Add ifpoll, which support hardware TX/RX queues based polling.
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.80 2008/09/17 08:51:29 sephe Exp $
67  */
68 /*
69  * SERIALIZATION API RULES:
70  *
71  * - If the driver uses the same serializer for the interrupt as for the
72  *   ifnet, most of the serialization will be done automatically for the
73  *   driver.
74  *
75  * - ifmedia entry points will be serialized by the ifmedia code using the
76  *   ifnet serializer.
77  *
78  * - if_* entry points except for if_input will be serialized by the IF
79  *   and protocol layers.
80  *
81  * - The device driver must be sure to serialize access from timeout code
82  *   installed by the device driver.
83  *
84  * - The device driver typically holds the serializer at the time it wishes
85  *   to call if_input.
86  *
87  * - We must call lwkt_serialize_handler_enable() prior to enabling the
88  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
89  *   the hardware interrupt in order to avoid handler execution races from
90  *   scheduled interrupt threads.
91  *
92  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
93  *   the device driver may be holding a serializer at the time it calls
94  *   if_input even if it is not serializer-aware.
95  */
96
97 #include "opt_polling.h"
98 #include "opt_serializer.h"
99
100 #include <sys/param.h>
101 #include <sys/bus.h>
102 #include <sys/endian.h>
103 #include <sys/interrupt.h>
104 #include <sys/kernel.h>
105 #include <sys/ktr.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/proc.h>
109 #include <sys/rman.h>
110 #include <sys/serialize.h>
111 #include <sys/socket.h>
112 #include <sys/sockio.h>
113 #include <sys/sysctl.h>
114 #include <sys/systm.h>
115
116 #include <net/bpf.h>
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/ifq_var.h>
123 #include <net/vlan/if_vlan_var.h>
124 #include <net/vlan/if_vlan_ether.h>
125
126 #include <netinet/in_systm.h>
127 #include <netinet/in.h>
128 #include <netinet/ip.h>
129 #include <netinet/tcp.h>
130 #include <netinet/udp.h>
131
132 #include <bus/pci/pcivar.h>
133 #include <bus/pci/pcireg.h>
134
135 #include <dev/netif/ig_hal/e1000_api.h>
136 #include <dev/netif/ig_hal/e1000_82571.h>
137 #include <dev/netif/em/if_em.h>
138
139 #define EM_NAME "Intel(R) PRO/1000 Network Connection "
140 #define EM_VER  " 6.9.6"
141
142 #define _EM_DEVICE(id, ret)     \
143         { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
144 #define EM_EMX_DEVICE(id)       _EM_DEVICE(id, -100)
145 #define EM_DEVICE(id)           _EM_DEVICE(id, 0)
146 #define EM_DEVICE_NULL  { 0, 0, 0, NULL }
147
148 static const struct em_vendor_info em_vendor_info_array[] = {
149         EM_DEVICE(82540EM),
150         EM_DEVICE(82540EM_LOM),
151         EM_DEVICE(82540EP),
152         EM_DEVICE(82540EP_LOM),
153         EM_DEVICE(82540EP_LP),
154
155         EM_DEVICE(82541EI),
156         EM_DEVICE(82541ER),
157         EM_DEVICE(82541ER_LOM),
158         EM_DEVICE(82541EI_MOBILE),
159         EM_DEVICE(82541GI),
160         EM_DEVICE(82541GI_LF),
161         EM_DEVICE(82541GI_MOBILE),
162
163         EM_DEVICE(82542),
164
165         EM_DEVICE(82543GC_FIBER),
166         EM_DEVICE(82543GC_COPPER),
167
168         EM_DEVICE(82544EI_COPPER),
169         EM_DEVICE(82544EI_FIBER),
170         EM_DEVICE(82544GC_COPPER),
171         EM_DEVICE(82544GC_LOM),
172
173         EM_DEVICE(82545EM_COPPER),
174         EM_DEVICE(82545EM_FIBER),
175         EM_DEVICE(82545GM_COPPER),
176         EM_DEVICE(82545GM_FIBER),
177         EM_DEVICE(82545GM_SERDES),
178
179         EM_DEVICE(82546EB_COPPER),
180         EM_DEVICE(82546EB_FIBER),
181         EM_DEVICE(82546EB_QUAD_COPPER),
182         EM_DEVICE(82546GB_COPPER),
183         EM_DEVICE(82546GB_FIBER),
184         EM_DEVICE(82546GB_SERDES),
185         EM_DEVICE(82546GB_PCIE),
186         EM_DEVICE(82546GB_QUAD_COPPER),
187         EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
188
189         EM_DEVICE(82547EI),
190         EM_DEVICE(82547EI_MOBILE),
191         EM_DEVICE(82547GI),
192
193         EM_EMX_DEVICE(82571EB_COPPER),
194         EM_EMX_DEVICE(82571EB_FIBER),
195         EM_EMX_DEVICE(82571EB_SERDES),
196         EM_EMX_DEVICE(82571EB_SERDES_DUAL),
197         EM_EMX_DEVICE(82571EB_SERDES_QUAD),
198         EM_EMX_DEVICE(82571EB_QUAD_COPPER),
199         EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
200         EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
201         EM_EMX_DEVICE(82571EB_QUAD_FIBER),
202         EM_EMX_DEVICE(82571PT_QUAD_COPPER),
203
204         EM_EMX_DEVICE(82572EI_COPPER),
205         EM_EMX_DEVICE(82572EI_FIBER),
206         EM_EMX_DEVICE(82572EI_SERDES),
207         EM_EMX_DEVICE(82572EI),
208
209         EM_EMX_DEVICE(82573E),
210         EM_EMX_DEVICE(82573E_IAMT),
211         EM_EMX_DEVICE(82573L),
212
213         EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
214         EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
215         EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
216         EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
217
218         EM_DEVICE(ICH8_IGP_M_AMT),
219         EM_DEVICE(ICH8_IGP_AMT),
220         EM_DEVICE(ICH8_IGP_C),
221         EM_DEVICE(ICH8_IFE),
222         EM_DEVICE(ICH8_IFE_GT),
223         EM_DEVICE(ICH8_IFE_G),
224         EM_DEVICE(ICH8_IGP_M),
225
226         EM_DEVICE(ICH9_IGP_M_AMT),
227         EM_DEVICE(ICH9_IGP_AMT),
228         EM_DEVICE(ICH9_IGP_C),
229         EM_DEVICE(ICH9_IGP_M),
230         EM_DEVICE(ICH9_IGP_M_V),
231         EM_DEVICE(ICH9_IFE),
232         EM_DEVICE(ICH9_IFE_GT),
233         EM_DEVICE(ICH9_IFE_G),
234         EM_DEVICE(ICH9_BM),
235
236         EM_EMX_DEVICE(82574L),
237
238         EM_DEVICE(ICH10_R_BM_LM),
239         EM_DEVICE(ICH10_R_BM_LF),
240         EM_DEVICE(ICH10_R_BM_V),
241         EM_DEVICE(ICH10_D_BM_LM),
242         EM_DEVICE(ICH10_D_BM_LF),
243
244         /* required last entry */
245         EM_DEVICE_NULL
246 };
247
248 static int      em_probe(device_t);
249 static int      em_attach(device_t);
250 static int      em_detach(device_t);
251 static int      em_shutdown(device_t);
252 static int      em_suspend(device_t);
253 static int      em_resume(device_t);
254
255 static void     em_init(void *);
256 static void     em_stop(struct adapter *);
257 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
258 static void     em_start(struct ifnet *);
259 #ifdef DEVICE_POLLING
260 static void     em_poll(struct ifnet *, enum poll_cmd, int);
261 #endif
262 static void     em_watchdog(struct ifnet *);
263 static void     em_media_status(struct ifnet *, struct ifmediareq *);
264 static int      em_media_change(struct ifnet *);
265 static void     em_timer(void *);
266
267 static void     em_intr(void *);
268 static void     em_rxeof(struct adapter *, int);
269 static void     em_txeof(struct adapter *);
270 static void     em_tx_collect(struct adapter *);
271 static void     em_tx_purge(struct adapter *);
272 static void     em_enable_intr(struct adapter *);
273 static void     em_disable_intr(struct adapter *);
274
275 static int      em_dma_malloc(struct adapter *, bus_size_t,
276                     struct em_dma_alloc *);
277 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
278 static void     em_init_tx_ring(struct adapter *);
279 static int      em_init_rx_ring(struct adapter *);
280 static int      em_create_tx_ring(struct adapter *);
281 static int      em_create_rx_ring(struct adapter *);
282 static void     em_destroy_tx_ring(struct adapter *, int);
283 static void     em_destroy_rx_ring(struct adapter *, int);
284 static int      em_newbuf(struct adapter *, int, int);
285 static int      em_encap(struct adapter *, struct mbuf **);
286 static void     em_rxcsum(struct adapter *, struct e1000_rx_desc *,
287                     struct mbuf *);
288 static int      em_txcsum_pullup(struct adapter *, struct mbuf **);
289 static int      em_txcsum(struct adapter *, struct mbuf *,
290                     uint32_t *, uint32_t *);
291
292 static int      em_get_hw_info(struct adapter *);
293 static int      em_is_valid_eaddr(const uint8_t *);
294 static int      em_alloc_pci_res(struct adapter *);
295 static void     em_free_pci_res(struct adapter *);
296 static int      em_hw_init(struct adapter *);
297 static void     em_setup_ifp(struct adapter *);
298 static void     em_init_tx_unit(struct adapter *);
299 static void     em_init_rx_unit(struct adapter *);
300 static void     em_update_stats(struct adapter *);
301 static void     em_set_promisc(struct adapter *);
302 static void     em_disable_promisc(struct adapter *);
303 static void     em_set_multi(struct adapter *);
304 static void     em_update_link_status(struct adapter *);
305 static void     em_smartspeed(struct adapter *);
306
307 /* Hardware workarounds */
308 static int      em_82547_fifo_workaround(struct adapter *, int);
309 static void     em_82547_update_fifo_head(struct adapter *, int);
310 static int      em_82547_tx_fifo_reset(struct adapter *);
311 static void     em_82547_move_tail(void *);
312 static void     em_82547_move_tail_serialized(struct adapter *);
313 static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
314
315 static void     em_print_debug_info(struct adapter *);
316 static void     em_print_nvm_info(struct adapter *);
317 static void     em_print_hw_stats(struct adapter *);
318
319 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
320 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
321 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
322 static int      em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
323 static void     em_add_sysctl(struct adapter *adapter);
324
325 /* Management and WOL Support */
326 static void     em_get_mgmt(struct adapter *);
327 static void     em_rel_mgmt(struct adapter *);
328 static void     em_get_hw_control(struct adapter *);
329 static void     em_rel_hw_control(struct adapter *);
330 static void     em_enable_wol(device_t);
331
332 static device_method_t em_methods[] = {
333         /* Device interface */
334         DEVMETHOD(device_probe,         em_probe),
335         DEVMETHOD(device_attach,        em_attach),
336         DEVMETHOD(device_detach,        em_detach),
337         DEVMETHOD(device_shutdown,      em_shutdown),
338         DEVMETHOD(device_suspend,       em_suspend),
339         DEVMETHOD(device_resume,        em_resume),
340         { 0, 0 }
341 };
342
343 static driver_t em_driver = {
344         "em",
345         em_methods,
346         sizeof(struct adapter),
347 };
348
349 static devclass_t em_devclass;
350
351 DECLARE_DUMMY_MODULE(if_em);
352 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
353 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
354
355 /*
356  * Tunables
357  */
358 static int      em_int_throttle_ceil = EM_DEFAULT_ITR;
359 static int      em_rxd = EM_DEFAULT_RXD;
360 static int      em_txd = EM_DEFAULT_TXD;
361 static int      em_smart_pwr_down = FALSE;
362
363 /* Controls whether promiscuous also shows bad packets */
364 static int      em_debug_sbp = FALSE;
365
366 static int      em_82573_workaround = TRUE;
367
368 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
369 TUNABLE_INT("hw.em.rxd", &em_rxd);
370 TUNABLE_INT("hw.em.txd", &em_txd);
371 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
372 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
373 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
374
375 /* Global used in WOL setup with multiport cards */
376 static int      em_global_quad_port_a = 0;
377
378 /* Set this to one to display debug statistics */
379 static int      em_display_debug_stats = 0;
380
381 #if !defined(KTR_IF_EM)
382 #define KTR_IF_EM       KTR_ALL
383 #endif
384 KTR_INFO_MASTER(if_em);
385 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
386 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
387 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
388 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
389 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
390 #define logif(name)     KTR_LOG(if_em_ ## name)
391
392 static int
393 em_probe(device_t dev)
394 {
395         const struct em_vendor_info *ent;
396         uint16_t vid, did;
397
398         vid = pci_get_vendor(dev);
399         did = pci_get_device(dev);
400
401         for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
402                 if (vid == ent->vendor_id && did == ent->device_id) {
403                         device_set_desc(dev, ent->desc);
404                         device_set_async_attach(dev, TRUE);
405                         return (ent->ret);
406                 }
407         }
408         return (ENXIO);
409 }
410
411 static int
412 em_attach(device_t dev)
413 {
414         struct adapter *adapter = device_get_softc(dev);
415         struct ifnet *ifp = &adapter->arpcom.ac_if;
416         int tsize, rsize;
417         int error = 0;
418         uint16_t eeprom_data, device_id;
419
420         adapter->dev = adapter->osdep.dev = dev;
421
422         callout_init(&adapter->timer);
423         callout_init(&adapter->tx_fifo_timer);
424
425         /* Determine hardware and mac info */
426         error = em_get_hw_info(adapter);
427         if (error) {
428                 device_printf(dev, "Identify hardware failed\n");
429                 goto fail;
430         }
431
432         /* Setup PCI resources */
433         error = em_alloc_pci_res(adapter);
434         if (error) {
435                 device_printf(dev, "Allocation of PCI resources failed\n");
436                 goto fail;
437         }
438
439         /*
440          * For ICH8 and family we need to map the flash memory,
441          * and this must happen after the MAC is identified.
442          */
443         if (adapter->hw.mac.type == e1000_ich8lan ||
444             adapter->hw.mac.type == e1000_ich10lan ||
445             adapter->hw.mac.type == e1000_ich9lan) {
446                 adapter->flash_rid = EM_BAR_FLASH;
447
448                 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
449                                         &adapter->flash_rid, RF_ACTIVE);
450                 if (adapter->flash == NULL) {
451                         device_printf(dev, "Mapping of Flash failed\n");
452                         error = ENXIO;
453                         goto fail;
454                 }
455                 adapter->osdep.flash_bus_space_tag =
456                     rman_get_bustag(adapter->flash);
457                 adapter->osdep.flash_bus_space_handle =
458                     rman_get_bushandle(adapter->flash);
459
460                 /*
461                  * This is used in the shared code
462                  * XXX this goof is actually not used.
463                  */
464                 adapter->hw.flash_address = (uint8_t *)adapter->flash;
465         }
466
467         /* Do Shared Code initialization */
468         if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
469                 device_printf(dev, "Setup of Shared code failed\n");
470                 error = ENXIO;
471                 goto fail;
472         }
473
474         e1000_get_bus_info(&adapter->hw);
475
476         /*
477          * Validate number of transmit and receive descriptors.  It
478          * must not exceed hardware maximum, and must be multiple
479          * of E1000_DBA_ALIGN.
480          */
481         if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
482             (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
483             (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
484             em_txd < EM_MIN_TXD) {
485                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
486                     EM_DEFAULT_TXD, em_txd);
487                 adapter->num_tx_desc = EM_DEFAULT_TXD;
488         } else {
489                 adapter->num_tx_desc = em_txd;
490         }
491         if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
492             (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
493             (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
494             em_rxd < EM_MIN_RXD) {
495                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
496                     EM_DEFAULT_RXD, em_rxd);
497                 adapter->num_rx_desc = EM_DEFAULT_RXD;
498         } else {
499                 adapter->num_rx_desc = em_rxd;
500         }
501
502         adapter->hw.mac.autoneg = DO_AUTO_NEG;
503         adapter->hw.phy.autoneg_wait_to_complete = FALSE;
504         adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
505         adapter->rx_buffer_len = MCLBYTES;
506
507         /*
508          * Interrupt throttle rate
509          */
510         if (em_int_throttle_ceil == 0) {
511                 adapter->int_throttle_ceil = 0;
512         } else {
513                 int throttle = em_int_throttle_ceil;
514
515                 if (throttle < 0)
516                         throttle = EM_DEFAULT_ITR;
517
518                 /* Recalculate the tunable value to get the exact frequency. */
519                 throttle = 1000000000 / 256 / throttle;
520
521                 /* Upper 16bits of ITR is reserved and should be zero */
522                 if (throttle & 0xffff0000)
523                         throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
524
525                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
526         }
527
528         e1000_init_script_state_82541(&adapter->hw, TRUE);
529         e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
530
531         /* Copper options */
532         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
533                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
534                 adapter->hw.phy.disable_polarity_correction = FALSE;
535                 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
536         }
537
538         /* Set the frame limits assuming standard ethernet sized frames. */
539         adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
540         adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
541
542         /* This controls when hardware reports transmit completion status. */
543         adapter->hw.mac.report_tx_early = 1;
544
545         /*
546          * Create top level busdma tag
547          */
548         error = bus_dma_tag_create(NULL, 1, 0,
549                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
550                         NULL, NULL,
551                         BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
552                         0, &adapter->parent_dtag);
553         if (error) {
554                 device_printf(dev, "could not create top level DMA tag\n");
555                 goto fail;
556         }
557
558         /*
559          * Allocate Transmit Descriptor ring
560          */
561         tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
562                          EM_DBA_ALIGN);
563         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
564         if (error) {
565                 device_printf(dev, "Unable to allocate tx_desc memory\n");
566                 goto fail;
567         }
568         adapter->tx_desc_base = adapter->txdma.dma_vaddr;
569
570         /*
571          * Allocate Receive Descriptor ring
572          */
573         rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
574                          EM_DBA_ALIGN);
575         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
576         if (error) {
577                 device_printf(dev, "Unable to allocate rx_desc memory\n");
578                 goto fail;
579         }
580         adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
581
582         /* Make sure we have a good EEPROM before we read from it */
583         if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
584                 /*
585                  * Some PCI-E parts fail the first check due to
586                  * the link being in sleep state, call it again,
587                  * if it fails a second time its a real issue.
588                  */
589                 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
590                         device_printf(dev,
591                             "The EEPROM Checksum Is Not Valid\n");
592                         error = EIO;
593                         goto fail;
594                 }
595         }
596
597         /* Initialize the hardware */
598         error = em_hw_init(adapter);
599         if (error) {
600                 device_printf(dev, "Unable to initialize the hardware\n");
601                 goto fail;
602         }
603
604         /* Copy the permanent MAC address out of the EEPROM */
605         if (e1000_read_mac_addr(&adapter->hw) < 0) {
606                 device_printf(dev, "EEPROM read error while reading MAC"
607                     " address\n");
608                 error = EIO;
609                 goto fail;
610         }
611         if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
612                 device_printf(dev, "Invalid MAC address\n");
613                 error = EIO;
614                 goto fail;
615         }
616
617         /* Allocate transmit descriptors and buffers */
618         error = em_create_tx_ring(adapter);
619         if (error) {
620                 device_printf(dev, "Could not setup transmit structures\n");
621                 goto fail;
622         }
623
624         /* Allocate receive descriptors and buffers */
625         error = em_create_rx_ring(adapter);
626         if (error) {
627                 device_printf(dev, "Could not setup receive structures\n");
628                 goto fail;
629         }
630
631         /* Manually turn off all interrupts */
632         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
633
634         /* Setup OS specific network interface */
635         em_setup_ifp(adapter);
636
637         /* Add sysctl tree, must after em_setup_ifp() */
638         em_add_sysctl(adapter);
639
640         /* Initialize statistics */
641         em_update_stats(adapter);
642
643         adapter->hw.mac.get_link_status = 1;
644         em_update_link_status(adapter);
645
646         /* Indicate SOL/IDER usage */
647         if (e1000_check_reset_block(&adapter->hw)) {
648                 device_printf(dev,
649                     "PHY reset is blocked due to SOL/IDER session.\n");
650         }
651
652         /* Determine if we have to control management hardware */
653         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
654
655         /*
656          * Setup Wake-on-Lan
657          */
658         switch (adapter->hw.mac.type) {
659         case e1000_82542:
660         case e1000_82543:
661                 break;
662
663         case e1000_82546:
664         case e1000_82546_rev_3:
665         case e1000_82571:
666         case e1000_80003es2lan:
667                 if (adapter->hw.bus.func == 1) {
668                         e1000_read_nvm(&adapter->hw,
669                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
670                 } else {
671                         e1000_read_nvm(&adapter->hw,
672                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
673                 }
674                 eeprom_data &= EM_EEPROM_APME;
675                 break;
676
677         default:
678                 /* APME bit in EEPROM is mapped to WUC.APME */
679                 eeprom_data =
680                     E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME;
681                 break;
682         }
683         if (eeprom_data)
684                 adapter->wol = E1000_WUFC_MAG;
685         /*
686          * We have the eeprom settings, now apply the special cases
687          * where the eeprom may be wrong or the board won't support
688          * wake on lan on a particular port
689          */
690         device_id = pci_get_device(dev);
691         switch (device_id) {
692         case E1000_DEV_ID_82546GB_PCIE:
693                 adapter->wol = 0;
694                 break;
695
696         case E1000_DEV_ID_82546EB_FIBER:
697         case E1000_DEV_ID_82546GB_FIBER:
698         case E1000_DEV_ID_82571EB_FIBER:
699                 /*
700                  * Wake events only supported on port A for dual fiber
701                  * regardless of eeprom setting
702                  */
703                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
704                     E1000_STATUS_FUNC_1)
705                         adapter->wol = 0;
706                 break;
707
708         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
709         case E1000_DEV_ID_82571EB_QUAD_COPPER:
710         case E1000_DEV_ID_82571EB_QUAD_FIBER:
711         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
712                 /* if quad port adapter, disable WoL on all but port A */
713                 if (em_global_quad_port_a != 0)
714                         adapter->wol = 0;
715                 /* Reset for multiple quad port adapters */
716                 if (++em_global_quad_port_a == 4)
717                         em_global_quad_port_a = 0;
718                 break;
719         }
720
721         /* XXX disable wol */
722         adapter->wol = 0;
723
724         /* Do we need workaround for 82544 PCI-X adapter? */
725         if (adapter->hw.bus.type == e1000_bus_type_pcix &&
726             adapter->hw.mac.type == e1000_82544)
727                 adapter->pcix_82544 = TRUE;
728         else
729                 adapter->pcix_82544 = FALSE;
730
731         if (adapter->pcix_82544) {
732                 /*
733                  * 82544 on PCI-X may split one TX segment
734                  * into two TX descs, so we double its number
735                  * of spare TX desc here.
736                  */
737                 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
738         } else {
739                 adapter->spare_tx_desc = EM_TX_SPARE;
740         }
741
742         /*
743          * Keep following relationship between spare_tx_desc, oact_tx_desc
744          * and tx_int_nsegs:
745          * (spare_tx_desc + EM_TX_RESERVED) <=
746          * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
747          */
748         adapter->oact_tx_desc = adapter->num_tx_desc / 8;
749         if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
750                 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
751         if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
752                 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
753
754         adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
755         if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
756                 adapter->tx_int_nsegs = adapter->oact_tx_desc;
757
758         error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
759                                em_intr, adapter, &adapter->intr_tag,
760                                ifp->if_serializer);
761         if (error) {
762                 device_printf(dev, "Failed to register interrupt handler");
763                 ether_ifdetach(&adapter->arpcom.ac_if);
764                 goto fail;
765         }
766
767         ifp->if_cpuid = ithread_cpuid(rman_get_start(adapter->intr_res));
768         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
769         return (0);
770 fail:
771         em_detach(dev);
772         return (error);
773 }
774
775 static int
776 em_detach(device_t dev)
777 {
778         struct adapter *adapter = device_get_softc(dev);
779
780         if (device_is_attached(dev)) {
781                 struct ifnet *ifp = &adapter->arpcom.ac_if;
782
783                 lwkt_serialize_enter(ifp->if_serializer);
784
785                 em_stop(adapter);
786
787                 e1000_phy_hw_reset(&adapter->hw);
788
789                 em_rel_mgmt(adapter);
790
791                 if ((adapter->hw.mac.type == e1000_82573 ||
792                      adapter->hw.mac.type == e1000_ich8lan ||
793                      adapter->hw.mac.type == e1000_ich10lan ||
794                      adapter->hw.mac.type == e1000_ich9lan) &&
795                     e1000_check_mng_mode(&adapter->hw))
796                         em_rel_hw_control(adapter);
797
798                 if (adapter->wol) {
799                         E1000_WRITE_REG(&adapter->hw, E1000_WUC,
800                                         E1000_WUC_PME_EN);
801                         E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
802                         em_enable_wol(dev);
803                 }
804
805                 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
806
807                 lwkt_serialize_exit(ifp->if_serializer);
808
809                 ether_ifdetach(ifp);
810         }
811         bus_generic_detach(dev);
812
813         em_free_pci_res(adapter);
814
815         em_destroy_tx_ring(adapter, adapter->num_tx_desc);
816         em_destroy_rx_ring(adapter, adapter->num_rx_desc);
817
818         /* Free Transmit Descriptor ring */
819         if (adapter->tx_desc_base)
820                 em_dma_free(adapter, &adapter->txdma);
821
822         /* Free Receive Descriptor ring */
823         if (adapter->rx_desc_base)
824                 em_dma_free(adapter, &adapter->rxdma);
825
826         /* Free top level busdma tag */
827         if (adapter->parent_dtag != NULL)
828                 bus_dma_tag_destroy(adapter->parent_dtag);
829
830         /* Free sysctl tree */
831         if (adapter->sysctl_tree != NULL)
832                 sysctl_ctx_free(&adapter->sysctl_ctx);
833
834         return (0);
835 }
836
837 static int
838 em_shutdown(device_t dev)
839 {
840         return em_suspend(dev);
841 }
842
843 static int
844 em_suspend(device_t dev)
845 {
846         struct adapter *adapter = device_get_softc(dev);
847         struct ifnet *ifp = &adapter->arpcom.ac_if;
848
849         lwkt_serialize_enter(ifp->if_serializer);
850
851         em_stop(adapter);
852
853         em_rel_mgmt(adapter);
854
855         if ((adapter->hw.mac.type == e1000_82573 ||
856              adapter->hw.mac.type == e1000_ich8lan ||
857              adapter->hw.mac.type == e1000_ich10lan ||
858              adapter->hw.mac.type == e1000_ich9lan) &&
859             e1000_check_mng_mode(&adapter->hw))
860                 em_rel_hw_control(adapter);
861
862         if (adapter->wol) {
863                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
864                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
865                 em_enable_wol(dev);
866         }
867
868         lwkt_serialize_exit(ifp->if_serializer);
869
870         return bus_generic_suspend(dev);
871 }
872
873 static int
874 em_resume(device_t dev)
875 {
876         struct adapter *adapter = device_get_softc(dev);
877         struct ifnet *ifp = &adapter->arpcom.ac_if;
878
879         lwkt_serialize_enter(ifp->if_serializer);
880
881         em_init(adapter);
882         em_get_mgmt(adapter);
883         if_devstart(ifp);
884
885         lwkt_serialize_exit(ifp->if_serializer);
886
887         return bus_generic_resume(dev);
888 }
889
890 static void
891 em_start(struct ifnet *ifp)
892 {
893         struct adapter *adapter = ifp->if_softc;
894         struct mbuf *m_head;
895
896         ASSERT_SERIALIZED(ifp->if_serializer);
897
898         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
899                 return;
900
901         if (!adapter->link_active) {
902                 ifq_purge(&ifp->if_snd);
903                 return;
904         }
905
906         while (!ifq_is_empty(&ifp->if_snd)) {
907                 /* Now do we at least have a minimal? */
908                 if (EM_IS_OACTIVE(adapter)) {
909                         em_tx_collect(adapter);
910                         if (EM_IS_OACTIVE(adapter)) {
911                                 ifp->if_flags |= IFF_OACTIVE;
912                                 adapter->no_tx_desc_avail1++;
913                                 break;
914                         }
915                 }
916
917                 logif(pkt_txqueue);
918                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
919                 if (m_head == NULL)
920                         break;
921
922                 if (em_encap(adapter, &m_head)) {
923                         ifp->if_oerrors++;
924                         em_tx_collect(adapter);
925                         continue;
926                 }
927
928                 /* Send a copy of the frame to the BPF listener */
929                 ETHER_BPF_MTAP(ifp, m_head);
930
931                 /* Set timeout in case hardware has problems transmitting. */
932                 ifp->if_timer = EM_TX_TIMEOUT;
933         }
934 }
935
936 static int
937 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
938 {
939         struct adapter *adapter = ifp->if_softc;
940         struct ifreq *ifr = (struct ifreq *)data;
941         uint16_t eeprom_data = 0;
942         int max_frame_size, mask, reinit;
943         int error = 0;
944
945         ASSERT_SERIALIZED(ifp->if_serializer);
946
947         switch (command) {
948         case SIOCSIFMTU:
949                 switch (adapter->hw.mac.type) {
950                 case e1000_82573:
951                         /*
952                          * 82573 only supports jumbo frames
953                          * if ASPM is disabled.
954                          */
955                         e1000_read_nvm(&adapter->hw,
956                             NVM_INIT_3GIO_3, 1, &eeprom_data);
957                         if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
958                                 max_frame_size = ETHER_MAX_LEN;
959                                 break;
960                         }
961                         /* FALL THROUGH */
962
963                 /* Limit Jumbo Frame size */
964                 case e1000_82571:
965                 case e1000_82572:
966                 case e1000_ich9lan:
967                 case e1000_ich10lan:
968                 case e1000_82574:
969                 case e1000_80003es2lan:
970                         max_frame_size = 9234;
971                         break;
972
973                 /* Adapters that do not support jumbo frames */
974                 case e1000_82542:
975                 case e1000_ich8lan:
976                         max_frame_size = ETHER_MAX_LEN;
977                         break;
978
979                 default:
980                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
981                         break;
982                 }
983                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
984                     ETHER_CRC_LEN) {
985                         error = EINVAL;
986                         break;
987                 }
988
989                 ifp->if_mtu = ifr->ifr_mtu;
990                 adapter->max_frame_size =
991                     ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
992
993                 if (ifp->if_flags & IFF_RUNNING)
994                         em_init(adapter);
995                 break;
996
997         case SIOCSIFFLAGS:
998                 if (ifp->if_flags & IFF_UP) {
999                         if ((ifp->if_flags & IFF_RUNNING)) {
1000                                 if ((ifp->if_flags ^ adapter->if_flags) &
1001                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1002                                         em_disable_promisc(adapter);
1003                                         em_set_promisc(adapter);
1004                                 }
1005                         } else {
1006                                 em_init(adapter);
1007                         }
1008                 } else if (ifp->if_flags & IFF_RUNNING) {
1009                         em_stop(adapter);
1010                 }
1011                 adapter->if_flags = ifp->if_flags;
1012                 break;
1013
1014         case SIOCADDMULTI:
1015         case SIOCDELMULTI:
1016                 if (ifp->if_flags & IFF_RUNNING) {
1017                         em_disable_intr(adapter);
1018                         em_set_multi(adapter);
1019                         if (adapter->hw.mac.type == e1000_82542 &&
1020                             adapter->hw.revision_id == E1000_REVISION_2)
1021                                 em_init_rx_unit(adapter);
1022 #ifdef DEVICE_POLLING
1023                         if (!(ifp->if_flags & IFF_POLLING))
1024 #endif
1025                                 em_enable_intr(adapter);
1026                 }
1027                 break;
1028
1029         case SIOCSIFMEDIA:
1030                 /* Check SOL/IDER usage */
1031                 if (e1000_check_reset_block(&adapter->hw)) {
1032                         device_printf(adapter->dev, "Media change is"
1033                             " blocked due to SOL/IDER session.\n");
1034                         break;
1035                 }
1036                 /* FALL THROUGH */
1037
1038         case SIOCGIFMEDIA:
1039                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1040                 break;
1041
1042         case SIOCSIFCAP:
1043                 reinit = 0;
1044                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1045                 if (mask & IFCAP_HWCSUM) {
1046                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1047                         reinit = 1;
1048                 }
1049                 if (mask & IFCAP_VLAN_HWTAGGING) {
1050                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1051                         reinit = 1;
1052                 }
1053                 if (reinit && (ifp->if_flags & IFF_RUNNING))
1054                         em_init(adapter);
1055                 break;
1056
1057         default:
1058                 error = ether_ioctl(ifp, command, data);
1059                 break;
1060         }
1061         return (error);
1062 }
1063
1064 static void
1065 em_watchdog(struct ifnet *ifp)
1066 {
1067         struct adapter *adapter = ifp->if_softc;
1068
1069         ASSERT_SERIALIZED(ifp->if_serializer);
1070
1071         /*
1072          * The timer is set to 5 every time start queues a packet.
1073          * Then txeof keeps resetting it as long as it cleans at
1074          * least one descriptor.
1075          * Finally, anytime all descriptors are clean the timer is
1076          * set to 0.
1077          */
1078
1079         if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1080             E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1081                 /*
1082                  * If we reach here, all TX jobs are completed and
1083                  * the TX engine should have been idled for some time.
1084                  * We don't need to call if_devstart() here.
1085                  */
1086                 ifp->if_flags &= ~IFF_OACTIVE;
1087                 ifp->if_timer = 0;
1088                 return;
1089         }
1090
1091         /*
1092          * If we are in this routine because of pause frames, then
1093          * don't reset the hardware.
1094          */
1095         if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1096             E1000_STATUS_TXOFF) {
1097                 ifp->if_timer = EM_TX_TIMEOUT;
1098                 return;
1099         }
1100
1101         if (e1000_check_for_link(&adapter->hw) == 0)
1102                 if_printf(ifp, "watchdog timeout -- resetting\n");
1103
1104         ifp->if_oerrors++;
1105         adapter->watchdog_events++;
1106
1107         em_init(adapter);
1108
1109         if (!ifq_is_empty(&ifp->if_snd))
1110                 if_devstart(ifp);
1111 }
1112
1113 static void
1114 em_init(void *xsc)
1115 {
1116         struct adapter *adapter = xsc;
1117         struct ifnet *ifp = &adapter->arpcom.ac_if;
1118         device_t dev = adapter->dev;
1119         uint32_t pba;
1120
1121         ASSERT_SERIALIZED(ifp->if_serializer);
1122
1123         em_stop(adapter);
1124
1125         /*
1126          * Packet Buffer Allocation (PBA)
1127          * Writing PBA sets the receive portion of the buffer
1128          * the remainder is used for the transmit buffer.
1129          *
1130          * Devices before the 82547 had a Packet Buffer of 64K.
1131          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1132          * After the 82547 the buffer was reduced to 40K.
1133          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1134          *   Note: default does not leave enough room for Jumbo Frame >10k.
1135          */
1136         switch (adapter->hw.mac.type) {
1137         case e1000_82547:
1138         case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1139                 if (adapter->max_frame_size > 8192)
1140                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1141                 else
1142                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1143                 adapter->tx_fifo_head = 0;
1144                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1145                 adapter->tx_fifo_size =
1146                     (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1147                 break;
1148
1149         /* Total Packet Buffer on these is 48K */
1150         case e1000_82571:
1151         case e1000_82572:
1152         case e1000_80003es2lan:
1153                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1154                 break;
1155
1156         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1157                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1158                 break;
1159
1160         case e1000_82574:
1161                 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1162                 break;
1163
1164         case e1000_ich9lan:
1165         case e1000_ich10lan:
1166 #define E1000_PBA_10K   0x000A
1167                 pba = E1000_PBA_10K;
1168                 break;
1169
1170         case e1000_ich8lan:
1171                 pba = E1000_PBA_8K;
1172                 break;
1173
1174         default:
1175                 /* Devices before 82547 had a Packet Buffer of 64K.   */
1176                 if (adapter->max_frame_size > 8192)
1177                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1178                 else
1179                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1180         }
1181         E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1182
1183         /* Get the latest mac address, User can use a LAA */
1184         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1185
1186         /* Put the address into the Receive Address Array */
1187         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1188
1189         /*
1190          * With the 82571 adapter, RAR[0] may be overwritten
1191          * when the other port is reset, we make a duplicate
1192          * in RAR[14] for that eventuality, this assures
1193          * the interface continues to function.
1194          */
1195         if (adapter->hw.mac.type == e1000_82571) {
1196                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1197                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1198                     E1000_RAR_ENTRIES - 1);
1199         }
1200
1201         /* Initialize the hardware */
1202         if (em_hw_init(adapter)) {
1203                 device_printf(dev, "Unable to initialize the hardware\n");
1204                 /* XXX em_stop()? */
1205                 return;
1206         }
1207         em_update_link_status(adapter);
1208
1209         /* Setup VLAN support, basic and offload if available */
1210         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1211
1212         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1213                 uint32_t ctrl;
1214
1215                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1216                 ctrl |= E1000_CTRL_VME;
1217                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1218         }
1219
1220         /* Set hardware offload abilities */
1221         if (ifp->if_capenable & IFCAP_TXCSUM)
1222                 ifp->if_hwassist = EM_CSUM_FEATURES;
1223         else
1224                 ifp->if_hwassist = 0;
1225
1226         /* Configure for OS presence */
1227         em_get_mgmt(adapter);
1228
1229         /* Prepare transmit descriptors and buffers */
1230         em_init_tx_ring(adapter);
1231         em_init_tx_unit(adapter);
1232
1233         /* Setup Multicast table */
1234         em_set_multi(adapter);
1235
1236         /* Prepare receive descriptors and buffers */
1237         if (em_init_rx_ring(adapter)) {
1238                 device_printf(dev, "Could not setup receive structures\n");
1239                 em_stop(adapter);
1240                 return;
1241         }
1242         em_init_rx_unit(adapter);
1243
1244         /* Don't lose promiscuous settings */
1245         em_set_promisc(adapter);
1246
1247         ifp->if_flags |= IFF_RUNNING;
1248         ifp->if_flags &= ~IFF_OACTIVE;
1249
1250         callout_reset(&adapter->timer, hz, em_timer, adapter);
1251         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1252
1253         /* MSI/X configuration for 82574 */
1254         if (adapter->hw.mac.type == e1000_82574) {
1255                 int tmp;
1256
1257                 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1258                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1259                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1260                 /*
1261                  * Set the IVAR - interrupt vector routing.
1262                  * Each nibble represents a vector, high bit
1263                  * is enable, other 3 bits are the MSIX table
1264                  * entry, we map RXQ0 to 0, TXQ0 to 1, and
1265                  * Link (other) to 2, hence the magic number.
1266                  */
1267                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1268         }
1269
1270 #ifdef DEVICE_POLLING
1271         /*
1272          * Only enable interrupts if we are not polling, make sure
1273          * they are off otherwise.
1274          */
1275         if (ifp->if_flags & IFF_POLLING)
1276                 em_disable_intr(adapter);
1277         else
1278 #endif /* DEVICE_POLLING */
1279                 em_enable_intr(adapter);
1280
1281         /* Don't reset the phy next time init gets called */
1282         adapter->hw.phy.reset_disable = TRUE;
1283 }
1284
1285 #ifdef DEVICE_POLLING
1286
1287 static void
1288 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1289 {
1290         struct adapter *adapter = ifp->if_softc;
1291         uint32_t reg_icr;
1292
1293         ASSERT_SERIALIZED(ifp->if_serializer);
1294
1295         switch (cmd) {
1296         case POLL_REGISTER:
1297                 em_disable_intr(adapter);
1298                 break;
1299
1300         case POLL_DEREGISTER:
1301                 em_enable_intr(adapter);
1302                 break;
1303
1304         case POLL_AND_CHECK_STATUS:
1305                 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1306                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1307                         callout_stop(&adapter->timer);
1308                         adapter->hw.mac.get_link_status = 1;
1309                         em_update_link_status(adapter);
1310                         callout_reset(&adapter->timer, hz, em_timer, adapter);
1311                 }
1312                 /* FALL THROUGH */
1313         case POLL_ONLY:
1314                 if (ifp->if_flags & IFF_RUNNING) {
1315                         em_rxeof(adapter, count);
1316                         em_txeof(adapter);
1317
1318                         if (!ifq_is_empty(&ifp->if_snd))
1319                                 if_devstart(ifp);
1320                 }
1321                 break;
1322         }
1323 }
1324
1325 #endif /* DEVICE_POLLING */
1326
1327 static void
1328 em_intr(void *xsc)
1329 {
1330         struct adapter *adapter = xsc;
1331         struct ifnet *ifp = &adapter->arpcom.ac_if;
1332         uint32_t reg_icr;
1333
1334         logif(intr_beg);
1335         ASSERT_SERIALIZED(ifp->if_serializer);
1336
1337         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1338
1339         if ((adapter->hw.mac.type >= e1000_82571 &&
1340              (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1341             reg_icr == 0) {
1342                 logif(intr_end);
1343                 return;
1344         }
1345
1346         /*
1347          * XXX: some laptops trigger several spurious interrupts
1348          * on em(4) when in the resume cycle. The ICR register
1349          * reports all-ones value in this case. Processing such
1350          * interrupts would lead to a freeze. I don't know why.
1351          */
1352         if (reg_icr == 0xffffffff) {
1353                 logif(intr_end);
1354                 return;
1355         }
1356
1357         if (ifp->if_flags & IFF_RUNNING) {
1358                 if (reg_icr &
1359                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1360                         em_rxeof(adapter, -1);
1361                 if (reg_icr & E1000_ICR_TXDW) {
1362                         em_txeof(adapter);
1363                         if (!ifq_is_empty(&ifp->if_snd))
1364                                 if_devstart(ifp);
1365                 }
1366         }
1367
1368         /* Link status change */
1369         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1370                 callout_stop(&adapter->timer);
1371                 adapter->hw.mac.get_link_status = 1;
1372                 em_update_link_status(adapter);
1373
1374                 /* Deal with TX cruft when link lost */
1375                 em_tx_purge(adapter);
1376
1377                 callout_reset(&adapter->timer, hz, em_timer, adapter);
1378         }
1379
1380         if (reg_icr & E1000_ICR_RXO)
1381                 adapter->rx_overruns++;
1382
1383         logif(intr_end);
1384 }
1385
1386 static void
1387 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1388 {
1389         struct adapter *adapter = ifp->if_softc;
1390         u_char fiber_type = IFM_1000_SX;
1391
1392         ASSERT_SERIALIZED(ifp->if_serializer);
1393
1394         em_update_link_status(adapter);
1395
1396         ifmr->ifm_status = IFM_AVALID;
1397         ifmr->ifm_active = IFM_ETHER;
1398
1399         if (!adapter->link_active)
1400                 return;
1401
1402         ifmr->ifm_status |= IFM_ACTIVE;
1403
1404         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1405             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1406                 if (adapter->hw.mac.type == e1000_82545)
1407                         fiber_type = IFM_1000_LX;
1408                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1409         } else {
1410                 switch (adapter->link_speed) {
1411                 case 10:
1412                         ifmr->ifm_active |= IFM_10_T;
1413                         break;
1414                 case 100:
1415                         ifmr->ifm_active |= IFM_100_TX;
1416                         break;
1417
1418                 case 1000:
1419                         ifmr->ifm_active |= IFM_1000_T;
1420                         break;
1421                 }
1422                 if (adapter->link_duplex == FULL_DUPLEX)
1423                         ifmr->ifm_active |= IFM_FDX;
1424                 else
1425                         ifmr->ifm_active |= IFM_HDX;
1426         }
1427 }
1428
1429 static int
1430 em_media_change(struct ifnet *ifp)
1431 {
1432         struct adapter *adapter = ifp->if_softc;
1433         struct ifmedia *ifm = &adapter->media;
1434
1435         ASSERT_SERIALIZED(ifp->if_serializer);
1436
1437         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1438                 return (EINVAL);
1439
1440         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1441         case IFM_AUTO:
1442                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1443                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1444                 break;
1445
1446         case IFM_1000_LX:
1447         case IFM_1000_SX:
1448         case IFM_1000_T:
1449                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1450                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1451                 break;
1452
1453         case IFM_100_TX:
1454                 adapter->hw.mac.autoneg = FALSE;
1455                 adapter->hw.phy.autoneg_advertised = 0;
1456                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1457                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1458                 else
1459                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1460                 break;
1461
1462         case IFM_10_T:
1463                 adapter->hw.mac.autoneg = FALSE;
1464                 adapter->hw.phy.autoneg_advertised = 0;
1465                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1466                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1467                 else
1468                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1469                 break;
1470
1471         default:
1472                 if_printf(ifp, "Unsupported media type\n");
1473                 break;
1474         }
1475
1476         /*
1477          * As the speed/duplex settings my have changed we need to
1478          * reset the PHY.
1479          */
1480         adapter->hw.phy.reset_disable = FALSE;
1481
1482         em_init(adapter);
1483
1484         return (0);
1485 }
1486
1487 static int
1488 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1489 {
1490         bus_dma_segment_t segs[EM_MAX_SCATTER];
1491         bus_dmamap_t map;
1492         struct em_buffer *tx_buffer, *tx_buffer_mapped;
1493         struct e1000_tx_desc *ctxd = NULL;
1494         struct mbuf *m_head = *m_headp;
1495         uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1496         int maxsegs, nsegs, i, j, first, last = 0, error;
1497
1498         if (m_head->m_len < EM_TXCSUM_MINHL &&
1499             (m_head->m_flags & EM_CSUM_FEATURES)) {
1500                 /*
1501                  * Make sure that ethernet header and ip.ip_hl are in
1502                  * contiguous memory, since if TXCSUM is enabled, later
1503                  * TX context descriptor's setup need to access ip.ip_hl.
1504                  */
1505                 error = em_txcsum_pullup(adapter, m_headp);
1506                 if (error) {
1507                         KKASSERT(*m_headp == NULL);
1508                         return error;
1509                 }
1510                 m_head = *m_headp;
1511         }
1512
1513         txd_upper = txd_lower = 0;
1514         txd_used = 0;
1515
1516         /*
1517          * Capture the first descriptor index, this descriptor
1518          * will have the index of the EOP which is the only one
1519          * that now gets a DONE bit writeback.
1520          */
1521         first = adapter->next_avail_tx_desc;
1522         tx_buffer = &adapter->tx_buffer_area[first];
1523         tx_buffer_mapped = tx_buffer;
1524         map = tx_buffer->map;
1525
1526         maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1527         KASSERT(maxsegs >= adapter->spare_tx_desc,
1528                 ("not enough spare TX desc\n"));
1529         if (adapter->pcix_82544) {
1530                 /* Half it; see the comment in em_attach() */
1531                 maxsegs >>= 1;
1532         }
1533         if (maxsegs > EM_MAX_SCATTER)
1534                 maxsegs = EM_MAX_SCATTER;
1535
1536         error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1537                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1538         if (error) {
1539                 if (error == ENOBUFS)
1540                         adapter->mbuf_alloc_failed++;
1541                 else
1542                         adapter->no_tx_dma_setup++;
1543
1544                 m_freem(*m_headp);
1545                 *m_headp = NULL;
1546                 return error;
1547         }
1548         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1549
1550         m_head = *m_headp;
1551         adapter->tx_nsegs += nsegs;
1552
1553         if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1554                 /* TX csum offloading will consume one TX desc */
1555                 adapter->tx_nsegs += em_txcsum(adapter, m_head,
1556                                                &txd_upper, &txd_lower);
1557         }
1558         i = adapter->next_avail_tx_desc;
1559
1560         /* Set up our transmit descriptors */
1561         for (j = 0; j < nsegs; j++) {
1562                 /* If adapter is 82544 and on PCIX bus */
1563                 if(adapter->pcix_82544) {
1564                         DESC_ARRAY desc_array;
1565                         uint32_t array_elements, counter;
1566
1567                         /*
1568                          * Check the Address and Length combination and
1569                          * split the data accordingly
1570                          */
1571                         array_elements = em_82544_fill_desc(segs[j].ds_addr,
1572                                                 segs[j].ds_len, &desc_array);
1573                         for (counter = 0; counter < array_elements; counter++) {
1574                                 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1575
1576                                 tx_buffer = &adapter->tx_buffer_area[i];
1577                                 ctxd = &adapter->tx_desc_base[i];
1578
1579                                 ctxd->buffer_addr = htole64(
1580                                     desc_array.descriptor[counter].address);
1581                                 ctxd->lower.data = htole32(
1582                                     E1000_TXD_CMD_IFCS | txd_lower |
1583                                     desc_array.descriptor[counter].length);
1584                                 ctxd->upper.data = htole32(txd_upper);
1585
1586                                 last = i;
1587                                 if (++i == adapter->num_tx_desc)
1588                                         i = 0;
1589
1590                                 txd_used++;
1591                         }
1592                 } else {
1593                         tx_buffer = &adapter->tx_buffer_area[i];
1594                         ctxd = &adapter->tx_desc_base[i];
1595
1596                         ctxd->buffer_addr = htole64(segs[j].ds_addr);
1597                         ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1598                                                    txd_lower | segs[j].ds_len);
1599                         ctxd->upper.data = htole32(txd_upper);
1600
1601                         last = i;
1602                         if (++i == adapter->num_tx_desc)
1603                                 i = 0;
1604                 }
1605         }
1606
1607         adapter->next_avail_tx_desc = i;
1608         if (adapter->pcix_82544) {
1609                 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1610                 adapter->num_tx_desc_avail -= txd_used;
1611         } else {
1612                 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1613                 adapter->num_tx_desc_avail -= nsegs;
1614         }
1615
1616         /* Handle VLAN tag */
1617         if (m_head->m_flags & M_VLANTAG) {
1618                 /* Set the vlan id. */
1619                 ctxd->upper.fields.special =
1620                     htole16(m_head->m_pkthdr.ether_vlantag);
1621
1622                 /* Tell hardware to add tag */
1623                 ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1624         }
1625
1626         tx_buffer->m_head = m_head;
1627         tx_buffer_mapped->map = tx_buffer->map;
1628         tx_buffer->map = map;
1629
1630         if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1631                 adapter->tx_nsegs = 0;
1632
1633                 /*
1634                  * Report Status (RS) is turned on
1635                  * every tx_int_nsegs descriptors.
1636                  */
1637                 cmd = E1000_TXD_CMD_RS;
1638
1639                 /*
1640                  * Keep track of the descriptor, which will
1641                  * be written back by hardware.
1642                  */
1643                 adapter->tx_dd[adapter->tx_dd_tail] = last;
1644                 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1645                 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1646         }
1647
1648         /*
1649          * Last Descriptor of Packet needs End Of Packet (EOP)
1650          */
1651         ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1652
1653         /*
1654          * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1655          * that this frame is available to transmit.
1656          */
1657         if (adapter->hw.mac.type == e1000_82547 &&
1658             adapter->link_duplex == HALF_DUPLEX) {
1659                 em_82547_move_tail_serialized(adapter);
1660         } else {
1661                 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1662                 if (adapter->hw.mac.type == e1000_82547) {
1663                         em_82547_update_fifo_head(adapter,
1664                             m_head->m_pkthdr.len);
1665                 }
1666         }
1667         return (0);
1668 }
1669
1670 /*
1671  * 82547 workaround to avoid controller hang in half-duplex environment.
1672  * The workaround is to avoid queuing a large packet that would span
1673  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1674  * in this case.  We do that only when FIFO is quiescent.
1675  */
1676 static void
1677 em_82547_move_tail_serialized(struct adapter *adapter)
1678 {
1679         struct e1000_tx_desc *tx_desc;
1680         uint16_t hw_tdt, sw_tdt, length = 0;
1681         bool eop = 0;
1682
1683         ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1684
1685         hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1686         sw_tdt = adapter->next_avail_tx_desc;
1687
1688         while (hw_tdt != sw_tdt) {
1689                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1690                 length += tx_desc->lower.flags.length;
1691                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1692                 if (++hw_tdt == adapter->num_tx_desc)
1693                         hw_tdt = 0;
1694
1695                 if (eop) {
1696                         if (em_82547_fifo_workaround(adapter, length)) {
1697                                 adapter->tx_fifo_wrk_cnt++;
1698                                 callout_reset(&adapter->tx_fifo_timer, 1,
1699                                         em_82547_move_tail, adapter);
1700                                 break;
1701                         }
1702                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1703                         em_82547_update_fifo_head(adapter, length);
1704                         length = 0;
1705                 }
1706         }
1707 }
1708
1709 static void
1710 em_82547_move_tail(void *xsc)
1711 {
1712         struct adapter *adapter = xsc;
1713         struct ifnet *ifp = &adapter->arpcom.ac_if;
1714
1715         lwkt_serialize_enter(ifp->if_serializer);
1716         em_82547_move_tail_serialized(adapter);
1717         lwkt_serialize_exit(ifp->if_serializer);
1718 }
1719
1720 static int
1721 em_82547_fifo_workaround(struct adapter *adapter, int len)
1722 {       
1723         int fifo_space, fifo_pkt_len;
1724
1725         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1726
1727         if (adapter->link_duplex == HALF_DUPLEX) {
1728                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1729
1730                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1731                         if (em_82547_tx_fifo_reset(adapter))
1732                                 return (0);
1733                         else
1734                                 return (1);
1735                 }
1736         }
1737         return (0);
1738 }
1739
1740 static void
1741 em_82547_update_fifo_head(struct adapter *adapter, int len)
1742 {
1743         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1744
1745         /* tx_fifo_head is always 16 byte aligned */
1746         adapter->tx_fifo_head += fifo_pkt_len;
1747         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1748                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1749 }
1750
1751 static int
1752 em_82547_tx_fifo_reset(struct adapter *adapter)
1753 {
1754         uint32_t tctl;
1755
1756         if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1757              E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1758             (E1000_READ_REG(&adapter->hw, E1000_TDFT) == 
1759              E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1760             (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1761              E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1762             (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1763                 /* Disable TX unit */
1764                 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1765                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1766                     tctl & ~E1000_TCTL_EN);
1767
1768                 /* Reset FIFO pointers */
1769                 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1770                     adapter->tx_head_addr);
1771                 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1772                     adapter->tx_head_addr);
1773                 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1774                     adapter->tx_head_addr);
1775                 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1776                     adapter->tx_head_addr);
1777
1778                 /* Re-enable TX unit */
1779                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1780                 E1000_WRITE_FLUSH(&adapter->hw);
1781
1782                 adapter->tx_fifo_head = 0;
1783                 adapter->tx_fifo_reset_cnt++;
1784
1785                 return (TRUE);
1786         } else {
1787                 return (FALSE);
1788         }
1789 }
1790
1791 static void
1792 em_set_promisc(struct adapter *adapter)
1793 {
1794         struct ifnet *ifp = &adapter->arpcom.ac_if;
1795         uint32_t reg_rctl;
1796
1797         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1798
1799         if (ifp->if_flags & IFF_PROMISC) {
1800                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1801                 /* Turn this on if you want to see bad packets */
1802                 if (em_debug_sbp)
1803                         reg_rctl |= E1000_RCTL_SBP;
1804                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1805         } else if (ifp->if_flags & IFF_ALLMULTI) {
1806                 reg_rctl |= E1000_RCTL_MPE;
1807                 reg_rctl &= ~E1000_RCTL_UPE;
1808                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1809         }
1810 }
1811
1812 static void
1813 em_disable_promisc(struct adapter *adapter)
1814 {
1815         uint32_t reg_rctl;
1816
1817         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1818
1819         reg_rctl &= ~E1000_RCTL_UPE;
1820         reg_rctl &= ~E1000_RCTL_MPE;
1821         reg_rctl &= ~E1000_RCTL_SBP;
1822         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1823 }
1824
1825 static void
1826 em_set_multi(struct adapter *adapter)
1827 {
1828         struct ifnet *ifp = &adapter->arpcom.ac_if;
1829         struct ifmultiaddr *ifma;
1830         uint32_t reg_rctl = 0;
1831         uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1832         int mcnt = 0;
1833
1834         if (adapter->hw.mac.type == e1000_82542 && 
1835             adapter->hw.revision_id == E1000_REVISION_2) {
1836                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1837                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1838                         e1000_pci_clear_mwi(&adapter->hw);
1839                 reg_rctl |= E1000_RCTL_RST;
1840                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1841                 msec_delay(5);
1842         }
1843
1844         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1845                 if (ifma->ifma_addr->sa_family != AF_LINK)
1846                         continue;
1847
1848                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1849                         break;
1850
1851                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1852                     &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1853                 mcnt++;
1854         }
1855
1856         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1857                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1858                 reg_rctl |= E1000_RCTL_MPE;
1859                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1860         } else {
1861                 e1000_update_mc_addr_list(&adapter->hw, mta,
1862                     mcnt, 1, adapter->hw.mac.rar_entry_count);
1863         }
1864
1865         if (adapter->hw.mac.type == e1000_82542 && 
1866             adapter->hw.revision_id == E1000_REVISION_2) {
1867                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1868                 reg_rctl &= ~E1000_RCTL_RST;
1869                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1870                 msec_delay(5);
1871                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1872                         e1000_pci_set_mwi(&adapter->hw);
1873         }
1874 }
1875
1876 /*
1877  * This routine checks for link status and updates statistics.
1878  */
1879 static void
1880 em_timer(void *xsc)
1881 {
1882         struct adapter *adapter = xsc;
1883         struct ifnet *ifp = &adapter->arpcom.ac_if;
1884
1885         lwkt_serialize_enter(ifp->if_serializer);
1886
1887         em_update_link_status(adapter);
1888         em_update_stats(adapter);
1889
1890         /* Reset LAA into RAR[0] on 82571 */
1891         if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1892                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1893
1894         if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1895                 em_print_hw_stats(adapter);
1896
1897         em_smartspeed(adapter);
1898
1899         callout_reset(&adapter->timer, hz, em_timer, adapter);
1900
1901         lwkt_serialize_exit(ifp->if_serializer);
1902 }
1903
1904 static void
1905 em_update_link_status(struct adapter *adapter)
1906 {
1907         struct e1000_hw *hw = &adapter->hw;
1908         struct ifnet *ifp = &adapter->arpcom.ac_if;
1909         device_t dev = adapter->dev;
1910         uint32_t link_check = 0;
1911
1912         /* Get the cached link value or read phy for real */
1913         switch (hw->phy.media_type) {
1914         case e1000_media_type_copper:
1915                 if (hw->mac.get_link_status) {
1916                         /* Do the work to read phy */
1917                         e1000_check_for_link(hw);
1918                         link_check = !hw->mac.get_link_status;
1919                         if (link_check) /* ESB2 fix */
1920                                 e1000_cfg_on_link_up(hw);
1921                 } else {
1922                         link_check = TRUE;
1923                 }
1924                 break;
1925
1926         case e1000_media_type_fiber:
1927                 e1000_check_for_link(hw);
1928                 link_check =
1929                         E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1930                 break;
1931
1932         case e1000_media_type_internal_serdes:
1933                 e1000_check_for_link(hw);
1934                 link_check = adapter->hw.mac.serdes_has_link;
1935                 break;
1936
1937         case e1000_media_type_unknown:
1938         default:
1939                 break;
1940         }
1941
1942         /* Now check for a transition */
1943         if (link_check && adapter->link_active == 0) {
1944                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1945                     &adapter->link_duplex);
1946
1947                 /*
1948                  * Check if we should enable/disable SPEED_MODE bit on
1949                  * 82571/82572
1950                  */
1951                 if (hw->mac.type == e1000_82571 ||
1952                     hw->mac.type == e1000_82572) {
1953                         int tarc0;
1954
1955                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1956                         if (adapter->link_speed != SPEED_1000)
1957                                 tarc0 &= ~SPEED_MODE_BIT;
1958                         else
1959                                 tarc0 |= SPEED_MODE_BIT;
1960                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1961                 }
1962                 if (bootverbose) {
1963                         device_printf(dev, "Link is up %d Mbps %s\n",
1964                             adapter->link_speed,
1965                             ((adapter->link_duplex == FULL_DUPLEX) ?
1966                             "Full Duplex" : "Half Duplex"));
1967                 }
1968                 adapter->link_active = 1;
1969                 adapter->smartspeed = 0;
1970                 ifp->if_baudrate = adapter->link_speed * 1000000;
1971                 ifp->if_link_state = LINK_STATE_UP;
1972                 if_link_state_change(ifp);
1973         } else if (!link_check && adapter->link_active == 1) {
1974                 ifp->if_baudrate = adapter->link_speed = 0;
1975                 adapter->link_duplex = 0;
1976                 if (bootverbose)
1977                         device_printf(dev, "Link is Down\n");
1978                 adapter->link_active = 0;
1979 #if 0
1980                 /* Link down, disable watchdog */
1981                 if->if_timer = 0;
1982 #endif
1983                 ifp->if_link_state = LINK_STATE_DOWN;
1984                 if_link_state_change(ifp);
1985         }
1986 }
1987
1988 static void
1989 em_stop(struct adapter *adapter)
1990 {
1991         struct ifnet *ifp = &adapter->arpcom.ac_if;
1992         int i;
1993
1994         ASSERT_SERIALIZED(ifp->if_serializer);
1995
1996         em_disable_intr(adapter);
1997
1998         callout_stop(&adapter->timer);
1999         callout_stop(&adapter->tx_fifo_timer);
2000
2001         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2002         ifp->if_timer = 0;
2003
2004         e1000_reset_hw(&adapter->hw);
2005         if (adapter->hw.mac.type >= e1000_82544)
2006                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2007
2008         for (i = 0; i < adapter->num_tx_desc; i++) {
2009                 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2010
2011                 if (tx_buffer->m_head != NULL) {
2012                         bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2013                         m_freem(tx_buffer->m_head);
2014                         tx_buffer->m_head = NULL;
2015                 }
2016         }
2017
2018         for (i = 0; i < adapter->num_rx_desc; i++) {
2019                 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2020
2021                 if (rx_buffer->m_head != NULL) {
2022                         bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2023                         m_freem(rx_buffer->m_head);
2024                         rx_buffer->m_head = NULL;
2025                 }
2026         }
2027
2028         if (adapter->fmp != NULL)
2029                 m_freem(adapter->fmp);
2030         adapter->fmp = NULL;
2031         adapter->lmp = NULL;
2032
2033         adapter->csum_flags = 0;
2034         adapter->csum_ehlen = 0;
2035         adapter->csum_iphlen = 0;
2036
2037         adapter->tx_dd_head = 0;
2038         adapter->tx_dd_tail = 0;
2039         adapter->tx_nsegs = 0;
2040 }
2041
2042 static int
2043 em_get_hw_info(struct adapter *adapter)
2044 {
2045         device_t dev = adapter->dev;
2046
2047         /* Save off the information about this board */
2048         adapter->hw.vendor_id = pci_get_vendor(dev);
2049         adapter->hw.device_id = pci_get_device(dev);
2050         adapter->hw.revision_id = pci_get_revid(dev);
2051         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2052         adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2053
2054         /* Do Shared Code Init and Setup */
2055         if (e1000_set_mac_type(&adapter->hw))
2056                 return ENXIO;
2057         return 0;
2058 }
2059
2060 static int
2061 em_alloc_pci_res(struct adapter *adapter)
2062 {
2063         device_t dev = adapter->dev;
2064         int val, rid;
2065
2066         /* Enable bus mastering */
2067         pci_enable_busmaster(dev);
2068
2069         adapter->memory_rid = EM_BAR_MEM;
2070         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2071                                 &adapter->memory_rid, RF_ACTIVE);
2072         if (adapter->memory == NULL) {
2073                 device_printf(dev, "Unable to allocate bus resource: memory\n");
2074                 return (ENXIO);
2075         }
2076         adapter->osdep.mem_bus_space_tag =
2077             rman_get_bustag(adapter->memory);
2078         adapter->osdep.mem_bus_space_handle =
2079             rman_get_bushandle(adapter->memory);
2080
2081         /* XXX This is quite goofy, it is not actually used */
2082         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2083
2084         /* Only older adapters use IO mapping */
2085         if (adapter->hw.mac.type > e1000_82543 &&
2086             adapter->hw.mac.type < e1000_82571) {
2087                 /* Figure our where our IO BAR is ? */
2088                 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2089                         val = pci_read_config(dev, rid, 4);
2090                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2091                                 adapter->io_rid = rid;
2092                                 break;
2093                         }
2094                         rid += 4;
2095                         /* check for 64bit BAR */
2096                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2097                                 rid += 4;
2098                 }
2099                 if (rid >= PCIR_CARDBUSCIS) {
2100                         device_printf(dev, "Unable to locate IO BAR\n");
2101                         return (ENXIO);
2102                 }
2103                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2104                                         &adapter->io_rid, RF_ACTIVE);
2105                 if (adapter->ioport == NULL) {
2106                         device_printf(dev, "Unable to allocate bus resource: "
2107                             "ioport\n");
2108                         return (ENXIO);
2109                 }
2110                 adapter->hw.io_base = 0;
2111                 adapter->osdep.io_bus_space_tag =
2112                     rman_get_bustag(adapter->ioport);
2113                 adapter->osdep.io_bus_space_handle =
2114                     rman_get_bushandle(adapter->ioport);
2115         }
2116
2117         adapter->intr_rid = 0;
2118         adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2119                                 &adapter->intr_rid,
2120                                 RF_SHAREABLE | RF_ACTIVE);
2121         if (adapter->intr_res == NULL) {
2122                 device_printf(dev, "Unable to allocate bus resource: "
2123                     "interrupt\n");
2124                 return (ENXIO);
2125         }
2126
2127         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2128         adapter->hw.back = &adapter->osdep;
2129         return (0);
2130 }
2131
2132 static void
2133 em_free_pci_res(struct adapter *adapter)
2134 {
2135         device_t dev = adapter->dev;
2136
2137         if (adapter->intr_res != NULL) {
2138                 bus_release_resource(dev, SYS_RES_IRQ,
2139                     adapter->intr_rid, adapter->intr_res);
2140         }
2141
2142         if (adapter->memory != NULL) {
2143                 bus_release_resource(dev, SYS_RES_MEMORY,
2144                     adapter->memory_rid, adapter->memory);
2145         }
2146
2147         if (adapter->flash != NULL) {
2148                 bus_release_resource(dev, SYS_RES_MEMORY,
2149                     adapter->flash_rid, adapter->flash);
2150         }
2151
2152         if (adapter->ioport != NULL) {
2153                 bus_release_resource(dev, SYS_RES_IOPORT,
2154                     adapter->io_rid, adapter->ioport);
2155         }
2156 }
2157
2158 static int
2159 em_hw_init(struct adapter *adapter)
2160 {
2161         device_t dev = adapter->dev;
2162         uint16_t rx_buffer_size;
2163
2164         /* Issue a global reset */
2165         e1000_reset_hw(&adapter->hw);
2166
2167         /* Get control from any management/hw control */
2168         if ((adapter->hw.mac.type == e1000_82573 ||
2169              adapter->hw.mac.type == e1000_ich8lan ||
2170              adapter->hw.mac.type == e1000_ich10lan ||
2171              adapter->hw.mac.type == e1000_ich9lan) &&
2172             e1000_check_mng_mode(&adapter->hw))
2173                 em_get_hw_control(adapter);
2174
2175         /* When hardware is reset, fifo_head is also reset */
2176         adapter->tx_fifo_head = 0;
2177
2178         /* Set up smart power down as default off on newer adapters. */
2179         if (!em_smart_pwr_down &&
2180             (adapter->hw.mac.type == e1000_82571 ||
2181              adapter->hw.mac.type == e1000_82572)) {
2182                 uint16_t phy_tmp = 0;
2183
2184                 /* Speed up time to link by disabling smart power down. */
2185                 e1000_read_phy_reg(&adapter->hw,
2186                     IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2187                 phy_tmp &= ~IGP02E1000_PM_SPD;
2188                 e1000_write_phy_reg(&adapter->hw,
2189                     IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2190         }
2191
2192         /*
2193          * These parameters control the automatic generation (Tx) and
2194          * response (Rx) to Ethernet PAUSE frames.
2195          * - High water mark should allow for at least two frames to be
2196          *   received after sending an XOFF.
2197          * - Low water mark works best when it is very near the high water mark.
2198          *   This allows the receiver to restart by sending XON when it has
2199          *   drained a bit. Here we use an arbitary value of 1500 which will
2200          *   restart after one full frame is pulled from the buffer. There
2201          *   could be several smaller frames in the buffer and if so they will
2202          *   not trigger the XON until their total number reduces the buffer
2203          *   by 1500.
2204          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2205          */
2206         rx_buffer_size =
2207                 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2208
2209         adapter->hw.fc.high_water = rx_buffer_size -
2210                                     roundup2(adapter->max_frame_size, 1024);
2211         adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2212
2213         if (adapter->hw.mac.type == e1000_80003es2lan)
2214                 adapter->hw.fc.pause_time = 0xFFFF;
2215         else
2216                 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2217         adapter->hw.fc.send_xon = TRUE;
2218         adapter->hw.fc.requested_mode = e1000_fc_full;
2219
2220         if (e1000_init_hw(&adapter->hw) < 0) {
2221                 device_printf(dev, "Hardware Initialization Failed\n");
2222                 return (EIO);
2223         }
2224
2225         e1000_check_for_link(&adapter->hw);
2226
2227         return (0);
2228 }
2229
2230 static void
2231 em_setup_ifp(struct adapter *adapter)
2232 {
2233         struct ifnet *ifp = &adapter->arpcom.ac_if;
2234
2235         if_initname(ifp, device_get_name(adapter->dev),
2236                     device_get_unit(adapter->dev));
2237         ifp->if_softc = adapter;
2238         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2239         ifp->if_init =  em_init;
2240         ifp->if_ioctl = em_ioctl;
2241         ifp->if_start = em_start;
2242 #ifdef DEVICE_POLLING
2243         ifp->if_poll = em_poll;
2244 #endif
2245         ifp->if_watchdog = em_watchdog;
2246         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2247         ifq_set_ready(&ifp->if_snd);
2248
2249         ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2250
2251         if (adapter->hw.mac.type >= e1000_82543)
2252                 ifp->if_capabilities = IFCAP_HWCSUM;
2253
2254         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2255         ifp->if_capenable = ifp->if_capabilities;
2256
2257         if (ifp->if_capenable & IFCAP_TXCSUM)
2258                 ifp->if_hwassist = EM_CSUM_FEATURES;
2259
2260         /*
2261          * Tell the upper layer(s) we support long frames.
2262          */
2263         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2264
2265         /*
2266          * Specify the media types supported by this adapter and register
2267          * callbacks to update media and link information
2268          */
2269         ifmedia_init(&adapter->media, IFM_IMASK,
2270                      em_media_change, em_media_status);
2271         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2272             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2273                 u_char fiber_type = IFM_1000_SX; /* default type */
2274
2275                 if (adapter->hw.mac.type == e1000_82545)
2276                         fiber_type = IFM_1000_LX;
2277                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2278                             0, NULL);
2279                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2280         } else {
2281                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2282                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2283                             0, NULL);
2284                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2285                             0, NULL);
2286                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2287                             0, NULL);
2288                 if (adapter->hw.phy.type != e1000_phy_ife) {
2289                         ifmedia_add(&adapter->media,
2290                                 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2291                         ifmedia_add(&adapter->media,
2292                                 IFM_ETHER | IFM_1000_T, 0, NULL);
2293                 }
2294         }
2295         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2296         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2297 }
2298
2299
2300 /*
2301  * Workaround for SmartSpeed on 82541 and 82547 controllers
2302  */
2303 static void
2304 em_smartspeed(struct adapter *adapter)
2305 {
2306         uint16_t phy_tmp;
2307
2308         if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2309             adapter->hw.mac.autoneg == 0 ||
2310             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2311                 return;
2312
2313         if (adapter->smartspeed == 0) {
2314                 /*
2315                  * If Master/Slave config fault is asserted twice,
2316                  * we assume back-to-back
2317                  */
2318                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2319                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2320                         return;
2321                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2322                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2323                         e1000_read_phy_reg(&adapter->hw,
2324                             PHY_1000T_CTRL, &phy_tmp);
2325                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2326                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2327                                 e1000_write_phy_reg(&adapter->hw,
2328                                     PHY_1000T_CTRL, phy_tmp);
2329                                 adapter->smartspeed++;
2330                                 if (adapter->hw.mac.autoneg &&
2331                                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2332                                     !e1000_read_phy_reg(&adapter->hw,
2333                                      PHY_CONTROL, &phy_tmp)) {
2334                                         phy_tmp |= MII_CR_AUTO_NEG_EN |
2335                                                    MII_CR_RESTART_AUTO_NEG;
2336                                         e1000_write_phy_reg(&adapter->hw,
2337                                             PHY_CONTROL, phy_tmp);
2338                                 }
2339                         }
2340                 }
2341                 return;
2342         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2343                 /* If still no link, perhaps using 2/3 pair cable */
2344                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2345                 phy_tmp |= CR_1000T_MS_ENABLE;
2346                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2347                 if (adapter->hw.mac.autoneg &&
2348                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2349                     !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2350                         phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2351                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2352                 }
2353         }
2354
2355         /* Restart process after EM_SMARTSPEED_MAX iterations */
2356         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2357                 adapter->smartspeed = 0;
2358 }
2359
2360 static int
2361 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2362               struct em_dma_alloc *dma)
2363 {
2364         dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2365                                 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2366                                 &dma->dma_tag, &dma->dma_map,
2367                                 &dma->dma_paddr);
2368         if (dma->dma_vaddr == NULL)
2369                 return ENOMEM;
2370         else
2371                 return 0;
2372 }
2373
2374 static void
2375 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2376 {
2377         if (dma->dma_tag == NULL)
2378                 return;
2379         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2380         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2381         bus_dma_tag_destroy(dma->dma_tag);
2382 }
2383
2384 static int
2385 em_create_tx_ring(struct adapter *adapter)
2386 {
2387         device_t dev = adapter->dev;
2388         struct em_buffer *tx_buffer;
2389         int error, i;
2390
2391         adapter->tx_buffer_area =
2392                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2393                         M_DEVBUF, M_WAITOK | M_ZERO);
2394
2395         /*
2396          * Create DMA tags for tx buffers
2397          */
2398         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2399                         1, 0,                   /* alignment, bounds */
2400                         BUS_SPACE_MAXADDR,      /* lowaddr */
2401                         BUS_SPACE_MAXADDR,      /* highaddr */
2402                         NULL, NULL,             /* filter, filterarg */
2403                         EM_TSO_SIZE,            /* maxsize */
2404                         EM_MAX_SCATTER,         /* nsegments */
2405                         EM_MAX_SEGSIZE,         /* maxsegsize */
2406                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2407                         BUS_DMA_ONEBPAGE,       /* flags */
2408                         &adapter->txtag);
2409         if (error) {
2410                 device_printf(dev, "Unable to allocate TX DMA tag\n");
2411                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2412                 adapter->tx_buffer_area = NULL;
2413                 return error;
2414         }
2415
2416         /*
2417          * Create DMA maps for tx buffers
2418          */
2419         for (i = 0; i < adapter->num_tx_desc; i++) {
2420                 tx_buffer = &adapter->tx_buffer_area[i];
2421
2422                 error = bus_dmamap_create(adapter->txtag,
2423                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2424                                           &tx_buffer->map);
2425                 if (error) {
2426                         device_printf(dev, "Unable to create TX DMA map\n");
2427                         em_destroy_tx_ring(adapter, i);
2428                         return error;
2429                 }
2430         }
2431         return (0);
2432 }
2433
2434 static void
2435 em_init_tx_ring(struct adapter *adapter)
2436 {
2437         /* Clear the old ring contents */
2438         bzero(adapter->tx_desc_base,
2439             (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2440
2441         /* Reset state */
2442         adapter->next_avail_tx_desc = 0;
2443         adapter->next_tx_to_clean = 0;
2444         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2445 }
2446
2447 static void
2448 em_init_tx_unit(struct adapter *adapter)
2449 {
2450         uint32_t tctl, tarc, tipg = 0;
2451         uint64_t bus_addr;
2452
2453         /* Setup the Base and Length of the Tx Descriptor Ring */
2454         bus_addr = adapter->txdma.dma_paddr;
2455         E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2456             adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2457         E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2458             (uint32_t)(bus_addr >> 32));
2459         E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2460             (uint32_t)bus_addr);
2461         /* Setup the HW Tx Head and Tail descriptor pointers */
2462         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2463         E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2464
2465         /* Set the default values for the Tx Inter Packet Gap timer */
2466         switch (adapter->hw.mac.type) {
2467         case e1000_82542:
2468                 tipg = DEFAULT_82542_TIPG_IPGT;
2469                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2470                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2471                 break;
2472
2473         case e1000_80003es2lan:
2474                 tipg = DEFAULT_82543_TIPG_IPGR1;
2475                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2476                     E1000_TIPG_IPGR2_SHIFT;
2477                 break;
2478
2479         default:
2480                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2481                     adapter->hw.phy.media_type ==
2482                     e1000_media_type_internal_serdes)
2483                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2484                 else
2485                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2486                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2487                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2488                 break;
2489         }
2490
2491         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2492
2493         /* NOTE: 0 is not allowed for TIDV */
2494         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2495         if(adapter->hw.mac.type >= e1000_82540)
2496                 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2497
2498         if (adapter->hw.mac.type == e1000_82571 ||
2499             adapter->hw.mac.type == e1000_82572) {
2500                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2501                 tarc |= SPEED_MODE_BIT;
2502                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2503         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2504                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2505                 tarc |= 1;
2506                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2507                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2508                 tarc |= 1;
2509                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2510         }
2511
2512         /* Program the Transmit Control Register */
2513         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2514         tctl &= ~E1000_TCTL_CT;
2515         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2516                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2517
2518         if (adapter->hw.mac.type >= e1000_82571)
2519                 tctl |= E1000_TCTL_MULR;
2520
2521         /* This write will effectively turn on the transmit unit. */
2522         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2523 }
2524
2525 static void
2526 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2527 {
2528         struct em_buffer *tx_buffer;
2529         int i;
2530
2531         if (adapter->tx_buffer_area == NULL)
2532                 return;
2533
2534         for (i = 0; i < ndesc; i++) {
2535                 tx_buffer = &adapter->tx_buffer_area[i];
2536
2537                 KKASSERT(tx_buffer->m_head == NULL);
2538                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2539         }
2540         bus_dma_tag_destroy(adapter->txtag);
2541
2542         kfree(adapter->tx_buffer_area, M_DEVBUF);
2543         adapter->tx_buffer_area = NULL;
2544 }
2545
2546 /*
2547  * The offload context needs to be set when we transfer the first
2548  * packet of a particular protocol (TCP/UDP).  This routine has been
2549  * enhanced to deal with inserted VLAN headers.
2550  *
2551  * If the new packet's ether header length, ip header length and
2552  * csum offloading type are same as the previous packet, we should
2553  * avoid allocating a new csum context descriptor; mainly to take
2554  * advantage of the pipeline effect of the TX data read request.
2555  *
2556  * This function returns number of TX descrptors allocated for
2557  * csum context.
2558  */
2559 static int
2560 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2561           uint32_t *txd_upper, uint32_t *txd_lower)
2562 {
2563         struct e1000_context_desc *TXD;
2564         struct em_buffer *tx_buffer;
2565         struct ether_vlan_header *eh;
2566         struct ip *ip;
2567         int curr_txd, ehdrlen, csum_flags;
2568         uint32_t cmd, hdr_len, ip_hlen;
2569         uint16_t etype;
2570
2571         /*
2572          * Determine where frame payload starts.
2573          * Jump over vlan headers if already present,
2574          * helpful for QinQ too.
2575          */
2576         KASSERT(mp->m_len >= ETHER_HDR_LEN,
2577                 ("em_txcsum_pullup is not called (eh)?\n"));
2578         eh = mtod(mp, struct ether_vlan_header *);
2579         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2580                 KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2581                         ("em_txcsum_pullup is not called (evh)?\n"));
2582                 etype = ntohs(eh->evl_proto);
2583                 ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2584         } else {
2585                 etype = ntohs(eh->evl_encap_proto);
2586                 ehdrlen = ETHER_HDR_LEN;
2587         }
2588
2589         /*
2590          * We only support TCP/UDP for IPv4 for the moment.
2591          * TODO: Support SCTP too when it hits the tree.
2592          */
2593         if (etype != ETHERTYPE_IP)
2594                 return 0;
2595
2596         KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2597                 ("em_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2598
2599         /* NOTE: We could only safely access ip.ip_vhl part */
2600         ip = (struct ip *)(mp->m_data + ehdrlen);
2601         ip_hlen = ip->ip_hl << 2;
2602
2603         csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2604
2605         if (adapter->csum_ehlen == ehdrlen &&
2606             adapter->csum_iphlen == ip_hlen &&
2607             adapter->csum_flags == csum_flags) {
2608                 /*
2609                  * Same csum offload context as the previous packets;
2610                  * just return.
2611                  */
2612                 *txd_upper = adapter->csum_txd_upper;
2613                 *txd_lower = adapter->csum_txd_lower;
2614                 return 0;
2615         }
2616
2617         /*
2618          * Setup a new csum offload context.
2619          */
2620
2621         curr_txd = adapter->next_avail_tx_desc;
2622         tx_buffer = &adapter->tx_buffer_area[curr_txd];
2623         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2624
2625         cmd = 0;
2626
2627         /* Setup of IP header checksum. */
2628         if (csum_flags & CSUM_IP) {
2629                 /*
2630                  * Start offset for header checksum calculation.
2631                  * End offset for header checksum calculation.
2632                  * Offset of place to put the checksum.
2633                  */
2634                 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2635                 TXD->lower_setup.ip_fields.ipcse =
2636                     htole16(ehdrlen + ip_hlen - 1);
2637                 TXD->lower_setup.ip_fields.ipcso =
2638                     ehdrlen + offsetof(struct ip, ip_sum);
2639                 cmd |= E1000_TXD_CMD_IP;
2640                 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2641         }
2642         hdr_len = ehdrlen + ip_hlen;
2643
2644         if (csum_flags & CSUM_TCP) {
2645                 /*
2646                  * Start offset for payload checksum calculation.
2647                  * End offset for payload checksum calculation.
2648                  * Offset of place to put the checksum.
2649                  */
2650                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2651                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2652                 TXD->upper_setup.tcp_fields.tucso =
2653                     hdr_len + offsetof(struct tcphdr, th_sum);
2654                 cmd |= E1000_TXD_CMD_TCP;
2655                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2656         } else if (csum_flags & CSUM_UDP) {
2657                 /*
2658                  * Start offset for header checksum calculation.
2659                  * End offset for header checksum calculation.
2660                  * Offset of place to put the checksum.
2661                  */
2662                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2663                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2664                 TXD->upper_setup.tcp_fields.tucso =
2665                     hdr_len + offsetof(struct udphdr, uh_sum);
2666                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2667         }
2668
2669         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
2670                      E1000_TXD_DTYP_D;          /* Data descr */
2671
2672         /* Save the information for this csum offloading context */
2673         adapter->csum_ehlen = ehdrlen;
2674         adapter->csum_iphlen = ip_hlen;
2675         adapter->csum_flags = csum_flags;
2676         adapter->csum_txd_upper = *txd_upper;
2677         adapter->csum_txd_lower = *txd_lower;
2678
2679         TXD->tcp_seg_setup.data = htole32(0);
2680         TXD->cmd_and_length =
2681             htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2682
2683         if (++curr_txd == adapter->num_tx_desc)
2684                 curr_txd = 0;
2685
2686         KKASSERT(adapter->num_tx_desc_avail > 0);
2687         adapter->num_tx_desc_avail--;
2688
2689         adapter->next_avail_tx_desc = curr_txd;
2690         return 1;
2691 }
2692
2693 static int
2694 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2695 {
2696         struct mbuf *m = *m0;
2697         struct ether_header *eh;
2698         int len;
2699
2700         adapter->tx_csum_try_pullup++;
2701
2702         len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2703
2704         if (__predict_false(!M_WRITABLE(m))) {
2705                 if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2706                         adapter->tx_csum_drop1++;
2707                         m_freem(m);
2708                         *m0 = NULL;
2709                         return ENOBUFS;
2710                 }
2711                 eh = mtod(m, struct ether_header *);
2712
2713                 if (eh->ether_type == htons(ETHERTYPE_VLAN))
2714                         len += EVL_ENCAPLEN;
2715
2716                 if (m->m_len < len) {
2717                         adapter->tx_csum_drop2++;
2718                         m_freem(m);
2719                         *m0 = NULL;
2720                         return ENOBUFS;
2721                 }
2722                 return 0;
2723         }
2724
2725         if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2726                 adapter->tx_csum_pullup1++;
2727                 m = m_pullup(m, ETHER_HDR_LEN);
2728                 if (m == NULL) {
2729                         adapter->tx_csum_pullup1_failed++;
2730                         *m0 = NULL;
2731                         return ENOBUFS;
2732                 }
2733                 *m0 = m;
2734         }
2735         eh = mtod(m, struct ether_header *);
2736
2737         if (eh->ether_type == htons(ETHERTYPE_VLAN))
2738                 len += EVL_ENCAPLEN;
2739
2740         if (m->m_len < len) {
2741                 adapter->tx_csum_pullup2++;
2742                 m = m_pullup(m, len);
2743                 if (m == NULL) {
2744                         adapter->tx_csum_pullup2_failed++;
2745                         *m0 = NULL;
2746                         return ENOBUFS;
2747                 }
2748                 *m0 = m;
2749         }
2750         return 0;
2751 }
2752
2753 static void
2754 em_txeof(struct adapter *adapter)
2755 {
2756         struct ifnet *ifp = &adapter->arpcom.ac_if;
2757         struct em_buffer *tx_buffer;
2758         int first, num_avail;
2759
2760         if (adapter->tx_dd_head == adapter->tx_dd_tail)
2761                 return;
2762
2763         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2764                 return;
2765
2766         num_avail = adapter->num_tx_desc_avail;
2767         first = adapter->next_tx_to_clean;
2768
2769         while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2770                 struct e1000_tx_desc *tx_desc;
2771                 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2772
2773                 tx_desc = &adapter->tx_desc_base[dd_idx];
2774                 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2775                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2776
2777                         if (++dd_idx == adapter->num_tx_desc)
2778                                 dd_idx = 0;
2779
2780                         while (first != dd_idx) {
2781                                 logif(pkt_txclean);
2782
2783                                 num_avail++;
2784
2785                                 tx_buffer = &adapter->tx_buffer_area[first];
2786                                 if (tx_buffer->m_head) {
2787                                         ifp->if_opackets++;
2788                                         bus_dmamap_unload(adapter->txtag,
2789                                                           tx_buffer->map);
2790                                         m_freem(tx_buffer->m_head);
2791                                         tx_buffer->m_head = NULL;
2792                                 }
2793
2794                                 if (++first == adapter->num_tx_desc)
2795                                         first = 0;
2796                         }
2797                 } else {
2798                         break;
2799                 }
2800         }
2801         adapter->next_tx_to_clean = first;
2802         adapter->num_tx_desc_avail = num_avail;
2803
2804         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2805                 adapter->tx_dd_head = 0;
2806                 adapter->tx_dd_tail = 0;
2807         }
2808
2809         if (!EM_IS_OACTIVE(adapter)) {
2810                 ifp->if_flags &= ~IFF_OACTIVE;
2811
2812                 /* All clean, turn off the timer */
2813                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2814                         ifp->if_timer = 0;
2815         }
2816 }
2817
2818 static void
2819 em_tx_collect(struct adapter *adapter)
2820 {
2821         struct ifnet *ifp = &adapter->arpcom.ac_if;
2822         struct em_buffer *tx_buffer;
2823         int tdh, first, num_avail, dd_idx = -1;
2824
2825         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2826                 return;
2827
2828         tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2829         if (tdh == adapter->next_tx_to_clean)
2830                 return;
2831
2832         if (adapter->tx_dd_head != adapter->tx_dd_tail)
2833                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2834
2835         num_avail = adapter->num_tx_desc_avail;
2836         first = adapter->next_tx_to_clean;
2837
2838         while (first != tdh) {
2839                 logif(pkt_txclean);
2840
2841                 num_avail++;
2842
2843                 tx_buffer = &adapter->tx_buffer_area[first];
2844                 if (tx_buffer->m_head) {
2845                         ifp->if_opackets++;
2846                         bus_dmamap_unload(adapter->txtag,
2847                                           tx_buffer->map);
2848                         m_freem(tx_buffer->m_head);
2849                         tx_buffer->m_head = NULL;
2850                 }
2851
2852                 if (first == dd_idx) {
2853                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2854                         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2855                                 adapter->tx_dd_head = 0;
2856                                 adapter->tx_dd_tail = 0;
2857                                 dd_idx = -1;
2858                         } else {
2859                                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2860                         }
2861                 }
2862
2863                 if (++first == adapter->num_tx_desc)
2864                         first = 0;
2865         }
2866         adapter->next_tx_to_clean = first;
2867         adapter->num_tx_desc_avail = num_avail;
2868
2869         if (!EM_IS_OACTIVE(adapter)) {
2870                 ifp->if_flags &= ~IFF_OACTIVE;
2871
2872                 /* All clean, turn off the timer */
2873                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2874                         ifp->if_timer = 0;
2875         }
2876 }
2877
2878 /*
2879  * When Link is lost sometimes there is work still in the TX ring
2880  * which will result in a watchdog, rather than allow that do an
2881  * attempted cleanup and then reinit here.  Note that this has been
2882  * seens mostly with fiber adapters.
2883  */
2884 static void
2885 em_tx_purge(struct adapter *adapter)
2886 {
2887         struct ifnet *ifp = &adapter->arpcom.ac_if;
2888
2889         if (!adapter->link_active && ifp->if_timer) {
2890                 em_tx_collect(adapter);
2891                 if (ifp->if_timer) {
2892                         if_printf(ifp, "Link lost, TX pending, reinit\n");
2893                         ifp->if_timer = 0;
2894                         em_init(adapter);
2895                 }
2896         }
2897 }
2898
2899 static int
2900 em_newbuf(struct adapter *adapter, int i, int init)
2901 {
2902         struct mbuf *m;
2903         bus_dma_segment_t seg;
2904         bus_dmamap_t map;
2905         struct em_buffer *rx_buffer;
2906         int error, nseg;
2907
2908         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2909         if (m == NULL) {
2910                 adapter->mbuf_cluster_failed++;
2911                 if (init) {
2912                         if_printf(&adapter->arpcom.ac_if,
2913                                   "Unable to allocate RX mbuf\n");
2914                 }
2915                 return (ENOBUFS);
2916         }
2917         m->m_len = m->m_pkthdr.len = MCLBYTES;
2918
2919         if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2920                 m_adj(m, ETHER_ALIGN);
2921
2922         error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
2923                         adapter->rx_sparemap, m,
2924                         &seg, 1, &nseg, BUS_DMA_NOWAIT);
2925         if (error) {
2926                 m_freem(m);
2927                 if (init) {
2928                         if_printf(&adapter->arpcom.ac_if,
2929                                   "Unable to load RX mbuf\n");
2930                 }
2931                 return (error);
2932         }
2933
2934         rx_buffer = &adapter->rx_buffer_area[i];
2935         if (rx_buffer->m_head != NULL)
2936                 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2937
2938         map = rx_buffer->map;
2939         rx_buffer->map = adapter->rx_sparemap;
2940         adapter->rx_sparemap = map;
2941
2942         rx_buffer->m_head = m;
2943
2944         adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
2945         return (0);
2946 }
2947
2948 static int
2949 em_create_rx_ring(struct adapter *adapter)
2950 {
2951         device_t dev = adapter->dev;
2952         struct em_buffer *rx_buffer;
2953         int i, error;
2954
2955         adapter->rx_buffer_area =
2956                 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
2957                         M_DEVBUF, M_WAITOK | M_ZERO);
2958
2959         /*
2960          * Create DMA tag for rx buffers
2961          */
2962         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2963                         1, 0,                   /* alignment, bounds */
2964                         BUS_SPACE_MAXADDR,      /* lowaddr */
2965                         BUS_SPACE_MAXADDR,      /* highaddr */
2966                         NULL, NULL,             /* filter, filterarg */
2967                         MCLBYTES,               /* maxsize */
2968                         1,                      /* nsegments */
2969                         MCLBYTES,               /* maxsegsize */
2970                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2971                         &adapter->rxtag);
2972         if (error) {
2973                 device_printf(dev, "Unable to allocate RX DMA tag\n");
2974                 kfree(adapter->rx_buffer_area, M_DEVBUF);
2975                 adapter->rx_buffer_area = NULL;
2976                 return error;
2977         }
2978
2979         /*
2980          * Create spare DMA map for rx buffers
2981          */
2982         error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
2983                                   &adapter->rx_sparemap);
2984         if (error) {
2985                 device_printf(dev, "Unable to create spare RX DMA map\n");
2986                 bus_dma_tag_destroy(adapter->rxtag);
2987                 kfree(adapter->rx_buffer_area, M_DEVBUF);
2988                 adapter->rx_buffer_area = NULL;
2989                 return error;
2990         }
2991
2992         /*
2993          * Create DMA maps for rx buffers
2994          */
2995         for (i = 0; i < adapter->num_rx_desc; i++) {
2996                 rx_buffer = &adapter->rx_buffer_area[i];
2997
2998                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
2999                                           &rx_buffer->map);
3000                 if (error) {
3001                         device_printf(dev, "Unable to create RX DMA map\n");
3002                         em_destroy_rx_ring(adapter, i);
3003                         return error;
3004                 }
3005         }
3006         return (0);
3007 }
3008
3009 static int
3010 em_init_rx_ring(struct adapter *adapter)
3011 {
3012         int i, error;
3013
3014         /* Reset descriptor ring */
3015         bzero(adapter->rx_desc_base,
3016             (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3017
3018         /* Allocate new ones. */
3019         for (i = 0; i < adapter->num_rx_desc; i++) {
3020                 error = em_newbuf(adapter, i, 1);
3021                 if (error)
3022                         return (error);
3023         }
3024
3025         /* Setup our descriptor pointers */
3026         adapter->next_rx_desc_to_check = 0;
3027
3028         return (0);
3029 }
3030
3031 static void
3032 em_init_rx_unit(struct adapter *adapter)
3033 {
3034         struct ifnet *ifp = &adapter->arpcom.ac_if;
3035         uint64_t bus_addr;
3036         uint32_t rctl, rxcsum;
3037
3038         /*
3039          * Make sure receives are disabled while setting
3040          * up the descriptor ring
3041          */
3042         rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3043         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3044
3045         if (adapter->hw.mac.type >= e1000_82540) {
3046                 /*
3047                  * Set the interrupt throttling rate. Value is calculated
3048                  * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3049                  */
3050                 if (adapter->int_throttle_ceil) {
3051                         E1000_WRITE_REG(&adapter->hw, E1000_ITR,
3052                                 1000000000 / 256 / adapter->int_throttle_ceil);
3053                 } else {
3054                         E1000_WRITE_REG(&adapter->hw, E1000_ITR, 0);
3055                 }
3056         }
3057
3058         /* Disable accelerated ackknowledge */
3059         if (adapter->hw.mac.type == e1000_82574) {
3060                 E1000_WRITE_REG(&adapter->hw,
3061                     E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3062         }
3063
3064         /* Setup the Base and Length of the Rx Descriptor Ring */
3065         bus_addr = adapter->rxdma.dma_paddr;
3066         E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3067             adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3068         E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3069             (uint32_t)(bus_addr >> 32));
3070         E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3071             (uint32_t)bus_addr);
3072
3073         /* Setup the Receive Control Register */
3074         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3075         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3076                 E1000_RCTL_RDMTS_HALF |
3077                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3078
3079         /* Make sure VLAN Filters are off */
3080         rctl &= ~E1000_RCTL_VFE;
3081
3082         if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3083                 rctl |= E1000_RCTL_SBP;
3084         else
3085                 rctl &= ~E1000_RCTL_SBP;
3086
3087         switch (adapter->rx_buffer_len) {
3088         default:
3089         case 2048:
3090                 rctl |= E1000_RCTL_SZ_2048;
3091                 break;
3092
3093         case 4096:
3094                 rctl |= E1000_RCTL_SZ_4096 |
3095                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3096                 break;
3097
3098         case 8192:
3099                 rctl |= E1000_RCTL_SZ_8192 |
3100                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3101                 break;
3102
3103         case 16384:
3104                 rctl |= E1000_RCTL_SZ_16384 |
3105                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3106                 break;
3107         }
3108
3109         if (ifp->if_mtu > ETHERMTU)
3110                 rctl |= E1000_RCTL_LPE;
3111         else
3112                 rctl &= ~E1000_RCTL_LPE;
3113
3114         /* Receive Checksum Offload for TCP and UDP */
3115         if (ifp->if_capenable & IFCAP_RXCSUM) {
3116                 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3117                 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3118                 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3119         }
3120
3121         /*
3122          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3123          * long latencies are observed, like Lenovo X60. This
3124          * change eliminates the problem, but since having positive
3125          * values in RDTR is a known source of problems on other
3126          * platforms another solution is being sought.
3127          */
3128         if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3129                 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3130                 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3131         }
3132
3133         /*
3134          * Setup the HW Rx Head and Tail Descriptor Pointers
3135          */
3136         E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3137         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3138
3139         /* Enable Receives */
3140         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3141 }
3142
3143 static void
3144 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3145 {
3146         struct em_buffer *rx_buffer;
3147         int i;
3148
3149         if (adapter->rx_buffer_area == NULL)
3150                 return;
3151
3152         for (i = 0; i < ndesc; i++) {
3153                 rx_buffer = &adapter->rx_buffer_area[i];
3154
3155                 KKASSERT(rx_buffer->m_head == NULL);
3156                 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3157         }
3158         bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3159         bus_dma_tag_destroy(adapter->rxtag);
3160
3161         kfree(adapter->rx_buffer_area, M_DEVBUF);
3162         adapter->rx_buffer_area = NULL;
3163 }
3164
3165 static void
3166 em_rxeof(struct adapter *adapter, int count)
3167 {
3168         struct ifnet *ifp = &adapter->arpcom.ac_if;
3169         uint8_t status, accept_frame = 0, eop = 0;
3170         uint16_t len, desc_len, prev_len_adj;
3171         struct e1000_rx_desc *current_desc;
3172         struct mbuf *mp;
3173         int i;
3174         struct mbuf_chain chain[MAXCPU];
3175
3176         i = adapter->next_rx_desc_to_check;
3177         current_desc = &adapter->rx_desc_base[i];
3178
3179         if (!(current_desc->status & E1000_RXD_STAT_DD))
3180                 return;
3181
3182         ether_input_chain_init(chain);
3183
3184         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3185                 struct mbuf *m = NULL;
3186
3187                 logif(pkt_receive);
3188
3189                 mp = adapter->rx_buffer_area[i].m_head;
3190
3191                 /*
3192                  * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3193                  * needs to access the last received byte in the mbuf.
3194                  */
3195                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3196                                 BUS_DMASYNC_POSTREAD);
3197
3198                 accept_frame = 1;
3199                 prev_len_adj = 0;
3200                 desc_len = le16toh(current_desc->length);
3201                 status = current_desc->status;
3202                 if (status & E1000_RXD_STAT_EOP) {
3203                         count--;
3204                         eop = 1;
3205                         if (desc_len < ETHER_CRC_LEN) {
3206                                 len = 0;
3207                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3208                         } else {
3209                                 len = desc_len - ETHER_CRC_LEN;
3210                         }
3211                 } else {
3212                         eop = 0;
3213                         len = desc_len;
3214                 }
3215
3216                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3217                         uint8_t last_byte;
3218                         uint32_t pkt_len = desc_len;
3219
3220                         if (adapter->fmp != NULL)
3221                                 pkt_len += adapter->fmp->m_pkthdr.len;
3222
3223                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3224                         if (TBI_ACCEPT(&adapter->hw, status,
3225                             current_desc->errors, pkt_len, last_byte,
3226                             adapter->min_frame_size, adapter->max_frame_size)) {
3227                                 e1000_tbi_adjust_stats_82543(&adapter->hw,
3228                                     &adapter->stats, pkt_len,
3229                                     adapter->hw.mac.addr,
3230                                     adapter->max_frame_size);
3231                                 if (len > 0)
3232                                         len--;
3233                         } else {
3234                                 accept_frame = 0;
3235                         }
3236                 }
3237
3238                 if (accept_frame) {
3239                         if (em_newbuf(adapter, i, 0) != 0) {
3240                                 ifp->if_iqdrops++;
3241                                 goto discard;
3242                         }
3243
3244                         /* Assign correct length to the current fragment */
3245                         mp->m_len = len;
3246
3247                         if (adapter->fmp == NULL) {
3248                                 mp->m_pkthdr.len = len;
3249                                 adapter->fmp = mp; /* Store the first mbuf */
3250                                 adapter->lmp = mp;
3251                         } else {
3252                                 /*
3253                                  * Chain mbuf's together
3254                                  */
3255
3256                                 /*
3257                                  * Adjust length of previous mbuf in chain if
3258                                  * we received less than 4 bytes in the last
3259                                  * descriptor.
3260                                  */
3261                                 if (prev_len_adj > 0) {
3262                                         adapter->lmp->m_len -= prev_len_adj;
3263                                         adapter->fmp->m_pkthdr.len -=
3264                                             prev_len_adj;
3265                                 }
3266                                 adapter->lmp->m_next = mp;
3267                                 adapter->lmp = adapter->lmp->m_next;
3268                                 adapter->fmp->m_pkthdr.len += len;
3269                         }
3270
3271                         if (eop) {
3272                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3273                                 ifp->if_ipackets++;
3274
3275                                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3276                                         em_rxcsum(adapter, current_desc,
3277                                                   adapter->fmp);
3278                                 }
3279
3280                                 if (status & E1000_RXD_STAT_VP) {
3281                                         adapter->fmp->m_pkthdr.ether_vlantag =
3282                                             (le16toh(current_desc->special) &
3283                                             E1000_RXD_SPC_VLAN_MASK);
3284                                         adapter->fmp->m_flags |= M_VLANTAG;
3285                                 }
3286                                 m = adapter->fmp;
3287                                 adapter->fmp = NULL;
3288                                 adapter->lmp = NULL;
3289                         }
3290                 } else {
3291                         ifp->if_ierrors++;
3292 discard:
3293 #ifdef foo
3294                         /* Reuse loaded DMA map and just update mbuf chain */
3295                         mp = adapter->rx_buffer_area[i].m_head;
3296                         mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3297                         mp->m_data = mp->m_ext.ext_buf;
3298                         mp->m_next = NULL;
3299                         if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3300                                 m_adj(mp, ETHER_ALIGN);
3301 #endif
3302                         if (adapter->fmp != NULL) {
3303                                 m_freem(adapter->fmp);
3304                                 adapter->fmp = NULL;
3305                                 adapter->lmp = NULL;
3306                         }
3307                         m = NULL;
3308                 }
3309
3310                 /* Zero out the receive descriptors status. */
3311                 current_desc->status = 0;
3312
3313                 if (m != NULL)
3314                         ether_input_chain(ifp, m, NULL, chain);
3315
3316                 /* Advance our pointers to the next descriptor. */
3317                 if (++i == adapter->num_rx_desc)
3318                         i = 0;
3319                 current_desc = &adapter->rx_desc_base[i];
3320         }
3321         adapter->next_rx_desc_to_check = i;
3322
3323         ether_input_dispatch(chain);
3324
3325         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3326         if (--i < 0)
3327                 i = adapter->num_rx_desc - 1;
3328         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3329 }
3330
3331 static void
3332 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3333           struct mbuf *mp)
3334 {
3335         /* 82543 or newer only */
3336         if (adapter->hw.mac.type < e1000_82543 ||
3337             /* Ignore Checksum bit is set */
3338             (rx_desc->status & E1000_RXD_STAT_IXSM))
3339                 return;
3340
3341         if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3342             !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3343                 /* IP Checksum Good */
3344                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3345         }
3346
3347         if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3348             !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3349                 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3350                                            CSUM_PSEUDO_HDR |
3351                                            CSUM_FRAG_NOT_CHECKED;
3352                 mp->m_pkthdr.csum_data = htons(0xffff);
3353         }
3354 }
3355
3356 static void
3357 em_enable_intr(struct adapter *adapter)
3358 {
3359         lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3360         E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
3361 }
3362
3363 static void
3364 em_disable_intr(struct adapter *adapter)
3365 {
3366         uint32_t clear = 0xffffffff;
3367
3368         /*
3369          * The first version of 82542 had an errata where when link was forced
3370          * it would stay up even up even if the cable was disconnected.
3371          * Sequence errors were used to detect the disconnect and then the
3372          * driver would unforce the link.  This code in the in the ISR.  For
3373          * this to work correctly the Sequence error interrupt had to be
3374          * enabled all the time.
3375          */
3376         if (adapter->hw.mac.type == e1000_82542 &&
3377             adapter->hw.revision_id == E1000_REVISION_2)
3378                 clear &= ~E1000_IMC_RXSEQ;
3379
3380         E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3381
3382         lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3383 }
3384
3385 /*
3386  * Bit of a misnomer, what this really means is
3387  * to enable OS management of the system... aka
3388  * to disable special hardware management features 
3389  */
3390 static void
3391 em_get_mgmt(struct adapter *adapter)
3392 {
3393         /* A shared code workaround */
3394 #define E1000_82542_MANC2H E1000_MANC2H
3395         if (adapter->has_manage) {
3396                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3397                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3398
3399                 /* disable hardware interception of ARP */
3400                 manc &= ~(E1000_MANC_ARP_EN);
3401
3402                 /* enable receiving management packets to the host */
3403                 if (adapter->hw.mac.type >= e1000_82571) {
3404                         manc |= E1000_MANC_EN_MNG2HOST;
3405 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3406 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3407                         manc2h |= E1000_MNG2HOST_PORT_623;
3408                         manc2h |= E1000_MNG2HOST_PORT_664;
3409                         E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3410                 }
3411
3412                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3413         }
3414 }
3415
3416 /*
3417  * Give control back to hardware management
3418  * controller if there is one.
3419  */
3420 static void
3421 em_rel_mgmt(struct adapter *adapter)
3422 {
3423         if (adapter->has_manage) {
3424                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3425
3426                 /* re-enable hardware interception of ARP */
3427                 manc |= E1000_MANC_ARP_EN;
3428
3429                 if (adapter->hw.mac.type >= e1000_82571)
3430                         manc &= ~E1000_MANC_EN_MNG2HOST;
3431
3432                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3433         }
3434 }
3435
3436 /*
3437  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3438  * For ASF and Pass Through versions of f/w this means that
3439  * the driver is loaded.  For AMT version (only with 82573)
3440  * of the f/w this means that the network i/f is open.
3441  */
3442 static void
3443 em_get_hw_control(struct adapter *adapter)
3444 {
3445         uint32_t ctrl_ext, swsm;
3446
3447         /* Let firmware know the driver has taken over */
3448         switch (adapter->hw.mac.type) {
3449         case e1000_82573:
3450                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3451                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3452                     swsm | E1000_SWSM_DRV_LOAD);
3453                 break;
3454         case e1000_82571:
3455         case e1000_82572:
3456         case e1000_80003es2lan:
3457         case e1000_ich8lan:
3458         case e1000_ich9lan:
3459         case e1000_ich10lan:
3460                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3461                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3462                     ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3463                 break;
3464         default:
3465                 break;
3466         }
3467 }
3468
3469 /*
3470  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3471  * For ASF and Pass Through versions of f/w this means that the
3472  * driver is no longer loaded.  For AMT version (only with 82573)
3473  * of the f/w this means that the network i/f is closed.
3474  */
3475 static void
3476 em_rel_hw_control(struct adapter *adapter)
3477 {
3478         uint32_t ctrl_ext, swsm;
3479
3480         /* Let firmware taken over control of h/w */
3481         switch (adapter->hw.mac.type) {
3482         case e1000_82573:
3483                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3484                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3485                     swsm & ~E1000_SWSM_DRV_LOAD);
3486                 break;
3487
3488         case e1000_82571:
3489         case e1000_82572:
3490         case e1000_80003es2lan:
3491         case e1000_ich8lan:
3492         case e1000_ich9lan:
3493         case e1000_ich10lan:
3494                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3495                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3496                     ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3497                 break;
3498
3499         default:
3500                 break;
3501         }
3502 }
3503
3504 static int
3505 em_is_valid_eaddr(const uint8_t *addr)
3506 {
3507         char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3508
3509         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3510                 return (FALSE);
3511
3512         return (TRUE);
3513 }
3514
3515 /*
3516  * Enable PCI Wake On Lan capability
3517  */
3518 void
3519 em_enable_wol(device_t dev)
3520 {
3521         uint16_t cap, status;
3522         uint8_t id;
3523
3524         /* First find the capabilities pointer*/
3525         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3526
3527         /* Read the PM Capabilities */
3528         id = pci_read_config(dev, cap, 1);
3529         if (id != PCIY_PMG)     /* Something wrong */
3530                 return;
3531
3532         /*
3533          * OK, we have the power capabilities,
3534          * so now get the status register
3535          */
3536         cap += PCIR_POWER_STATUS;
3537         status = pci_read_config(dev, cap, 2);
3538         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3539         pci_write_config(dev, cap, status, 2);
3540 }
3541
3542
3543 /*
3544  * 82544 Coexistence issue workaround.
3545  *    There are 2 issues.
3546  *       1. Transmit Hang issue.
3547  *    To detect this issue, following equation can be used...
3548  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3549  *        If SUM[3:0] is in between 1 to 4, we will have this issue.
3550  *
3551  *       2. DAC issue.
3552  *    To detect this issue, following equation can be used...
3553  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3554  *        If SUM[3:0] is in between 9 to c, we will have this issue.
3555  *
3556  *    WORKAROUND:
3557  *        Make sure we do not have ending address
3558  *        as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3559  */
3560 static uint32_t
3561 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3562 {
3563         uint32_t safe_terminator;
3564
3565         /*
3566          * Since issue is sensitive to length and address.
3567          * Let us first check the address...
3568          */
3569         if (length <= 4) {
3570                 desc_array->descriptor[0].address = address;
3571                 desc_array->descriptor[0].length = length;
3572                 desc_array->elements = 1;
3573                 return (desc_array->elements);
3574         }
3575
3576         safe_terminator =
3577         (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3578
3579         /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3580         if (safe_terminator == 0 ||
3581             (safe_terminator > 4 && safe_terminator < 9) ||
3582             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3583                 desc_array->descriptor[0].address = address;
3584                 desc_array->descriptor[0].length = length;
3585                 desc_array->elements = 1;
3586                 return (desc_array->elements);
3587         }
3588
3589         desc_array->descriptor[0].address = address;
3590         desc_array->descriptor[0].length = length - 4;
3591         desc_array->descriptor[1].address = address + (length - 4);
3592         desc_array->descriptor[1].length = 4;
3593         desc_array->elements = 2;
3594         return (desc_array->elements);
3595 }
3596
3597 static void
3598 em_update_stats(struct adapter *adapter)
3599 {
3600         struct ifnet *ifp = &adapter->arpcom.ac_if;
3601
3602         if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3603             (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3604                 adapter->stats.symerrs +=
3605                         E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3606                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3607         }
3608         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3609         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3610         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3611         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3612
3613         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3614         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3615         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3616         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3617         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3618         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3619         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3620         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3621         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3622         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3623         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3624         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3625         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3626         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3627         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3628         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3629         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3630         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3631         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3632         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3633
3634         /* For the 64-bit byte counters the low dword must be read first. */
3635         /* Both registers clear on the read of the high dword */
3636
3637         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3638         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3639
3640         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3641         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3642         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3643         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3644         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3645
3646         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3647         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3648
3649         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3650         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3651         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3652         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3653         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3654         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3655         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3656         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3657         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3658         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3659
3660         if (adapter->hw.mac.type >= e1000_82543) {
3661                 adapter->stats.algnerrc += 
3662                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3663                 adapter->stats.rxerrc += 
3664                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3665                 adapter->stats.tncrs += 
3666                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3667                 adapter->stats.cexterr += 
3668                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3669                 adapter->stats.tsctc += 
3670                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3671                 adapter->stats.tsctfc += 
3672                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3673         }
3674
3675         ifp->if_collisions = adapter->stats.colc;
3676
3677         /* Rx Errors */
3678         ifp->if_ierrors =
3679             adapter->dropped_pkts + adapter->stats.rxerrc +
3680             adapter->stats.crcerrs + adapter->stats.algnerrc +
3681             adapter->stats.ruc + adapter->stats.roc +
3682             adapter->stats.mpc + adapter->stats.cexterr;
3683
3684         /* Tx Errors */
3685         ifp->if_oerrors =
3686             adapter->stats.ecol + adapter->stats.latecol +
3687             adapter->watchdog_events;
3688 }
3689
3690 static void
3691 em_print_debug_info(struct adapter *adapter)
3692 {
3693         device_t dev = adapter->dev;
3694         uint8_t *hw_addr = adapter->hw.hw_addr;
3695
3696         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3697         device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3698             E1000_READ_REG(&adapter->hw, E1000_CTRL),
3699             E1000_READ_REG(&adapter->hw, E1000_RCTL));
3700         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3701             ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3702             (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3703         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3704             adapter->hw.fc.high_water,
3705             adapter->hw.fc.low_water);
3706         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3707             E1000_READ_REG(&adapter->hw, E1000_TIDV),
3708             E1000_READ_REG(&adapter->hw, E1000_TADV));
3709         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3710             E1000_READ_REG(&adapter->hw, E1000_RDTR),
3711             E1000_READ_REG(&adapter->hw, E1000_RADV));
3712         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3713             (long long)adapter->tx_fifo_wrk_cnt,
3714             (long long)adapter->tx_fifo_reset_cnt);
3715         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3716             E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3717             E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3718         device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3719             E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3720             E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3721         device_printf(dev, "Num Tx descriptors avail = %d\n",
3722             adapter->num_tx_desc_avail);
3723         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3724             adapter->no_tx_desc_avail1);
3725         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3726             adapter->no_tx_desc_avail2);
3727         device_printf(dev, "Std mbuf failed = %ld\n",
3728             adapter->mbuf_alloc_failed);
3729         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3730             adapter->mbuf_cluster_failed);
3731         device_printf(dev, "Driver dropped packets = %ld\n",
3732             adapter->dropped_pkts);
3733         device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3734             adapter->no_tx_dma_setup);
3735
3736         device_printf(dev, "TXCSUM try pullup = %lu\n",
3737             adapter->tx_csum_try_pullup);
3738         device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3739             adapter->tx_csum_pullup1);
3740         device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3741             adapter->tx_csum_pullup1_failed);
3742         device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3743             adapter->tx_csum_pullup2);
3744         device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3745             adapter->tx_csum_pullup2_failed);
3746         device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3747             adapter->tx_csum_drop1);
3748         device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3749             adapter->tx_csum_drop2);
3750 }
3751
3752 static void
3753 em_print_hw_stats(struct adapter *adapter)
3754 {
3755         device_t dev = adapter->dev;
3756
3757         device_printf(dev, "Excessive collisions = %lld\n",
3758             (long long)adapter->stats.ecol);
3759 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3760         device_printf(dev, "Symbol errors = %lld\n",
3761             (long long)adapter->stats.symerrs);
3762 #endif
3763         device_printf(dev, "Sequence errors = %lld\n",
3764             (long long)adapter->stats.sec);
3765         device_printf(dev, "Defer count = %lld\n",
3766             (long long)adapter->stats.dc);
3767         device_printf(dev, "Missed Packets = %lld\n",
3768             (long long)adapter->stats.mpc);
3769         device_printf(dev, "Receive No Buffers = %lld\n",
3770             (long long)adapter->stats.rnbc);
3771         /* RLEC is inaccurate on some hardware, calculate our own. */
3772         device_printf(dev, "Receive Length Errors = %lld\n",
3773             ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3774         device_printf(dev, "Receive errors = %lld\n",
3775             (long long)adapter->stats.rxerrc);
3776         device_printf(dev, "Crc errors = %lld\n",
3777             (long long)adapter->stats.crcerrs);
3778         device_printf(dev, "Alignment errors = %lld\n",
3779             (long long)adapter->stats.algnerrc);
3780         device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3781             (long long)adapter->stats.cexterr);
3782         device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3783         device_printf(dev, "watchdog timeouts = %ld\n",
3784             adapter->watchdog_events);
3785         device_printf(dev, "XON Rcvd = %lld\n",
3786             (long long)adapter->stats.xonrxc);
3787         device_printf(dev, "XON Xmtd = %lld\n",
3788             (long long)adapter->stats.xontxc);
3789         device_printf(dev, "XOFF Rcvd = %lld\n",
3790             (long long)adapter->stats.xoffrxc);
3791         device_printf(dev, "XOFF Xmtd = %lld\n",
3792             (long long)adapter->stats.xofftxc);
3793         device_printf(dev, "Good Packets Rcvd = %lld\n",
3794             (long long)adapter->stats.gprc);
3795         device_printf(dev, "Good Packets Xmtd = %lld\n",
3796             (long long)adapter->stats.gptc);
3797 }
3798
3799 static void
3800 em_print_nvm_info(struct adapter *adapter)
3801 {
3802         uint16_t eeprom_data;
3803         int i, j, row = 0;
3804
3805         /* Its a bit crude, but it gets the job done */
3806         kprintf("\nInterface EEPROM Dump:\n");
3807         kprintf("Offset\n0x0000  ");
3808         for (i = 0, j = 0; i < 32; i++, j++) {
3809                 if (j == 8) { /* Make the offset block */
3810                         j = 0; ++row;
3811                         kprintf("\n0x00%x0  ",row);
3812                 }
3813                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3814                 kprintf("%04x ", eeprom_data);
3815         }
3816         kprintf("\n");
3817 }
3818
3819 static int
3820 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3821 {
3822         struct adapter *adapter;
3823         struct ifnet *ifp;
3824         int error, result;
3825
3826         result = -1;
3827         error = sysctl_handle_int(oidp, &result, 0, req);
3828         if (error || !req->newptr)
3829                 return (error);
3830
3831         adapter = (struct adapter *)arg1;
3832         ifp = &adapter->arpcom.ac_if;
3833
3834         lwkt_serialize_enter(ifp->if_serializer);
3835
3836         if (result == 1)
3837                 em_print_debug_info(adapter);
3838
3839         /*
3840          * This value will cause a hex dump of the
3841          * first 32 16-bit words of the EEPROM to
3842          * the screen.
3843          */
3844         if (result == 2)
3845                 em_print_nvm_info(adapter);
3846
3847         lwkt_serialize_exit(ifp->if_serializer);
3848
3849         return (error);
3850 }
3851
3852 static int
3853 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3854 {
3855         int error, result;
3856
3857         result = -1;
3858         error = sysctl_handle_int(oidp, &result, 0, req);
3859         if (error || !req->newptr)
3860                 return (error);
3861
3862         if (result == 1) {
3863                 struct adapter *adapter = (struct adapter *)arg1;
3864                 struct ifnet *ifp = &adapter->arpcom.ac_if;
3865
3866                 lwkt_serialize_enter(ifp->if_serializer);
3867                 em_print_hw_stats(adapter);
3868                 lwkt_serialize_exit(ifp->if_serializer);
3869         }
3870         return (error);
3871 }
3872
3873 static void
3874 em_add_sysctl(struct adapter *adapter)
3875 {
3876 #ifdef PROFILE_SERIALIZER
3877         struct ifnet *ifp = &adapter->arpcom.ac_if;
3878 #endif
3879
3880         sysctl_ctx_init(&adapter->sysctl_ctx);
3881         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3882                                         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3883                                         device_get_nameunit(adapter->dev),
3884                                         CTLFLAG_RD, 0, "");
3885         if (adapter->sysctl_tree == NULL) {
3886                 device_printf(adapter->dev, "can't add sysctl node\n");
3887         } else {
3888                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3889                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3890                     OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3891                     em_sysctl_debug_info, "I", "Debug Information");
3892
3893                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3894                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3895                     OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3896                     em_sysctl_stats, "I", "Statistics");
3897
3898                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3899                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3900                     OID_AUTO, "rxd", CTLFLAG_RD,
3901                     &adapter->num_rx_desc, 0, NULL);
3902                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3903                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3904                     OID_AUTO, "txd", CTLFLAG_RD,
3905                     &adapter->num_tx_desc, 0, NULL);
3906
3907 #ifdef PROFILE_SERIALIZER
3908                 SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
3909                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3910                     OID_AUTO, "serializer_sleep", CTLFLAG_RW,
3911                     &ifp->if_serializer->sleep_cnt, 0, NULL);
3912                 SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
3913                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3914                     OID_AUTO, "serializer_tryfail", CTLFLAG_RW,
3915                     &ifp->if_serializer->tryfail_cnt, 0, NULL);
3916                 SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
3917                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3918                     OID_AUTO, "serializer_enter", CTLFLAG_RW,
3919                     &ifp->if_serializer->enter_cnt, 0, NULL);
3920                 SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
3921                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3922                     OID_AUTO, "serializer_try", CTLFLAG_RW,
3923                     &ifp->if_serializer->try_cnt, 0, NULL);
3924 #endif
3925                 if (adapter->hw.mac.type >= e1000_82540) {
3926                         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3927                             SYSCTL_CHILDREN(adapter->sysctl_tree),
3928                             OID_AUTO, "int_throttle_ceil",
3929                             CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3930                             em_sysctl_int_throttle, "I",
3931                             "interrupt throttling rate");
3932                 }
3933                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3934                     SYSCTL_CHILDREN(adapter->sysctl_tree),
3935                     OID_AUTO, "int_tx_nsegs",
3936                     CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3937                     em_sysctl_int_tx_nsegs, "I",
3938                     "# segments per TX interrupt");
3939         }
3940 }
3941
3942 static int
3943 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3944 {
3945         struct adapter *adapter = (void *)arg1;
3946         struct ifnet *ifp = &adapter->arpcom.ac_if;
3947         int error, throttle;
3948
3949         throttle = adapter->int_throttle_ceil;
3950         error = sysctl_handle_int(oidp, &throttle, 0, req);
3951         if (error || req->newptr == NULL)
3952                 return error;
3953         if (throttle < 0 || throttle > 1000000000 / 256)
3954                 return EINVAL;
3955
3956         if (throttle) {
3957                 /*
3958                  * Set the interrupt throttling rate in 256ns increments,
3959                  * recalculate sysctl value assignment to get exact frequency.
3960                  */
3961                 throttle = 1000000000 / 256 / throttle;
3962
3963                 /* Upper 16bits of ITR is reserved and should be zero */
3964                 if (throttle & 0xffff0000)
3965                         return EINVAL;
3966         }
3967
3968         lwkt_serialize_enter(ifp->if_serializer);
3969
3970         if (throttle)
3971                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
3972         else
3973                 adapter->int_throttle_ceil = 0;
3974
3975         if (ifp->if_flags & IFF_RUNNING)
3976                 E1000_WRITE_REG(&adapter->hw, E1000_ITR, throttle);
3977
3978         lwkt_serialize_exit(ifp->if_serializer);
3979
3980         if (bootverbose) {
3981                 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3982                           adapter->int_throttle_ceil);
3983         }
3984         return 0;
3985 }
3986
3987 static int
3988 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3989 {
3990         struct adapter *adapter = (void *)arg1;
3991         struct ifnet *ifp = &adapter->arpcom.ac_if;
3992         int error, segs;
3993
3994         segs = adapter->tx_int_nsegs;
3995         error = sysctl_handle_int(oidp, &segs, 0, req);
3996         if (error || req->newptr == NULL)
3997                 return error;
3998         if (segs <= 0)
3999                 return EINVAL;
4000
4001         lwkt_serialize_enter(ifp->if_serializer);
4002
4003         /*
4004          * Don't allow int_tx_nsegs to become:
4005          * o  Less the oact_tx_desc
4006          * o  Too large that no TX desc will cause TX interrupt to
4007          *    be generated (OACTIVE will never recover)
4008          * o  Too small that will cause tx_dd[] overflow
4009          */
4010         if (segs < adapter->oact_tx_desc ||
4011             segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4012             segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4013                 error = EINVAL;
4014         } else {
4015                 error = 0;
4016                 adapter->tx_int_nsegs = segs;
4017         }
4018
4019         lwkt_serialize_exit(ifp->if_serializer);
4020
4021         return error;
4022 }