Remove M_EXT_OLD, rename m_ext.ext_nref.new to m_ext.ext_ref and
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.38 2005/05/31 14:11:42 joerg Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83
84 #include <net/if.h>
85 #include <net/ifq_var.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90
91 #include <net/bpf.h>
92
93 #include <net/if_types.h>
94 #include <net/vlan/if_vlan_var.h>
95
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99
100 #include <vm/vm.h>              /* for vtophys */
101 #include <vm/pmap.h>            /* for vtophys */
102 #include <machine/resource.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105
106 #include <dev/netif/mii_layer/mii.h>
107 #include <dev/netif/mii_layer/miivar.h>
108 #include <dev/netif/mii_layer/miidevs.h>
109 #include <dev/netif/mii_layer/brgphyreg.h>
110
111 #include <bus/pci/pcidevs.h>
112 #include <bus/pci/pcireg.h>
113 #include <bus/pci/pcivar.h>
114
115 #include "if_bgereg.h"
116
117 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
118
119 /* "controller miibus0" required.  See GENERIC if you get errors here. */
120 #include "miibus_if.h"
121
122 /*
123  * Various supported device vendors/types and their names. Note: the
124  * spec seems to indicate that the hardware still has Alteon's vendor
125  * ID burned into it, though it will always be overriden by the vendor
126  * ID in the EEPROM. Just to be safe, we cover all possibilities.
127  */
128 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
129
130 static struct bge_type bge_devs[] = {
131         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
132                 "Broadcom BCM5700 Gigabit Ethernet" },
133         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134                 "Broadcom BCM5701 Gigabit Ethernet" },
135         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
136                 "Broadcom BCM5700 Gigabit Ethernet" },
137         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
138                 "Broadcom BCM5701 Gigabit Ethernet" },
139         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
140                 "Broadcom BCM5702X Gigabit Ethernet" },
141         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5702X,
142                 "Broadcom BCM5702X Gigabit Ethernet" },
143         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
144                 "Broadcom BCM5703X Gigabit Ethernet" },
145         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5703X,
146                 "Broadcom BCM5703X Gigabit Ethernet" },
147         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
148                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
150                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
152                 "Broadcom BCM5705 Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
154                 "Broadcom BCM5705M Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705_ALT,
156                 "Broadcom BCM5705M Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
158                 "Broadcom BCM5782 Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5788,
160                 "Broadcom BCM5788 Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
162                 "Broadcom BCM5901 Fast Ethernet" },
163         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
164                 "Broadcom BCM5901A2 Fast Ethernet" },
165         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
166                 "SysKonnect Gigabit Ethernet" },
167         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
168                 "Altima AC1000 Gigabit Ethernet" },
169         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
170                 "Altima AC1002 Gigabit Ethernet" },
171         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
172                 "Altima AC9100 Gigabit Ethernet" },
173         { 0, 0, NULL }
174 };
175
176 static int      bge_probe(device_t);
177 static int      bge_attach(device_t);
178 static int      bge_detach(device_t);
179 static void     bge_release_resources(struct bge_softc *);
180 static void     bge_txeof(struct bge_softc *);
181 static void     bge_rxeof(struct bge_softc *);
182
183 static void     bge_tick(void *);
184 static void     bge_stats_update(struct bge_softc *);
185 static void     bge_stats_update_regs(struct bge_softc *);
186 static int      bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
187
188 static void     bge_intr(void *);
189 static void     bge_start(struct ifnet *);
190 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
191 static void     bge_init(void *);
192 static void     bge_stop(struct bge_softc *);
193 static void     bge_watchdog(struct ifnet *);
194 static void     bge_shutdown(device_t);
195 static int      bge_ifmedia_upd(struct ifnet *);
196 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
197
198 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
199 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
200
201 static void     bge_setmulti(struct bge_softc *);
202
203 static void     bge_handle_events(struct bge_softc *);
204 static int      bge_alloc_jumbo_mem(struct bge_softc *);
205 static void     bge_free_jumbo_mem(struct bge_softc *);
206 static struct bge_jslot
207                 *bge_jalloc(struct bge_softc *);
208 static void     bge_jfree(void *);
209 static void     bge_jref(void *);
210 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
211 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
212 static int      bge_init_rx_ring_std(struct bge_softc *);
213 static void     bge_free_rx_ring_std(struct bge_softc *);
214 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
215 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
216 static void     bge_free_tx_ring(struct bge_softc *);
217 static int      bge_init_tx_ring(struct bge_softc *);
218
219 static int      bge_chipinit(struct bge_softc *);
220 static int      bge_blockinit(struct bge_softc *);
221
222 #ifdef notdef
223 static uint8_t  bge_vpd_readbyte(struct bge_softc *, uint32_t);
224 static void     bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
225 static void     bge_vpd_read(struct bge_softc *);
226 #endif
227
228 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
229 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
230 #ifdef notdef
231 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
232 #endif
233 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
234
235 static int      bge_miibus_readreg(device_t, int, int);
236 static int      bge_miibus_writereg(device_t, int, int, int);
237 static void     bge_miibus_statchg(device_t);
238
239 static void     bge_reset(struct bge_softc *);
240
241 static device_method_t bge_methods[] = {
242         /* Device interface */
243         DEVMETHOD(device_probe,         bge_probe),
244         DEVMETHOD(device_attach,        bge_attach),
245         DEVMETHOD(device_detach,        bge_detach),
246         DEVMETHOD(device_shutdown,      bge_shutdown),
247
248         /* bus interface */
249         DEVMETHOD(bus_print_child,      bus_generic_print_child),
250         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
251
252         /* MII interface */
253         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
254         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
255         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
256
257         { 0, 0 }
258 };
259
260 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
261 static devclass_t bge_devclass;
262
263 DECLARE_DUMMY_MODULE(if_bge);
264 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
265 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
266
267 static uint32_t
268 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
269 {
270         device_t dev = sc->bge_dev;
271
272         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
273         return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
274 }
275
276 static void
277 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
278 {
279         device_t dev = sc->bge_dev;
280
281         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
282         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
283 }
284
285 #ifdef notdef
286 static uint32_t
287 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
288 {
289         device_t dev = sc->bge_dev;
290
291         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
292         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
293 }
294 #endif
295
296 static void
297 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
298 {
299         device_t dev = sc->bge_dev;
300
301         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
302         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
303 }
304
305 #ifdef notdef
306 static uint8_t
307 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
308 {
309         device_t dev = sc->bge_dev;
310         uint32_t val;
311         int i;
312
313         pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
314         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
315                 DELAY(10);
316                 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
317                         break;
318         }
319
320         if (i == BGE_TIMEOUT) {
321                 device_printf(sc->bge_dev, "VPD read timed out\n");
322                 return(0);
323         }
324
325         val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
326
327         return((val >> ((addr % 4) * 8)) & 0xFF);
328 }
329
330 static void
331 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
332 {
333         size_t i;
334         uint8_t *ptr;
335
336         ptr = (uint8_t *)res;
337         for (i = 0; i < sizeof(struct vpd_res); i++)
338                 ptr[i] = bge_vpd_readbyte(sc, i + addr);
339
340         return;
341 }
342
343 static void
344 bge_vpd_read(struct bge_softc *sc)
345 {
346         int pos = 0, i;
347         struct vpd_res res;
348
349         if (sc->bge_vpd_prodname != NULL)
350                 free(sc->bge_vpd_prodname, M_DEVBUF);
351         if (sc->bge_vpd_readonly != NULL)
352                 free(sc->bge_vpd_readonly, M_DEVBUF);
353         sc->bge_vpd_prodname = NULL;
354         sc->bge_vpd_readonly = NULL;
355
356         bge_vpd_read_res(sc, &res, pos);
357
358         if (res.vr_id != VPD_RES_ID) {
359                 device_printf(sc->bge_dev,
360                               "bad VPD resource id: expected %x got %x\n",
361                               VPD_RES_ID, res.vr_id);
362                 return;
363         }
364
365         pos += sizeof(res);
366         sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
367         for (i = 0; i < res.vr_len; i++)
368                 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
369         sc->bge_vpd_prodname[i] = '\0';
370         pos += i;
371
372         bge_vpd_read_res(sc, &res, pos);
373
374         if (res.vr_id != VPD_RES_READ) {
375                 device_printf(sc->bge_dev,
376                               "bad VPD resource id: expected %x got %x\n",
377                               VPD_RES_READ, res.vr_id);
378                 return;
379         }
380
381         pos += sizeof(res);
382         sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
383         for (i = 0; i < res.vr_len + 1; i++)
384                 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
385 }
386 #endif
387
388 /*
389  * Read a byte of data stored in the EEPROM at address 'addr.' The
390  * BCM570x supports both the traditional bitbang interface and an
391  * auto access interface for reading the EEPROM. We use the auto
392  * access method.
393  */
394 static uint8_t
395 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
396 {
397         int i;
398         uint32_t byte = 0;
399
400         /*
401          * Enable use of auto EEPROM access so we can avoid
402          * having to use the bitbang method.
403          */
404         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
405
406         /* Reset the EEPROM, load the clock period. */
407         CSR_WRITE_4(sc, BGE_EE_ADDR,
408             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
409         DELAY(20);
410
411         /* Issue the read EEPROM command. */
412         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
413
414         /* Wait for completion */
415         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
416                 DELAY(10);
417                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
418                         break;
419         }
420
421         if (i == BGE_TIMEOUT) {
422                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
423                 return(0);
424         }
425
426         /* Get result. */
427         byte = CSR_READ_4(sc, BGE_EE_DATA);
428
429         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
430
431         return(0);
432 }
433
434 /*
435  * Read a sequence of bytes from the EEPROM.
436  */
437 static int
438 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
439 {
440         size_t i;
441         int err;
442         uint8_t byte;
443
444         for (byte = 0, err = 0, i = 0; i < len; i++) {
445                 err = bge_eeprom_getbyte(sc, off + i, &byte);
446                 if (err)
447                         break;
448                 *(dest + i) = byte;
449         }
450
451         return(err ? 1 : 0);
452 }
453
454 static int
455 bge_miibus_readreg(device_t dev, int phy, int reg)
456 {
457         struct bge_softc *sc;
458         struct ifnet *ifp;
459         uint32_t val, autopoll;
460         int i;
461
462         sc = device_get_softc(dev);
463         ifp = &sc->arpcom.ac_if;
464
465         /*
466          * Broadcom's own driver always assumes the internal
467          * PHY is at GMII address 1. On some chips, the PHY responds
468          * to accesses at all addresses, which could cause us to
469          * bogusly attach the PHY 32 times at probe type. Always
470          * restricting the lookup to address 1 is simpler than
471          * trying to figure out which chips revisions should be
472          * special-cased.
473          */
474         if (phy != 1)
475                 return(0);
476
477         /* Reading with autopolling on may trigger PCI errors */
478         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
479         if (autopoll & BGE_MIMODE_AUTOPOLL) {
480                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
481                 DELAY(40);
482         }
483
484         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
485             BGE_MIPHY(phy)|BGE_MIREG(reg));
486
487         for (i = 0; i < BGE_TIMEOUT; i++) {
488                 val = CSR_READ_4(sc, BGE_MI_COMM);
489                 if (!(val & BGE_MICOMM_BUSY))
490                         break;
491         }
492
493         if (i == BGE_TIMEOUT) {
494                 if_printf(ifp, "PHY read timed out\n");
495                 val = 0;
496                 goto done;
497         }
498
499         val = CSR_READ_4(sc, BGE_MI_COMM);
500
501 done:
502         if (autopoll & BGE_MIMODE_AUTOPOLL) {
503                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
504                 DELAY(40);
505         }
506
507         if (val & BGE_MICOMM_READFAIL)
508                 return(0);
509
510         return(val & 0xFFFF);
511 }
512
513 static int
514 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
515 {
516         struct bge_softc *sc;
517         uint32_t autopoll;
518         int i;
519
520         sc = device_get_softc(dev);
521
522         /* Reading with autopolling on may trigger PCI errors */
523         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
524         if (autopoll & BGE_MIMODE_AUTOPOLL) {
525                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
526                 DELAY(40);
527         }
528
529         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
530             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
531
532         for (i = 0; i < BGE_TIMEOUT; i++) {
533                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
534                         break;
535         }
536
537         if (autopoll & BGE_MIMODE_AUTOPOLL) {
538                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
539                 DELAY(40);
540         }
541
542         if (i == BGE_TIMEOUT) {
543                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
544                 return(0);
545         }
546
547         return(0);
548 }
549
550 static void
551 bge_miibus_statchg(device_t dev)
552 {
553         struct bge_softc *sc;
554         struct mii_data *mii;
555
556         sc = device_get_softc(dev);
557         mii = device_get_softc(sc->bge_miibus);
558
559         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
560         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
561                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
562         } else {
563                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
564         }
565
566         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
567                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
568         } else {
569                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
570         }
571 }
572
573 /*
574  * Handle events that have triggered interrupts.
575  */
576 static void
577 bge_handle_events(struct bge_softc *sc)
578 {
579 }
580
581 /*
582  * Memory management for jumbo frames.
583  */
584 static int
585 bge_alloc_jumbo_mem(struct bge_softc *sc)
586 {
587         struct bge_jslot *entry;
588         caddr_t ptr;
589         int i;
590
591         /* Grab a big chunk o' storage. */
592         sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
593                 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
594
595         if (sc->bge_cdata.bge_jumbo_buf == NULL) {
596                 if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
597                 return(ENOBUFS);
598         }
599
600         SLIST_INIT(&sc->bge_jfree_listhead);
601
602         /*
603          * Now divide it up into 9K pieces and save the addresses
604          * in an array. Note that we play an evil trick here by using
605          * the first few bytes in the buffer to hold the the address
606          * of the softc structure for this interface. This is because
607          * bge_jfree() needs it, but it is called by the mbuf management
608          * code which will not pass it to us explicitly.
609          */
610         ptr = sc->bge_cdata.bge_jumbo_buf;
611         for (i = 0; i < BGE_JSLOTS; i++) {
612                 entry = &sc->bge_cdata.bge_jslots[i];
613                 entry->bge_sc = sc;
614                 entry->bge_buf = ptr;
615                 entry->bge_inuse = 0;
616                 entry->bge_slot = i;
617                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
618                 ptr += BGE_JLEN;
619         }
620
621         return(0);
622 }
623
624 static void
625 bge_free_jumbo_mem(struct bge_softc *sc)
626 {
627         contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
628 }
629
630 /*
631  * Allocate a jumbo buffer.
632  */
633 static struct bge_jslot *
634 bge_jalloc(struct bge_softc *sc)
635 {
636         struct bge_jslot *entry;
637
638         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
639
640         if (entry == NULL) {
641                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
642                 return(NULL);
643         }
644
645         SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
646         entry->bge_inuse = 1;
647         return(entry);
648 }
649
650 /*
651  * Adjust usage count on a jumbo buffer.
652  */
653 static void
654 bge_jref(void *arg)
655 {
656         struct bge_jslot *entry = (struct bge_jslot *)arg;
657         struct bge_softc *sc = entry->bge_sc;
658
659         if (sc == NULL)
660                 panic("bge_jref: can't find softc pointer!");
661
662         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
663                 panic("bge_jref: asked to reference buffer "
664                     "that we don't manage!");
665         else if (entry->bge_inuse == 0)
666                 panic("bge_jref: buffer already free!");
667         else
668                 entry->bge_inuse++;
669 }
670
671 /*
672  * Release a jumbo buffer.
673  */
674 static void
675 bge_jfree(void *arg)
676 {
677         struct bge_jslot *entry = (struct bge_jslot *)arg;
678         struct bge_softc *sc = entry->bge_sc;
679
680         if (sc == NULL)
681                 panic("bge_jfree: can't find softc pointer!");
682
683         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
684                 panic("bge_jfree: asked to free buffer that we don't manage!");
685         else if (entry->bge_inuse == 0)
686                 panic("bge_jfree: buffer already free!");
687         else if (--entry->bge_inuse == 0)
688                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
689 }
690
691
692 /*
693  * Intialize a standard receive ring descriptor.
694  */
695 static int
696 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
697 {
698         struct mbuf *m_new = NULL;
699         struct bge_rx_bd *r;
700
701         if (m == NULL) {
702                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
703                 if (m_new == NULL)
704                         return (ENOBUFS);
705                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
706         } else {
707                 m_new = m;
708                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
709                 m_new->m_data = m_new->m_ext.ext_buf;
710         }
711
712         if (!sc->bge_rx_alignment_bug)
713                 m_adj(m_new, ETHER_ALIGN);
714         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
715         r = &sc->bge_rdata->bge_rx_std_ring[i];
716         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
717         r->bge_flags = BGE_RXBDFLAG_END;
718         r->bge_len = m_new->m_len;
719         r->bge_idx = i;
720
721         return(0);
722 }
723
724 /*
725  * Initialize a jumbo receive ring descriptor. This allocates
726  * a jumbo buffer from the pool managed internally by the driver.
727  */
728 static int
729 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
730 {
731         struct mbuf *m_new = NULL;
732         struct bge_rx_bd *r;
733
734         if (m == NULL) {
735                 struct bge_jslot *buf;
736
737                 /* Allocate the mbuf. */
738                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
739                 if (m_new == NULL)
740                         return(ENOBUFS);
741
742                 /* Allocate the jumbo buffer */
743                 buf = bge_jalloc(sc);
744                 if (buf == NULL) {
745                         m_freem(m_new);
746                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
747                             "-- packet dropped!\n");
748                         return(ENOBUFS);
749                 }
750
751                 /* Attach the buffer to the mbuf. */
752                 m_new->m_ext.ext_arg = buf;
753                 m_new->m_ext.ext_buf = buf->bge_buf;
754                 m_new->m_ext.ext_free = bge_jfree;
755                 m_new->m_ext.ext_ref = bge_jref;
756                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
757
758                 m_new->m_data = m_new->m_ext.ext_buf;
759                 m_new->m_flags |= M_EXT;
760                 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
761         } else {
762                 m_new = m;
763                 m_new->m_data = m_new->m_ext.ext_buf;
764                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
765         }
766
767         if (!sc->bge_rx_alignment_bug)
768                 m_adj(m_new, ETHER_ALIGN);
769         /* Set up the descriptor. */
770         r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
771         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
772         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
773         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
774         r->bge_len = m_new->m_len;
775         r->bge_idx = i;
776
777         return(0);
778 }
779
780 /*
781  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
782  * that's 1MB or memory, which is a lot. For now, we fill only the first
783  * 256 ring entries and hope that our CPU is fast enough to keep up with
784  * the NIC.
785  */
786 static int
787 bge_init_rx_ring_std(struct bge_softc *sc)
788 {
789         int i;
790
791         for (i = 0; i < BGE_SSLOTS; i++) {
792                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
793                         return(ENOBUFS);
794         };
795
796         sc->bge_std = i - 1;
797         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
798
799         return(0);
800 }
801
802 static void
803 bge_free_rx_ring_std(struct bge_softc *sc)
804 {
805         int i;
806
807         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
808                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
809                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
810                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
811                 }
812                 bzero(&sc->bge_rdata->bge_rx_std_ring[i],
813                     sizeof(struct bge_rx_bd));
814         }
815 }
816
817 static int
818 bge_init_rx_ring_jumbo(struct bge_softc *sc)
819 {
820         int i;
821         struct bge_rcb *rcb;
822
823         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
824                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
825                         return(ENOBUFS);
826         };
827
828         sc->bge_jumbo = i - 1;
829
830         rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
831         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
832         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
833
834         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
835
836         return(0);
837 }
838
839 static void
840 bge_free_rx_ring_jumbo(struct bge_softc *sc)
841 {
842         int i;
843
844         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
845                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
846                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
847                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
848                 }
849                 bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
850                     sizeof(struct bge_rx_bd));
851         }
852 }
853
854 static void
855 bge_free_tx_ring(struct bge_softc *sc)
856 {
857         int i;
858
859         if (sc->bge_rdata->bge_tx_ring == NULL)
860                 return;
861
862         for (i = 0; i < BGE_TX_RING_CNT; i++) {
863                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
864                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
865                         sc->bge_cdata.bge_tx_chain[i] = NULL;
866                 }
867                 bzero(&sc->bge_rdata->bge_tx_ring[i],
868                     sizeof(struct bge_tx_bd));
869         }
870 }
871
872 static int
873 bge_init_tx_ring(struct bge_softc *sc)
874 {
875         sc->bge_txcnt = 0;
876         sc->bge_tx_saved_considx = 0;
877
878         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
879         /* 5700 b2 errata */
880         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
881                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
882
883         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
884         /* 5700 b2 errata */
885         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
886                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
887
888         return(0);
889 }
890
891 static void
892 bge_setmulti(struct bge_softc *sc)
893 {
894         struct ifnet *ifp;
895         struct ifmultiaddr *ifma;
896         uint32_t hashes[4] = { 0, 0, 0, 0 };
897         int h, i;
898
899         ifp = &sc->arpcom.ac_if;
900
901         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
902                 for (i = 0; i < 4; i++)
903                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
904                 return;
905         }
906
907         /* First, zot all the existing filters. */
908         for (i = 0; i < 4; i++)
909                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
910
911         /* Now program new ones. */
912         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
913                 if (ifma->ifma_addr->sa_family != AF_LINK)
914                         continue;
915                 h = ether_crc32_le(
916                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
917                     ETHER_ADDR_LEN) & 0x7f;
918                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
919         }
920
921         for (i = 0; i < 4; i++)
922                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
923 }
924
925 /*
926  * Do endian, PCI and DMA initialization. Also check the on-board ROM
927  * self-test results.
928  */
929 static int
930 bge_chipinit(struct bge_softc *sc)
931 {
932         int i;
933         uint32_t dma_rw_ctl;
934
935         /* Set endianness before we access any non-PCI registers. */
936 #if BYTE_ORDER == BIG_ENDIAN
937         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
938             BGE_BIGENDIAN_INIT, 4);
939 #else
940         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
941             BGE_LITTLEENDIAN_INIT, 4);
942 #endif
943
944         /*
945          * Check the 'ROM failed' bit on the RX CPU to see if
946          * self-tests passed.
947          */
948         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
949                 if_printf(&sc->arpcom.ac_if,
950                           "RX CPU self-diagnostics failed!\n");
951                 return(ENODEV);
952         }
953
954         /* Clear the MAC control register */
955         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
956
957         /*
958          * Clear the MAC statistics block in the NIC's
959          * internal memory.
960          */
961         for (i = BGE_STATS_BLOCK;
962             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
963                 BGE_MEMWIN_WRITE(sc, i, 0);
964
965         for (i = BGE_STATUS_BLOCK;
966             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
967                 BGE_MEMWIN_WRITE(sc, i, 0);
968
969         /* Set up the PCI DMA control register. */
970         if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
971             BGE_PCISTATE_PCI_BUSMODE) {
972                 /* Conventional PCI bus */
973                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
974                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
975                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
976                     (0x0F);
977         } else {
978                 /* PCI-X bus */
979                 /*
980                  * The 5704 uses a different encoding of read/write
981                  * watermarks.
982                  */
983                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
984                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
985                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
986                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
987                 else
988                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
989                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
990                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
991                             (0x0F);
992
993                 /*
994                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
995                  * for hardware bugs.
996                  */
997                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
998                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
999                         uint32_t tmp;
1000
1001                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1002                         if (tmp == 0x6 || tmp == 0x7)
1003                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1004                 }
1005         }
1006
1007         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1008             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1009             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1010                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1011         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1012
1013         /*
1014          * Set up general mode register.
1015          */
1016         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1017             BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1018             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1019             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1020
1021         /*
1022          * Disable memory write invalidate.  Apparently it is not supported
1023          * properly by these devices.
1024          */
1025         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1026
1027         /* Set the timer prescaler (always 66Mhz) */
1028         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1029
1030         return(0);
1031 }
1032
1033 static int
1034 bge_blockinit(struct bge_softc *sc)
1035 {
1036         struct bge_rcb *rcb;
1037         volatile struct bge_rcb *vrcb;
1038         int i;
1039
1040         /*
1041          * Initialize the memory window pointer register so that
1042          * we can access the first 32K of internal NIC RAM. This will
1043          * allow us to set up the TX send ring RCBs and the RX return
1044          * ring RCBs, plus other things which live in NIC memory.
1045          */
1046         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1047
1048         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1049
1050         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1051                 /* Configure mbuf memory pool */
1052                 if (sc->bge_extram) {
1053                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1054                             BGE_EXT_SSRAM);
1055                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1056                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1057                         else
1058                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1059                 } else {
1060                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1061                             BGE_BUFFPOOL_1);
1062                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1063                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1064                         else
1065                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1066                 }
1067
1068                 /* Configure DMA resource pool */
1069                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1070                     BGE_DMA_DESCRIPTORS);
1071                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1072         }
1073
1074         /* Configure mbuf pool watermarks */
1075         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
1076                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1077                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1078         } else {
1079                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1080                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1081         }
1082         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1083
1084         /* Configure DMA resource watermarks */
1085         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1086         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1087
1088         /* Enable buffer manager */
1089         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1090                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1091                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1092
1093                 /* Poll for buffer manager start indication */
1094                 for (i = 0; i < BGE_TIMEOUT; i++) {
1095                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1096                                 break;
1097                         DELAY(10);
1098                 }
1099
1100                 if (i == BGE_TIMEOUT) {
1101                         if_printf(&sc->arpcom.ac_if,
1102                                   "buffer manager failed to start\n");
1103                         return(ENXIO);
1104                 }
1105         }
1106
1107         /* Enable flow-through queues */
1108         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1109         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1110
1111         /* Wait until queue initialization is complete */
1112         for (i = 0; i < BGE_TIMEOUT; i++) {
1113                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1114                         break;
1115                 DELAY(10);
1116         }
1117
1118         if (i == BGE_TIMEOUT) {
1119                 if_printf(&sc->arpcom.ac_if,
1120                           "flow-through queue init failed\n");
1121                 return(ENXIO);
1122         }
1123
1124         /* Initialize the standard RX ring control block */
1125         rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1126         BGE_HOSTADDR(rcb->bge_hostaddr,
1127             vtophys(&sc->bge_rdata->bge_rx_std_ring));
1128         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1129                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1130         else
1131                 rcb->bge_maxlen_flags =
1132                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1133         if (sc->bge_extram)
1134                 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1135         else
1136                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1137         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1138         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1139         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1140         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1141
1142         /*
1143          * Initialize the jumbo RX ring control block
1144          * We set the 'ring disabled' bit in the flags
1145          * field until we're actually ready to start
1146          * using this ring (i.e. once we set the MTU
1147          * high enough to require it).
1148          */
1149         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1150                 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1151                 BGE_HOSTADDR(rcb->bge_hostaddr,
1152                     vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1153                 rcb->bge_maxlen_flags =
1154                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1155                     BGE_RCB_FLAG_RING_DISABLED);
1156                 if (sc->bge_extram)
1157                         rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1158                 else
1159                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1160                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1161                     rcb->bge_hostaddr.bge_addr_hi);
1162                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1163                     rcb->bge_hostaddr.bge_addr_lo);
1164                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1165                     rcb->bge_maxlen_flags);
1166                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1167
1168                 /* Set up dummy disabled mini ring RCB */
1169                 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1170                 rcb->bge_maxlen_flags =
1171                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1172                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1173                     rcb->bge_maxlen_flags);
1174         }
1175
1176         /*
1177          * Set the BD ring replentish thresholds. The recommended
1178          * values are 1/8th the number of descriptors allocated to
1179          * each ring.
1180          */
1181         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1182         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1183
1184         /*
1185          * Disable all unused send rings by setting the 'ring disabled'
1186          * bit in the flags field of all the TX send ring control blocks.
1187          * These are located in NIC memory.
1188          */
1189         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1190             BGE_SEND_RING_RCB);
1191         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1192                 vrcb->bge_maxlen_flags =
1193                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1194                 vrcb->bge_nicaddr = 0;
1195                 vrcb++;
1196         }
1197
1198         /* Configure TX RCB 0 (we use only the first ring) */
1199         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1200             BGE_SEND_RING_RCB);
1201         vrcb->bge_hostaddr.bge_addr_hi = 0;
1202         BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1203         vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1204         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1205                 vrcb->bge_maxlen_flags =
1206                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1207
1208         /* Disable all unused RX return rings */
1209         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1210             BGE_RX_RETURN_RING_RCB);
1211         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1212                 vrcb->bge_hostaddr.bge_addr_hi = 0;
1213                 vrcb->bge_hostaddr.bge_addr_lo = 0;
1214                 vrcb->bge_maxlen_flags =
1215                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1216                     BGE_RCB_FLAG_RING_DISABLED);
1217                 vrcb->bge_nicaddr = 0;
1218                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1219                     (i * (sizeof(uint64_t))), 0);
1220                 vrcb++;
1221         }
1222
1223         /* Initialize RX ring indexes */
1224         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1225         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1226         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1227
1228         /*
1229          * Set up RX return ring 0
1230          * Note that the NIC address for RX return rings is 0x00000000.
1231          * The return rings live entirely within the host, so the
1232          * nicaddr field in the RCB isn't used.
1233          */
1234         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1235             BGE_RX_RETURN_RING_RCB);
1236         vrcb->bge_hostaddr.bge_addr_hi = 0;
1237         BGE_HOSTADDR(vrcb->bge_hostaddr,
1238             vtophys(&sc->bge_rdata->bge_rx_return_ring));
1239         vrcb->bge_nicaddr = 0x00000000;
1240         vrcb->bge_maxlen_flags =
1241             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1242
1243         /* Set random backoff seed for TX */
1244         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1245             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1246             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1247             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1248             BGE_TX_BACKOFF_SEED_MASK);
1249
1250         /* Set inter-packet gap */
1251         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1252
1253         /*
1254          * Specify which ring to use for packets that don't match
1255          * any RX rules.
1256          */
1257         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1258
1259         /*
1260          * Configure number of RX lists. One interrupt distribution
1261          * list, sixteen active lists, one bad frames class.
1262          */
1263         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1264
1265         /* Inialize RX list placement stats mask. */
1266         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1267         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1268
1269         /* Disable host coalescing until we get it set up */
1270         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1271
1272         /* Poll to make sure it's shut down. */
1273         for (i = 0; i < BGE_TIMEOUT; i++) {
1274                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1275                         break;
1276                 DELAY(10);
1277         }
1278
1279         if (i == BGE_TIMEOUT) {
1280                 if_printf(&sc->arpcom.ac_if,
1281                           "host coalescing engine failed to idle\n");
1282                 return(ENXIO);
1283         }
1284
1285         /* Set up host coalescing defaults */
1286         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1287         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1288         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1289         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1290         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1291                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1292                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1293         }
1294         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1295         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1296
1297         /* Set up address of statistics block */
1298         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1299                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1300                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1301                     vtophys(&sc->bge_rdata->bge_info.bge_stats));
1302
1303                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1304                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1305                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1306         }
1307
1308         /* Set up address of status block */
1309         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1310         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1311             vtophys(&sc->bge_rdata->bge_status_block));
1312
1313         sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1314         sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1315
1316         /* Turn on host coalescing state machine */
1317         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1318
1319         /* Turn on RX BD completion state machine and enable attentions */
1320         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1321             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1322
1323         /* Turn on RX list placement state machine */
1324         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1325
1326         /* Turn on RX list selector state machine. */
1327         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1328                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1329
1330         /* Turn on DMA, clear stats */
1331         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1332             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1333             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1334             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1335             (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1336
1337         /* Set misc. local control, enable interrupts on attentions */
1338         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1339
1340 #ifdef notdef
1341         /* Assert GPIO pins for PHY reset */
1342         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1343             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1344         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1345             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1346 #endif
1347
1348         /* Turn on DMA completion state machine */
1349         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1350                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1351
1352         /* Turn on write DMA state machine */
1353         CSR_WRITE_4(sc, BGE_WDMA_MODE,
1354             BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1355         
1356         /* Turn on read DMA state machine */
1357         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1358             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1359
1360         /* Turn on RX data completion state machine */
1361         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1362
1363         /* Turn on RX BD initiator state machine */
1364         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1365
1366         /* Turn on RX data and RX BD initiator state machine */
1367         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1368
1369         /* Turn on Mbuf cluster free state machine */
1370         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1371                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1372
1373         /* Turn on send BD completion state machine */
1374         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1375
1376         /* Turn on send data completion state machine */
1377         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1378
1379         /* Turn on send data initiator state machine */
1380         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1381
1382         /* Turn on send BD initiator state machine */
1383         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1384
1385         /* Turn on send BD selector state machine */
1386         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1387
1388         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1389         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1390             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1391
1392         /* ack/clear link change events */
1393         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1394             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1395             BGE_MACSTAT_LINK_CHANGED);
1396
1397         /* Enable PHY auto polling (for MII/GMII only) */
1398         if (sc->bge_tbi) {
1399                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1400         } else {
1401                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1402                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1403                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1404                             BGE_EVTENB_MI_INTERRUPT);
1405         }
1406
1407         /* Enable link state change attentions. */
1408         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1409
1410         return(0);
1411 }
1412
1413 /*
1414  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1415  * against our list and return its name if we find a match. Note
1416  * that since the Broadcom controller contains VPD support, we
1417  * can get the device name string from the controller itself instead
1418  * of the compiled-in string. This is a little slow, but it guarantees
1419  * we'll always announce the right product name.
1420  */
1421 static int
1422 bge_probe(device_t dev)
1423 {
1424         struct bge_softc *sc;
1425         struct bge_type *t;
1426         char *descbuf;
1427         uint16_t product, vendor;
1428
1429         product = pci_get_device(dev);
1430         vendor = pci_get_vendor(dev);
1431
1432         for (t = bge_devs; t->bge_name != NULL; t++) {
1433                 if (vendor == t->bge_vid && product == t->bge_did)
1434                         break;
1435         }
1436
1437         if (t->bge_name == NULL)
1438                 return(ENXIO);
1439
1440         sc = device_get_softc(dev);
1441 #ifdef notdef
1442         sc->bge_dev = dev;
1443
1444         bge_vpd_read(sc);
1445         device_set_desc(dev, sc->bge_vpd_prodname);
1446 #endif
1447         descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1448         snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1449             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1450         device_set_desc_copy(dev, descbuf);
1451         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1452                 sc->bge_no_3_led = 1;
1453         free(descbuf, M_TEMP);
1454         return(0);
1455 }
1456
1457 static int
1458 bge_attach(device_t dev)
1459 {
1460         int s;
1461         uint32_t command;
1462         struct ifnet *ifp;
1463         struct bge_softc *sc;
1464         uint32_t hwcfg = 0;
1465         uint32_t mac_addr = 0;
1466         int error = 0, rid;
1467         uint8_t ether_addr[ETHER_ADDR_LEN];
1468
1469         s = splimp();
1470
1471         sc = device_get_softc(dev);
1472         sc->bge_dev = dev;
1473         callout_init(&sc->bge_stat_timer);
1474
1475         /*
1476          * Map control/status registers.
1477          */
1478         pci_enable_busmaster(dev);
1479         pci_enable_io(dev, SYS_RES_MEMORY);
1480         command = pci_read_config(dev, PCIR_COMMAND, 4);
1481
1482         if (!(command & PCIM_CMD_MEMEN)) {
1483                 device_printf(dev, "failed to enable memory mapping!\n");
1484                 error = ENXIO;
1485                 goto fail;
1486         }
1487
1488         rid = BGE_PCI_BAR0;
1489         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1490             RF_ACTIVE);
1491
1492         if (sc->bge_res == NULL) {
1493                 device_printf(dev, "couldn't map memory\n");
1494                 error = ENXIO;
1495                 goto fail;
1496         }
1497
1498         sc->bge_btag = rman_get_bustag(sc->bge_res);
1499         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1500         sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1501
1502         /* Allocate interrupt */
1503         rid = 0;
1504
1505         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1506             RF_SHAREABLE | RF_ACTIVE);
1507
1508         if (sc->bge_irq == NULL) {
1509                 device_printf(dev, "couldn't map interrupt\n");
1510                 error = ENXIO;
1511                 goto fail;
1512         }
1513
1514         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1515                                bge_intr, sc, &sc->bge_intrhand, NULL);
1516
1517         if (error) {
1518                 bge_release_resources(sc);
1519                 device_printf(dev, "couldn't set up irq\n");
1520                 goto fail;
1521         }
1522
1523         ifp = &sc->arpcom.ac_if;
1524         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1525
1526         /* Try to reset the chip. */
1527         bge_reset(sc);
1528
1529         if (bge_chipinit(sc)) {
1530                 device_printf(dev, "chip initialization failed\n");
1531                 bge_release_resources(sc);
1532                 error = ENXIO;
1533                 goto fail;
1534         }
1535
1536         /*
1537          * Get station address from the EEPROM.
1538          */
1539         mac_addr = bge_readmem_ind(sc, 0x0c14);
1540         if ((mac_addr >> 16) == 0x484b) {
1541                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1542                 ether_addr[1] = (uint8_t)mac_addr;
1543                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1544                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1545                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1546                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1547                 ether_addr[5] = (uint8_t)mac_addr;
1548         } else if (bge_read_eeprom(sc, ether_addr,
1549             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1550                 device_printf(dev, "failed to read station address\n");
1551                 bge_release_resources(sc);
1552                 error = ENXIO;
1553                 goto fail;
1554         }
1555
1556         /* Allocate the general information block and ring buffers. */
1557         sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1558             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1559
1560         if (sc->bge_rdata == NULL) {
1561                 bge_release_resources(sc);
1562                 error = ENXIO;
1563                 device_printf(dev, "no memory for list buffers!\n");
1564                 goto fail;
1565         }
1566
1567         bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1568
1569         /* Save ASIC rev. */
1570
1571         sc->bge_chipid =
1572             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1573             BGE_PCIMISCCTL_ASICREV;
1574         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1575         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1576
1577         /*
1578          * Try to allocate memory for jumbo buffers.
1579          * The 5705 does not appear to support jumbo frames.
1580          */
1581         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1582                 if (bge_alloc_jumbo_mem(sc)) {
1583                         device_printf(dev, "jumbo buffer allocation failed\n");
1584                         bge_release_resources(sc);
1585                         error = ENXIO;
1586                         goto fail;
1587                 }
1588         }
1589
1590         /* Set default tuneable values. */
1591         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1592         sc->bge_rx_coal_ticks = 150;
1593         sc->bge_tx_coal_ticks = 150;
1594         sc->bge_rx_max_coal_bds = 64;
1595         sc->bge_tx_max_coal_bds = 128;
1596
1597         /* 5705 limits RX return ring to 512 entries. */
1598         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1599                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1600         else
1601                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1602
1603         /* Set up ifnet structure */
1604         ifp->if_softc = sc;
1605         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1606         ifp->if_ioctl = bge_ioctl;
1607         ifp->if_start = bge_start;
1608         ifp->if_watchdog = bge_watchdog;
1609         ifp->if_init = bge_init;
1610         ifp->if_mtu = ETHERMTU;
1611         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1612         ifq_set_ready(&ifp->if_snd);
1613         ifp->if_hwassist = BGE_CSUM_FEATURES;
1614         ifp->if_capabilities = IFCAP_HWCSUM;
1615         ifp->if_capenable = ifp->if_capabilities;
1616
1617         /*
1618          * Figure out what sort of media we have by checking the
1619          * hardware config word in the first 32k of NIC internal memory,
1620          * or fall back to examining the EEPROM if necessary.
1621          * Note: on some BCM5700 cards, this value appears to be unset.
1622          * If that's the case, we have to rely on identifying the NIC
1623          * by its PCI subsystem ID, as we do below for the SysKonnect
1624          * SK-9D41.
1625          */
1626         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1627                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1628         else {
1629                 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1630                                 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1631                 hwcfg = ntohl(hwcfg);
1632         }
1633
1634         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1635                 sc->bge_tbi = 1;
1636
1637         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1638         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1639                 sc->bge_tbi = 1;
1640
1641         if (sc->bge_tbi) {
1642                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1643                     bge_ifmedia_upd, bge_ifmedia_sts);
1644                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1645                 ifmedia_add(&sc->bge_ifmedia,
1646                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1647                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1648                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1649         } else {
1650                 /*
1651                  * Do transceiver setup.
1652                  */
1653                 if (mii_phy_probe(dev, &sc->bge_miibus,
1654                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1655                         device_printf(dev, "MII without any PHY!\n");
1656                         bge_release_resources(sc);
1657                         bge_free_jumbo_mem(sc);
1658                         error = ENXIO;
1659                         goto fail;
1660                 }
1661         }
1662
1663         /*
1664          * When using the BCM5701 in PCI-X mode, data corruption has
1665          * been observed in the first few bytes of some received packets.
1666          * Aligning the packet buffer in memory eliminates the corruption.
1667          * Unfortunately, this misaligns the packet payloads.  On platforms
1668          * which do not support unaligned accesses, we will realign the
1669          * payloads by copying the received packets.
1670          */
1671         switch (sc->bge_chipid) {
1672         case BGE_CHIPID_BCM5701_A0:
1673         case BGE_CHIPID_BCM5701_B0:
1674         case BGE_CHIPID_BCM5701_B2:
1675         case BGE_CHIPID_BCM5701_B5:
1676                 /* If in PCI-X mode, work around the alignment bug. */
1677                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1678                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1679                     BGE_PCISTATE_PCI_BUSSPEED)
1680                         sc->bge_rx_alignment_bug = 1;
1681                 break;
1682         }
1683
1684         /*
1685          * Call MI attach routine.
1686          */
1687         ether_ifattach(ifp, ether_addr);
1688
1689 fail:
1690         splx(s);
1691
1692         return(error);
1693 }
1694
1695 static int
1696 bge_detach(device_t dev)
1697 {
1698         struct bge_softc *sc;
1699         struct ifnet *ifp;
1700         int s;
1701
1702         s = splimp();
1703
1704         sc = device_get_softc(dev);
1705         ifp = &sc->arpcom.ac_if;
1706
1707         ether_ifdetach(ifp);
1708         bge_stop(sc);
1709         bge_reset(sc);
1710
1711         if (sc->bge_tbi) {
1712                 ifmedia_removeall(&sc->bge_ifmedia);
1713         } else {
1714                 bus_generic_detach(dev);
1715                 device_delete_child(dev, sc->bge_miibus);
1716         }
1717
1718         bge_release_resources(sc);
1719         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1720                 bge_free_jumbo_mem(sc);
1721
1722         splx(s);
1723
1724         return(0);
1725 }
1726
1727 static void
1728 bge_release_resources(struct bge_softc *sc)
1729 {
1730         device_t dev;
1731
1732         dev = sc->bge_dev;
1733
1734         if (sc->bge_vpd_prodname != NULL)
1735                 free(sc->bge_vpd_prodname, M_DEVBUF);
1736
1737         if (sc->bge_vpd_readonly != NULL)
1738                 free(sc->bge_vpd_readonly, M_DEVBUF);
1739
1740         if (sc->bge_intrhand != NULL)
1741                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1742
1743         if (sc->bge_irq != NULL)
1744                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1745
1746         if (sc->bge_res != NULL)
1747                 bus_release_resource(dev, SYS_RES_MEMORY,
1748                     BGE_PCI_BAR0, sc->bge_res);
1749
1750         if (sc->bge_rdata != NULL)
1751                 contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1752                            M_DEVBUF);
1753
1754         return;
1755 }
1756
1757 static void
1758 bge_reset(struct bge_softc *sc)
1759 {
1760         device_t dev;
1761         uint32_t cachesize, command, pcistate;
1762         int i, val = 0;
1763
1764         dev = sc->bge_dev;
1765
1766         /* Save some important PCI state. */
1767         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1768         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1769         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1770
1771         pci_write_config(dev, BGE_PCI_MISC_CTL,
1772             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1773             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1774
1775         /* Issue global reset */
1776         bge_writereg_ind(sc, BGE_MISC_CFG,
1777                          BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1));
1778
1779         DELAY(1000);
1780
1781         /* Reset some of the PCI state that got zapped by reset */
1782         pci_write_config(dev, BGE_PCI_MISC_CTL,
1783             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1784             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1785         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1786         pci_write_config(dev, BGE_PCI_CMD, command, 4);
1787         bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1788
1789         /*
1790          * Prevent PXE restart: write a magic number to the
1791          * general communications memory at 0xB50.
1792          */
1793         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1794         /*
1795          * Poll the value location we just wrote until
1796          * we see the 1's complement of the magic number.
1797          * This indicates that the firmware initialization
1798          * is complete.
1799          */
1800         for (i = 0; i < BGE_TIMEOUT; i++) {
1801                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1802                 if (val == ~BGE_MAGIC_NUMBER)
1803                         break;
1804                 DELAY(10);
1805         }
1806         
1807         if (i == BGE_TIMEOUT) {
1808                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1809                 return;
1810         }
1811
1812         /*
1813          * XXX Wait for the value of the PCISTATE register to
1814          * return to its original pre-reset state. This is a
1815          * fairly good indicator of reset completion. If we don't
1816          * wait for the reset to fully complete, trying to read
1817          * from the device's non-PCI registers may yield garbage
1818          * results.
1819          */
1820         for (i = 0; i < BGE_TIMEOUT; i++) {
1821                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1822                         break;
1823                 DELAY(10);
1824         }
1825
1826         /* Enable memory arbiter. */
1827         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1828                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1829
1830         /* Fix up byte swapping */
1831         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1832             BGE_MODECTL_BYTESWAP_DATA);
1833
1834         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1835
1836         DELAY(10000);
1837
1838         return;
1839 }
1840
1841 /*
1842  * Frame reception handling. This is called if there's a frame
1843  * on the receive return list.
1844  *
1845  * Note: we have to be able to handle two possibilities here:
1846  * 1) the frame is from the jumbo recieve ring
1847  * 2) the frame is from the standard receive ring
1848  */
1849
1850 static void
1851 bge_rxeof(struct bge_softc *sc)
1852 {
1853         struct ifnet *ifp;
1854         int stdcnt = 0, jumbocnt = 0;
1855
1856         ifp = &sc->arpcom.ac_if;
1857
1858         while(sc->bge_rx_saved_considx !=
1859             sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1860                 struct bge_rx_bd        *cur_rx;
1861                 uint32_t                rxidx;
1862                 struct mbuf             *m = NULL;
1863                 uint16_t                vlan_tag = 0;
1864                 int                     have_tag = 0;
1865
1866                 cur_rx =
1867             &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1868
1869                 rxidx = cur_rx->bge_idx;
1870                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1871
1872                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1873                         have_tag = 1;
1874                         vlan_tag = cur_rx->bge_vlan_tag;
1875                 }
1876
1877                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1878                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1879                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1880                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1881                         jumbocnt++;
1882                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1883                                 ifp->if_ierrors++;
1884                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1885                                 continue;
1886                         }
1887                         if (bge_newbuf_jumbo(sc,
1888                             sc->bge_jumbo, NULL) == ENOBUFS) {
1889                                 ifp->if_ierrors++;
1890                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1891                                 continue;
1892                         }
1893                 } else {
1894                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1895                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1896                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1897                         stdcnt++;
1898                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1899                                 ifp->if_ierrors++;
1900                                 bge_newbuf_std(sc, sc->bge_std, m);
1901                                 continue;
1902                         }
1903                         if (bge_newbuf_std(sc, sc->bge_std,
1904                             NULL) == ENOBUFS) {
1905                                 ifp->if_ierrors++;
1906                                 bge_newbuf_std(sc, sc->bge_std, m);
1907                                 continue;
1908                         }
1909                 }
1910
1911                 ifp->if_ipackets++;
1912 #ifndef __i386__
1913                 /*
1914                  * The i386 allows unaligned accesses, but for other
1915                  * platforms we must make sure the payload is aligned.
1916                  */
1917                 if (sc->bge_rx_alignment_bug) {
1918                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
1919                             cur_rx->bge_len);
1920                         m->m_data += ETHER_ALIGN;
1921                 }
1922 #endif
1923                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
1924                 m->m_pkthdr.rcvif = ifp;
1925
1926 #if 0 /* currently broken for some packets, possibly related to TCP options */
1927                 if (ifp->if_hwassist) {
1928                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1929                         if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
1930                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1931                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
1932                                 m->m_pkthdr.csum_data =
1933                                     cur_rx->bge_tcp_udp_csum;
1934                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
1935                         }
1936                 }
1937 #endif
1938
1939                 /*
1940                  * If we received a packet with a vlan tag, pass it
1941                  * to vlan_input() instead of ether_input().
1942                  */
1943                 if (have_tag) {
1944                         VLAN_INPUT_TAG(m, vlan_tag);
1945                         have_tag = vlan_tag = 0;
1946                         continue;
1947                 }
1948
1949                 (*ifp->if_input)(ifp, m);
1950         }
1951
1952         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
1953         if (stdcnt)
1954                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1955         if (jumbocnt)
1956                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1957 }
1958
1959 static void
1960 bge_txeof(struct bge_softc *sc)
1961 {
1962         struct bge_tx_bd *cur_tx = NULL;
1963         struct ifnet *ifp;
1964
1965         ifp = &sc->arpcom.ac_if;
1966
1967         /*
1968          * Go through our tx ring and free mbufs for those
1969          * frames that have been sent.
1970          */
1971         while (sc->bge_tx_saved_considx !=
1972             sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
1973                 uint32_t                idx = 0;
1974
1975                 idx = sc->bge_tx_saved_considx;
1976                 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
1977                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
1978                         ifp->if_opackets++;
1979                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
1980                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
1981                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
1982                 }
1983                 sc->bge_txcnt--;
1984                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
1985                 ifp->if_timer = 0;
1986         }
1987
1988         if (cur_tx != NULL)
1989                 ifp->if_flags &= ~IFF_OACTIVE;
1990 }
1991
1992 static void
1993 bge_intr(void *xsc)
1994 {
1995         struct bge_softc *sc = xsc;
1996         struct ifnet *ifp = &sc->arpcom.ac_if;
1997         uint32_t status;
1998
1999 #ifdef notdef
2000         /* Avoid this for now -- checking this register is expensive. */
2001         /* Make sure this is really our interrupt. */
2002         if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2003                 return;
2004 #endif
2005         /* Ack interrupt and stop others from occuring. */
2006         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2007
2008         /*
2009          * Process link state changes.
2010          * Grrr. The link status word in the status block does
2011          * not work correctly on the BCM5700 rev AX and BX chips,
2012          * according to all available information. Hence, we have
2013          * to enable MII interrupts in order to properly obtain
2014          * async link changes. Unfortunately, this also means that
2015          * we have to read the MAC status register to detect link
2016          * changes, thereby adding an additional register access to
2017          * the interrupt handler.
2018          */
2019
2020         if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2021                 status = CSR_READ_4(sc, BGE_MAC_STS);
2022                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2023                         sc->bge_link = 0;
2024                         callout_stop(&sc->bge_stat_timer);
2025                         bge_tick(sc);
2026                         /* Clear the interrupt */
2027                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2028                             BGE_EVTENB_MI_INTERRUPT);
2029                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2030                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2031                             BRGPHY_INTRS);
2032                 }
2033         } else {
2034                 if ((sc->bge_rdata->bge_status_block.bge_status &
2035                     BGE_STATFLAG_UPDATED) &&
2036                     (sc->bge_rdata->bge_status_block.bge_status &
2037                     BGE_STATFLAG_LINKSTATE_CHANGED)) {
2038                         sc->bge_rdata->bge_status_block.bge_status &=
2039                                 ~(BGE_STATFLAG_UPDATED|
2040                                 BGE_STATFLAG_LINKSTATE_CHANGED);
2041                         /*
2042                          * Sometimes PCS encoding errors are detected in
2043                          * TBI mode (on fiber NICs), and for some reason
2044                          * the chip will signal them as link changes.
2045                          * If we get a link change event, but the 'PCS
2046                          * encoding error' bit in the MAC status register
2047                          * is set, don't bother doing a link check.
2048                          * This avoids spurious "gigabit link up" messages
2049                          * that sometimes appear on fiber NICs during
2050                          * periods of heavy traffic. (There should be no
2051                          * effect on copper NICs.)
2052                          */
2053                         status = CSR_READ_4(sc, BGE_MAC_STS);
2054                         if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
2055                             BGE_MACSTAT_MI_COMPLETE))) {
2056                                 sc->bge_link = 0;
2057                                 callout_stop(&sc->bge_stat_timer);
2058                                 bge_tick(sc);
2059                         }
2060                         sc->bge_link = 0;
2061                         callout_stop(&sc->bge_stat_timer);
2062                         bge_tick(sc);
2063                         /* Clear the interrupt */
2064                         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2065                             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2066                             BGE_MACSTAT_LINK_CHANGED);
2067
2068                         /* Force flush the status block cached by PCI bridge */
2069                         CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2070                 }
2071         }
2072
2073         if (ifp->if_flags & IFF_RUNNING) {
2074                 /* Check RX return ring producer/consumer */
2075                 bge_rxeof(sc);
2076
2077                 /* Check TX ring producer/consumer */
2078                 bge_txeof(sc);
2079         }
2080
2081         bge_handle_events(sc);
2082
2083         /* Re-enable interrupts. */
2084         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2085
2086         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2087                 (*ifp->if_start)(ifp);
2088 }
2089
2090 static void
2091 bge_tick(void *xsc)
2092 {
2093         struct bge_softc *sc = xsc;
2094         struct ifnet *ifp = &sc->arpcom.ac_if;
2095         struct mii_data *mii = NULL;
2096         struct ifmedia *ifm = NULL;
2097         int s;
2098
2099         s = splimp();
2100
2101         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
2102                 bge_stats_update_regs(sc);
2103         else
2104                 bge_stats_update(sc);
2105         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2106         if (sc->bge_link) {
2107                 splx(s);
2108                 return;
2109         }
2110
2111         if (sc->bge_tbi) {
2112                 ifm = &sc->bge_ifmedia;
2113                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2114                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2115                         sc->bge_link++;
2116                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2117                         if_printf(ifp, "gigabit link up\n");
2118                         if (!ifq_is_empty(&ifp->if_snd))
2119                                 (*ifp->if_start)(ifp);
2120                 }
2121                 splx(s);
2122                 return;
2123         }
2124
2125         mii = device_get_softc(sc->bge_miibus);
2126         mii_tick(mii);
2127  
2128         if (!sc->bge_link) {
2129                 mii_pollstat(mii);
2130                 if (mii->mii_media_status & IFM_ACTIVE &&
2131                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2132                         sc->bge_link++;
2133                         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2134                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2135                                 if_printf(ifp, "gigabit link up\n");
2136                         if (!ifq_is_empty(&ifp->if_snd))
2137                                 (*ifp->if_start)(ifp);
2138                 }
2139         }
2140
2141         splx(s);
2142 }
2143
2144 static void
2145 bge_stats_update_regs(struct bge_softc *sc)
2146 {
2147         struct ifnet *ifp = &sc->arpcom.ac_if;
2148         struct bge_mac_stats_regs stats;
2149         uint32_t *s;
2150         int i;
2151
2152         s = (uint32_t *)&stats;
2153         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2154                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2155                 s++;
2156         }
2157
2158         ifp->if_collisions +=
2159            (stats.dot3StatsSingleCollisionFrames +
2160            stats.dot3StatsMultipleCollisionFrames +
2161            stats.dot3StatsExcessiveCollisions +
2162            stats.dot3StatsLateCollisions) -
2163            ifp->if_collisions;
2164 }
2165
2166 static void
2167 bge_stats_update(struct bge_softc *sc)
2168 {
2169         struct ifnet *ifp = &sc->arpcom.ac_if;
2170         struct bge_stats *stats;
2171
2172         stats = (struct bge_stats *)(sc->bge_vhandle +
2173             BGE_MEMWIN_START + BGE_STATS_BLOCK);
2174
2175         ifp->if_collisions +=
2176            (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2177            stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2178            stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2179            stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2180            ifp->if_collisions;
2181
2182 #ifdef notdef
2183         ifp->if_collisions +=
2184            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2185            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2186            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2187            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2188            ifp->if_collisions;
2189 #endif
2190 }
2191
2192 /*
2193  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2194  * pointers to descriptors.
2195  */
2196 static int
2197 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2198 {
2199         struct bge_tx_bd *f = NULL;
2200         struct mbuf *m;
2201         uint32_t frag, cur, cnt = 0;
2202         uint16_t csum_flags = 0;
2203         struct ifvlan *ifv = NULL;
2204
2205         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2206             m_head->m_pkthdr.rcvif != NULL &&
2207             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2208                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2209
2210         m = m_head;
2211         cur = frag = *txidx;
2212
2213         if (m_head->m_pkthdr.csum_flags) {
2214                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2215                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2216                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2217                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2218                 if (m_head->m_flags & M_LASTFRAG)
2219                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2220                 else if (m_head->m_flags & M_FRAG)
2221                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2222         }
2223         /*
2224          * Start packing the mbufs in this chain into
2225          * the fragment pointers. Stop when we run out
2226          * of fragments or hit the end of the mbuf chain.
2227          */
2228         for (m = m_head; m != NULL; m = m->m_next) {
2229                 if (m->m_len != 0) {
2230                         f = &sc->bge_rdata->bge_tx_ring[frag];
2231                         if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2232                                 break;
2233                         BGE_HOSTADDR(f->bge_addr,
2234                             vtophys(mtod(m, vm_offset_t)));
2235                         f->bge_len = m->m_len;
2236                         f->bge_flags = csum_flags;
2237                         if (ifv != NULL) {
2238                                 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2239                                 f->bge_vlan_tag = ifv->ifv_tag;
2240                         } else {
2241                                 f->bge_vlan_tag = 0;
2242                         }
2243                         /*
2244                          * Sanity check: avoid coming within 16 descriptors
2245                          * of the end of the ring.
2246                          */
2247                         if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2248                                 return(ENOBUFS);
2249                         cur = frag;
2250                         BGE_INC(frag, BGE_TX_RING_CNT);
2251                         cnt++;
2252                 }
2253         }
2254
2255         if (m != NULL)
2256                 return(ENOBUFS);
2257
2258         if (frag == sc->bge_tx_saved_considx)
2259                 return(ENOBUFS);
2260
2261         sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2262         sc->bge_cdata.bge_tx_chain[cur] = m_head;
2263         sc->bge_txcnt += cnt;
2264
2265         *txidx = frag;
2266
2267         return(0);
2268 }
2269
2270 /*
2271  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2272  * to the mbuf data regions directly in the transmit descriptors.
2273  */
2274 static void
2275 bge_start(struct ifnet *ifp)
2276 {
2277         struct bge_softc *sc;
2278         struct mbuf *m_head = NULL;
2279         uint32_t prodidx = 0;
2280
2281         sc = ifp->if_softc;
2282
2283         if (!sc->bge_link)
2284                 return;
2285
2286         prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2287
2288         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2289                 m_head = ifq_poll(&ifp->if_snd);
2290                 if (m_head == NULL)
2291                         break;
2292
2293                 /*
2294                  * XXX
2295                  * safety overkill.  If this is a fragmented packet chain
2296                  * with delayed TCP/UDP checksums, then only encapsulate
2297                  * it if we have enough descriptors to handle the entire
2298                  * chain at once.
2299                  * (paranoia -- may not actually be needed)
2300                  */
2301                 if (m_head->m_flags & M_FIRSTFRAG &&
2302                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2303                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2304                             m_head->m_pkthdr.csum_data + 16) {
2305                                 ifp->if_flags |= IFF_OACTIVE;
2306                                 break;
2307                         }
2308                 }
2309
2310                 /*
2311                  * Pack the data into the transmit ring. If we
2312                  * don't have room, set the OACTIVE flag and wait
2313                  * for the NIC to drain the ring.
2314                  */
2315                 if (bge_encap(sc, m_head, &prodidx)) {
2316                         ifp->if_flags |= IFF_OACTIVE;
2317                         break;
2318                 }
2319                 m_head = ifq_dequeue(&ifp->if_snd);
2320
2321                 BPF_MTAP(ifp, m_head);
2322         }
2323
2324         /* Transmit */
2325         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2326         /* 5700 b2 errata */
2327         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2328                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2329
2330         /*
2331          * Set a timeout in case the chip goes out to lunch.
2332          */
2333         ifp->if_timer = 5;
2334 }
2335
2336 static void
2337 bge_init(void *xsc)
2338 {
2339         struct bge_softc *sc = xsc;
2340         struct ifnet *ifp = &sc->arpcom.ac_if;
2341         uint16_t *m;
2342         int s;
2343
2344         s = splimp();
2345
2346         if (ifp->if_flags & IFF_RUNNING) {
2347                 splx(s);
2348                 return;
2349         }
2350
2351         /* Cancel pending I/O and flush buffers. */
2352         bge_stop(sc);
2353         bge_reset(sc);
2354         bge_chipinit(sc);
2355
2356         /*
2357          * Init the various state machines, ring
2358          * control blocks and firmware.
2359          */
2360         if (bge_blockinit(sc)) {
2361                 if_printf(ifp, "initialization failure\n");
2362                 splx(s);
2363                 return;
2364         }
2365
2366         /* Specify MTU. */
2367         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2368             ETHER_HDR_LEN + ETHER_CRC_LEN);
2369
2370         /* Load our MAC address. */
2371         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2372         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2373         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2374
2375         /* Enable or disable promiscuous mode as needed. */
2376         if (ifp->if_flags & IFF_PROMISC) {
2377                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2378         } else {
2379                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2380         }
2381
2382         /* Program multicast filter. */
2383         bge_setmulti(sc);
2384
2385         /* Init RX ring. */
2386         bge_init_rx_ring_std(sc);
2387
2388         /*
2389          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2390          * memory to insure that the chip has in fact read the first
2391          * entry of the ring.
2392          */
2393         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2394                 uint32_t                v, i;
2395                 for (i = 0; i < 10; i++) {
2396                         DELAY(20);
2397                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2398                         if (v == (MCLBYTES - ETHER_ALIGN))
2399                                 break;
2400                 }
2401                 if (i == 10)
2402                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2403         }
2404
2405         /* Init jumbo RX ring. */
2406         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2407                 bge_init_rx_ring_jumbo(sc);
2408
2409         /* Init our RX return ring index */
2410         sc->bge_rx_saved_considx = 0;
2411
2412         /* Init TX ring. */
2413         bge_init_tx_ring(sc);
2414
2415         /* Turn on transmitter */
2416         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2417
2418         /* Turn on receiver */
2419         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2420
2421         /* Tell firmware we're alive. */
2422         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2423
2424         /* Enable host interrupts. */
2425         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2426         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2427         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2428
2429         bge_ifmedia_upd(ifp);
2430
2431         ifp->if_flags |= IFF_RUNNING;
2432         ifp->if_flags &= ~IFF_OACTIVE;
2433
2434         splx(s);
2435
2436         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2437 }
2438
2439 /*
2440  * Set media options.
2441  */
2442 static int
2443 bge_ifmedia_upd(struct ifnet *ifp)
2444 {
2445         struct bge_softc *sc = ifp->if_softc;
2446         struct ifmedia *ifm = &sc->bge_ifmedia;
2447         struct mii_data *mii;
2448
2449         /* If this is a 1000baseX NIC, enable the TBI port. */
2450         if (sc->bge_tbi) {
2451                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2452                         return(EINVAL);
2453                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2454                 case IFM_AUTO:
2455                         break;
2456                 case IFM_1000_SX:
2457                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2458                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2459                                     BGE_MACMODE_HALF_DUPLEX);
2460                         } else {
2461                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2462                                     BGE_MACMODE_HALF_DUPLEX);
2463                         }
2464                         break;
2465                 default:
2466                         return(EINVAL);
2467                 }
2468                 return(0);
2469         }
2470
2471         mii = device_get_softc(sc->bge_miibus);
2472         sc->bge_link = 0;
2473         if (mii->mii_instance) {
2474                 struct mii_softc *miisc;
2475                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2476                     miisc = LIST_NEXT(miisc, mii_list))
2477                         mii_phy_reset(miisc);
2478         }
2479         mii_mediachg(mii);
2480
2481         return(0);
2482 }
2483
2484 /*
2485  * Report current media status.
2486  */
2487 static void
2488 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2489 {
2490         struct bge_softc *sc = ifp->if_softc;
2491         struct mii_data *mii;
2492
2493         if (sc->bge_tbi) {
2494                 ifmr->ifm_status = IFM_AVALID;
2495                 ifmr->ifm_active = IFM_ETHER;
2496                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2497                     BGE_MACSTAT_TBI_PCS_SYNCHED)
2498                         ifmr->ifm_status |= IFM_ACTIVE;
2499                 ifmr->ifm_active |= IFM_1000_SX;
2500                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2501                         ifmr->ifm_active |= IFM_HDX;    
2502                 else
2503                         ifmr->ifm_active |= IFM_FDX;
2504                 return;
2505         }
2506
2507         mii = device_get_softc(sc->bge_miibus);
2508         mii_pollstat(mii);
2509         ifmr->ifm_active = mii->mii_media_active;
2510         ifmr->ifm_status = mii->mii_media_status;
2511 }
2512
2513 static int
2514 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2515 {
2516         struct bge_softc *sc = ifp->if_softc;
2517         struct ifreq *ifr = (struct ifreq *) data;
2518         int s, mask, error = 0;
2519         struct mii_data *mii;
2520
2521         s = splimp();
2522
2523         switch(command) {
2524         case SIOCSIFMTU:
2525                 /* Disallow jumbo frames on 5705. */
2526                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2527                     ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2528                         error = EINVAL;
2529                 else {
2530                         ifp->if_mtu = ifr->ifr_mtu;
2531                         ifp->if_flags &= ~IFF_RUNNING;
2532                         bge_init(sc);
2533                 }
2534                 break;
2535         case SIOCSIFFLAGS:
2536                 if (ifp->if_flags & IFF_UP) {
2537                         /*
2538                          * If only the state of the PROMISC flag changed,
2539                          * then just use the 'set promisc mode' command
2540                          * instead of reinitializing the entire NIC. Doing
2541                          * a full re-init means reloading the firmware and
2542                          * waiting for it to start up, which may take a
2543                          * second or two.
2544                          */
2545                         if (ifp->if_flags & IFF_RUNNING &&
2546                             ifp->if_flags & IFF_PROMISC &&
2547                             !(sc->bge_if_flags & IFF_PROMISC)) {
2548                                 BGE_SETBIT(sc, BGE_RX_MODE,
2549                                     BGE_RXMODE_RX_PROMISC);
2550                         } else if (ifp->if_flags & IFF_RUNNING &&
2551                             !(ifp->if_flags & IFF_PROMISC) &&
2552                             sc->bge_if_flags & IFF_PROMISC) {
2553                                 BGE_CLRBIT(sc, BGE_RX_MODE,
2554                                     BGE_RXMODE_RX_PROMISC);
2555                         } else
2556                                 bge_init(sc);
2557                 } else {
2558                         if (ifp->if_flags & IFF_RUNNING) {
2559                                 bge_stop(sc);
2560                         }
2561                 }
2562                 sc->bge_if_flags = ifp->if_flags;
2563                 error = 0;
2564                 break;
2565         case SIOCADDMULTI:
2566         case SIOCDELMULTI:
2567                 if (ifp->if_flags & IFF_RUNNING) {
2568                         bge_setmulti(sc);
2569                         error = 0;
2570                 }
2571                 break;
2572         case SIOCSIFMEDIA:
2573         case SIOCGIFMEDIA:
2574                 if (sc->bge_tbi) {
2575                         error = ifmedia_ioctl(ifp, ifr,
2576                             &sc->bge_ifmedia, command);
2577                 } else {
2578                         mii = device_get_softc(sc->bge_miibus);
2579                         error = ifmedia_ioctl(ifp, ifr,
2580                             &mii->mii_media, command);
2581                 }
2582                 break;
2583         case SIOCSIFCAP:
2584                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2585                 if (mask & IFCAP_HWCSUM) {
2586                         if (IFCAP_HWCSUM & ifp->if_capenable)
2587                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
2588                         else
2589                                 ifp->if_capenable |= IFCAP_HWCSUM;
2590                 }
2591                 error = 0;
2592                 break;
2593         default:
2594                 error = ether_ioctl(ifp, command, data);
2595                 break;
2596         }
2597
2598         splx(s);
2599
2600         return(error);
2601 }
2602
2603 static void
2604 bge_watchdog(struct ifnet *ifp)
2605 {
2606         struct bge_softc *sc = ifp->if_softc;
2607
2608         if_printf(ifp, "watchdog timeout -- resetting\n");
2609
2610         ifp->if_flags &= ~IFF_RUNNING;
2611         bge_init(sc);
2612
2613         ifp->if_oerrors++;
2614 }
2615
2616 /*
2617  * Stop the adapter and free any mbufs allocated to the
2618  * RX and TX lists.
2619  */
2620 static void
2621 bge_stop(struct bge_softc *sc)
2622 {
2623         struct ifnet *ifp = &sc->arpcom.ac_if;
2624         struct ifmedia_entry *ifm;
2625         struct mii_data *mii = NULL;
2626         int mtmp, itmp;
2627
2628         if (!sc->bge_tbi)
2629                 mii = device_get_softc(sc->bge_miibus);
2630
2631         callout_stop(&sc->bge_stat_timer);
2632
2633         /*
2634          * Disable all of the receiver blocks
2635          */
2636         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2637         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2638         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2639         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2640                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2641         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2642         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2643         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2644
2645         /*
2646          * Disable all of the transmit blocks
2647          */
2648         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2649         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2650         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2651         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2652         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2653         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2654                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2655         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2656
2657         /*
2658          * Shut down all of the memory managers and related
2659          * state machines.
2660          */
2661         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2662         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2663         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2664                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2665         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2666         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2667         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
2668                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2669                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2670         }
2671
2672         /* Disable host interrupts. */
2673         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2674         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2675
2676         /*
2677          * Tell firmware we're shutting down.
2678          */
2679         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2680
2681         /* Free the RX lists. */
2682         bge_free_rx_ring_std(sc);
2683
2684         /* Free jumbo RX list. */
2685         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2686                 bge_free_rx_ring_jumbo(sc);
2687
2688         /* Free TX buffers. */
2689         bge_free_tx_ring(sc);
2690
2691         /*
2692          * Isolate/power down the PHY, but leave the media selection
2693          * unchanged so that things will be put back to normal when
2694          * we bring the interface back up.
2695          */
2696         if (!sc->bge_tbi) {
2697                 itmp = ifp->if_flags;
2698                 ifp->if_flags |= IFF_UP;
2699                 ifm = mii->mii_media.ifm_cur;
2700                 mtmp = ifm->ifm_media;
2701                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2702                 mii_mediachg(mii);
2703                 ifm->ifm_media = mtmp;
2704                 ifp->if_flags = itmp;
2705         }
2706
2707         sc->bge_link = 0;
2708
2709         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2710
2711         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2712 }
2713
2714 /*
2715  * Stop all chip I/O so that the kernel's probe routines don't
2716  * get confused by errant DMAs when rebooting.
2717  */
2718 static void
2719 bge_shutdown(device_t dev)
2720 {
2721         struct bge_softc *sc = device_get_softc(dev);
2722
2723         bge_stop(sc); 
2724         bge_reset(sc);
2725 }