u_int8_t n_qs)
1660 {
1661         u_int     cur_used_qs;
1662         u_int     cur_free_qs;
1663
1664         cur_used_qs = adv->cur_active + ADV_MIN_FREE_Q;
1665
1666         if ((cur_used_qs + n_qs) <= adv->max_openings) {
1667                 cur_free_qs = adv->max_openings - cur_used_qs;
1668                 return (cur_free_qs);
1669         }
1670         adv->openings_needed = n_qs;
1671         return (0);
1672 }
1673
1674 static u_int8_t
1675 adv_alloc_free_queues(struct adv_softc *adv, u_int8_t free_q_head,
1676                       u_int8_t n_free_q)
1677 {
1678         int i;
1679
1680         for (i = 0; i < n_free_q; i++) {
1681                 free_q_head = adv_alloc_free_queue(adv, free_q_head);
1682                 if (free_q_head == ADV_QLINK_END)
1683                         break;
1684         }
1685         return (free_q_head);
1686 }
1687
1688 static u_int8_t
1689 adv_alloc_free_queue(struct adv_softc *adv, u_int8_t free_q_head)
1690 {
1691         u_int16_t       q_addr;
1692         u_int8_t        next_qp;
1693         u_int8_t        q_status;
1694
1695         next_qp = ADV_QLINK_END;
1696         q_addr = ADV_QNO_TO_QADDR(free_q_head);
1697         q_status = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_STATUS);
1698         
1699         if ((q_status & QS_READY) == 0)
1700                 next_qp = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_FWD);
1701
1702         return (next_qp);
1703 }
1704
1705 static int
1706 adv_send_scsi_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
1707                     u_int8_t n_q_required)
1708 {
1709         u_int8_t        free_q_head;
1710         u_int8_t        next_qp;
1711         u_int8_t        tid_no;
1712         u_int8_t        target_ix;
1713         int             retval;
1714
1715         retval = 1;
1716         target_ix = scsiq->q2.target_ix;
1717         tid_no = ADV_TIX_TO_TID(target_ix);
1718         free_q_head = adv_read_lram_16(adv, ADVV_FREE_Q_HEAD_W) & 0xFF;
1719         if ((next_qp = adv_alloc_free_queues(adv, free_q_head, n_q_required))
1720             != ADV_QLINK_END) {
1721                 scsiq->q1.q_no = free_q_head;
1722
1723                 /*
1724                  * Now that we know our Q number, point our sense
1725                  * buffer pointer to a bus dma mapped area where
1726                  * we can dma the data to.
1727                  */
1728                 scsiq->q1.sense_addr = adv->sense_physbase
1729                     + ((free_q_head - 1) * sizeof(struct scsi_sense_data));
1730                 adv_put_ready_sg_list_queue(adv, scsiq, free_q_head);
1731                 adv_write_lram_16(adv, ADVV_FREE_Q_HEAD_W, next_qp);
1732                 adv->cur_active += n_q_required;
1733                 retval = 0;
1734         }
1735         return (retval);
1736 }
1737
1738
1739 static void
1740 adv_put_ready_sg_list_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
1741                             u_int q_no)
1742 {
1743         u_int8_t        sg_list_dwords;
1744         u_int8_t        sg_index, i;
1745         u_int8_t        sg_entry_cnt;
1746         u_int8_t        next_qp;
1747         u_int16_t       q_addr;
1748         struct          adv_sg_head *sg_head;
1749         struct          adv_sg_list_q scsi_sg_q;
1750
1751         sg_head = scsiq->sg_head;
1752
1753         if (sg_head) {
1754                 sg_entry_cnt = sg_head->entry_cnt - 1;
1755 #ifdef DIAGNOSTIC
1756                 if (sg_entry_cnt == 0)
1757                         panic("adv_put_ready_sg_list_queue: ScsiQ with "
1758                               "a SG list but only one element");
1759                 if ((scsiq->q1.cntl & QC_SG_HEAD) == 0)
1760                         panic("adv_put_ready_sg_list_queue: ScsiQ with "
1761                               "a SG list but QC_SG_HEAD not set");
1762 #endif                  
1763                 q_addr = ADV_QNO_TO_QADDR(q_no);
1764                 sg_index = 1;
1765                 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
1766                 scsi_sg_q.sg_head_qp = q_no;
1767                 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
1768                 for (i = 0; i < sg_head->queue_cnt; i++) {
1769                         u_int8_t segs_this_q;
1770
1771                         if (sg_entry_cnt > ADV_SG_LIST_PER_Q)
1772                                 segs_this_q = ADV_SG_LIST_PER_Q;
1773                         else {
1774                                 /* This will be the last segment then */
1775                                 segs_this_q = sg_entry_cnt;
1776                                 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
1777                         }
1778                         scsi_sg_q.seq_no = i + 1;
1779                         sg_list_dwords = segs_this_q << 1;
1780                         if (i == 0) {
1781                                 scsi_sg_q.sg_list_cnt = segs_this_q;
1782                                 scsi_sg_q.sg_cur_list_cnt = segs_this_q;
1783                         } else {
1784                                 scsi_sg_q.sg_list_cnt = segs_this_q - 1;
1785                                 scsi_sg_q.sg_cur_list_cnt = segs_this_q - 1;
1786                         }
1787                         next_qp = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_FWD);
1788                         scsi_sg_q.q_no = next_qp;
1789                         q_addr = ADV_QNO_TO_QADDR(next_qp);
1790
1791                         adv_write_lram_16_multi(adv,
1792                                                 q_addr + ADV_SCSIQ_SGHD_CPY_BEG,
1793                                                 (u_int16_t *)&scsi_sg_q,
1794                                                 sizeof(scsi_sg_q) >> 1);
1795                         adv_write_lram_32_multi(adv, q_addr + ADV_SGQ_LIST_BEG,
1796                                                 (u_int32_t *)&sg_head->sg_list[sg_index],
1797                                                 sg_list_dwords);
1798                         sg_entry_cnt -= segs_this_q;
1799                         sg_index += ADV_SG_LIST_PER_Q;
1800                 }
1801         }
1802         adv_put_ready_queue(adv, scsiq, q_no);
1803 }
1804
1805 static void
1806 adv_put_ready_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
1807                     u_int q_no)
1808 {
1809         struct          adv_target_transinfo* tinfo;
1810         u_int           q_addr;
1811         u_int           tid_no;
1812
1813         tid_no = ADV_TIX_TO_TID(scsiq->q2.target_ix);
1814         tinfo = &adv->tinfo[tid_no];
1815         if ((tinfo->current.period != tinfo->goal.period)
1816          || (tinfo->current.offset != tinfo->goal.offset)) {
1817
1818                 adv_msgout_sdtr(adv, tinfo->goal.period, tinfo->goal.offset);
1819                 scsiq->q1.cntl |= QC_MSG_OUT;
1820         }
1821         q_addr = ADV_QNO_TO_QADDR(q_no);
1822
1823         scsiq->q1.status = QS_FREE;
1824
1825         adv_write_lram_16_multi(adv, q_addr + ADV_SCSIQ_CDB_BEG,
1826                                 (u_int16_t *)scsiq->cdbptr,
1827                                 scsiq->q2.cdb_len >> 1);
1828
1829 #if BYTE_ORDER == BIG_ENDIAN
1830         adv_adj_scsiq_endian(scsiq);
1831 #endif
1832
1833         adv_put_scsiq(adv, q_addr + ADV_SCSIQ_CPY_BEG,
1834                       (u_int16_t *) &scsiq->q1.cntl,
1835                       ((sizeof(scsiq->q1) + sizeof(scsiq->q2)) / 2) - 1);
1836
1837 #if CC_WRITE_IO_COUNT
1838         adv_write_lram_16(adv, q_addr + ADV_SCSIQ_W_REQ_COUNT,
1839                           adv->req_count);
1840 #endif
1841
1842 #if CC_CLEAR_DMA_REMAIN
1843
1844         adv_write_lram_32(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_ADDR, 0);
1845         adv_write_lram_32(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_CNT, 0);
1846 #endif
1847
1848         adv_write_lram_16(adv, q_addr + ADV_SCSIQ_B_STATUS,
1849                           (scsiq->q1.q_no << 8) | QS_READY);
1850 }
1851
1852 static void
1853 adv_put_scsiq(struct adv_softc *adv, u_int16_t s_addr,
1854               u_int16_t *buffer, int words)
1855 {
1856         int     i;
1857
1858         /*
1859          * XXX This routine makes *gross* assumptions
1860          * about padding in the data structures.
1861          * Either the data structures should have explicit
1862          * padding members added, or they should have padding
1863          * turned off via compiler attributes depending on
1864          * which yields better overall performance.  My hunch
1865          * would be that turning off padding would be the
1866          * faster approach as an outsw is much faster than
1867          * this crude loop and accessing un-aligned data
1868          * members isn't *that* expensive.  The other choice
1869          * would be to modify the ASC script so that the
1870          * the adv_scsiq_1 structure can be re-arranged so
1871          * padding isn't required.
1872          */
1873         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1874         for (i = 0; i < words; i++, buffer++) {
1875                 if (i == 2 || i == 10) {
1876                         continue;
1877                 }
1878                 ADV_OUTW(adv, ADV_LRAM_DATA, *buffer);
1879         }
1880 }
1881
1882 static void
1883 adv_handle_extmsg_in(struct adv_softc *adv, u_int16_t halt_q_addr,
1884                      u_int8_t q_cntl, target_bit_vector target_mask,
1885                      int tid_no)
1886 {
1887         struct  ext_msg ext_msg;
1888
1889         adv_read_lram_16_multi(adv, ADVV_MSGIN_BEG, (u_int16_t *) &ext_msg,
1890                                sizeof(ext_msg) >> 1);
1891         if ((ext_msg.msg_type == MSG_EXTENDED)
1892          && (ext_msg.msg_req == MSG_EXT_SDTR)
1893          && (ext_msg.msg_len == MSG_EXT_SDTR_LEN)) {
1894                 union     ccb *ccb;
1895                 struct    adv_target_transinfo* tinfo;
1896                 u_int32_t cinfo_index;
1897                 u_int    period;
1898                 u_int    offset;
1899                 int      sdtr_accept;
1900                 u_int8_t orig_offset;
1901
1902                 cinfo_index =
1903                     adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
1904                 ccb = adv->ccb_infos[cinfo_index].ccb;
1905                 tinfo = &adv->tinfo[tid_no];
1906                 sdtr_accept = TRUE;
1907
1908                 orig_offset = ext_msg.req_ack_offset;
1909                 if (ext_msg.xfer_period < tinfo->goal.period) {
1910                         sdtr_accept = FALSE;
1911                         ext_msg.xfer_period = tinfo->goal.period;
1912                 }
1913
1914                 /* Perform range checking */
1915                 period = ext_msg.xfer_period;
1916                 offset = ext_msg.req_ack_offset;
1917                 adv_period_offset_to_sdtr(adv, &period,  &offset, tid_no);
1918                 ext_msg.xfer_period = period;
1919                 ext_msg.req_ack_offset = offset;
1920                 
1921                 /* Record our current sync settings */
1922                 adv_set_syncrate(adv, ccb->ccb_h.path,
1923                                  tid_no, ext_msg.xfer_period,
1924                                  ext_msg.req_ack_offset,
1925                                  ADV_TRANS_GOAL|ADV_TRANS_ACTIVE);
1926
1927                 /* Offset too high or large period forced async */
1928                 if (orig_offset != ext_msg.req_ack_offset)
1929                         sdtr_accept = FALSE;
1930
1931                 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
1932                         /* Valid response to our requested negotiation */
1933                         q_cntl &= ~QC_MSG_OUT;
1934                 } else {
1935                         /* Must Respond */
1936                         q_cntl |= QC_MSG_OUT;
1937                         adv_msgout_sdtr(adv, ext_msg.xfer_period,
1938                                         ext_msg.req_ack_offset);
1939                 }
1940
1941         } else if (ext_msg.msg_type == MSG_EXTENDED
1942                 && ext_msg.msg_req == MSG_EXT_WDTR
1943                 && ext_msg.msg_len == MSG_EXT_WDTR_LEN) {
1944
1945                 ext_msg.wdtr_width = 0;
1946                 adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
1947                                         (u_int16_t *)&ext_msg,
1948                                         sizeof(ext_msg) >> 1);
1949                 q_cntl |= QC_MSG_OUT;
1950         } else {
1951
1952                 ext_msg.msg_type = MSG_MESSAGE_REJECT;
1953                 adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
1954                                         (u_int16_t *)&ext_msg,
1955                                         sizeof(ext_msg) >> 1);
1956                 q_cntl |= QC_MSG_OUT;
1957         }
1958         adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
1959 }
1960
1961 static void
1962 adv_msgout_sdtr(struct adv_softc *adv, u_int8_t sdtr_period,
1963                 u_int8_t sdtr_offset)
1964 {
1965         struct   ext_msg sdtr_buf;
1966
1967         sdtr_buf.msg_type = MSG_EXTENDED;
1968         sdtr_buf.msg_len = MSG_EXT_SDTR_LEN;
1969         sdtr_buf.msg_req = MSG_EXT_SDTR;
1970         sdtr_buf.xfer_period = sdtr_period;
1971         sdtr_offset &= ADV_SYN_MAX_OFFSET;
1972         sdtr_buf.req_ack_offset = sdtr_offset;
1973         adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
1974                                 (u_int16_t *) &sdtr_buf,
1975                                 sizeof(sdtr_buf) / 2);
1976 }
1977
1978 int
1979 adv_abort_ccb(struct adv_softc *adv, int target, int lun, union ccb *ccb,
1980               u_int32_t status, int queued_only)
1981 {
1982         u_int16_t q_addr;
1983         u_int8_t  q_no;
1984         struct adv_q_done_info scsiq_buf;
1985         struct adv_q_done_info *scsiq;
1986         u_int8_t  target_ix;
1987         int       count;
1988
1989         scsiq = &scsiq_buf;
1990         target_ix = ADV_TIDLUN_TO_IX(target, lun);
1991         count = 0;
1992         for (q_no = ADV_MIN_ACTIVE_QNO; q_no <= adv->max_openings; q_no++) {
1993                 struct adv_ccb_info *ccb_info;
1994                 q_addr = ADV_QNO_TO_QADDR(q_no);
1995
1996                 adv_copy_lram_doneq(adv, q_addr, scsiq, adv->max_dma_count);
1997                 ccb_info = &adv->ccb_infos[scsiq->d2.ccb_index];
1998                 if (((scsiq->q_status & QS_READY) != 0)
1999                  && ((scsiq->q_status & QS_ABORTED) == 0)
2000                  && ((scsiq->cntl & QCSG_SG_XFER_LIST) == 0)
2001                  && (scsiq->d2.target_ix == target_ix)
2002                  && (queued_only == 0
2003                   || !(scsiq->q_status & (QS_DISC1|QS_DISC2|QS_BUSY|QS_DONE)))
2004                  && (ccb == NULL || (ccb == ccb_info->ccb))) {
2005                         union ccb *aborted_ccb;
2006                         struct adv_ccb_info *cinfo;
2007
2008                         scsiq->q_status |= QS_ABORTED;
2009                         adv_write_lram_8(adv, q_addr + ADV_SCSIQ_B_STATUS,
2010                                          scsiq->q_status);
2011                         aborted_ccb = ccb_info->ccb;
2012                         /* Don't clobber earlier error codes */
2013                         if ((aborted_ccb->ccb_h.status & CAM_STATUS_MASK)
2014                           == CAM_REQ_INPROG)
2015                                 aborted_ccb->ccb_h.status |= status;
2016                         cinfo = (struct adv_ccb_info *)
2017                             aborted_ccb->ccb_h.ccb_cinfo_ptr;
2018                         cinfo->state |= ACCB_ABORT_QUEUED;
2019                         count++;
2020                 }
2021         }
2022         return (count);
2023 }
2024
2025 int
2026 adv_reset_bus(struct adv_softc *adv, int initiate_bus_reset)
2027 {
2028         int count; 
2029         int i;
2030         union ccb *ccb;
2031
2032         i = 200;
2033         while ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_SCSI_RESET_ACTIVE) != 0
2034             && i--)
2035                 DELAY(1000);
2036         adv_reset_chip(adv, initiate_bus_reset);
2037         adv_reinit_lram(adv);
2038         for (i = 0; i <= ADV_MAX_TID; i++)
2039                 adv_set_syncrate(adv, NULL, i, /*period*/0,
2040                                  /*offset*/0, ADV_TRANS_CUR);
2041         ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
2042
2043         /* Tell the XPT layer that a bus reset occured */
2044         if (adv->path != NULL)
2045                 xpt_async(AC_BUS_RESET, adv->path, NULL);
2046
2047         count = 0;
2048         while ((ccb = (union ccb *)LIST_FIRST(&adv->pending_ccbs)) != NULL) {
2049                 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)
2050                         ccb->ccb_h.status |= CAM_SCSI_BUS_RESET;
2051                 adv_done(adv, ccb, QD_ABORTED_BY_HOST, 0, 0, 0);
2052                 count++;
2053         }
2054
2055         adv_start_chip(adv);
2056         return (count);
2057 }
2058
2059 static void
2060 adv_set_sdtr_reg_at_id(struct adv_softc *adv, int tid, u_int8_t sdtr_data)
2061 {
2062         int orig_id;
2063
2064         adv_set_bank(adv, 1);
2065         orig_id = ffs(ADV_INB(adv, ADV_HOST_SCSIID)) - 1;
2066         ADV_OUTB(adv, ADV_HOST_SCSIID, tid);
2067         if (ADV_INB(adv, ADV_HOST_SCSIID) == (0x01 << tid)) {
2068                 adv_set_bank(adv, 0);
2069                 ADV_OUTB(adv, ADV_SYN_OFFSET, sdtr_data);
2070         }
2071         adv_set_bank(adv, 1);
2072         ADV_OUTB(adv, ADV_HOST_SCSIID, orig_id);
2073         adv_set_bank(adv, 0);
2074 }