Merge from vendor branch HOSTAPD:
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.24 2006/08/12 00:26:22 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389         vm_object_t object;
390         int pageout_status[count];
391         int numpagedout = 0;
392         int i;
393
394         /*
395          * Initiate I/O.  Bump the vm_page_t->busy counter and
396          * mark the pages read-only.
397          *
398          * We do not have to fixup the clean/dirty bits here... we can
399          * allow the pager to do it after the I/O completes.
400          */
401
402         for (i = 0; i < count; i++) {
403                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404                 vm_page_io_start(mc[i]);
405                 vm_page_protect(mc[i], VM_PROT_READ);
406         }
407
408         object = mc[0]->object;
409         vm_object_pip_add(object, count);
410
411         vm_pager_put_pages(object, mc, count,
412             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413             pageout_status);
414
415         for (i = 0; i < count; i++) {
416                 vm_page_t mt = mc[i];
417
418                 switch (pageout_status[i]) {
419                 case VM_PAGER_OK:
420                         numpagedout++;
421                         break;
422                 case VM_PAGER_PEND:
423                         numpagedout++;
424                         break;
425                 case VM_PAGER_BAD:
426                         /*
427                          * Page outside of range of object. Right now we
428                          * essentially lose the changes by pretending it
429                          * worked.
430                          */
431                         pmap_clear_modify(mt);
432                         vm_page_undirty(mt);
433                         break;
434                 case VM_PAGER_ERROR:
435                 case VM_PAGER_FAIL:
436                         /*
437                          * If page couldn't be paged out, then reactivate the
438                          * page so it doesn't clog the inactive list.  (We
439                          * will try paging out it again later).
440                          */
441                         vm_page_activate(mt);
442                         break;
443                 case VM_PAGER_AGAIN:
444                         break;
445                 }
446
447                 /*
448                  * If the operation is still going, leave the page busy to
449                  * block all other accesses. Also, leave the paging in
450                  * progress indicator set so that we don't attempt an object
451                  * collapse.
452                  */
453                 if (pageout_status[i] != VM_PAGER_PEND) {
454                         vm_object_pip_wakeup(object);
455                         vm_page_io_finish(mt);
456                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457                                 vm_page_protect(mt, VM_PROT_READ);
458                 }
459         }
460         return numpagedout;
461 }
462
463 #if !defined(NO_SWAPPING)
464 /*
465  *      vm_pageout_object_deactivate_pages
466  *
467  *      deactivate enough pages to satisfy the inactive target
468  *      requirements or if vm_page_proc_limit is set, then
469  *      deactivate all of the pages in the object and its
470  *      backing_objects.
471  *
472  *      The object and map must be locked.
473  */
474 static void
475 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
476         vm_pindex_t desired, int map_remove_only)
477 {
478         vm_page_t p, next;
479         int rcount;
480         int remove_mode;
481
482         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
483                 return;
484
485         while (object) {
486                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
487                         return;
488                 if (object->paging_in_progress)
489                         return;
490
491                 remove_mode = map_remove_only;
492                 if (object->shadow_count > 1)
493                         remove_mode = 1;
494
495                 /*
496                  * scan the objects entire memory queue.  spl protection is
497                  * required to avoid an interrupt unbusy/free race against
498                  * our busy check.
499                  */
500                 crit_enter();
501                 rcount = object->resident_page_count;
502                 p = TAILQ_FIRST(&object->memq);
503
504                 while (p && (rcount-- > 0)) {
505                         int actcount;
506                         if (pmap_resident_count(vm_map_pmap(map)) <= desired) {
507                                 crit_exit();
508                                 return;
509                         }
510                         next = TAILQ_NEXT(p, listq);
511                         mycpu->gd_cnt.v_pdpages++;
512                         if (p->wire_count != 0 ||
513                             p->hold_count != 0 ||
514                             p->busy != 0 ||
515                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
516                             !pmap_page_exists_quick(vm_map_pmap(map), p)) {
517                                 p = next;
518                                 continue;
519                         }
520
521                         actcount = pmap_ts_referenced(p);
522                         if (actcount) {
523                                 vm_page_flag_set(p, PG_REFERENCED);
524                         } else if (p->flags & PG_REFERENCED) {
525                                 actcount = 1;
526                         }
527
528                         if ((p->queue != PQ_ACTIVE) &&
529                                 (p->flags & PG_REFERENCED)) {
530                                 vm_page_activate(p);
531                                 p->act_count += actcount;
532                                 vm_page_flag_clear(p, PG_REFERENCED);
533                         } else if (p->queue == PQ_ACTIVE) {
534                                 if ((p->flags & PG_REFERENCED) == 0) {
535                                         p->act_count -= min(p->act_count, ACT_DECLINE);
536                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
537                                                 vm_page_protect(p, VM_PROT_NONE);
538                                                 vm_page_deactivate(p);
539                                         } else {
540                                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
541                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
542                                         }
543                                 } else {
544                                         vm_page_activate(p);
545                                         vm_page_flag_clear(p, PG_REFERENCED);
546                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
547                                                 p->act_count += ACT_ADVANCE;
548                                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
549                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550                                 }
551                         } else if (p->queue == PQ_INACTIVE) {
552                                 vm_page_protect(p, VM_PROT_NONE);
553                         }
554                         p = next;
555                 }
556                 crit_exit();
557                 object = object->backing_object;
558         }
559 }
560
561 /*
562  * deactivate some number of pages in a map, try to do it fairly, but
563  * that is really hard to do.
564  */
565 static void
566 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
567 {
568         vm_map_entry_t tmpe;
569         vm_object_t obj, bigobj;
570         int nothingwired;
571
572         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
573                 return;
574         }
575
576         bigobj = NULL;
577         nothingwired = TRUE;
578
579         /*
580          * first, search out the biggest object, and try to free pages from
581          * that.
582          */
583         tmpe = map->header.next;
584         while (tmpe != &map->header) {
585                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
586                         obj = tmpe->object.vm_object;
587                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
588                                 ((bigobj == NULL) ||
589                                  (bigobj->resident_page_count < obj->resident_page_count))) {
590                                 bigobj = obj;
591                         }
592                 }
593                 if (tmpe->wired_count > 0)
594                         nothingwired = FALSE;
595                 tmpe = tmpe->next;
596         }
597
598         if (bigobj)
599                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
600
601         /*
602          * Next, hunt around for other pages to deactivate.  We actually
603          * do this search sort of wrong -- .text first is not the best idea.
604          */
605         tmpe = map->header.next;
606         while (tmpe != &map->header) {
607                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
608                         break;
609                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
610                         obj = tmpe->object.vm_object;
611                         if (obj)
612                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
613                 }
614                 tmpe = tmpe->next;
615         };
616
617         /*
618          * Remove all mappings if a process is swapped out, this will free page
619          * table pages.
620          */
621         if (desired == 0 && nothingwired)
622                 pmap_remove(vm_map_pmap(map),
623                         VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
624         vm_map_unlock(map);
625 }
626 #endif
627
628 /*
629  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
630  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
631  * be trivially freed.
632  */
633 void
634 vm_pageout_page_free(vm_page_t m) {
635         vm_object_t object = m->object;
636         int type = object->type;
637
638         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
639                 vm_object_reference(object);
640         vm_page_busy(m);
641         vm_page_protect(m, VM_PROT_NONE);
642         vm_page_free(m);
643         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
644                 vm_object_deallocate(object);
645 }
646
647 /*
648  *      vm_pageout_scan does the dirty work for the pageout daemon.
649  */
650
651 struct vm_pageout_scan_info {
652         struct proc *bigproc;
653         vm_offset_t bigsize;
654 };
655
656 static int vm_pageout_scan_callback(struct proc *p, void *data);
657
658 static void
659 vm_pageout_scan(int pass)
660 {
661         struct vm_pageout_scan_info info;
662         vm_page_t m, next;
663         struct vm_page marker;
664         int page_shortage, maxscan, pcount;
665         int addl_page_shortage, addl_page_shortage_init;
666         vm_object_t object;
667         int actcount;
668         int vnodes_skipped = 0;
669         int maxlaunder;
670
671         /*
672          * Do whatever cleanup that the pmap code can.
673          */
674         pmap_collect();
675
676         addl_page_shortage_init = vm_pageout_deficit;
677         vm_pageout_deficit = 0;
678
679         /*
680          * Calculate the number of pages we want to either free or move
681          * to the cache.
682          */
683         page_shortage = vm_paging_target() + addl_page_shortage_init;
684
685         /*
686          * Initialize our marker
687          */
688         bzero(&marker, sizeof(marker));
689         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
690         marker.queue = PQ_INACTIVE;
691         marker.wire_count = 1;
692
693         /*
694          * Start scanning the inactive queue for pages we can move to the
695          * cache or free.  The scan will stop when the target is reached or
696          * we have scanned the entire inactive queue.  Note that m->act_count
697          * is not used to form decisions for the inactive queue, only for the
698          * active queue.
699          *
700          * maxlaunder limits the number of dirty pages we flush per scan.
701          * For most systems a smaller value (16 or 32) is more robust under
702          * extreme memory and disk pressure because any unnecessary writes
703          * to disk can result in extreme performance degredation.  However,
704          * systems with excessive dirty pages (especially when MAP_NOSYNC is
705          * used) will die horribly with limited laundering.  If the pageout
706          * daemon cannot clean enough pages in the first pass, we let it go
707          * all out in succeeding passes.
708          */
709         if ((maxlaunder = vm_max_launder) <= 1)
710                 maxlaunder = 1;
711         if (pass)
712                 maxlaunder = 10000;
713
714         /*
715          * We will generally be in a critical section throughout the 
716          * scan, but we can release it temporarily when we are sitting on a
717          * non-busy page without fear.  this is required to prevent an
718          * interrupt from unbusying or freeing a page prior to our busy
719          * check, leaving us on the wrong queue or checking the wrong
720          * page.
721          */
722         crit_enter();
723 rescan0:
724         addl_page_shortage = addl_page_shortage_init;
725         maxscan = vmstats.v_inactive_count;
726         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
727              m != NULL && maxscan-- > 0 && page_shortage > 0;
728              m = next
729          ) {
730                 mycpu->gd_cnt.v_pdpages++;
731
732                 /*
733                  * Give interrupts a chance
734                  */
735                 crit_exit();
736                 crit_enter();
737
738                 /*
739                  * It's easier for some of the conditions below to just loop
740                  * and catch queue changes here rather then check everywhere
741                  * else.
742                  */
743                 if (m->queue != PQ_INACTIVE)
744                         goto rescan0;
745                 next = TAILQ_NEXT(m, pageq);
746
747                 /*
748                  * skip marker pages
749                  */
750                 if (m->flags & PG_MARKER)
751                         continue;
752
753                 /*
754                  * A held page may be undergoing I/O, so skip it.
755                  */
756                 if (m->hold_count) {
757                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
758                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
759                         addl_page_shortage++;
760                         continue;
761                 }
762
763                 /*
764                  * Dont mess with busy pages, keep in the front of the
765                  * queue, most likely are being paged out.
766                  */
767                 if (m->busy || (m->flags & PG_BUSY)) {
768                         addl_page_shortage++;
769                         continue;
770                 }
771
772                 if (m->object->ref_count == 0) {
773                         /*
774                          * If the object is not being used, we ignore previous 
775                          * references.
776                          */
777                         vm_page_flag_clear(m, PG_REFERENCED);
778                         pmap_clear_reference(m);
779
780                 } else if (((m->flags & PG_REFERENCED) == 0) &&
781                             (actcount = pmap_ts_referenced(m))) {
782                         /*
783                          * Otherwise, if the page has been referenced while 
784                          * in the inactive queue, we bump the "activation
785                          * count" upwards, making it less likely that the
786                          * page will be added back to the inactive queue
787                          * prematurely again.  Here we check the page tables
788                          * (or emulated bits, if any), given the upper level
789                          * VM system not knowing anything about existing 
790                          * references.
791                          */
792                         vm_page_activate(m);
793                         m->act_count += (actcount + ACT_ADVANCE);
794                         continue;
795                 }
796
797                 /*
798                  * If the upper level VM system knows about any page 
799                  * references, we activate the page.  We also set the 
800                  * "activation count" higher than normal so that we will less 
801                  * likely place pages back onto the inactive queue again.
802                  */
803                 if ((m->flags & PG_REFERENCED) != 0) {
804                         vm_page_flag_clear(m, PG_REFERENCED);
805                         actcount = pmap_ts_referenced(m);
806                         vm_page_activate(m);
807                         m->act_count += (actcount + ACT_ADVANCE + 1);
808                         continue;
809                 }
810
811                 /*
812                  * If the upper level VM system doesn't know anything about 
813                  * the page being dirty, we have to check for it again.  As 
814                  * far as the VM code knows, any partially dirty pages are 
815                  * fully dirty.
816                  *
817                  * Pages marked PG_WRITEABLE may be mapped into the user
818                  * address space of a process running on another cpu.  A
819                  * user process (without holding the MP lock) running on
820                  * another cpu may be able to touch the page while we are
821                  * trying to remove it.  To prevent this from occuring we
822                  * must call pmap_remove_all() or otherwise make the page
823                  * read-only.  If the race occured pmap_remove_all() is
824                  * responsible for setting m->dirty.
825                  */
826                 if (m->dirty == 0) {
827                         vm_page_test_dirty(m);
828 #if 0
829                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
830                                 pmap_remove_all(m);
831 #endif
832                 } else {
833                         vm_page_dirty(m);
834                 }
835
836                 if (m->valid == 0) {
837                         /*
838                          * Invalid pages can be easily freed
839                          */
840                         vm_pageout_page_free(m);
841                         mycpu->gd_cnt.v_dfree++;
842                         --page_shortage;
843                 } else if (m->dirty == 0) {
844                         /*
845                          * Clean pages can be placed onto the cache queue.
846                          * This effectively frees them.
847                          */
848                         vm_page_cache(m);
849                         --page_shortage;
850                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
851                         /*
852                          * Dirty pages need to be paged out, but flushing
853                          * a page is extremely expensive verses freeing
854                          * a clean page.  Rather then artificially limiting
855                          * the number of pages we can flush, we instead give
856                          * dirty pages extra priority on the inactive queue
857                          * by forcing them to be cycled through the queue
858                          * twice before being flushed, after which the 
859                          * (now clean) page will cycle through once more
860                          * before being freed.  This significantly extends
861                          * the thrash point for a heavily loaded machine.
862                          */
863                         vm_page_flag_set(m, PG_WINATCFLS);
864                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
865                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
866                 } else if (maxlaunder > 0) {
867                         /*
868                          * We always want to try to flush some dirty pages if
869                          * we encounter them, to keep the system stable.
870                          * Normally this number is small, but under extreme
871                          * pressure where there are insufficient clean pages
872                          * on the inactive queue, we may have to go all out.
873                          */
874                         int swap_pageouts_ok;
875                         struct vnode *vp = NULL;
876
877                         object = m->object;
878
879                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
880                                 swap_pageouts_ok = 1;
881                         } else {
882                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
883                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
884                                 vm_page_count_min());
885                                                                                 
886                         }
887
888                         /*
889                          * We don't bother paging objects that are "dead".  
890                          * Those objects are in a "rundown" state.
891                          */
892                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
893                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
894                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
895                                 continue;
896                         }
897
898                         /*
899                          * The object is already known NOT to be dead.   It
900                          * is possible for the vget() to block the whole
901                          * pageout daemon, but the new low-memory handling
902                          * code should prevent it.
903                          *
904                          * The previous code skipped locked vnodes and, worse,
905                          * reordered pages in the queue.  This results in
906                          * completely non-deterministic operation because,
907                          * quite often, a vm_fault has initiated an I/O and
908                          * is holding a locked vnode at just the point where
909                          * the pageout daemon is woken up.
910                          *
911                          * We can't wait forever for the vnode lock, we might
912                          * deadlock due to a vn_read() getting stuck in
913                          * vm_wait while holding this vnode.  We skip the 
914                          * vnode if we can't get it in a reasonable amount
915                          * of time.
916                          */
917
918                         if (object->type == OBJT_VNODE) {
919                                 vp = object->handle;
920
921                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
922                                         ++pageout_lock_miss;
923                                         if (object->flags & OBJ_MIGHTBEDIRTY)
924                                                     vnodes_skipped++;
925                                         continue;
926                                 }
927
928                                 /*
929                                  * The page might have been moved to another
930                                  * queue during potential blocking in vget()
931                                  * above.  The page might have been freed and
932                                  * reused for another vnode.  The object might
933                                  * have been reused for another vnode.
934                                  */
935                                 if (m->queue != PQ_INACTIVE ||
936                                     m->object != object ||
937                                     object->handle != vp) {
938                                         if (object->flags & OBJ_MIGHTBEDIRTY)
939                                                 vnodes_skipped++;
940                                         vput(vp);
941                                         continue;
942                                 }
943         
944                                 /*
945                                  * The page may have been busied during the
946                                  * blocking in vput();  We don't move the
947                                  * page back onto the end of the queue so that
948                                  * statistics are more correct if we don't.
949                                  */
950                                 if (m->busy || (m->flags & PG_BUSY)) {
951                                         vput(vp);
952                                         continue;
953                                 }
954
955                                 /*
956                                  * If the page has become held it might
957                                  * be undergoing I/O, so skip it
958                                  */
959                                 if (m->hold_count) {
960                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
961                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
962                                         if (object->flags & OBJ_MIGHTBEDIRTY)
963                                                 vnodes_skipped++;
964                                         vput(vp);
965                                         continue;
966                                 }
967                         }
968
969                         /*
970                          * If a page is dirty, then it is either being washed
971                          * (but not yet cleaned) or it is still in the
972                          * laundry.  If it is still in the laundry, then we
973                          * start the cleaning operation. 
974                          *
975                          * This operation may cluster, invalidating the 'next'
976                          * pointer.  To prevent an inordinate number of
977                          * restarts we use our marker to remember our place.
978                          *
979                          * decrement page_shortage on success to account for
980                          * the (future) cleaned page.  Otherwise we could wind
981                          * up laundering or cleaning too many pages.
982                          */
983                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
984                         if (vm_pageout_clean(m) != 0) {
985                                 --page_shortage;
986                                 --maxlaunder;
987                         } 
988                         next = TAILQ_NEXT(&marker, pageq);
989                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
990                         if (vp != NULL)
991                                 vput(vp);
992                 }
993         }
994
995         /*
996          * Compute the number of pages we want to try to move from the
997          * active queue to the inactive queue.
998          */
999         page_shortage = vm_paging_target() +
1000             vmstats.v_inactive_target - vmstats.v_inactive_count;
1001         page_shortage += addl_page_shortage;
1002
1003         /*
1004          * Scan the active queue for things we can deactivate. We nominally
1005          * track the per-page activity counter and use it to locate 
1006          * deactivation candidates.
1007          *
1008          * NOTE: we are still in a critical section.
1009          */
1010         pcount = vmstats.v_active_count;
1011         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1012
1013         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1014                 /*
1015                  * Give interrupts a chance.
1016                  */
1017                 crit_exit();
1018                 crit_enter();
1019
1020                 /*
1021                  * If the page was ripped out from under us, just stop.
1022                  */
1023                 if (m->queue != PQ_ACTIVE)
1024                         break;
1025                 next = TAILQ_NEXT(m, pageq);
1026
1027                 /*
1028                  * Don't deactivate pages that are busy.
1029                  */
1030                 if ((m->busy != 0) ||
1031                     (m->flags & PG_BUSY) ||
1032                     (m->hold_count != 0)) {
1033                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1034                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1035                         m = next;
1036                         continue;
1037                 }
1038
1039                 /*
1040                  * The count for pagedaemon pages is done after checking the
1041                  * page for eligibility...
1042                  */
1043                 mycpu->gd_cnt.v_pdpages++;
1044
1045                 /*
1046                  * Check to see "how much" the page has been used.
1047                  */
1048                 actcount = 0;
1049                 if (m->object->ref_count != 0) {
1050                         if (m->flags & PG_REFERENCED) {
1051                                 actcount += 1;
1052                         }
1053                         actcount += pmap_ts_referenced(m);
1054                         if (actcount) {
1055                                 m->act_count += ACT_ADVANCE + actcount;
1056                                 if (m->act_count > ACT_MAX)
1057                                         m->act_count = ACT_MAX;
1058                         }
1059                 }
1060
1061                 /*
1062                  * Since we have "tested" this bit, we need to clear it now.
1063                  */
1064                 vm_page_flag_clear(m, PG_REFERENCED);
1065
1066                 /*
1067                  * Only if an object is currently being used, do we use the
1068                  * page activation count stats.
1069                  */
1070                 if (actcount && (m->object->ref_count != 0)) {
1071                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1072                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1073                 } else {
1074                         m->act_count -= min(m->act_count, ACT_DECLINE);
1075                         if (vm_pageout_algorithm ||
1076                             m->object->ref_count == 0 ||
1077                             m->act_count < pass) {
1078                                 page_shortage--;
1079                                 if (m->object->ref_count == 0) {
1080                                         vm_page_protect(m, VM_PROT_NONE);
1081                                         if (m->dirty == 0)
1082                                                 vm_page_cache(m);
1083                                         else
1084                                                 vm_page_deactivate(m);
1085                                 } else {
1086                                         vm_page_deactivate(m);
1087                                 }
1088                         } else {
1089                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1090                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1091                         }
1092                 }
1093                 m = next;
1094         }
1095
1096         /*
1097          * We try to maintain some *really* free pages, this allows interrupt
1098          * code to be guaranteed space.  Since both cache and free queues 
1099          * are considered basically 'free', moving pages from cache to free
1100          * does not effect other calculations.
1101          *
1102          * NOTE: we are still in a critical section.
1103          */
1104
1105         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1106                 static int cache_rover = 0;
1107                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1108                 if (!m)
1109                         break;
1110                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1111                     m->busy || 
1112                     m->hold_count || 
1113                     m->wire_count) {
1114 #ifdef INVARIANTS
1115                         printf("Warning: busy page %p found in cache\n", m);
1116 #endif
1117                         vm_page_deactivate(m);
1118                         continue;
1119                 }
1120                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1121                 vm_pageout_page_free(m);
1122                 mycpu->gd_cnt.v_dfree++;
1123         }
1124
1125         crit_exit();
1126
1127 #if !defined(NO_SWAPPING)
1128         /*
1129          * Idle process swapout -- run once per second.
1130          */
1131         if (vm_swap_idle_enabled) {
1132                 static long lsec;
1133                 if (time_second != lsec) {
1134                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1135                         vm_req_vmdaemon();
1136                         lsec = time_second;
1137                 }
1138         }
1139 #endif
1140                 
1141         /*
1142          * If we didn't get enough free pages, and we have skipped a vnode
1143          * in a writeable object, wakeup the sync daemon.  And kick swapout
1144          * if we did not get enough free pages.
1145          */
1146         if (vm_paging_target() > 0) {
1147                 if (vnodes_skipped && vm_page_count_min())
1148                         speedup_syncer();
1149 #if !defined(NO_SWAPPING)
1150                 if (vm_swap_enabled && vm_page_count_target()) {
1151                         vm_req_vmdaemon();
1152                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1153                 }
1154 #endif
1155         }
1156
1157         /*
1158          * If we are out of swap and were not able to reach our paging
1159          * target, kill the largest process.
1160          */
1161         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1162             (swap_pager_full && vm_paging_target() > 0)) {
1163 #if 0
1164         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1165 #endif
1166                 info.bigproc = NULL;
1167                 info.bigsize = 0;
1168                 allproc_scan(vm_pageout_scan_callback, &info);
1169                 if (info.bigproc != NULL) {
1170                         killproc(info.bigproc, "out of swap space");
1171                         info.bigproc->p_nice = PRIO_MIN;
1172                         info.bigproc->p_usched->resetpriority(&info.bigproc->p_lwp);
1173                         wakeup(&vmstats.v_free_count);
1174                         PRELE(info.bigproc);
1175                 }
1176         }
1177 }
1178
1179 static int
1180 vm_pageout_scan_callback(struct proc *p, void *data)
1181 {
1182         struct vm_pageout_scan_info *info = data;
1183         vm_offset_t size;
1184
1185         /*
1186          * if this is a system process, skip it
1187          */
1188         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1189             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1190                 return (0);
1191         }
1192
1193         /*
1194          * if the process is in a non-running type state,
1195          * don't touch it.
1196          */
1197         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1198                 return (0);
1199         }
1200
1201         /*
1202          * get the process size
1203          */
1204         size = vmspace_resident_count(p->p_vmspace) +
1205                 vmspace_swap_count(p->p_vmspace);
1206
1207         /*
1208          * If the this process is bigger than the biggest one
1209          * remember it.
1210          */
1211         if (size > info->bigsize) {
1212                 if (info->bigproc)
1213                         PRELE(info->bigproc);
1214                 PHOLD(p);
1215                 info->bigproc = p;
1216                 info->bigsize = size;
1217         }
1218         return(0);
1219 }
1220
1221 /*
1222  * This routine tries to maintain the pseudo LRU active queue,
1223  * so that during long periods of time where there is no paging,
1224  * that some statistic accumulation still occurs.  This code
1225  * helps the situation where paging just starts to occur.
1226  */
1227 static void
1228 vm_pageout_page_stats(void)
1229 {
1230         vm_page_t m,next;
1231         int pcount,tpcount;             /* Number of pages to check */
1232         static int fullintervalcount = 0;
1233         int page_shortage;
1234
1235         page_shortage = 
1236             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1237             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1238
1239         if (page_shortage <= 0)
1240                 return;
1241
1242         crit_enter();
1243
1244         pcount = vmstats.v_active_count;
1245         fullintervalcount += vm_pageout_stats_interval;
1246         if (fullintervalcount < vm_pageout_full_stats_interval) {
1247                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1248                 if (pcount > tpcount)
1249                         pcount = tpcount;
1250         } else {
1251                 fullintervalcount = 0;
1252         }
1253
1254         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1255         while ((m != NULL) && (pcount-- > 0)) {
1256                 int actcount;
1257
1258                 if (m->queue != PQ_ACTIVE) {
1259                         break;
1260                 }
1261
1262                 next = TAILQ_NEXT(m, pageq);
1263                 /*
1264                  * Don't deactivate pages that are busy.
1265                  */
1266                 if ((m->busy != 0) ||
1267                     (m->flags & PG_BUSY) ||
1268                     (m->hold_count != 0)) {
1269                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1270                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1271                         m = next;
1272                         continue;
1273                 }
1274
1275                 actcount = 0;
1276                 if (m->flags & PG_REFERENCED) {
1277                         vm_page_flag_clear(m, PG_REFERENCED);
1278                         actcount += 1;
1279                 }
1280
1281                 actcount += pmap_ts_referenced(m);
1282                 if (actcount) {
1283                         m->act_count += ACT_ADVANCE + actcount;
1284                         if (m->act_count > ACT_MAX)
1285                                 m->act_count = ACT_MAX;
1286                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1287                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1288                 } else {
1289                         if (m->act_count == 0) {
1290                                 /*
1291                                  * We turn off page access, so that we have
1292                                  * more accurate RSS stats.  We don't do this
1293                                  * in the normal page deactivation when the
1294                                  * system is loaded VM wise, because the
1295                                  * cost of the large number of page protect
1296                                  * operations would be higher than the value
1297                                  * of doing the operation.
1298                                  */
1299                                 vm_page_protect(m, VM_PROT_NONE);
1300                                 vm_page_deactivate(m);
1301                         } else {
1302                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1303                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1304                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1305                         }
1306                 }
1307
1308                 m = next;
1309         }
1310         crit_exit();
1311 }
1312
1313 static int
1314 vm_pageout_free_page_calc(vm_size_t count)
1315 {
1316         if (count < vmstats.v_page_count)
1317                  return 0;
1318         /*
1319          * free_reserved needs to include enough for the largest swap pager
1320          * structures plus enough for any pv_entry structs when paging.
1321          */
1322         if (vmstats.v_page_count > 1024)
1323                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1324         else
1325                 vmstats.v_free_min = 4;
1326         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1327                 vmstats.v_interrupt_free_min;
1328         vmstats.v_free_reserved = vm_pageout_page_count +
1329                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1330         vmstats.v_free_severe = vmstats.v_free_min / 2;
1331         vmstats.v_free_min += vmstats.v_free_reserved;
1332         vmstats.v_free_severe += vmstats.v_free_reserved;
1333         return 1;
1334 }
1335
1336
1337 /*
1338  *      vm_pageout is the high level pageout daemon.
1339  */
1340 static void
1341 vm_pageout(void)
1342 {
1343         int pass;
1344
1345         /*
1346          * Initialize some paging parameters.
1347          */
1348
1349         vmstats.v_interrupt_free_min = 2;
1350         if (vmstats.v_page_count < 2000)
1351                 vm_pageout_page_count = 8;
1352
1353         vm_pageout_free_page_calc(vmstats.v_page_count);
1354         /*
1355          * v_free_target and v_cache_min control pageout hysteresis.  Note
1356          * that these are more a measure of the VM cache queue hysteresis
1357          * then the VM free queue.  Specifically, v_free_target is the
1358          * high water mark (free+cache pages).
1359          *
1360          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1361          * low water mark, while v_free_min is the stop.  v_cache_min must
1362          * be big enough to handle memory needs while the pageout daemon
1363          * is signalled and run to free more pages.
1364          */
1365         if (vmstats.v_free_count > 6144)
1366                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1367         else
1368                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1369
1370         if (vmstats.v_free_count > 2048) {
1371                 vmstats.v_cache_min = vmstats.v_free_target;
1372                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1373                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1374         } else {
1375                 vmstats.v_cache_min = 0;
1376                 vmstats.v_cache_max = 0;
1377                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1378         }
1379         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1380                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1381
1382         /* XXX does not really belong here */
1383         if (vm_page_max_wired == 0)
1384                 vm_page_max_wired = vmstats.v_free_count / 3;
1385
1386         if (vm_pageout_stats_max == 0)
1387                 vm_pageout_stats_max = vmstats.v_free_target;
1388
1389         /*
1390          * Set interval in seconds for stats scan.
1391          */
1392         if (vm_pageout_stats_interval == 0)
1393                 vm_pageout_stats_interval = 5;
1394         if (vm_pageout_full_stats_interval == 0)
1395                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1396         
1397
1398         /*
1399          * Set maximum free per pass
1400          */
1401         if (vm_pageout_stats_free_max == 0)
1402                 vm_pageout_stats_free_max = 5;
1403
1404         swap_pager_swap_init();
1405         pass = 0;
1406         /*
1407          * The pageout daemon is never done, so loop forever.
1408          */
1409         while (TRUE) {
1410                 int error;
1411
1412                 /*
1413                  * If we have enough free memory, wakeup waiters.  Do
1414                  * not clear vm_pages_needed until we reach our target,
1415                  * otherwise we may be woken up over and over again and
1416                  * waste a lot of cpu.
1417                  */
1418                 crit_enter();
1419                 if (vm_pages_needed && !vm_page_count_min()) {
1420                         if (vm_paging_needed() <= 0)
1421                                 vm_pages_needed = 0;
1422                         wakeup(&vmstats.v_free_count);
1423                 }
1424                 if (vm_pages_needed) {
1425                         /*
1426                          * Still not done, take a second pass without waiting
1427                          * (unlimited dirty cleaning), otherwise sleep a bit
1428                          * and try again.
1429                          */
1430                         ++pass;
1431                         if (pass > 1)
1432                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1433                 } else {
1434                         /*
1435                          * Good enough, sleep & handle stats.  Prime the pass
1436                          * for the next run.
1437                          */
1438                         if (pass > 1)
1439                                 pass = 1;
1440                         else
1441                                 pass = 0;
1442                         error = tsleep(&vm_pages_needed,
1443                                 0, "psleep", vm_pageout_stats_interval * hz);
1444                         if (error && !vm_pages_needed) {
1445                                 crit_exit();
1446                                 pass = 0;
1447                                 vm_pageout_page_stats();
1448                                 continue;
1449                         }
1450                 }
1451
1452                 if (vm_pages_needed)
1453                         mycpu->gd_cnt.v_pdwakeups++;
1454                 crit_exit();
1455                 vm_pageout_scan(pass);
1456                 vm_pageout_deficit = 0;
1457         }
1458 }
1459
1460 void
1461 pagedaemon_wakeup(void)
1462 {
1463         if (!vm_pages_needed && curthread != pagethread) {
1464                 vm_pages_needed++;
1465                 wakeup(&vm_pages_needed);
1466         }
1467 }
1468
1469 #if !defined(NO_SWAPPING)
1470 static void
1471 vm_req_vmdaemon(void)
1472 {
1473         static int lastrun = 0;
1474
1475         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1476                 wakeup(&vm_daemon_needed);
1477                 lastrun = ticks;
1478         }
1479 }
1480
1481 static int vm_daemon_callback(struct proc *p, void *data __unused);
1482
1483 static void
1484 vm_daemon(void)
1485 {
1486         while (TRUE) {
1487                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1488                 if (vm_pageout_req_swapout) {
1489                         swapout_procs(vm_pageout_req_swapout);
1490                         vm_pageout_req_swapout = 0;
1491                 }
1492                 /*
1493                  * scan the processes for exceeding their rlimits or if
1494                  * process is swapped out -- deactivate pages
1495                  */
1496                 allproc_scan(vm_daemon_callback, NULL);
1497         }
1498 }
1499
1500 static int
1501 vm_daemon_callback(struct proc *p, void *data __unused)
1502 {
1503         vm_pindex_t limit, size;
1504
1505         /*
1506          * if this is a system process or if we have already
1507          * looked at this process, skip it.
1508          */
1509         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1510                 return (0);
1511
1512         /*
1513          * if the process is in a non-running type state,
1514          * don't touch it.
1515          */
1516         if (p->p_stat != SRUN && p->p_stat != SSLEEP)
1517                 return (0);
1518
1519         /*
1520          * get a limit
1521          */
1522         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1523                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1524
1525         /*
1526          * let processes that are swapped out really be
1527          * swapped out.  Set the limit to nothing to get as
1528          * many pages out to swap as possible.
1529          */
1530         if (p->p_flag & P_SWAPPEDOUT)
1531                 limit = 0;
1532
1533         size = vmspace_resident_count(p->p_vmspace);
1534         if (limit >= 0 && size >= limit) {
1535                 vm_pageout_map_deactivate_pages(
1536                     &p->p_vmspace->vm_map, limit);
1537         }
1538         return (0);
1539 }
1540
1541 #endif