kernel - Refactor swapcache heuristic
[dragonfly.git] / sys / vm / vm_swapcache.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80
81 /* the kernel process "vm_pageout"*/
82 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
83 static int vm_swapcache_test(vm_page_t m);
84 static int vm_swapcache_writing_heuristic(void);
85 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
86 static void vm_swapcache_cleaning(vm_object_t marker,
87                         struct vm_object_hash **swindexp);
88 static void vm_swapcache_movemarker(vm_object_t marker,
89                         struct vm_object_hash *swindex, vm_object_t object);
90 struct thread *swapcached_thread;
91
92 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
93
94 int vm_swapcache_read_enable;
95 static long vm_swapcache_wtrigger;
96 static int vm_swapcache_sleep;
97 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
98 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
99 static int vm_swapcache_data_enable = 0;
100 static int vm_swapcache_meta_enable = 0;
101 static int vm_swapcache_maxswappct = 75;
102 static int vm_swapcache_hysteresis;
103 static int vm_swapcache_min_hysteresis;
104 int vm_swapcache_use_chflags = 0;       /* require chflags cache */
105 static int64_t vm_swapcache_minburst = 10000000LL;      /* 10MB */
106 static int64_t vm_swapcache_curburst = 4000000000LL;    /* 4G after boot */
107 static int64_t vm_swapcache_maxburst = 2000000000LL;    /* 2G nominal max */
108 static int64_t vm_swapcache_accrate = 100000LL;         /* 100K/s */
109 static int64_t vm_swapcache_write_count;
110 static int64_t vm_swapcache_maxfilesize;
111 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
112
113 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
114         CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
115 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
116         CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
117
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
119         CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
121         CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
122 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
123         CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
124 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
125         CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
126 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
127         CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
128 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
129         CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
130 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
131         CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
132
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
134         CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
135 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
136         CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
137 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
138         CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
139 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
140         CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
141 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
142         CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
143 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
144         CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
145 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
146         CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
147
148 #define SWAPMAX(adj)    \
149         ((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
150
151 /*
152  * When shutting down the machine we want to stop swapcache operation
153  * immediately so swap is not accessed after devices have been shuttered.
154  */
155 static void
156 shutdown_swapcache(void *arg __unused)
157 {
158         vm_swapcache_read_enable = 0;
159         vm_swapcache_data_enable = 0;
160         vm_swapcache_meta_enable = 0;
161         wakeup(&vm_swapcache_sleep);    /* shortcut 5-second wait */
162 }
163
164 /*
165  * vm_swapcached is the high level pageout daemon.
166  *
167  * No requirements.
168  */
169 static void
170 vm_swapcached_thread(void)
171 {
172         enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
173         enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
174         static struct vm_page page_marker[PQ_L2_SIZE];
175         static struct vm_object swmarker;
176         static struct vm_object_hash *swindex;
177         int q;
178
179         /*
180          * Thread setup
181          */
182         curthread->td_flags |= TDF_SYSTHREAD;
183         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
184                               swapcached_thread, SHUTDOWN_PRI_FIRST);
185         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
186                               NULL, SHUTDOWN_PRI_SECOND);
187
188         /*
189          * Initialize our marker for the inactive scan (SWAPC_WRITING)
190          */
191         bzero(&page_marker, sizeof(page_marker));
192         for (q = 0; q < PQ_L2_SIZE; ++q) {
193                 page_marker[q].flags = PG_FICTITIOUS | PG_MARKER;
194                 page_marker[q].busy_count = PBUSY_LOCKED;
195                 page_marker[q].queue = PQ_INACTIVE + q;
196                 page_marker[q].pc = q;
197                 page_marker[q].wire_count = 1;
198                 vm_page_queues_spin_lock(PQ_INACTIVE + q);
199                 TAILQ_INSERT_HEAD(
200                         &vm_page_queues[PQ_INACTIVE + q].pl,
201                         &page_marker[q], pageq);
202                 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
203         }
204
205         vm_swapcache_min_hysteresis = 1024;
206         vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
207         vm_swapcache_wtrigger = -vm_swapcache_hysteresis;
208
209         /*
210          * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
211          */
212         bzero(&swmarker, sizeof(swmarker));
213         swmarker.type = OBJT_MARKER;
214         swindex = &vm_object_hash[0];
215         lwkt_gettoken(&swindex->token);
216         TAILQ_INSERT_HEAD(&swindex->list, &swmarker, object_list);
217         lwkt_reltoken(&swindex->token);
218
219         for (;;) {
220                 int reached_end;
221                 int scount;
222                 int count;
223
224                 /*
225                  * Handle shutdown
226                  */
227                 kproc_suspend_loop();
228
229                 /*
230                  * Check every 5 seconds when not enabled or if no swap
231                  * is present.
232                  */
233                 if ((vm_swapcache_data_enable == 0 &&
234                      vm_swapcache_meta_enable == 0 &&
235                      vm_swap_cache_use <= SWAPMAX(0)) ||
236                     vm_swap_max == 0) {
237                         tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
238                         continue;
239                 }
240
241                 /*
242                  * Polling rate when enabled is approximately 10 hz.
243                  */
244                 tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
245
246                 /*
247                  * State hysteresis.  Generate write activity up to 75% of
248                  * swap, then clean out swap assignments down to 70%, then
249                  * repeat.
250                  */
251                 if (state == SWAPC_WRITING) {
252                         if (vm_swap_cache_use > SWAPMAX(0))
253                                 state = SWAPC_CLEANING;
254                 } else {
255                         if (vm_swap_cache_use < SWAPMAX(-10))
256                                 state = SWAPC_WRITING;
257                 }
258
259                 /*
260                  * We are allowed to continue accumulating burst value
261                  * in either state.  Allow the user to set curburst > maxburst
262                  * for the initial load-in.
263                  */
264                 if (vm_swapcache_curburst < vm_swapcache_maxburst) {
265                         vm_swapcache_curburst += vm_swapcache_accrate / 10;
266                         if (vm_swapcache_curburst > vm_swapcache_maxburst)
267                                 vm_swapcache_curburst = vm_swapcache_maxburst;
268                 }
269
270                 /*
271                  * We don't want to nickle-and-dime the scan as that will
272                  * create unnecessary fragmentation.  The minimum burst
273                  * is one-seconds worth of accumulation.
274                  */
275                 if (state != SWAPC_WRITING) {
276                         vm_swapcache_cleaning(&swmarker, &swindex);
277                         continue;
278                 }
279                 if (vm_swapcache_curburst < vm_swapcache_accrate)
280                         continue;
281
282                 reached_end = 0;
283                 count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
284                 scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
285
286                 if (burst == SWAPB_BURSTING) {
287                         if (vm_swapcache_writing_heuristic()) {
288                                 for (q = 0; q < PQ_L2_SIZE; ++q) {
289                                         reached_end +=
290                                                 vm_swapcache_writing(
291                                                         &page_marker[q],
292                                                         count,
293                                                         scount);
294                                 }
295                         }
296                         if (vm_swapcache_curburst <= 0)
297                                 burst = SWAPB_RECOVERING;
298                 } else if (vm_swapcache_curburst > vm_swapcache_minburst) {
299                         if (vm_swapcache_writing_heuristic()) {
300                                 for (q = 0; q < PQ_L2_SIZE; ++q) {
301                                         reached_end +=
302                                                 vm_swapcache_writing(
303                                                         &page_marker[q],
304                                                         count,
305                                                         scount);
306                                 }
307                         }
308                         burst = SWAPB_BURSTING;
309                 }
310                 if (reached_end == PQ_L2_SIZE) {
311                         vm_swapcache_wtrigger = -vm_swapcache_hysteresis;
312                 }
313         }
314
315         /*
316          * Cleanup (NOT REACHED)
317          */
318         for (q = 0; q < PQ_L2_SIZE; ++q) {
319                 vm_page_queues_spin_lock(PQ_INACTIVE + q);
320                 TAILQ_REMOVE(
321                         &vm_page_queues[PQ_INACTIVE + q].pl,
322                         &page_marker[q], pageq);
323                 vm_page_queues_spin_unlock(PQ_INACTIVE + q);
324         }
325
326         lwkt_gettoken(&swindex->token);
327         TAILQ_REMOVE(&swindex->list, &swmarker, object_list);
328         lwkt_reltoken(&swindex->token);
329 }
330
331 static struct kproc_desc swpc_kp = {
332         "swapcached",
333         vm_swapcached_thread,
334         &swapcached_thread
335 };
336 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp);
337
338 /*
339  * Deal with an overflow of the heuristic counter or if the user
340  * manually changes the hysteresis.
341  *
342  * Try to avoid small incremental pageouts by waiting for enough
343  * pages to buildup in the inactive queue to hopefully get a good
344  * burst in.  This heuristic is bumped by the VM system and reset
345  * when our scan hits the end of the queue.
346  *
347  * Return TRUE if we need to take a writing pass.
348  */
349 static int
350 vm_swapcache_writing_heuristic(void)
351 {
352         int hyst;
353         int q;
354         long adds;
355
356         hyst = vmstats.v_inactive_count / 4;
357         if (hyst < vm_swapcache_min_hysteresis)
358                 hyst = vm_swapcache_min_hysteresis;
359         cpu_ccfence();
360         vm_swapcache_hysteresis = hyst;
361
362         adds = 0;
363         for (q = PQ_INACTIVE; q < PQ_INACTIVE + PQ_L2_SIZE; ++q) {
364                 adds += atomic_swap_long(&vm_page_queues[q].adds, 0);
365         }
366         vm_swapcache_wtrigger += adds;
367         if (vm_swapcache_wtrigger < -hyst)
368                 vm_swapcache_wtrigger = -hyst;
369         return (vm_swapcache_wtrigger >= 0);
370 }
371
372 /*
373  * Take a writing pass on one of the inactive queues, return non-zero if
374  * we hit the end of the queue.
375  */
376 static int
377 vm_swapcache_writing(vm_page_t marker, int count, int scount)
378 {
379         vm_object_t object;
380         struct vnode *vp;
381         vm_page_t m;
382         int isblkdev;
383
384         /*
385          * Scan the inactive queue from our marker to locate
386          * suitable pages to push to the swap cache.
387          *
388          * We are looking for clean vnode-backed pages.
389          */
390         vm_page_queues_spin_lock(marker->queue);
391         while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
392                count > 0 && scount-- > 0) {
393                 KKASSERT(m->queue == marker->queue);
394
395                 /*
396                  * Stop using swap if paniced, dumping, or dumped.
397                  * Don't try to write if our curburst has been exhausted.
398                  */
399                 if (panicstr || dumping)
400                         break;
401                 if (vm_swapcache_curburst < 0)
402                         break;
403
404                 /*
405                  * Move marker
406                  */
407                 TAILQ_REMOVE(
408                         &vm_page_queues[marker->queue].pl, marker, pageq);
409                 TAILQ_INSERT_AFTER(
410                         &vm_page_queues[marker->queue].pl, m, marker, pageq);
411
412                 /*
413                  * Ignore markers and ignore pages that already have a swap
414                  * assignment.
415                  */
416                 if (m->flags & (PG_MARKER | PG_SWAPPED))
417                         continue;
418                 if (vm_page_busy_try(m, TRUE))
419                         continue;
420                 vm_page_queues_spin_unlock(marker->queue);
421
422                 if ((object = m->object) == NULL) {
423                         vm_page_wakeup(m);
424                         vm_page_queues_spin_lock(marker->queue);
425                         continue;
426                 }
427                 vm_object_hold(object);
428                 if (m->object != object) {
429                         vm_object_drop(object);
430                         vm_page_wakeup(m);
431                         vm_page_queues_spin_lock(marker->queue);
432                         continue;
433                 }
434                 if (vm_swapcache_test(m)) {
435                         vm_object_drop(object);
436                         vm_page_wakeup(m);
437                         vm_page_queues_spin_lock(marker->queue);
438                         continue;
439                 }
440
441                 vp = object->handle;
442                 if (vp == NULL) {
443                         vm_object_drop(object);
444                         vm_page_wakeup(m);
445                         vm_page_queues_spin_lock(marker->queue);
446                         continue;
447                 }
448
449                 switch(vp->v_type) {
450                 case VREG:
451                         /*
452                          * PG_NOTMETA generically means 'don't swapcache this',
453                          * and HAMMER will set this for regular data buffers
454                          * (and leave it unset for meta-data buffers) as
455                          * appropriate when double buffering is enabled.
456                          */
457                         if (m->flags & PG_NOTMETA) {
458                                 vm_object_drop(object);
459                                 vm_page_wakeup(m);
460                                 vm_page_queues_spin_lock(marker->queue);
461                                 continue;
462                         }
463
464                         /*
465                          * If data_enable is 0 do not try to swapcache data.
466                          * If use_chflags is set then only swapcache data for
467                          * VSWAPCACHE marked vnodes, otherwise any vnode.
468                          */
469                         if (vm_swapcache_data_enable == 0 ||
470                             ((vp->v_flag & VSWAPCACHE) == 0 &&
471                              vm_swapcache_use_chflags)) {
472                                 vm_object_drop(object);
473                                 vm_page_wakeup(m);
474                                 vm_page_queues_spin_lock(marker->queue);
475                                 continue;
476                         }
477                         if (vm_swapcache_maxfilesize &&
478                             object->size >
479                             (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
480                                 vm_object_drop(object);
481                                 vm_page_wakeup(m);
482                                 vm_page_queues_spin_lock(marker->queue);
483                                 continue;
484                         }
485                         isblkdev = 0;
486                         break;
487                 case VCHR:
488                         /*
489                          * PG_NOTMETA generically means 'don't swapcache this',
490                          * and HAMMER will set this for regular data buffers
491                          * (and leave it unset for meta-data buffers) as
492                          * appropriate when double buffering is enabled.
493                          */
494                         if (m->flags & PG_NOTMETA) {
495                                 vm_object_drop(object);
496                                 vm_page_wakeup(m);
497                                 vm_page_queues_spin_lock(marker->queue);
498                                 continue;
499                         }
500                         if (vm_swapcache_meta_enable == 0) {
501                                 vm_object_drop(object);
502                                 vm_page_wakeup(m);
503                                 vm_page_queues_spin_lock(marker->queue);
504                                 continue;
505                         }
506                         isblkdev = 1;
507                         break;
508                 default:
509                         vm_object_drop(object);
510                         vm_page_wakeup(m);
511                         vm_page_queues_spin_lock(marker->queue);
512                         continue;
513                 }
514
515
516                 /*
517                  * Assign swap and initiate I/O.
518                  *
519                  * (adjust for the --count which also occurs in the loop)
520                  */
521                 count -= vm_swapcached_flush(m, isblkdev);
522
523                 /*
524                  * Setup for next loop using marker.
525                  */
526                 vm_object_drop(object);
527                 vm_page_queues_spin_lock(marker->queue);
528         }
529
530         /*
531          * The marker could wind up at the end, which is ok.  If we hit the
532          * end of the list adjust the heuristic.
533          *
534          * Earlier inactive pages that were dirty and become clean
535          * are typically moved to the end of PQ_INACTIVE by virtue
536          * of vfs_vmio_release() when they become unwired from the
537          * buffer cache.
538          */
539         vm_page_queues_spin_unlock(marker->queue);
540
541         /*
542          * m invalid but can be used to test for NULL
543          */
544         return (m == NULL);
545 }
546
547 /*
548  * Flush the specified page using the swap_pager.  The page
549  * must be busied by the caller and its disposition will become
550  * the responsibility of this function.
551  *
552  * Try to collect surrounding pages, including pages which may
553  * have already been assigned swap.  Try to cluster within a
554  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
555  * to match what swap_pager_putpages() can do.
556  *
557  * We also want to try to match against the buffer cache blocksize
558  * but we don't really know what it is here.  Since the buffer cache
559  * wires and unwires pages in groups the fact that we skip wired pages
560  * should be sufficient.
561  *
562  * Returns a count of pages we might have flushed (minimum 1)
563  */
564 static
565 int
566 vm_swapcached_flush(vm_page_t m, int isblkdev)
567 {
568         vm_object_t object;
569         vm_page_t marray[SWAP_META_PAGES];
570         vm_pindex_t basei;
571         int rtvals[SWAP_META_PAGES];
572         int x;
573         int i;
574         int j;
575         int count;
576         int error;
577
578         vm_page_io_start(m);
579         vm_page_protect(m, VM_PROT_READ);
580         object = m->object;
581         vm_object_hold(object);
582
583         /*
584          * Try to cluster around (m), keeping in mind that the swap pager
585          * can only do SMAP_META_PAGES worth of continguous write.
586          */
587         x = (int)m->pindex & SWAP_META_MASK;
588         marray[x] = m;
589         basei = m->pindex;
590         vm_page_wakeup(m);
591
592         for (i = x - 1; i >= 0; --i) {
593                 m = vm_page_lookup_busy_try(object, basei - x + i,
594                                             TRUE, &error);
595                 if (error || m == NULL)
596                         break;
597                 if (vm_swapcache_test(m)) {
598                         vm_page_wakeup(m);
599                         break;
600                 }
601                 if (isblkdev && (m->flags & PG_NOTMETA)) {
602                         vm_page_wakeup(m);
603                         break;
604                 }
605                 vm_page_io_start(m);
606                 vm_page_protect(m, VM_PROT_READ);
607                 if (m->queue - m->pc == PQ_CACHE) {
608                         vm_page_unqueue_nowakeup(m);
609                         vm_page_deactivate(m);
610                 }
611                 marray[i] = m;
612                 vm_page_wakeup(m);
613         }
614         ++i;
615
616         for (j = x + 1; j < SWAP_META_PAGES; ++j) {
617                 m = vm_page_lookup_busy_try(object, basei - x + j,
618                                             TRUE, &error);
619                 if (error || m == NULL)
620                         break;
621                 if (vm_swapcache_test(m)) {
622                         vm_page_wakeup(m);
623                         break;
624                 }
625                 if (isblkdev && (m->flags & PG_NOTMETA)) {
626                         vm_page_wakeup(m);
627                         break;
628                 }
629                 vm_page_io_start(m);
630                 vm_page_protect(m, VM_PROT_READ);
631                 if (m->queue - m->pc == PQ_CACHE) {
632                         vm_page_unqueue_nowakeup(m);
633                         vm_page_deactivate(m);
634                 }
635                 marray[j] = m;
636                 vm_page_wakeup(m);
637         }
638
639         count = j - i;
640         vm_object_pip_add(object, count);
641         swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
642         vm_swapcache_write_count += count * PAGE_SIZE;
643         vm_swapcache_curburst -= count * PAGE_SIZE;
644
645         while (i < j) {
646                 if (rtvals[i] != VM_PAGER_PEND) {
647                         vm_page_busy_wait(marray[i], FALSE, "swppgfd");
648                         vm_page_io_finish(marray[i]);
649                         vm_page_wakeup(marray[i]);
650                         vm_object_pip_wakeup(object);
651                 }
652                 ++i;
653         }
654         vm_object_drop(object);
655         return(count);
656 }
657
658 /*
659  * Test whether a VM page is suitable for writing to the swapcache.
660  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
661  *
662  * Returns 0 on success, 1 on failure
663  */
664 static int
665 vm_swapcache_test(vm_page_t m)
666 {
667         vm_object_t object;
668
669         if (m->flags & PG_UNMANAGED)
670                 return(1);
671         if (m->hold_count || m->wire_count)
672                 return(1);
673         if (m->valid != VM_PAGE_BITS_ALL)
674                 return(1);
675         if (m->dirty & m->valid)
676                 return(1);
677         if ((object = m->object) == NULL)
678                 return(1);
679         if (object->type != OBJT_VNODE ||
680             (object->flags & OBJ_DEAD)) {
681                 return(1);
682         }
683         vm_page_test_dirty(m);
684         if (m->dirty & m->valid)
685                 return(1);
686         return(0);
687 }
688
689 /*
690  * Cleaning pass.
691  *
692  * We clean whole objects up to 16MB
693  */
694 static
695 void
696 vm_swapcache_cleaning(vm_object_t marker, struct vm_object_hash **swindexp)
697 {
698         vm_object_t object;
699         struct vnode *vp;
700         int count;
701         int scount;
702         int n;
703         int didmove;
704
705         count = vm_swapcache_maxlaunder;
706         scount = vm_swapcache_maxscan;
707
708         /*
709          * Look for vnode objects
710          */
711         lwkt_gettoken(&(*swindexp)->token);
712
713         didmove = 0;
714 outerloop:
715         while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
716                 /*
717                  * We have to skip markers.  We cannot hold/drop marker
718                  * objects!
719                  */
720                 if (object->type == OBJT_MARKER) {
721                         vm_swapcache_movemarker(marker, *swindexp, object);
722                         didmove = 1;
723                         continue;
724                 }
725
726                 /*
727                  * Safety, or in case there are millions of VM objects
728                  * without swapcache backing.
729                  */
730                 if (--scount <= 0)
731                         goto breakout;
732
733                 /*
734                  * We must hold the object before potentially yielding.
735                  */
736                 vm_object_hold(object);
737                 lwkt_yield();
738
739                 /* 
740                  * Only operate on live VNODE objects that are either
741                  * VREG or VCHR (VCHR for meta-data).
742                  */
743                 if ((object->type != OBJT_VNODE) ||
744                     ((object->flags & OBJ_DEAD) ||
745                      object->swblock_count == 0) ||
746                     ((vp = object->handle) == NULL) ||
747                     (vp->v_type != VREG && vp->v_type != VCHR)) {
748                         vm_object_drop(object);
749                         /* object may be invalid now */
750                         vm_swapcache_movemarker(marker, *swindexp, object);
751                         didmove = 1;
752                         continue;
753                 }
754
755                 /*
756                  * Reset the object pindex stored in the marker if the
757                  * working object has changed.
758                  */
759                 if (marker->backing_object != object || didmove) {
760                         marker->size = 0;
761                         marker->backing_object_offset = 0;
762                         marker->backing_object = object;
763                         didmove = 0;
764                 }
765
766                 /*
767                  * Look for swblocks starting at our iterator.
768                  *
769                  * The swap_pager_condfree() function attempts to free
770                  * swap space starting at the specified index.  The index
771                  * will be updated on return.  The function will return
772                  * a scan factor (NOT the number of blocks freed).
773                  *
774                  * If it must cut its scan of the object short due to an
775                  * excessive number of swblocks, or is able to free the
776                  * requested number of blocks, it will return n >= count
777                  * and we break and pick it back up on a future attempt.
778                  *
779                  * Scan the object linearly and try to batch large sets of
780                  * blocks that are likely to clean out entire swap radix
781                  * tree leafs.
782                  */
783                 lwkt_token_swap();
784                 lwkt_reltoken(&(*swindexp)->token);
785
786                 n = swap_pager_condfree(object, &marker->size,
787                                     (count + SWAP_META_MASK) & ~SWAP_META_MASK);
788
789                 vm_object_drop(object);         /* object may be invalid now */
790                 lwkt_gettoken(&(*swindexp)->token);
791
792                 /*
793                  * If we have exhausted the object or deleted our per-pass
794                  * page limit then move us to the next object.  Note that
795                  * the current object may no longer be on the vm_object_list.
796                  */
797                 if (n <= 0 ||
798                     marker->backing_object_offset > vm_swapcache_cleanperobj) {
799                         vm_swapcache_movemarker(marker, *swindexp, object);
800                         didmove = 1;
801                 }
802
803                 /*
804                  * If we have exhausted our max-launder stop for now.
805                  */
806                 count -= n;
807                 marker->backing_object_offset += n * PAGE_SIZE;
808                 if (count < 0)
809                         goto breakout;
810         }
811
812         /*
813          * Iterate vm_object_lists[] hash table
814          */
815         TAILQ_REMOVE(&(*swindexp)->list, marker, object_list);
816         lwkt_reltoken(&(*swindexp)->token);
817         if (++*swindexp >= &vm_object_hash[VMOBJ_HSIZE])
818                 *swindexp = &vm_object_hash[0];
819         lwkt_gettoken(&(*swindexp)->token);
820         TAILQ_INSERT_HEAD(&(*swindexp)->list, marker, object_list);
821
822         if (*swindexp != &vm_object_hash[0])
823                 goto outerloop;
824
825 breakout:
826         lwkt_reltoken(&(*swindexp)->token);
827 }
828
829 /*
830  * Move the marker past the current object.  Object can be stale, but we
831  * still need it to determine if the marker has to be moved.  If the object
832  * is still the 'current object' (object after the marker), we hop-scotch
833  * the marker past it.
834  */
835 static void
836 vm_swapcache_movemarker(vm_object_t marker, struct vm_object_hash *swindex,
837                         vm_object_t object)
838 {
839         if (TAILQ_NEXT(marker, object_list) == object) {
840                 TAILQ_REMOVE(&swindex->list, marker, object_list);
841                 TAILQ_INSERT_AFTER(&swindex->list, object, marker, object_list);
842         }
843 }