FreeBSD and NetBSD both use derivates of Sun's math library. On FreeBSD,
[dragonfly.git] / lib / libm / src / e_jn.c
1 /* @(#)e_jn.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * $NetBSD: e_jn.c,v 1.12 2002/05/26 22:01:50 wiz Exp $
13  * $DragonFly: src/lib/libm/src/e_jn.c,v 1.1 2005/07/26 21:15:20 joerg Exp $
14  */
15
16 /*
17  * jn(n, x), yn(n, x)
18  * floating point Bessel's function of the 1st and 2nd kind
19  * of order n
20  *
21  * Special cases:
22  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
23  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
24  * Note 2. About jn(n,x), yn(n,x)
25  *      For n=0, j0(x) is called,
26  *      for n=1, j1(x) is called,
27  *      for n<x, forward recursion us used starting
28  *      from values of j0(x) and j1(x).
29  *      for n>x, a continued fraction approximation to
30  *      j(n,x)/j(n-1,x) is evaluated and then backward
31  *      recursion is used starting from a supposed value
32  *      for j(n,x). The resulting value of j(0,x) is
33  *      compared with the actual value to correct the
34  *      supposed value of j(n,x).
35  *
36  *      yn(n,x) is similar in all respects, except
37  *      that forward recursion is used for all
38  *      values of n>1.
39  *
40  */
41
42 #include <math.h>
43 #include "math_private.h"
44
45 static const double
46 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
47 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
48 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
49
50 static const double zero  =  0.00000000000000000000e+00;
51
52 double
53 jn(int n, double x)
54 {
55         int32_t i,hx,ix,lx, sgn;
56         double a, b, temp, di;
57         double z, w;
58
59         temp = 0;
60     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
61      * Thus, J(-n,x) = J(n,-x)
62      */
63         EXTRACT_WORDS(hx,lx,x);
64         ix = 0x7fffffff&hx;
65     /* if J(n,NaN) is NaN */
66         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
67         if(n<0){
68                 n = -n;
69                 x = -x;
70                 hx ^= 0x80000000;
71         }
72         if(n==0) return(j0(x));
73         if(n==1) return(j1(x));
74         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
75         x = fabs(x);
76         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
77             b = zero;
78         else if((double)n<=x) {
79                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
80             if(ix>=0x52D00000) { /* x > 2**302 */
81     /* (x >> n**2)
82      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
83      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
84      *      Let s=sin(x), c=cos(x),
85      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
86      *
87      *             n    sin(xn)*sqt2    cos(xn)*sqt2
88      *          ----------------------------------
89      *             0     s-c             c+s
90      *             1    -s-c            -c+s
91      *             2    -s+c            -c-s
92      *             3     s+c             c-s
93      */
94                 switch(n&3) {
95                     case 0: temp =  cos(x)+sin(x); break;
96                     case 1: temp = -cos(x)+sin(x); break;
97                     case 2: temp = -cos(x)-sin(x); break;
98                     case 3: temp =  cos(x)-sin(x); break;
99                 }
100                 b = invsqrtpi*temp/sqrt(x);
101             } else {
102                 a = j0(x);
103                 b = j1(x);
104                 for(i=1;i<n;i++){
105                     temp = b;
106                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
107                     a = temp;
108                 }
109             }
110         } else {
111             if(ix<0x3e100000) { /* x < 2**-29 */
112     /* x is tiny, return the first Taylor expansion of J(n,x)
113      * J(n,x) = 1/n!*(x/2)^n  - ...
114      */
115                 if(n>33)        /* underflow */
116                     b = zero;
117                 else {
118                     temp = x*0.5; b = temp;
119                     for (a=one,i=2;i<=n;i++) {
120                         a *= (double)i;         /* a = n! */
121                         b *= temp;              /* b = (x/2)^n */
122                     }
123                     b = b/a;
124                 }
125             } else {
126                 /* use backward recurrence */
127                 /*                      x      x^2      x^2
128                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
129                  *                      2n  - 2(n+1) - 2(n+2)
130                  *
131                  *                      1      1        1
132                  *  (for large x)   =  ----  ------   ------   .....
133                  *                      2n   2(n+1)   2(n+2)
134                  *                      -- - ------ - ------ -
135                  *                       x     x         x
136                  *
137                  * Let w = 2n/x and h=2/x, then the above quotient
138                  * is equal to the continued fraction:
139                  *                  1
140                  *      = -----------------------
141                  *                     1
142                  *         w - -----------------
143                  *                        1
144                  *              w+h - ---------
145                  *                     w+2h - ...
146                  *
147                  * To determine how many terms needed, let
148                  * Q(0) = w, Q(1) = w(w+h) - 1,
149                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
150                  * When Q(k) > 1e4      good for single
151                  * When Q(k) > 1e9      good for double
152                  * When Q(k) > 1e17     good for quadruple
153                  */
154             /* determine k */
155                 double t,v;
156                 double q0,q1,h,tmp; int32_t k,m;
157                 w  = (n+n)/(double)x; h = 2.0/(double)x;
158                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
159                 while(q1<1.0e9) {
160                         k += 1; z += h;
161                         tmp = z*q1 - q0;
162                         q0 = q1;
163                         q1 = tmp;
164                 }
165                 m = n+n;
166                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
167                 a = t;
168                 b = one;
169                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
170                  *  Hence, if n*(log(2n/x)) > ...
171                  *  single 8.8722839355e+01
172                  *  double 7.09782712893383973096e+02
173                  *  long double 1.1356523406294143949491931077970765006170e+04
174                  *  then recurrent value may overflow and the result is
175                  *  likely underflow to zero
176                  */
177                 tmp = n;
178                 v = two/x;
179                 tmp = tmp*log(fabs(v*tmp));
180                 if(tmp<7.09782712893383973096e+02) {
181                     for(i=n-1,di=(double)(i+i);i>0;i--){
182                         temp = b;
183                         b *= di;
184                         b  = b/x - a;
185                         a = temp;
186                         di -= two;
187                     }
188                 } else {
189                     for(i=n-1,di=(double)(i+i);i>0;i--){
190                         temp = b;
191                         b *= di;
192                         b  = b/x - a;
193                         a = temp;
194                         di -= two;
195                     /* scale b to avoid spurious overflow */
196                         if(b>1e100) {
197                             a /= b;
198                             t /= b;
199                             b  = one;
200                         }
201                     }
202                 }
203                 b = (t*j0(x)/b);
204             }
205         }
206         if(sgn==1) return -b; else return b;
207 }
208
209 double
210 yn(int n, double x)
211 {
212         int32_t i,hx,ix,lx;
213         int32_t sign;
214         double a, b, temp;
215
216         temp = 0;
217         EXTRACT_WORDS(hx,lx,x);
218         ix = 0x7fffffff&hx;
219     /* if Y(n,NaN) is NaN */
220         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
221         if((ix|lx)==0) return -one/zero;
222         if(hx<0) return zero/zero;
223         sign = 1;
224         if(n<0){
225                 n = -n;
226                 sign = 1 - ((n&1)<<1);
227         }
228         if(n==0) return(y0(x));
229         if(n==1) return(sign*y1(x));
230         if(ix==0x7ff00000) return zero;
231         if(ix>=0x52D00000) { /* x > 2**302 */
232     /* (x >> n**2)
233      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
234      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
235      *      Let s=sin(x), c=cos(x),
236      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
237      *
238      *             n    sin(xn)*sqt2    cos(xn)*sqt2
239      *          ----------------------------------
240      *             0     s-c             c+s
241      *             1    -s-c            -c+s
242      *             2    -s+c            -c-s
243      *             3     s+c             c-s
244      */
245                 switch(n&3) {
246                     case 0: temp =  sin(x)-cos(x); break;
247                     case 1: temp = -sin(x)-cos(x); break;
248                     case 2: temp = -sin(x)+cos(x); break;
249                     case 3: temp =  sin(x)+cos(x); break;
250                 }
251                 b = invsqrtpi*temp/sqrt(x);
252         } else {
253             u_int32_t high;
254             a = y0(x);
255             b = y1(x);
256         /* quit if b is -inf */
257             GET_HIGH_WORD(high,b);
258             for(i=1;i<n&&high!=0xfff00000;i++){
259                 temp = b;
260                 b = ((double)(i+i)/x)*b - a;
261                 GET_HIGH_WORD(high,b);
262                 a = temp;
263             }
264         }
265         if(sign>0) return b; else return -b;
266 }