igb: Improve tiny packets reception performance on low frequency CPU
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80         if (sc->rss_debug >= lvl) \
81                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else   /* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
85 #endif  /* IGB_RSS_DEBUG */
86
87 #define IGB_NAME        "Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)  \
89         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL { 0, 0, NULL }
91
92 static struct igb_device {
93         uint16_t        vid;
94         uint16_t        did;
95         const char      *desc;
96 } igb_devices[] = {
97         IGB_DEVICE(82575EB_COPPER),
98         IGB_DEVICE(82575EB_FIBER_SERDES),
99         IGB_DEVICE(82575GB_QUAD_COPPER),
100         IGB_DEVICE(82576),
101         IGB_DEVICE(82576_NS),
102         IGB_DEVICE(82576_NS_SERDES),
103         IGB_DEVICE(82576_FIBER),
104         IGB_DEVICE(82576_SERDES),
105         IGB_DEVICE(82576_SERDES_QUAD),
106         IGB_DEVICE(82576_QUAD_COPPER),
107         IGB_DEVICE(82576_QUAD_COPPER_ET2),
108         IGB_DEVICE(82576_VF),
109         IGB_DEVICE(82580_COPPER),
110         IGB_DEVICE(82580_FIBER),
111         IGB_DEVICE(82580_SERDES),
112         IGB_DEVICE(82580_SGMII),
113         IGB_DEVICE(82580_COPPER_DUAL),
114         IGB_DEVICE(82580_QUAD_FIBER),
115         IGB_DEVICE(DH89XXCC_SERDES),
116         IGB_DEVICE(DH89XXCC_SGMII),
117         IGB_DEVICE(DH89XXCC_SFP),
118         IGB_DEVICE(DH89XXCC_BACKPLANE),
119         IGB_DEVICE(I350_COPPER),
120         IGB_DEVICE(I350_FIBER),
121         IGB_DEVICE(I350_SERDES),
122         IGB_DEVICE(I350_SGMII),
123         IGB_DEVICE(I350_VF),
124
125         /* required last entry */
126         IGB_DEVICE_NULL
127 };
128
129 static int      igb_probe(device_t);
130 static int      igb_attach(device_t);
131 static int      igb_detach(device_t);
132 static int      igb_shutdown(device_t);
133 static int      igb_suspend(device_t);
134 static int      igb_resume(device_t);
135
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void     igb_setup_ifp(struct igb_softc *);
138 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
139 static int      igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140 static void     igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
141 static void     igb_add_sysctl(struct igb_softc *);
142 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
143 static int      igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
144 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
145 static void     igb_set_ring_inuse(struct igb_softc *, boolean_t);
146 #ifdef IFPOLL_ENABLE
147 static int      igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
148 static int      igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
149 #endif
150
151 static void     igb_vf_init_stats(struct igb_softc *);
152 static void     igb_reset(struct igb_softc *);
153 static void     igb_update_stats_counters(struct igb_softc *);
154 static void     igb_update_vf_stats_counters(struct igb_softc *);
155 static void     igb_update_link_status(struct igb_softc *);
156 static void     igb_init_tx_unit(struct igb_softc *);
157 static void     igb_init_rx_unit(struct igb_softc *);
158
159 static void     igb_set_vlan(struct igb_softc *);
160 static void     igb_set_multi(struct igb_softc *);
161 static void     igb_set_promisc(struct igb_softc *);
162 static void     igb_disable_promisc(struct igb_softc *);
163
164 static int      igb_alloc_rings(struct igb_softc *);
165 static void     igb_free_rings(struct igb_softc *);
166 static int      igb_create_tx_ring(struct igb_tx_ring *);
167 static int      igb_create_rx_ring(struct igb_rx_ring *);
168 static void     igb_free_tx_ring(struct igb_tx_ring *);
169 static void     igb_free_rx_ring(struct igb_rx_ring *);
170 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
171 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
172 static void     igb_init_tx_ring(struct igb_tx_ring *);
173 static int      igb_init_rx_ring(struct igb_rx_ring *);
174 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
175 static int      igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
176 static void     igb_rx_refresh(struct igb_rx_ring *, int);
177
178 static void     igb_stop(struct igb_softc *);
179 static void     igb_init(void *);
180 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
181 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
182 static int      igb_media_change(struct ifnet *);
183 static void     igb_timer(void *);
184 static void     igb_watchdog(struct ifnet *);
185 static void     igb_start(struct ifnet *);
186 #ifdef IFPOLL_ENABLE
187 static void     igb_npoll(struct ifnet *, struct ifpoll_info *);
188 static void     igb_npoll_rx(struct ifnet *, void *, int);
189 static void     igb_npoll_tx(struct ifnet *, void *, int);
190 static void     igb_npoll_status(struct ifnet *);
191 #endif
192 static void     igb_serialize(struct ifnet *, enum ifnet_serialize);
193 static void     igb_deserialize(struct ifnet *, enum ifnet_serialize);
194 static int      igb_tryserialize(struct ifnet *, enum ifnet_serialize);
195 #ifdef INVARIANTS
196 static void     igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
197                     boolean_t);
198 #endif
199
200 static void     igb_intr(void *);
201 static void     igb_intr_shared(void *);
202 static void     igb_rxeof(struct igb_rx_ring *, int);
203 static void     igb_txeof(struct igb_tx_ring *);
204 static void     igb_set_eitr(struct igb_softc *, int, int);
205 static void     igb_enable_intr(struct igb_softc *);
206 static void     igb_disable_intr(struct igb_softc *);
207 static void     igb_init_unshared_intr(struct igb_softc *);
208 static void     igb_init_intr(struct igb_softc *);
209 static int      igb_setup_intr(struct igb_softc *);
210 static void     igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
211 static void     igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
212 static void     igb_set_intr_mask(struct igb_softc *);
213 static int      igb_alloc_intr(struct igb_softc *);
214 static void     igb_free_intr(struct igb_softc *);
215 static void     igb_teardown_intr(struct igb_softc *);
216 static void     igb_msix_try_alloc(struct igb_softc *);
217 static void     igb_msix_free(struct igb_softc *, boolean_t);
218 static int      igb_msix_setup(struct igb_softc *);
219 static void     igb_msix_teardown(struct igb_softc *, int);
220 static void     igb_msix_rx(void *);
221 static void     igb_msix_tx(void *);
222 static void     igb_msix_status(void *);
223
224 /* Management and WOL Support */
225 static void     igb_get_mgmt(struct igb_softc *);
226 static void     igb_rel_mgmt(struct igb_softc *);
227 static void     igb_get_hw_control(struct igb_softc *);
228 static void     igb_rel_hw_control(struct igb_softc *);
229 static void     igb_enable_wol(device_t);
230
231 static device_method_t igb_methods[] = {
232         /* Device interface */
233         DEVMETHOD(device_probe,         igb_probe),
234         DEVMETHOD(device_attach,        igb_attach),
235         DEVMETHOD(device_detach,        igb_detach),
236         DEVMETHOD(device_shutdown,      igb_shutdown),
237         DEVMETHOD(device_suspend,       igb_suspend),
238         DEVMETHOD(device_resume,        igb_resume),
239         { 0, 0 }
240 };
241
242 static driver_t igb_driver = {
243         "igb",
244         igb_methods,
245         sizeof(struct igb_softc),
246 };
247
248 static devclass_t igb_devclass;
249
250 DECLARE_DUMMY_MODULE(if_igb);
251 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
252 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
253
254 static int      igb_rxd = IGB_DEFAULT_RXD;
255 static int      igb_txd = IGB_DEFAULT_TXD;
256 static int      igb_rxr = 0;
257 static int      igb_msi_enable = 1;
258 static int      igb_msix_enable = 1;
259 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
260 static int      igb_fc_setting = e1000_fc_full;
261
262 /*
263  * DMA Coalescing, only for i350 - default to off,
264  * this feature is for power savings
265  */
266 static int      igb_dma_coalesce = 0;
267
268 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
269 TUNABLE_INT("hw.igb.txd", &igb_txd);
270 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
271 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
272 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
273 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
274
275 /* i350 specific */
276 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
277 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
278
279 static __inline void
280 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
281 {
282         /* Ignore Checksum bit is set */
283         if (staterr & E1000_RXD_STAT_IXSM)
284                 return;
285
286         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
287             E1000_RXD_STAT_IPCS)
288                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
289
290         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
291                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
292                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
293                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
294                         mp->m_pkthdr.csum_data = htons(0xffff);
295                 }
296         }
297 }
298
299 static __inline struct pktinfo *
300 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
301     uint32_t hash, uint32_t hashtype, uint32_t staterr)
302 {
303         switch (hashtype) {
304         case E1000_RXDADV_RSSTYPE_IPV4_TCP:
305                 pi->pi_netisr = NETISR_IP;
306                 pi->pi_flags = 0;
307                 pi->pi_l3proto = IPPROTO_TCP;
308                 break;
309
310         case E1000_RXDADV_RSSTYPE_IPV4:
311                 if (staterr & E1000_RXD_STAT_IXSM)
312                         return NULL;
313
314                 if ((staterr &
315                      (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
316                     E1000_RXD_STAT_TCPCS) {
317                         pi->pi_netisr = NETISR_IP;
318                         pi->pi_flags = 0;
319                         pi->pi_l3proto = IPPROTO_UDP;
320                         break;
321                 }
322                 /* FALL THROUGH */
323         default:
324                 return NULL;
325         }
326
327         m->m_flags |= M_HASH;
328         m->m_pkthdr.hash = toeplitz_hash(hash);
329         return pi;
330 }
331
332 static int
333 igb_probe(device_t dev)
334 {
335         const struct igb_device *d;
336         uint16_t vid, did;
337
338         vid = pci_get_vendor(dev);
339         did = pci_get_device(dev);
340
341         for (d = igb_devices; d->desc != NULL; ++d) {
342                 if (vid == d->vid && did == d->did) {
343                         device_set_desc(dev, d->desc);
344                         return 0;
345                 }
346         }
347         return ENXIO;
348 }
349
350 static int
351 igb_attach(device_t dev)
352 {
353         struct igb_softc *sc = device_get_softc(dev);
354         uint16_t eeprom_data;
355         int error = 0, i, j, ring_max;
356 #ifdef IFPOLL_ENABLE
357         int offset, offset_def;
358 #endif
359
360 #ifdef notyet
361         /* SYSCTL stuff */
362         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
363             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
364             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
365             igb_sysctl_nvm_info, "I", "NVM Information");
366         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
367             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
368             OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
369             adapter, 0, igb_set_flowcntl, "I", "Flow Control");
370 #endif
371
372         callout_init_mp(&sc->timer);
373         lwkt_serialize_init(&sc->main_serialize);
374
375         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
376             device_get_unit(dev));
377         sc->dev = sc->osdep.dev = dev;
378
379         /*
380          * Determine hardware and mac type
381          */
382         sc->hw.vendor_id = pci_get_vendor(dev);
383         sc->hw.device_id = pci_get_device(dev);
384         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
385         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
386         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
387
388         if (e1000_set_mac_type(&sc->hw))
389                 return ENXIO;
390
391         /* Are we a VF device? */
392         if (sc->hw.mac.type == e1000_vfadapt ||
393             sc->hw.mac.type == e1000_vfadapt_i350)
394                 sc->vf_ifp = 1;
395         else
396                 sc->vf_ifp = 0;
397
398         /*
399          * Configure total supported RX/TX ring count
400          */
401         switch (sc->hw.mac.type) {
402         case e1000_82575:
403                 ring_max = IGB_MAX_RING_82575;
404                 break;
405         case e1000_82580:
406                 ring_max = IGB_MAX_RING_82580;
407                 break;
408         case e1000_i350:
409                 ring_max = IGB_MAX_RING_I350;
410                 break;
411         case e1000_82576:
412                 ring_max = IGB_MAX_RING_82576;
413                 break;
414         default:
415                 ring_max = IGB_MIN_RING;
416                 break;
417         }
418         sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
419         sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
420 #ifdef IGB_RSS_DEBUG
421         sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
422 #endif
423         sc->rx_ring_inuse = sc->rx_ring_cnt;
424         sc->tx_ring_cnt = 1; /* XXX */
425
426         if (sc->hw.mac.type == e1000_82575)
427                 sc->flags |= IGB_FLAG_TSO_IPLEN0;
428
429         /* Enable bus mastering */
430         pci_enable_busmaster(dev);
431
432         /*
433          * Allocate IO memory
434          */
435         sc->mem_rid = PCIR_BAR(0);
436         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
437             RF_ACTIVE);
438         if (sc->mem_res == NULL) {
439                 device_printf(dev, "Unable to allocate bus resource: memory\n");
440                 error = ENXIO;
441                 goto failed;
442         }
443         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
444         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
445
446         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
447
448         /* Save PCI command register for Shared Code */
449         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
450         sc->hw.back = &sc->osdep;
451
452         /* Do Shared Code initialization */
453         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
454                 device_printf(dev, "Setup of Shared code failed\n");
455                 error = ENXIO;
456                 goto failed;
457         }
458
459         e1000_get_bus_info(&sc->hw);
460
461         sc->hw.mac.autoneg = DO_AUTO_NEG;
462         sc->hw.phy.autoneg_wait_to_complete = FALSE;
463         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
464
465         /* Copper options */
466         if (sc->hw.phy.media_type == e1000_media_type_copper) {
467                 sc->hw.phy.mdix = AUTO_ALL_MODES;
468                 sc->hw.phy.disable_polarity_correction = FALSE;
469                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
470         }
471
472         /* Set the frame limits assuming  standard ethernet sized frames. */
473         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
474
475         /* Allocate RX/TX rings */
476         error = igb_alloc_rings(sc);
477         if (error)
478                 goto failed;
479
480 #ifdef IFPOLL_ENABLE
481         /*
482          * NPOLLING RX CPU offset
483          */
484         if (sc->rx_ring_cnt == ncpus2) {
485                 offset = 0;
486         } else {
487                 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
488                 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
489                 if (offset >= ncpus2 ||
490                     offset % sc->rx_ring_cnt != 0) {
491                         device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
492                             offset, offset_def);
493                         offset = offset_def;
494                 }
495         }
496         sc->rx_npoll_off = offset;
497
498         /*
499          * NPOLLING TX CPU offset
500          */
501         offset_def = sc->rx_npoll_off;
502         offset = device_getenv_int(dev, "npoll.txoff", offset_def);
503         if (offset >= ncpus2) {
504                 device_printf(dev, "invalid npoll.txoff %d, use %d\n",
505                     offset, offset_def);
506                 offset = offset_def;
507         }
508         sc->tx_npoll_off = offset;
509 #endif
510
511         /* Allocate interrupt */
512         error = igb_alloc_intr(sc);
513         if (error)
514                 goto failed;
515
516         /*
517          * Setup serializers
518          */
519         i = 0;
520         sc->serializes[i++] = &sc->main_serialize;
521
522         sc->tx_serialize = i;
523         for (j = 0; j < sc->tx_ring_cnt; ++j)
524                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
525
526         sc->rx_serialize = i;
527         for (j = 0; j < sc->rx_ring_cnt; ++j)
528                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
529
530         sc->serialize_cnt = i;
531         KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
532
533         /* Allocate the appropriate stats memory */
534         if (sc->vf_ifp) {
535                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
536                     M_WAITOK | M_ZERO);
537                 igb_vf_init_stats(sc);
538         } else {
539                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
540                     M_WAITOK | M_ZERO);
541         }
542
543         /* Allocate multicast array memory. */
544         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
545             M_DEVBUF, M_WAITOK);
546
547         /* Some adapter-specific advanced features */
548         if (sc->hw.mac.type >= e1000_i350) {
549 #ifdef notyet
550                 igb_set_sysctl_value(adapter, "dma_coalesce",
551                     "configure dma coalesce",
552                     &adapter->dma_coalesce, igb_dma_coalesce);
553                 igb_set_sysctl_value(adapter, "eee_disabled",
554                     "enable Energy Efficient Ethernet",
555                     &adapter->hw.dev_spec._82575.eee_disable,
556                     igb_eee_disabled);
557 #else
558                 sc->dma_coalesce = igb_dma_coalesce;
559                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
560 #endif
561                 e1000_set_eee_i350(&sc->hw);
562         }
563
564         /*
565          * Start from a known state, this is important in reading the nvm and
566          * mac from that.
567          */
568         e1000_reset_hw(&sc->hw);
569
570         /* Make sure we have a good EEPROM before we read from it */
571         if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
572                 /*
573                  * Some PCI-E parts fail the first check due to
574                  * the link being in sleep state, call it again,
575                  * if it fails a second time its a real issue.
576                  */
577                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
578                         device_printf(dev,
579                             "The EEPROM Checksum Is Not Valid\n");
580                         error = EIO;
581                         goto failed;
582                 }
583         }
584
585         /* Copy the permanent MAC address out of the EEPROM */
586         if (e1000_read_mac_addr(&sc->hw) < 0) {
587                 device_printf(dev, "EEPROM read error while reading MAC"
588                     " address\n");
589                 error = EIO;
590                 goto failed;
591         }
592         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
593                 device_printf(dev, "Invalid MAC address\n");
594                 error = EIO;
595                 goto failed;
596         }
597
598         /* Setup OS specific network interface */
599         igb_setup_ifp(sc);
600
601         /* Add sysctl tree, must after igb_setup_ifp() */
602         igb_add_sysctl(sc);
603
604         /* Now get a good starting state */
605         igb_reset(sc);
606
607         /* Initialize statistics */
608         igb_update_stats_counters(sc);
609
610         sc->hw.mac.get_link_status = 1;
611         igb_update_link_status(sc);
612
613         /* Indicate SOL/IDER usage */
614         if (e1000_check_reset_block(&sc->hw)) {
615                 device_printf(dev,
616                     "PHY reset is blocked due to SOL/IDER session.\n");
617         }
618
619         /* Determine if we have to control management hardware */
620         if (e1000_enable_mng_pass_thru(&sc->hw))
621                 sc->flags |= IGB_FLAG_HAS_MGMT;
622
623         /*
624          * Setup Wake-on-Lan
625          */
626         /* APME bit in EEPROM is mapped to WUC.APME */
627         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
628         if (eeprom_data)
629                 sc->wol = E1000_WUFC_MAG;
630         /* XXX disable WOL */
631         sc->wol = 0; 
632
633 #ifdef notyet
634         /* Register for VLAN events */
635         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
636              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
637         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
638              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
639 #endif
640
641 #ifdef notyet
642         igb_add_hw_stats(adapter);
643 #endif
644
645         error = igb_setup_intr(sc);
646         if (error) {
647                 ether_ifdetach(&sc->arpcom.ac_if);
648                 goto failed;
649         }
650         return 0;
651
652 failed:
653         igb_detach(dev);
654         return error;
655 }
656
657 static int
658 igb_detach(device_t dev)
659 {
660         struct igb_softc *sc = device_get_softc(dev);
661
662         if (device_is_attached(dev)) {
663                 struct ifnet *ifp = &sc->arpcom.ac_if;
664
665                 ifnet_serialize_all(ifp);
666
667                 igb_stop(sc);
668
669                 e1000_phy_hw_reset(&sc->hw);
670
671                 /* Give control back to firmware */
672                 igb_rel_mgmt(sc);
673                 igb_rel_hw_control(sc);
674
675                 if (sc->wol) {
676                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
677                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
678                         igb_enable_wol(dev);
679                 }
680
681                 igb_teardown_intr(sc);
682
683                 ifnet_deserialize_all(ifp);
684
685                 ether_ifdetach(ifp);
686         } else if (sc->mem_res != NULL) {
687                 igb_rel_hw_control(sc);
688         }
689         bus_generic_detach(dev);
690
691         if (sc->sysctl_tree != NULL)
692                 sysctl_ctx_free(&sc->sysctl_ctx);
693
694         igb_free_intr(sc);
695
696         if (sc->msix_mem_res != NULL) {
697                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
698                     sc->msix_mem_res);
699         }
700         if (sc->mem_res != NULL) {
701                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
702                     sc->mem_res);
703         }
704
705         igb_free_rings(sc);
706
707         if (sc->mta != NULL)
708                 kfree(sc->mta, M_DEVBUF);
709         if (sc->stats != NULL)
710                 kfree(sc->stats, M_DEVBUF);
711
712         return 0;
713 }
714
715 static int
716 igb_shutdown(device_t dev)
717 {
718         return igb_suspend(dev);
719 }
720
721 static int
722 igb_suspend(device_t dev)
723 {
724         struct igb_softc *sc = device_get_softc(dev);
725         struct ifnet *ifp = &sc->arpcom.ac_if;
726
727         ifnet_serialize_all(ifp);
728
729         igb_stop(sc);
730
731         igb_rel_mgmt(sc);
732         igb_rel_hw_control(sc);
733
734         if (sc->wol) {
735                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
736                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
737                 igb_enable_wol(dev);
738         }
739
740         ifnet_deserialize_all(ifp);
741
742         return bus_generic_suspend(dev);
743 }
744
745 static int
746 igb_resume(device_t dev)
747 {
748         struct igb_softc *sc = device_get_softc(dev);
749         struct ifnet *ifp = &sc->arpcom.ac_if;
750
751         ifnet_serialize_all(ifp);
752
753         igb_init(sc);
754         igb_get_mgmt(sc);
755
756         if_devstart(ifp);
757
758         ifnet_deserialize_all(ifp);
759
760         return bus_generic_resume(dev);
761 }
762
763 static int
764 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
765 {
766         struct igb_softc *sc = ifp->if_softc;
767         struct ifreq *ifr = (struct ifreq *)data;
768         int max_frame_size, mask, reinit;
769         int error = 0;
770
771         ASSERT_IFNET_SERIALIZED_ALL(ifp);
772
773         switch (command) {
774         case SIOCSIFMTU:
775                 max_frame_size = 9234;
776                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
777                     ETHER_CRC_LEN) {
778                         error = EINVAL;
779                         break;
780                 }
781
782                 ifp->if_mtu = ifr->ifr_mtu;
783                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
784                     ETHER_CRC_LEN;
785
786                 if (ifp->if_flags & IFF_RUNNING)
787                         igb_init(sc);
788                 break;
789
790         case SIOCSIFFLAGS:
791                 if (ifp->if_flags & IFF_UP) {
792                         if (ifp->if_flags & IFF_RUNNING) {
793                                 if ((ifp->if_flags ^ sc->if_flags) &
794                                     (IFF_PROMISC | IFF_ALLMULTI)) {
795                                         igb_disable_promisc(sc);
796                                         igb_set_promisc(sc);
797                                 }
798                         } else {
799                                 igb_init(sc);
800                         }
801                 } else if (ifp->if_flags & IFF_RUNNING) {
802                         igb_stop(sc);
803                 }
804                 sc->if_flags = ifp->if_flags;
805                 break;
806
807         case SIOCADDMULTI:
808         case SIOCDELMULTI:
809                 if (ifp->if_flags & IFF_RUNNING) {
810                         igb_disable_intr(sc);
811                         igb_set_multi(sc);
812 #ifdef IFPOLL_ENABLE
813                         if (!(ifp->if_flags & IFF_NPOLLING))
814 #endif
815                                 igb_enable_intr(sc);
816                 }
817                 break;
818
819         case SIOCSIFMEDIA:
820                 /*
821                  * As the speed/duplex settings are being
822                  * changed, we need toreset the PHY.
823                  */
824                 sc->hw.phy.reset_disable = FALSE;
825
826                 /* Check SOL/IDER usage */
827                 if (e1000_check_reset_block(&sc->hw)) {
828                         if_printf(ifp, "Media change is "
829                             "blocked due to SOL/IDER session.\n");
830                         break;
831                 }
832                 /* FALL THROUGH */
833
834         case SIOCGIFMEDIA:
835                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
836                 break;
837
838         case SIOCSIFCAP:
839                 reinit = 0;
840                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
841                 if (mask & IFCAP_RXCSUM) {
842                         ifp->if_capenable ^= IFCAP_RXCSUM;
843                         reinit = 1;
844                 }
845                 if (mask & IFCAP_VLAN_HWTAGGING) {
846                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
847                         reinit = 1;
848                 }
849                 if (mask & IFCAP_TXCSUM) {
850                         ifp->if_capenable ^= IFCAP_TXCSUM;
851                         if (ifp->if_capenable & IFCAP_TXCSUM)
852                                 ifp->if_hwassist |= IGB_CSUM_FEATURES;
853                         else
854                                 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
855                 }
856                 if (mask & IFCAP_TSO) {
857                         ifp->if_capenable ^= IFCAP_TSO;
858                         if (ifp->if_capenable & IFCAP_TSO)
859                                 ifp->if_hwassist |= CSUM_TSO;
860                         else
861                                 ifp->if_hwassist &= ~CSUM_TSO;
862                 }
863                 if (mask & IFCAP_RSS)
864                         ifp->if_capenable ^= IFCAP_RSS;
865                 if (reinit && (ifp->if_flags & IFF_RUNNING))
866                         igb_init(sc);
867                 break;
868
869         default:
870                 error = ether_ioctl(ifp, command, data);
871                 break;
872         }
873         return error;
874 }
875
876 static void
877 igb_init(void *xsc)
878 {
879         struct igb_softc *sc = xsc;
880         struct ifnet *ifp = &sc->arpcom.ac_if;
881         boolean_t polling;
882         int i;
883
884         ASSERT_IFNET_SERIALIZED_ALL(ifp);
885
886         igb_stop(sc);
887
888         /* Get the latest mac address, User can use a LAA */
889         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
890
891         /* Put the address into the Receive Address Array */
892         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
893
894         igb_reset(sc);
895         igb_update_link_status(sc);
896
897         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
898
899         /* Configure for OS presence */
900         igb_get_mgmt(sc);
901
902         polling = FALSE;
903 #ifdef IFPOLL_ENABLE
904         if (ifp->if_flags & IFF_NPOLLING)
905                 polling = TRUE;
906 #endif
907
908         /* Configured used RX/TX rings */
909         igb_set_ring_inuse(sc, polling);
910
911         /* Initialize interrupt */
912         igb_init_intr(sc);
913
914         /* Prepare transmit descriptors and buffers */
915         for (i = 0; i < sc->tx_ring_cnt; ++i)
916                 igb_init_tx_ring(&sc->tx_rings[i]);
917         igb_init_tx_unit(sc);
918
919         /* Setup Multicast table */
920         igb_set_multi(sc);
921
922 #if 0
923         /*
924          * Figure out the desired mbuf pool
925          * for doing jumbo/packetsplit
926          */
927         if (adapter->max_frame_size <= 2048)
928                 adapter->rx_mbuf_sz = MCLBYTES;
929         else if (adapter->max_frame_size <= 4096)
930                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
931         else
932                 adapter->rx_mbuf_sz = MJUM9BYTES;
933 #endif
934
935         /* Prepare receive descriptors and buffers */
936         for (i = 0; i < sc->rx_ring_inuse; ++i) {
937                 int error;
938
939                 error = igb_init_rx_ring(&sc->rx_rings[i]);
940                 if (error) {
941                         if_printf(ifp, "Could not setup receive structures\n");
942                         igb_stop(sc);
943                         return;
944                 }
945         }
946         igb_init_rx_unit(sc);
947
948         /* Enable VLAN support */
949         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
950                 igb_set_vlan(sc);
951
952         /* Don't lose promiscuous settings */
953         igb_set_promisc(sc);
954
955         ifp->if_flags |= IFF_RUNNING;
956         ifp->if_flags &= ~IFF_OACTIVE;
957
958         if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
959                 sc->timer_cpuid = 0; /* XXX fixed */
960         else
961                 sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
962         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
963         e1000_clear_hw_cntrs_base_generic(&sc->hw);
964
965         /* This clears any pending interrupts */
966         E1000_READ_REG(&sc->hw, E1000_ICR);
967
968         /*
969          * Only enable interrupts if we are not polling, make sure
970          * they are off otherwise.
971          */
972         if (polling) {
973                 igb_disable_intr(sc);
974         } else {
975                 igb_enable_intr(sc);
976                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
977         }
978
979         /* Set Energy Efficient Ethernet */
980         e1000_set_eee_i350(&sc->hw);
981
982         /* Don't reset the phy next time init gets called */
983         sc->hw.phy.reset_disable = TRUE;
984 }
985
986 static void
987 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
988 {
989         struct igb_softc *sc = ifp->if_softc;
990         u_char fiber_type = IFM_1000_SX;
991
992         ASSERT_IFNET_SERIALIZED_ALL(ifp);
993
994         igb_update_link_status(sc);
995
996         ifmr->ifm_status = IFM_AVALID;
997         ifmr->ifm_active = IFM_ETHER;
998
999         if (!sc->link_active)
1000                 return;
1001
1002         ifmr->ifm_status |= IFM_ACTIVE;
1003
1004         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1005             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1006                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1007         } else {
1008                 switch (sc->link_speed) {
1009                 case 10:
1010                         ifmr->ifm_active |= IFM_10_T;
1011                         break;
1012
1013                 case 100:
1014                         ifmr->ifm_active |= IFM_100_TX;
1015                         break;
1016
1017                 case 1000:
1018                         ifmr->ifm_active |= IFM_1000_T;
1019                         break;
1020                 }
1021                 if (sc->link_duplex == FULL_DUPLEX)
1022                         ifmr->ifm_active |= IFM_FDX;
1023                 else
1024                         ifmr->ifm_active |= IFM_HDX;
1025         }
1026 }
1027
1028 static int
1029 igb_media_change(struct ifnet *ifp)
1030 {
1031         struct igb_softc *sc = ifp->if_softc;
1032         struct ifmedia *ifm = &sc->media;
1033
1034         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1035
1036         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1037                 return EINVAL;
1038
1039         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1040         case IFM_AUTO:
1041                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1042                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1043                 break;
1044
1045         case IFM_1000_LX:
1046         case IFM_1000_SX:
1047         case IFM_1000_T:
1048                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1049                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1050                 break;
1051
1052         case IFM_100_TX:
1053                 sc->hw.mac.autoneg = FALSE;
1054                 sc->hw.phy.autoneg_advertised = 0;
1055                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1056                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1057                 else
1058                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1059                 break;
1060
1061         case IFM_10_T:
1062                 sc->hw.mac.autoneg = FALSE;
1063                 sc->hw.phy.autoneg_advertised = 0;
1064                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1065                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1066                 else
1067                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1068                 break;
1069
1070         default:
1071                 if_printf(ifp, "Unsupported media type\n");
1072                 break;
1073         }
1074
1075         igb_init(sc);
1076
1077         return 0;
1078 }
1079
1080 static void
1081 igb_set_promisc(struct igb_softc *sc)
1082 {
1083         struct ifnet *ifp = &sc->arpcom.ac_if;
1084         struct e1000_hw *hw = &sc->hw;
1085         uint32_t reg;
1086
1087         if (sc->vf_ifp) {
1088                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1089                 return;
1090         }
1091
1092         reg = E1000_READ_REG(hw, E1000_RCTL);
1093         if (ifp->if_flags & IFF_PROMISC) {
1094                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1095                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1096         } else if (ifp->if_flags & IFF_ALLMULTI) {
1097                 reg |= E1000_RCTL_MPE;
1098                 reg &= ~E1000_RCTL_UPE;
1099                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1100         }
1101 }
1102
1103 static void
1104 igb_disable_promisc(struct igb_softc *sc)
1105 {
1106         struct e1000_hw *hw = &sc->hw;
1107         uint32_t reg;
1108
1109         if (sc->vf_ifp) {
1110                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1111                 return;
1112         }
1113         reg = E1000_READ_REG(hw, E1000_RCTL);
1114         reg &= ~E1000_RCTL_UPE;
1115         reg &= ~E1000_RCTL_MPE;
1116         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1117 }
1118
1119 static void
1120 igb_set_multi(struct igb_softc *sc)
1121 {
1122         struct ifnet *ifp = &sc->arpcom.ac_if;
1123         struct ifmultiaddr *ifma;
1124         uint32_t reg_rctl = 0;
1125         uint8_t *mta;
1126         int mcnt = 0;
1127
1128         mta = sc->mta;
1129         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1130
1131         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1132                 if (ifma->ifma_addr->sa_family != AF_LINK)
1133                         continue;
1134
1135                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1136                         break;
1137
1138                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1139                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1140                 mcnt++;
1141         }
1142
1143         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1144                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1145                 reg_rctl |= E1000_RCTL_MPE;
1146                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1147         } else {
1148                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1149         }
1150 }
1151
1152 static void
1153 igb_timer(void *xsc)
1154 {
1155         struct igb_softc *sc = xsc;
1156
1157         lwkt_serialize_enter(&sc->main_serialize);
1158
1159         igb_update_link_status(sc);
1160         igb_update_stats_counters(sc);
1161
1162         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1163
1164         lwkt_serialize_exit(&sc->main_serialize);
1165 }
1166
1167 static void
1168 igb_update_link_status(struct igb_softc *sc)
1169 {
1170         struct ifnet *ifp = &sc->arpcom.ac_if;
1171         struct e1000_hw *hw = &sc->hw;
1172         uint32_t link_check, thstat, ctrl;
1173
1174         link_check = thstat = ctrl = 0;
1175
1176         /* Get the cached link value or read for real */
1177         switch (hw->phy.media_type) {
1178         case e1000_media_type_copper:
1179                 if (hw->mac.get_link_status) {
1180                         /* Do the work to read phy */
1181                         e1000_check_for_link(hw);
1182                         link_check = !hw->mac.get_link_status;
1183                 } else {
1184                         link_check = TRUE;
1185                 }
1186                 break;
1187
1188         case e1000_media_type_fiber:
1189                 e1000_check_for_link(hw);
1190                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1191                 break;
1192
1193         case e1000_media_type_internal_serdes:
1194                 e1000_check_for_link(hw);
1195                 link_check = hw->mac.serdes_has_link;
1196                 break;
1197
1198         /* VF device is type_unknown */
1199         case e1000_media_type_unknown:
1200                 e1000_check_for_link(hw);
1201                 link_check = !hw->mac.get_link_status;
1202                 /* Fall thru */
1203         default:
1204                 break;
1205         }
1206
1207         /* Check for thermal downshift or shutdown */
1208         if (hw->mac.type == e1000_i350) {
1209                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1210                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1211         }
1212
1213         /* Now we check if a transition has happened */
1214         if (link_check && sc->link_active == 0) {
1215                 e1000_get_speed_and_duplex(hw, 
1216                     &sc->link_speed, &sc->link_duplex);
1217                 if (bootverbose) {
1218                         if_printf(ifp, "Link is up %d Mbps %s\n",
1219                             sc->link_speed,
1220                             sc->link_duplex == FULL_DUPLEX ?
1221                             "Full Duplex" : "Half Duplex");
1222                 }
1223                 sc->link_active = 1;
1224
1225                 ifp->if_baudrate = sc->link_speed * 1000000;
1226                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1227                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1228                         if_printf(ifp, "Link: thermal downshift\n");
1229                 /* This can sleep */
1230                 ifp->if_link_state = LINK_STATE_UP;
1231                 if_link_state_change(ifp);
1232         } else if (!link_check && sc->link_active == 1) {
1233                 ifp->if_baudrate = sc->link_speed = 0;
1234                 sc->link_duplex = 0;
1235                 if (bootverbose)
1236                         if_printf(ifp, "Link is Down\n");
1237                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1238                     (thstat & E1000_THSTAT_PWR_DOWN))
1239                         if_printf(ifp, "Link: thermal shutdown\n");
1240                 sc->link_active = 0;
1241                 /* This can sleep */
1242                 ifp->if_link_state = LINK_STATE_DOWN;
1243                 if_link_state_change(ifp);
1244         }
1245 }
1246
1247 static void
1248 igb_stop(struct igb_softc *sc)
1249 {
1250         struct ifnet *ifp = &sc->arpcom.ac_if;
1251         int i;
1252
1253         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1254
1255         igb_disable_intr(sc);
1256
1257         callout_stop(&sc->timer);
1258
1259         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1260         ifp->if_timer = 0;
1261
1262         e1000_reset_hw(&sc->hw);
1263         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1264
1265         e1000_led_off(&sc->hw);
1266         e1000_cleanup_led(&sc->hw);
1267
1268         for (i = 0; i < sc->tx_ring_cnt; ++i)
1269                 igb_free_tx_ring(&sc->tx_rings[i]);
1270         for (i = 0; i < sc->rx_ring_cnt; ++i)
1271                 igb_free_rx_ring(&sc->rx_rings[i]);
1272 }
1273
1274 static void
1275 igb_reset(struct igb_softc *sc)
1276 {
1277         struct ifnet *ifp = &sc->arpcom.ac_if;
1278         struct e1000_hw *hw = &sc->hw;
1279         struct e1000_fc_info *fc = &hw->fc;
1280         uint32_t pba = 0;
1281         uint16_t hwm;
1282
1283         /* Let the firmware know the OS is in control */
1284         igb_get_hw_control(sc);
1285
1286         /*
1287          * Packet Buffer Allocation (PBA)
1288          * Writing PBA sets the receive portion of the buffer
1289          * the remainder is used for the transmit buffer.
1290          */
1291         switch (hw->mac.type) {
1292         case e1000_82575:
1293                 pba = E1000_PBA_32K;
1294                 break;
1295
1296         case e1000_82576:
1297         case e1000_vfadapt:
1298                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1299                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1300                 break;
1301
1302         case e1000_82580:
1303         case e1000_i350:
1304         case e1000_vfadapt_i350:
1305                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1306                 pba = e1000_rxpbs_adjust_82580(pba);
1307                 break;
1308                 /* XXX pba = E1000_PBA_35K; */
1309
1310         default:
1311                 break;
1312         }
1313
1314         /* Special needs in case of Jumbo frames */
1315         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1316                 uint32_t tx_space, min_tx, min_rx;
1317
1318                 pba = E1000_READ_REG(hw, E1000_PBA);
1319                 tx_space = pba >> 16;
1320                 pba &= 0xffff;
1321
1322                 min_tx = (sc->max_frame_size +
1323                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1324                 min_tx = roundup2(min_tx, 1024);
1325                 min_tx >>= 10;
1326                 min_rx = sc->max_frame_size;
1327                 min_rx = roundup2(min_rx, 1024);
1328                 min_rx >>= 10;
1329                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1330                         pba = pba - (min_tx - tx_space);
1331                         /*
1332                          * if short on rx space, rx wins
1333                          * and must trump tx adjustment
1334                          */
1335                         if (pba < min_rx)
1336                                 pba = min_rx;
1337                 }
1338                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1339         }
1340
1341         /*
1342          * These parameters control the automatic generation (Tx) and
1343          * response (Rx) to Ethernet PAUSE frames.
1344          * - High water mark should allow for at least two frames to be
1345          *   received after sending an XOFF.
1346          * - Low water mark works best when it is very near the high water mark.
1347          *   This allows the receiver to restart by sending XON when it has
1348          *   drained a bit.
1349          */
1350         hwm = min(((pba << 10) * 9 / 10),
1351             ((pba << 10) - 2 * sc->max_frame_size));
1352
1353         if (hw->mac.type < e1000_82576) {
1354                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1355                 fc->low_water = fc->high_water - 8;
1356         } else {
1357                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1358                 fc->low_water = fc->high_water - 16;
1359         }
1360         fc->pause_time = IGB_FC_PAUSE_TIME;
1361         fc->send_xon = TRUE;
1362
1363         /* Issue a global reset */
1364         e1000_reset_hw(hw);
1365         E1000_WRITE_REG(hw, E1000_WUC, 0);
1366
1367         if (e1000_init_hw(hw) < 0)
1368                 if_printf(ifp, "Hardware Initialization Failed\n");
1369
1370         /* Setup DMA Coalescing */
1371         if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1372                 uint32_t reg;
1373
1374                 hwm = (pba - 4) << 10;
1375                 reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1376                     & E1000_DMACR_DMACTHR_MASK;
1377
1378                 /* transition to L0x or L1 if available..*/
1379                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1380
1381                 /* timer = +-1000 usec in 32usec intervals */
1382                 reg |= (1000 >> 5);
1383                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1384
1385                 /* No lower threshold */
1386                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1387
1388                 /* set hwm to PBA -  2 * max frame size */
1389                 E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1390
1391                 /* Set the interval before transition */
1392                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1393                 reg |= 0x800000FF; /* 255 usec */
1394                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1395
1396                 /* free space in tx packet buffer to wake from DMA coal */
1397                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1398                     (20480 - (2 * sc->max_frame_size)) >> 6);
1399
1400                 /* make low power state decision controlled by DMA coal */
1401                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1402                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1403                     reg | E1000_PCIEMISC_LX_DECISION);
1404                 if_printf(ifp, "DMA Coalescing enabled\n");
1405         }
1406
1407         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1408         e1000_get_phy_info(hw);
1409         e1000_check_for_link(hw);
1410 }
1411
1412 static void
1413 igb_setup_ifp(struct igb_softc *sc)
1414 {
1415         struct ifnet *ifp = &sc->arpcom.ac_if;
1416
1417         ifp->if_softc = sc;
1418         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1419         ifp->if_init = igb_init;
1420         ifp->if_ioctl = igb_ioctl;
1421         ifp->if_start = igb_start;
1422         ifp->if_serialize = igb_serialize;
1423         ifp->if_deserialize = igb_deserialize;
1424         ifp->if_tryserialize = igb_tryserialize;
1425 #ifdef INVARIANTS
1426         ifp->if_serialize_assert = igb_serialize_assert;
1427 #endif
1428 #ifdef IFPOLL_ENABLE
1429         ifp->if_npoll = igb_npoll;
1430 #endif
1431         ifp->if_watchdog = igb_watchdog;
1432
1433         ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1434         ifq_set_ready(&ifp->if_snd);
1435
1436         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1437
1438         ifp->if_capabilities =
1439             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1440         if (IGB_ENABLE_HWRSS(sc))
1441                 ifp->if_capabilities |= IFCAP_RSS;
1442         ifp->if_capenable = ifp->if_capabilities;
1443         ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1444
1445         /*
1446          * Tell the upper layer(s) we support long frames
1447          */
1448         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1449
1450         /*
1451          * Specify the media types supported by this adapter and register
1452          * callbacks to update media and link information
1453          */
1454         ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1455         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1456             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1457                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1458                     0, NULL);
1459                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1460         } else {
1461                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1462                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1463                     0, NULL);
1464                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1465                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1466                     0, NULL);
1467                 if (sc->hw.phy.type != e1000_phy_ife) {
1468                         ifmedia_add(&sc->media,
1469                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1470                         ifmedia_add(&sc->media,
1471                             IFM_ETHER | IFM_1000_T, 0, NULL);
1472                 }
1473         }
1474         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1475         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1476 }
1477
1478 static void
1479 igb_add_sysctl(struct igb_softc *sc)
1480 {
1481         char node[32];
1482         int i;
1483
1484         sysctl_ctx_init(&sc->sysctl_ctx);
1485         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1486             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1487             device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1488         if (sc->sysctl_tree == NULL) {
1489                 device_printf(sc->dev, "can't add sysctl node\n");
1490                 return;
1491         }
1492
1493         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1494             OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1495         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1496             OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1497             "# of RX rings used");
1498         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1499             OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1500             "# of RX descs");
1501         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1502             OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1503             "# of TX descs");
1504
1505         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1506                 SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1507                     SYSCTL_CHILDREN(sc->sysctl_tree),
1508                     OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1509                     sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1510         } else {
1511                 for (i = 0; i < sc->msix_cnt; ++i) {
1512                         struct igb_msix_data *msix = &sc->msix_data[i];
1513
1514                         ksnprintf(node, sizeof(node), "msix%d_rate", i);
1515                         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1516                             SYSCTL_CHILDREN(sc->sysctl_tree),
1517                             OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1518                             msix, 0, igb_sysctl_msix_rate, "I",
1519                             msix->msix_rate_desc);
1520                 }
1521         }
1522
1523         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1524             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1525             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1526             "# of segments per TX interrupt");
1527
1528         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1529             OID_AUTO, "tx_wreg_nsegs", CTLFLAG_RW,
1530             &sc->tx_rings[0].wreg_nsegs, 0,
1531             "# of segments before write to hardare register");
1532
1533 #ifdef IFPOLL_ENABLE
1534         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1535             OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1536             sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1537         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1538             OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1539             sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1540 #endif
1541
1542 #ifdef IGB_RSS_DEBUG
1543         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1544             OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1545             "RSS debug level");
1546 #endif
1547         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1548 #ifdef IGB_RSS_DEBUG
1549                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1550                 SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1551                     SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1552                     CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1553 #endif
1554                 ksnprintf(node, sizeof(node), "rx%d_wreg", i);
1555                 SYSCTL_ADD_INT(&sc->sysctl_ctx,
1556                     SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1557                     CTLFLAG_RW, &sc->rx_rings[i].rx_wreg, 0,
1558                     "# of segments before write to hardare register");
1559         }
1560 }
1561
1562 static int
1563 igb_alloc_rings(struct igb_softc *sc)
1564 {
1565         int error, i;
1566
1567         /*
1568          * Create top level busdma tag
1569          */
1570         error = bus_dma_tag_create(NULL, 1, 0,
1571             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1572             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1573             &sc->parent_tag);
1574         if (error) {
1575                 device_printf(sc->dev, "could not create top level DMA tag\n");
1576                 return error;
1577         }
1578
1579         /*
1580          * Allocate TX descriptor rings and buffers
1581          */
1582         sc->tx_rings = kmalloc_cachealign(
1583             sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1584             M_DEVBUF, M_WAITOK | M_ZERO);
1585         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1586                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1587
1588                 /* Set up some basics */
1589                 txr->sc = sc;
1590                 txr->me = i;
1591                 lwkt_serialize_init(&txr->tx_serialize);
1592
1593                 error = igb_create_tx_ring(txr);
1594                 if (error)
1595                         return error;
1596         }
1597
1598         /*
1599          * Allocate RX descriptor rings and buffers
1600          */ 
1601         sc->rx_rings = kmalloc_cachealign(
1602             sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1603             M_DEVBUF, M_WAITOK | M_ZERO);
1604         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1605                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1606
1607                 /* Set up some basics */
1608                 rxr->sc = sc;
1609                 rxr->me = i;
1610                 lwkt_serialize_init(&rxr->rx_serialize);
1611
1612                 error = igb_create_rx_ring(rxr);
1613                 if (error)
1614                         return error;
1615         }
1616
1617         return 0;
1618 }
1619
1620 static void
1621 igb_free_rings(struct igb_softc *sc)
1622 {
1623         int i;
1624
1625         if (sc->tx_rings != NULL) {
1626                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1627                         struct igb_tx_ring *txr = &sc->tx_rings[i];
1628
1629                         igb_destroy_tx_ring(txr, txr->num_tx_desc);
1630                 }
1631                 kfree(sc->tx_rings, M_DEVBUF);
1632         }
1633
1634         if (sc->rx_rings != NULL) {
1635                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1636                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
1637
1638                         igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1639                 }
1640                 kfree(sc->rx_rings, M_DEVBUF);
1641         }
1642 }
1643
1644 static int
1645 igb_create_tx_ring(struct igb_tx_ring *txr)
1646 {
1647         int tsize, error, i, ntxd;
1648
1649         /*
1650          * Validate number of transmit descriptors. It must not exceed
1651          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1652          */
1653         ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1654         if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1655             ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1656                 device_printf(txr->sc->dev,
1657                     "Using %d TX descriptors instead of %d!\n",
1658                     IGB_DEFAULT_TXD, ntxd);
1659                 txr->num_tx_desc = IGB_DEFAULT_TXD;
1660         } else {
1661                 txr->num_tx_desc = ntxd;
1662         }
1663
1664         /*
1665          * Allocate TX descriptor ring
1666          */
1667         tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1668             IGB_DBA_ALIGN);
1669         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1670             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1671             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1672         if (txr->txdma.dma_vaddr == NULL) {
1673                 device_printf(txr->sc->dev,
1674                     "Unable to allocate TX Descriptor memory\n");
1675                 return ENOMEM;
1676         }
1677         txr->tx_base = txr->txdma.dma_vaddr;
1678         bzero(txr->tx_base, tsize);
1679
1680         tsize = __VM_CACHELINE_ALIGN(
1681             sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1682         txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1683
1684         /*
1685          * Allocate TX head write-back buffer
1686          */
1687         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1688             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1689             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1690         if (txr->tx_hdr == NULL) {
1691                 device_printf(txr->sc->dev,
1692                     "Unable to allocate TX head write-back buffer\n");
1693                 return ENOMEM;
1694         }
1695
1696         /*
1697          * Create DMA tag for TX buffers
1698          */
1699         error = bus_dma_tag_create(txr->sc->parent_tag,
1700             1, 0,               /* alignment, bounds */
1701             BUS_SPACE_MAXADDR,  /* lowaddr */
1702             BUS_SPACE_MAXADDR,  /* highaddr */
1703             NULL, NULL,         /* filter, filterarg */
1704             IGB_TSO_SIZE,       /* maxsize */
1705             IGB_MAX_SCATTER,    /* nsegments */
1706             PAGE_SIZE,          /* maxsegsize */
1707             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1708             BUS_DMA_ONEBPAGE,   /* flags */
1709             &txr->tx_tag);
1710         if (error) {
1711                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1712                 kfree(txr->tx_buf, M_DEVBUF);
1713                 txr->tx_buf = NULL;
1714                 return error;
1715         }
1716
1717         /*
1718          * Create DMA maps for TX buffers
1719          */
1720         for (i = 0; i < txr->num_tx_desc; ++i) {
1721                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1722
1723                 error = bus_dmamap_create(txr->tx_tag,
1724                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1725                 if (error) {
1726                         device_printf(txr->sc->dev,
1727                             "Unable to create TX DMA map\n");
1728                         igb_destroy_tx_ring(txr, i);
1729                         return error;
1730                 }
1731         }
1732
1733         /*
1734          * Initialize various watermark
1735          */
1736         txr->spare_desc = IGB_TX_SPARE;
1737         txr->intr_nsegs = txr->num_tx_desc / 16;
1738         txr->wreg_nsegs = 8;
1739         txr->oact_hi_desc = txr->num_tx_desc / 2;
1740         txr->oact_lo_desc = txr->num_tx_desc / 8;
1741         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1742                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1743         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1744                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1745
1746         return 0;
1747 }
1748
1749 static void
1750 igb_free_tx_ring(struct igb_tx_ring *txr)
1751 {
1752         int i;
1753
1754         for (i = 0; i < txr->num_tx_desc; ++i) {
1755                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1756
1757                 if (txbuf->m_head != NULL) {
1758                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1759                         m_freem(txbuf->m_head);
1760                         txbuf->m_head = NULL;
1761                 }
1762         }
1763 }
1764
1765 static void
1766 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1767 {
1768         int i;
1769
1770         if (txr->txdma.dma_vaddr != NULL) {
1771                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1772                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1773                     txr->txdma.dma_map);
1774                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1775                 txr->txdma.dma_vaddr = NULL;
1776         }
1777
1778         if (txr->tx_hdr != NULL) {
1779                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1780                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1781                     txr->tx_hdr_dmap);
1782                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1783                 txr->tx_hdr = NULL;
1784         }
1785
1786         if (txr->tx_buf == NULL)
1787                 return;
1788
1789         for (i = 0; i < ndesc; ++i) {
1790                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1791
1792                 KKASSERT(txbuf->m_head == NULL);
1793                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1794         }
1795         bus_dma_tag_destroy(txr->tx_tag);
1796
1797         kfree(txr->tx_buf, M_DEVBUF);
1798         txr->tx_buf = NULL;
1799 }
1800
1801 static void
1802 igb_init_tx_ring(struct igb_tx_ring *txr)
1803 {
1804         /* Clear the old descriptor contents */
1805         bzero(txr->tx_base,
1806             sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1807
1808         /* Clear TX head write-back buffer */
1809         *(txr->tx_hdr) = 0;
1810
1811         /* Reset indices */
1812         txr->next_avail_desc = 0;
1813         txr->next_to_clean = 0;
1814         txr->tx_nsegs = 0;
1815
1816         /* Set number of descriptors available */
1817         txr->tx_avail = txr->num_tx_desc;
1818 }
1819
1820 static void
1821 igb_init_tx_unit(struct igb_softc *sc)
1822 {
1823         struct e1000_hw *hw = &sc->hw;
1824         uint32_t tctl;
1825         int i;
1826
1827         /* Setup the Tx Descriptor Rings */
1828         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1829                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1830                 uint64_t bus_addr = txr->txdma.dma_paddr;
1831                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1832                 uint32_t txdctl = 0;
1833                 uint32_t dca_txctrl;
1834
1835                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1836                     txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1837                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1838                     (uint32_t)(bus_addr >> 32));
1839                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1840                     (uint32_t)bus_addr);
1841
1842                 /* Setup the HW Tx Head and Tail descriptor pointers */
1843                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1844                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1845
1846                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1847                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1848                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1849
1850                 /*
1851                  * Don't set WB_on_EITR:
1852                  * - 82575 does not have it
1853                  * - It almost has no effect on 82576, see:
1854                  *   82576 specification update errata #26
1855                  * - It causes unnecessary bus traffic
1856                  */
1857                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1858                     (uint32_t)(hdr_paddr >> 32));
1859                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1860                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1861
1862                 /*
1863                  * WTHRESH is ignored by the hardware, since header
1864                  * write back mode is used.
1865                  */
1866                 txdctl |= IGB_TX_PTHRESH;
1867                 txdctl |= IGB_TX_HTHRESH << 8;
1868                 txdctl |= IGB_TX_WTHRESH << 16;
1869                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1870                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1871         }
1872
1873         if (sc->vf_ifp)
1874                 return;
1875
1876         e1000_config_collision_dist(hw);
1877
1878         /* Program the Transmit Control Register */
1879         tctl = E1000_READ_REG(hw, E1000_TCTL);
1880         tctl &= ~E1000_TCTL_CT;
1881         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1882             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1883
1884         /* This write will effectively turn on the transmit unit. */
1885         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1886 }
1887
1888 static boolean_t
1889 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1890 {
1891         struct e1000_adv_tx_context_desc *TXD;
1892         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1893         int ehdrlen, ctxd, ip_hlen = 0;
1894         boolean_t offload = TRUE;
1895
1896         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1897                 offload = FALSE;
1898
1899         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1900
1901         ctxd = txr->next_avail_desc;
1902         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1903
1904         /*
1905          * In advanced descriptors the vlan tag must 
1906          * be placed into the context descriptor, thus
1907          * we need to be here just for that setup.
1908          */
1909         if (mp->m_flags & M_VLANTAG) {
1910                 uint16_t vlantag;
1911
1912                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1913                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1914         } else if (!offload) {
1915                 return FALSE;
1916         }
1917
1918         ehdrlen = mp->m_pkthdr.csum_lhlen;
1919         KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1920
1921         /* Set the ether header length */
1922         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1923         if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1924                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1925                 ip_hlen = mp->m_pkthdr.csum_iphlen;
1926                 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1927         }
1928         vlan_macip_lens |= ip_hlen;
1929
1930         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1931         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1932                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1933         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1934                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1935
1936         /* 82575 needs the queue index added */
1937         if (txr->sc->hw.mac.type == e1000_82575)
1938                 mss_l4len_idx = txr->me << 4;
1939
1940         /* Now copy bits into descriptor */
1941         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1942         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1943         TXD->seqnum_seed = htole32(0);
1944         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1945
1946         /* We've consumed the first desc, adjust counters */
1947         if (++ctxd == txr->num_tx_desc)
1948                 ctxd = 0;
1949         txr->next_avail_desc = ctxd;
1950         --txr->tx_avail;
1951
1952         return offload;
1953 }
1954
1955 static void
1956 igb_txeof(struct igb_tx_ring *txr)
1957 {
1958         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
1959         int first, hdr, avail;
1960
1961         if (txr->tx_avail == txr->num_tx_desc)
1962                 return;
1963
1964         first = txr->next_to_clean;
1965         hdr = *(txr->tx_hdr);
1966
1967         if (first == hdr)
1968                 return;
1969
1970         avail = txr->tx_avail;
1971         while (first != hdr) {
1972                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1973
1974                 ++avail;
1975                 if (txbuf->m_head) {
1976                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1977                         m_freem(txbuf->m_head);
1978                         txbuf->m_head = NULL;
1979                         ++ifp->if_opackets;
1980                 }
1981                 if (++first == txr->num_tx_desc)
1982                         first = 0;
1983         }
1984         txr->next_to_clean = first;
1985         txr->tx_avail = avail;
1986
1987         /*
1988          * If we have a minimum free, clear IFF_OACTIVE
1989          * to tell the stack that it is OK to send packets.
1990          */
1991         if (IGB_IS_NOT_OACTIVE(txr)) {
1992                 ifp->if_flags &= ~IFF_OACTIVE;
1993
1994                 /*
1995                  * We have enough TX descriptors, turn off
1996                  * the watchdog.  We allow small amount of
1997                  * packets (roughly intr_nsegs) pending on
1998                  * the transmit ring.
1999                  */
2000                 ifp->if_timer = 0;
2001         }
2002 }
2003
2004 static int
2005 igb_create_rx_ring(struct igb_rx_ring *rxr)
2006 {
2007         int rsize, i, error, nrxd;
2008
2009         /*
2010          * Validate number of receive descriptors. It must not exceed
2011          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2012          */
2013         nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2014         if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2015             nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2016                 device_printf(rxr->sc->dev,
2017                     "Using %d RX descriptors instead of %d!\n",
2018                     IGB_DEFAULT_RXD, nrxd);
2019                 rxr->num_rx_desc = IGB_DEFAULT_RXD;
2020         } else {
2021                 rxr->num_rx_desc = nrxd;
2022         }
2023
2024         /*
2025          * Allocate RX descriptor ring
2026          */
2027         rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2028             IGB_DBA_ALIGN);
2029         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2030             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2031             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2032             &rxr->rxdma.dma_paddr);
2033         if (rxr->rxdma.dma_vaddr == NULL) {
2034                 device_printf(rxr->sc->dev,
2035                     "Unable to allocate RxDescriptor memory\n");
2036                 return ENOMEM;
2037         }
2038         rxr->rx_base = rxr->rxdma.dma_vaddr;
2039         bzero(rxr->rx_base, rsize);
2040
2041         rsize = __VM_CACHELINE_ALIGN(
2042             sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2043         rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2044
2045         /*
2046          * Create DMA tag for RX buffers
2047          */
2048         error = bus_dma_tag_create(rxr->sc->parent_tag,
2049             1, 0,               /* alignment, bounds */
2050             BUS_SPACE_MAXADDR,  /* lowaddr */
2051             BUS_SPACE_MAXADDR,  /* highaddr */
2052             NULL, NULL,         /* filter, filterarg */
2053             MCLBYTES,           /* maxsize */
2054             1,                  /* nsegments */
2055             MCLBYTES,           /* maxsegsize */
2056             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2057             &rxr->rx_tag);
2058         if (error) {
2059                 device_printf(rxr->sc->dev,
2060                     "Unable to create RX payload DMA tag\n");
2061                 kfree(rxr->rx_buf, M_DEVBUF);
2062                 rxr->rx_buf = NULL;
2063                 return error;
2064         }
2065
2066         /*
2067          * Create spare DMA map for RX buffers
2068          */
2069         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2070             &rxr->rx_sparemap);
2071         if (error) {
2072                 device_printf(rxr->sc->dev,
2073                     "Unable to create spare RX DMA maps\n");
2074                 bus_dma_tag_destroy(rxr->rx_tag);
2075                 kfree(rxr->rx_buf, M_DEVBUF);
2076                 rxr->rx_buf = NULL;
2077                 return error;
2078         }
2079
2080         /*
2081          * Create DMA maps for RX buffers
2082          */
2083         for (i = 0; i < rxr->num_rx_desc; i++) {
2084                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2085
2086                 error = bus_dmamap_create(rxr->rx_tag,
2087                     BUS_DMA_WAITOK, &rxbuf->map);
2088                 if (error) {
2089                         device_printf(rxr->sc->dev,
2090                             "Unable to create RX DMA maps\n");
2091                         igb_destroy_rx_ring(rxr, i);
2092                         return error;
2093                 }
2094         }
2095
2096         /*
2097          * Initialize various watermark
2098          */
2099         rxr->rx_wreg = 32;
2100
2101         return 0;
2102 }
2103
2104 static void
2105 igb_free_rx_ring(struct igb_rx_ring *rxr)
2106 {
2107         int i;
2108
2109         for (i = 0; i < rxr->num_rx_desc; ++i) {
2110                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2111
2112                 if (rxbuf->m_head != NULL) {
2113                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2114                         m_freem(rxbuf->m_head);
2115                         rxbuf->m_head = NULL;
2116                 }
2117         }
2118
2119         if (rxr->fmp != NULL)
2120                 m_freem(rxr->fmp);
2121         rxr->fmp = NULL;
2122         rxr->lmp = NULL;
2123 }
2124
2125 static void
2126 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2127 {
2128         int i;
2129
2130         if (rxr->rxdma.dma_vaddr != NULL) {
2131                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2132                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2133                     rxr->rxdma.dma_map);
2134                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2135                 rxr->rxdma.dma_vaddr = NULL;
2136         }
2137
2138         if (rxr->rx_buf == NULL)
2139                 return;
2140
2141         for (i = 0; i < ndesc; ++i) {
2142                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2143
2144                 KKASSERT(rxbuf->m_head == NULL);
2145                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2146         }
2147         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2148         bus_dma_tag_destroy(rxr->rx_tag);
2149
2150         kfree(rxr->rx_buf, M_DEVBUF);
2151         rxr->rx_buf = NULL;
2152 }
2153
2154 static void
2155 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2156 {
2157         rxd->read.pkt_addr = htole64(rxbuf->paddr);
2158         rxd->wb.upper.status_error = 0;
2159 }
2160
2161 static int
2162 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2163 {
2164         struct mbuf *m;
2165         bus_dma_segment_t seg;
2166         bus_dmamap_t map;
2167         struct igb_rx_buf *rxbuf;
2168         int error, nseg;
2169
2170         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2171         if (m == NULL) {
2172                 if (wait) {
2173                         if_printf(&rxr->sc->arpcom.ac_if,
2174                             "Unable to allocate RX mbuf\n");
2175                 }
2176                 return ENOBUFS;
2177         }
2178         m->m_len = m->m_pkthdr.len = MCLBYTES;
2179
2180         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2181                 m_adj(m, ETHER_ALIGN);
2182
2183         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2184             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2185         if (error) {
2186                 m_freem(m);
2187                 if (wait) {
2188                         if_printf(&rxr->sc->arpcom.ac_if,
2189                             "Unable to load RX mbuf\n");
2190                 }
2191                 return error;
2192         }
2193
2194         rxbuf = &rxr->rx_buf[i];
2195         if (rxbuf->m_head != NULL)
2196                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2197
2198         map = rxbuf->map;
2199         rxbuf->map = rxr->rx_sparemap;
2200         rxr->rx_sparemap = map;
2201
2202         rxbuf->m_head = m;
2203         rxbuf->paddr = seg.ds_addr;
2204
2205         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2206         return 0;
2207 }
2208
2209 static int
2210 igb_init_rx_ring(struct igb_rx_ring *rxr)
2211 {
2212         int i;
2213
2214         /* Clear the ring contents */
2215         bzero(rxr->rx_base,
2216             rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2217
2218         /* Now replenish the ring mbufs */
2219         for (i = 0; i < rxr->num_rx_desc; ++i) {
2220                 int error;
2221
2222                 error = igb_newbuf(rxr, i, TRUE);
2223                 if (error)
2224                         return error;
2225         }
2226
2227         /* Setup our descriptor indices */
2228         rxr->next_to_check = 0;
2229
2230         rxr->fmp = NULL;
2231         rxr->lmp = NULL;
2232         rxr->discard = FALSE;
2233
2234         return 0;
2235 }
2236
2237 static void
2238 igb_init_rx_unit(struct igb_softc *sc)
2239 {
2240         struct ifnet *ifp = &sc->arpcom.ac_if;
2241         struct e1000_hw *hw = &sc->hw;
2242         uint32_t rctl, rxcsum, srrctl = 0;
2243         int i;
2244
2245         /*
2246          * Make sure receives are disabled while setting
2247          * up the descriptor ring
2248          */
2249         rctl = E1000_READ_REG(hw, E1000_RCTL);
2250         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2251
2252 #if 0
2253         /*
2254         ** Set up for header split
2255         */
2256         if (igb_header_split) {
2257                 /* Use a standard mbuf for the header */
2258                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2259                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2260         } else
2261 #endif
2262                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2263
2264         /*
2265         ** Set up for jumbo frames
2266         */
2267         if (ifp->if_mtu > ETHERMTU) {
2268                 rctl |= E1000_RCTL_LPE;
2269 #if 0
2270                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2271                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2272                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2273                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2274                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2275                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2276                 }
2277                 /* Set maximum packet len */
2278                 psize = adapter->max_frame_size;
2279                 /* are we on a vlan? */
2280                 if (adapter->ifp->if_vlantrunk != NULL)
2281                         psize += VLAN_TAG_SIZE;
2282                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2283 #else
2284                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2285                 rctl |= E1000_RCTL_SZ_2048;
2286 #endif
2287         } else {
2288                 rctl &= ~E1000_RCTL_LPE;
2289                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2290                 rctl |= E1000_RCTL_SZ_2048;
2291         }
2292
2293         /* Setup the Base and Length of the Rx Descriptor Rings */
2294         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2295                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2296                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2297                 uint32_t rxdctl;
2298
2299                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2300                     rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2301                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2302                     (uint32_t)(bus_addr >> 32));
2303                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2304                     (uint32_t)bus_addr);
2305                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2306                 /* Enable this Queue */
2307                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2308                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2309                 rxdctl &= 0xFFF00000;
2310                 rxdctl |= IGB_RX_PTHRESH;
2311                 rxdctl |= IGB_RX_HTHRESH << 8;
2312                 /*
2313                  * Don't set WTHRESH to a value above 1 on 82576, see:
2314                  * 82576 specification update errata #26
2315                  */
2316                 rxdctl |= IGB_RX_WTHRESH << 16;
2317                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2318         }
2319
2320         rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2321         rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2322
2323         /*
2324          * Receive Checksum Offload for TCP and UDP
2325          *
2326          * Checksum offloading is also enabled if multiple receive
2327          * queue is to be supported, since we need it to figure out
2328          * fragments.
2329          */
2330         if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2331                 /*
2332                  * NOTE:
2333                  * PCSD must be enabled to enable multiple
2334                  * receive queues.
2335                  */
2336                 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2337                     E1000_RXCSUM_PCSD;
2338         } else {
2339                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2340                     E1000_RXCSUM_PCSD);
2341         }
2342         E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2343
2344         if (IGB_ENABLE_HWRSS(sc)) {
2345                 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2346                 uint32_t reta_shift;
2347                 int j, r;
2348
2349                 /*
2350                  * NOTE:
2351                  * When we reach here, RSS has already been disabled
2352                  * in igb_stop(), so we could safely configure RSS key
2353                  * and redirect table.
2354                  */
2355
2356                 /*
2357                  * Configure RSS key
2358                  */
2359                 toeplitz_get_key(key, sizeof(key));
2360                 for (i = 0; i < IGB_NRSSRK; ++i) {
2361                         uint32_t rssrk;
2362
2363                         rssrk = IGB_RSSRK_VAL(key, i);
2364                         IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2365
2366                         E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2367                 }
2368
2369                 /*
2370                  * Configure RSS redirect table in following fashion:
2371                  * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2372                  */
2373                 reta_shift = IGB_RETA_SHIFT;
2374                 if (hw->mac.type == e1000_82575)
2375                         reta_shift = IGB_RETA_SHIFT_82575;
2376
2377                 r = 0;
2378                 for (j = 0; j < IGB_NRETA; ++j) {
2379                         uint32_t reta = 0;
2380
2381                         for (i = 0; i < IGB_RETA_SIZE; ++i) {
2382                                 uint32_t q;
2383
2384                                 q = (r % sc->rx_ring_inuse) << reta_shift;
2385                                 reta |= q << (8 * i);
2386                                 ++r;
2387                         }
2388                         IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2389                         E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2390                 }
2391
2392                 /*
2393                  * Enable multiple receive queues.
2394                  * Enable IPv4 RSS standard hash functions.
2395                  * Disable RSS interrupt on 82575
2396                  */
2397                 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2398                                 E1000_MRQC_ENABLE_RSS_4Q |
2399                                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2400                                 E1000_MRQC_RSS_FIELD_IPV4);
2401         }
2402
2403         /* Setup the Receive Control Register */
2404         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2405         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2406             E1000_RCTL_RDMTS_HALF |
2407             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2408         /* Strip CRC bytes. */
2409         rctl |= E1000_RCTL_SECRC;
2410         /* Make sure VLAN Filters are off */
2411         rctl &= ~E1000_RCTL_VFE;
2412         /* Don't store bad packets */
2413         rctl &= ~E1000_RCTL_SBP;
2414
2415         /* Enable Receives */
2416         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2417
2418         /*
2419          * Setup the HW Rx Head and Tail Descriptor Pointers
2420          *   - needs to be after enable
2421          */
2422         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2423                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2424
2425                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2426                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2427         }
2428 }
2429
2430 static void
2431 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2432 {
2433         if (--i < 0)
2434                 i = rxr->num_rx_desc - 1;
2435         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2436 }
2437
2438 static void
2439 igb_rxeof(struct igb_rx_ring *rxr, int count)
2440 {
2441         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2442         union e1000_adv_rx_desc *cur;
2443         uint32_t staterr;
2444         int i, ncoll = 0;
2445
2446         i = rxr->next_to_check;
2447         cur = &rxr->rx_base[i];
2448         staterr = le32toh(cur->wb.upper.status_error);
2449
2450         if ((staterr & E1000_RXD_STAT_DD) == 0)
2451                 return;
2452
2453         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2454                 struct pktinfo *pi = NULL, pi0;
2455                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2456                 struct mbuf *m = NULL;
2457                 boolean_t eop;
2458
2459                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2460                 if (eop)
2461                         --count;
2462
2463                 ++ncoll;
2464                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2465                     !rxr->discard) {
2466                         struct mbuf *mp = rxbuf->m_head;
2467                         uint32_t hash, hashtype;
2468                         uint16_t vlan;
2469                         int len;
2470
2471                         len = le16toh(cur->wb.upper.length);
2472                         if (rxr->sc->hw.mac.type == e1000_i350 &&
2473                             (staterr & E1000_RXDEXT_STATERR_LB))
2474                                 vlan = be16toh(cur->wb.upper.vlan);
2475                         else
2476                                 vlan = le16toh(cur->wb.upper.vlan);
2477
2478                         hash = le32toh(cur->wb.lower.hi_dword.rss);
2479                         hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2480                             E1000_RXDADV_RSSTYPE_MASK;
2481
2482                         IGB_RSS_DPRINTF(rxr->sc, 10,
2483                             "ring%d, hash 0x%08x, hashtype %u\n",
2484                             rxr->me, hash, hashtype);
2485
2486                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2487                             BUS_DMASYNC_POSTREAD);
2488
2489                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2490                                 ifp->if_iqdrops++;
2491                                 goto discard;
2492                         }
2493
2494                         mp->m_len = len;
2495                         if (rxr->fmp == NULL) {
2496                                 mp->m_pkthdr.len = len;
2497                                 rxr->fmp = mp;
2498                                 rxr->lmp = mp;
2499                         } else {
2500                                 rxr->lmp->m_next = mp;
2501                                 rxr->lmp = rxr->lmp->m_next;
2502                                 rxr->fmp->m_pkthdr.len += len;
2503                         }
2504
2505                         if (eop) {
2506                                 m = rxr->fmp;
2507                                 rxr->fmp = NULL;
2508                                 rxr->lmp = NULL;
2509
2510                                 m->m_pkthdr.rcvif = ifp;
2511                                 ifp->if_ipackets++;
2512
2513                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2514                                         igb_rxcsum(staterr, m);
2515
2516                                 if (staterr & E1000_RXD_STAT_VP) {
2517                                         m->m_pkthdr.ether_vlantag = vlan;
2518                                         m->m_flags |= M_VLANTAG;
2519                                 }
2520
2521                                 if (ifp->if_capenable & IFCAP_RSS) {
2522                                         pi = igb_rssinfo(m, &pi0,
2523                                             hash, hashtype, staterr);
2524                                 }
2525 #ifdef IGB_RSS_DEBUG
2526                                 rxr->rx_packets++;
2527 #endif
2528                         }
2529                 } else {
2530                         ifp->if_ierrors++;
2531 discard:
2532                         igb_setup_rxdesc(cur, rxbuf);
2533                         if (!eop)
2534                                 rxr->discard = TRUE;
2535                         else
2536                                 rxr->discard = FALSE;
2537                         if (rxr->fmp != NULL) {
2538                                 m_freem(rxr->fmp);
2539                                 rxr->fmp = NULL;
2540                                 rxr->lmp = NULL;
2541                         }
2542                         m = NULL;
2543                 }
2544
2545                 if (m != NULL)
2546                         ether_input_pkt(ifp, m, pi);
2547
2548                 /* Advance our pointers to the next descriptor. */
2549                 if (++i == rxr->num_rx_desc)
2550                         i = 0;
2551
2552                 if (ncoll > rxr->rx_wreg) {
2553                         igb_rx_refresh(rxr, i);
2554                         ncoll = 0;
2555                 }
2556
2557                 cur = &rxr->rx_base[i];
2558                 staterr = le32toh(cur->wb.upper.status_error);
2559         }
2560         rxr->next_to_check = i;
2561
2562         if (ncoll > 0)
2563                 igb_rx_refresh(rxr, i);
2564 }
2565
2566
2567 static void
2568 igb_set_vlan(struct igb_softc *sc)
2569 {
2570         struct e1000_hw *hw = &sc->hw;
2571         uint32_t reg;
2572 #if 0
2573         struct ifnet *ifp = sc->arpcom.ac_if;
2574 #endif
2575
2576         if (sc->vf_ifp) {
2577                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2578                 return;
2579         }
2580
2581         reg = E1000_READ_REG(hw, E1000_CTRL);
2582         reg |= E1000_CTRL_VME;
2583         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2584
2585 #if 0
2586         /* Enable the Filter Table */
2587         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2588                 reg = E1000_READ_REG(hw, E1000_RCTL);
2589                 reg &= ~E1000_RCTL_CFIEN;
2590                 reg |= E1000_RCTL_VFE;
2591                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2592         }
2593 #endif
2594
2595         /* Update the frame size */
2596         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2597             sc->max_frame_size + VLAN_TAG_SIZE);
2598
2599 #if 0
2600         /* Don't bother with table if no vlans */
2601         if ((adapter->num_vlans == 0) ||
2602             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2603                 return;
2604         /*
2605         ** A soft reset zero's out the VFTA, so
2606         ** we need to repopulate it now.
2607         */
2608         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2609                 if (adapter->shadow_vfta[i] != 0) {
2610                         if (adapter->vf_ifp)
2611                                 e1000_vfta_set_vf(hw,
2612                                     adapter->shadow_vfta[i], TRUE);
2613                         else
2614                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2615                                  i, adapter->shadow_vfta[i]);
2616                 }
2617 #endif
2618 }
2619
2620 static void
2621 igb_enable_intr(struct igb_softc *sc)
2622 {
2623         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2624                 lwkt_serialize_handler_enable(&sc->main_serialize);
2625         } else {
2626                 int i;
2627
2628                 for (i = 0; i < sc->msix_cnt; ++i) {
2629                         lwkt_serialize_handler_enable(
2630                             sc->msix_data[i].msix_serialize);
2631                 }
2632         }
2633
2634         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2635                 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2636                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2637                 else
2638                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2639                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2640                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2641                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2642         } else {
2643                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2644         }
2645         E1000_WRITE_FLUSH(&sc->hw);
2646 }
2647
2648 static void
2649 igb_disable_intr(struct igb_softc *sc)
2650 {
2651         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2652                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2653                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2654         }
2655         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2656         E1000_WRITE_FLUSH(&sc->hw);
2657
2658         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2659                 lwkt_serialize_handler_disable(&sc->main_serialize);
2660         } else {
2661                 int i;
2662
2663                 for (i = 0; i < sc->msix_cnt; ++i) {
2664                         lwkt_serialize_handler_disable(
2665                             sc->msix_data[i].msix_serialize);
2666                 }
2667         }
2668 }
2669
2670 /*
2671  * Bit of a misnomer, what this really means is
2672  * to enable OS management of the system... aka
2673  * to disable special hardware management features 
2674  */
2675 static void
2676 igb_get_mgmt(struct igb_softc *sc)
2677 {
2678         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2679                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2680                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2681
2682                 /* disable hardware interception of ARP */
2683                 manc &= ~E1000_MANC_ARP_EN;
2684
2685                 /* enable receiving management packets to the host */
2686                 manc |= E1000_MANC_EN_MNG2HOST;
2687                 manc2h |= 1 << 5; /* Mng Port 623 */
2688                 manc2h |= 1 << 6; /* Mng Port 664 */
2689                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2690                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2691         }
2692 }
2693
2694 /*
2695  * Give control back to hardware management controller
2696  * if there is one.
2697  */
2698 static void
2699 igb_rel_mgmt(struct igb_softc *sc)
2700 {
2701         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2702                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2703
2704                 /* Re-enable hardware interception of ARP */
2705                 manc |= E1000_MANC_ARP_EN;
2706                 manc &= ~E1000_MANC_EN_MNG2HOST;
2707
2708                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2709         }
2710 }
2711
2712 /*
2713  * Sets CTRL_EXT:DRV_LOAD bit.
2714  *
2715  * For ASF and Pass Through versions of f/w this means that
2716  * the driver is loaded. 
2717  */
2718 static void
2719 igb_get_hw_control(struct igb_softc *sc)
2720 {
2721         uint32_t ctrl_ext;
2722
2723         if (sc->vf_ifp)
2724                 return;
2725
2726         /* Let firmware know the driver has taken over */
2727         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2728         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2729             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2730 }
2731
2732 /*
2733  * Resets CTRL_EXT:DRV_LOAD bit.
2734  *
2735  * For ASF and Pass Through versions of f/w this means that the
2736  * driver is no longer loaded.
2737  */
2738 static void
2739 igb_rel_hw_control(struct igb_softc *sc)
2740 {
2741         uint32_t ctrl_ext;
2742
2743         if (sc->vf_ifp)
2744                 return;
2745
2746         /* Let firmware taken over control of h/w */
2747         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2748         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2749             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2750 }
2751
2752 static int
2753 igb_is_valid_ether_addr(const uint8_t *addr)
2754 {
2755         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2756
2757         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2758                 return FALSE;
2759         return TRUE;
2760 }
2761
2762 /*
2763  * Enable PCI Wake On Lan capability
2764  */
2765 static void
2766 igb_enable_wol(device_t dev)
2767 {
2768         uint16_t cap, status;
2769         uint8_t id;
2770
2771         /* First find the capabilities pointer*/
2772         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2773
2774         /* Read the PM Capabilities */
2775         id = pci_read_config(dev, cap, 1);
2776         if (id != PCIY_PMG)     /* Something wrong */
2777                 return;
2778
2779         /*
2780          * OK, we have the power capabilities,
2781          * so now get the status register
2782          */
2783         cap += PCIR_POWER_STATUS;
2784         status = pci_read_config(dev, cap, 2);
2785         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2786         pci_write_config(dev, cap, status, 2);
2787 }
2788
2789 static void
2790 igb_update_stats_counters(struct igb_softc *sc)
2791 {
2792         struct e1000_hw *hw = &sc->hw;
2793         struct e1000_hw_stats *stats;
2794         struct ifnet *ifp = &sc->arpcom.ac_if;
2795
2796         /* 
2797          * The virtual function adapter has only a
2798          * small controlled set of stats, do only 
2799          * those and return.
2800          */
2801         if (sc->vf_ifp) {
2802                 igb_update_vf_stats_counters(sc);
2803                 return;
2804         }
2805         stats = sc->stats;
2806
2807         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2808             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2809                 stats->symerrs +=
2810                     E1000_READ_REG(hw,E1000_SYMERRS);
2811                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2812         }
2813
2814         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2815         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2816         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2817         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2818
2819         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2820         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2821         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2822         stats->dc += E1000_READ_REG(hw, E1000_DC);
2823         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2824         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2825         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2826
2827         /*
2828          * For watchdog management we need to know if we have been
2829          * paused during the last interval, so capture that here.
2830          */ 
2831         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2832         stats->xoffrxc += sc->pause_frames;
2833         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2834         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2835         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2836         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2837         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2838         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2839         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2840         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2841         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2842         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2843         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2844         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2845
2846         /* For the 64-bit byte counters the low dword must be read first. */
2847         /* Both registers clear on the read of the high dword */
2848
2849         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2850             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2851         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2852             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2853
2854         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2855         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2856         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2857         stats->roc += E1000_READ_REG(hw, E1000_ROC);
2858         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2859
2860         stats->tor += E1000_READ_REG(hw, E1000_TORH);
2861         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2862
2863         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2864         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2865         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2866         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2867         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2868         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2869         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2870         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2871         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2872         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2873
2874         /* Interrupt Counts */
2875
2876         stats->iac += E1000_READ_REG(hw, E1000_IAC);
2877         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2878         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2879         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2880         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2881         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2882         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2883         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2884         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2885
2886         /* Host to Card Statistics */
2887
2888         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2889         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2890         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2891         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2892         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2893         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2894         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2895         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2896             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2897         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2898             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2899         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2900         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2901         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2902
2903         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2904         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2905         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2906         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2907         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2908         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2909
2910         ifp->if_collisions = stats->colc;
2911
2912         /* Rx Errors */
2913         ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2914             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2915
2916         /* Tx Errors */
2917         ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2918
2919         /* Driver specific counters */
2920         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2921         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2922         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2923         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2924         sc->packet_buf_alloc_tx =
2925             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2926         sc->packet_buf_alloc_rx =
2927             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2928 }
2929
2930 static void
2931 igb_vf_init_stats(struct igb_softc *sc)
2932 {
2933         struct e1000_hw *hw = &sc->hw;
2934         struct e1000_vf_stats *stats;
2935
2936         stats = sc->stats;
2937         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2938         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2939         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2940         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2941         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2942 }
2943  
2944 static void
2945 igb_update_vf_stats_counters(struct igb_softc *sc)
2946 {
2947         struct e1000_hw *hw = &sc->hw;
2948         struct e1000_vf_stats *stats;
2949
2950         if (sc->link_speed == 0)
2951                 return;
2952
2953         stats = sc->stats;
2954         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2955         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2956         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2957         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2958         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2959 }
2960
2961 #ifdef IFPOLL_ENABLE
2962
2963 static void
2964 igb_npoll_status(struct ifnet *ifp)
2965 {
2966         struct igb_softc *sc = ifp->if_softc;
2967         uint32_t reg_icr;
2968
2969         ASSERT_SERIALIZED(&sc->main_serialize);
2970
2971         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2972         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2973                 sc->hw.mac.get_link_status = 1;
2974                 igb_update_link_status(sc);
2975         }
2976 }
2977
2978 static void
2979 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
2980 {
2981         struct igb_tx_ring *txr = arg;
2982
2983         ASSERT_SERIALIZED(&txr->tx_serialize);
2984
2985         igb_txeof(txr);
2986         if (!ifq_is_empty(&ifp->if_snd))
2987                 if_devstart(ifp);
2988 }
2989
2990 static void
2991 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
2992 {
2993         struct igb_rx_ring *rxr = arg;
2994
2995         ASSERT_SERIALIZED(&rxr->rx_serialize);
2996
2997         igb_rxeof(rxr, cycle);
2998 }
2999
3000 static void
3001 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3002 {
3003         struct igb_softc *sc = ifp->if_softc;
3004
3005         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3006
3007         if (info) {
3008                 struct igb_tx_ring *txr;
3009                 int i, off;
3010
3011                 info->ifpi_status.status_func = igb_npoll_status;
3012                 info->ifpi_status.serializer = &sc->main_serialize;
3013
3014                 off = sc->tx_npoll_off;
3015                 KKASSERT(off < ncpus2);
3016                 txr = &sc->tx_rings[0];
3017                 info->ifpi_tx[off].poll_func = igb_npoll_tx;
3018                 info->ifpi_tx[off].arg = txr;
3019                 info->ifpi_tx[off].serializer = &txr->tx_serialize;
3020
3021                 off = sc->rx_npoll_off;
3022                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3023                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3024                         int idx = i + off;
3025
3026                         KKASSERT(idx < ncpus2);
3027                         info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3028                         info->ifpi_rx[idx].arg = rxr;
3029                         info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3030                 }
3031
3032                 if (ifp->if_flags & IFF_RUNNING) {
3033                         if (sc->rx_ring_inuse == sc->rx_ring_cnt)
3034                                 igb_disable_intr(sc);
3035                         else
3036                                 igb_init(sc);
3037                 }
3038                 ifp->if_npoll_cpuid = sc->tx_npoll_off;
3039         } else {
3040                 if (ifp->if_flags & IFF_RUNNING) {
3041                         if (sc->rx_ring_inuse == sc->rx_ring_cnt)
3042                                 igb_enable_intr(sc);
3043                         else
3044                                 igb_init(sc);
3045                 }
3046                 ifp->if_npoll_cpuid = -1;
3047         }
3048 }
3049
3050 #endif /* IFPOLL_ENABLE */
3051
3052 static void
3053 igb_intr(void *xsc)
3054 {
3055         struct igb_softc *sc = xsc;
3056         struct ifnet *ifp = &sc->arpcom.ac_if;
3057         uint32_t eicr;
3058
3059         ASSERT_SERIALIZED(&sc->main_serialize);
3060
3061         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3062
3063         if (eicr == 0)
3064                 return;
3065
3066         if (ifp->if_flags & IFF_RUNNING) {
3067                 struct igb_tx_ring *txr;
3068                 int i;
3069
3070                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3071                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3072
3073                         if (eicr & rxr->rx_intr_mask) {
3074                                 lwkt_serialize_enter(&rxr->rx_serialize);
3075                                 igb_rxeof(rxr, -1);
3076                                 lwkt_serialize_exit(&rxr->rx_serialize);
3077                         }
3078                 }
3079
3080                 txr = &sc->tx_rings[0];
3081                 if (eicr & txr->tx_intr_mask) {
3082                         lwkt_serialize_enter(&txr->tx_serialize);
3083                         igb_txeof(txr);
3084                         if (!ifq_is_empty(&ifp->if_snd))
3085                                 if_devstart(ifp);
3086                         lwkt_serialize_exit(&txr->tx_serialize);
3087                 }
3088         }
3089
3090         if (eicr & E1000_EICR_OTHER) {
3091                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3092
3093                 /* Link status change */
3094                 if (icr & E1000_ICR_LSC) {
3095                         sc->hw.mac.get_link_status = 1;
3096                         igb_update_link_status(sc);
3097                 }
3098         }
3099
3100         /*
3101          * Reading EICR has the side effect to clear interrupt mask,
3102          * so all interrupts need to be enabled here.
3103          */
3104         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3105 }
3106
3107 static void
3108 igb_intr_shared(void *xsc)
3109 {
3110         struct igb_softc *sc = xsc;
3111         struct ifnet *ifp = &sc->arpcom.ac_if;
3112         uint32_t reg_icr;
3113
3114         ASSERT_SERIALIZED(&sc->main_serialize);
3115
3116         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3117
3118         /* Hot eject?  */
3119         if (reg_icr == 0xffffffff)
3120                 return;
3121
3122         /* Definitely not our interrupt.  */
3123         if (reg_icr == 0x0)
3124                 return;
3125
3126         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3127                 return;
3128
3129         if (ifp->if_flags & IFF_RUNNING) {
3130                 if (reg_icr &
3131                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3132                         int i;
3133
3134                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
3135                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3136
3137                                 lwkt_serialize_enter(&rxr->rx_serialize);
3138                                 igb_rxeof(rxr, -1);
3139                                 lwkt_serialize_exit(&rxr->rx_serialize);
3140                         }
3141                 }
3142
3143                 if (reg_icr & E1000_ICR_TXDW) {
3144                         struct igb_tx_ring *txr = &sc->tx_rings[0];
3145
3146                         lwkt_serialize_enter(&txr->tx_serialize);
3147                         igb_txeof(txr);
3148                         if (!ifq_is_empty(&ifp->if_snd))
3149                                 if_devstart(ifp);
3150                         lwkt_serialize_exit(&txr->tx_serialize);
3151                 }
3152         }
3153
3154         /* Link status change */
3155         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3156                 sc->hw.mac.get_link_status = 1;
3157                 igb_update_link_status(sc);
3158         }
3159
3160         if (reg_icr & E1000_ICR_RXO)
3161                 sc->rx_overruns++;
3162 }
3163
3164 static int
3165 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3166     int *segs_used, int *idx)
3167 {
3168         bus_dma_segment_t segs[IGB_MAX_SCATTER];
3169         bus_dmamap_t map;
3170         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3171         union e1000_adv_tx_desc *txd = NULL;
3172         struct mbuf *m_head = *m_headp;
3173         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3174         int maxsegs, nsegs, i, j, error, last = 0;
3175         uint32_t hdrlen = 0;
3176
3177         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3178                 error = igb_tso_pullup(txr, m_headp);
3179                 if (error)
3180                         return error;
3181                 m_head = *m_headp;
3182         }
3183
3184         /* Set basic descriptor constants */
3185         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3186         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3187         if (m_head->m_flags & M_VLANTAG)
3188                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3189
3190         /*
3191          * Map the packet for DMA.
3192          */
3193         tx_buf = &txr->tx_buf[txr->next_avail_desc];
3194         tx_buf_mapped = tx_buf;
3195         map = tx_buf->map;
3196
3197         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3198         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3199         if (maxsegs > IGB_MAX_SCATTER)
3200                 maxsegs = IGB_MAX_SCATTER;
3201
3202         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3203             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3204         if (error) {
3205                 if (error == ENOBUFS)
3206                         txr->sc->mbuf_defrag_failed++;
3207                 else
3208                         txr->sc->no_tx_dma_setup++;
3209
3210                 m_freem(*m_headp);
3211                 *m_headp = NULL;
3212                 return error;
3213         }
3214         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3215
3216         m_head = *m_headp;
3217
3218         /*
3219          * Set up the TX context descriptor, if any hardware offloading is
3220          * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3221          * TX descriptor.
3222          *
3223          * Unlike these chips' predecessors (em/emx), TX context descriptor
3224          * will _not_ interfere TX data fetching pipelining.
3225          */
3226         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3227                 igb_tso_ctx(txr, m_head, &hdrlen);
3228                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3229                 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3230                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3231                 txr->tx_nsegs++;
3232                 (*segs_used)++;
3233         } else if (igb_txcsum_ctx(txr, m_head)) {
3234                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3235                         olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3236                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3237                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3238                 txr->tx_nsegs++;
3239                 (*segs_used)++;
3240         }
3241
3242         *segs_used += nsegs;
3243         txr->tx_nsegs += nsegs;
3244         if (txr->tx_nsegs >= txr->intr_nsegs) {
3245                 /*
3246                  * Report Status (RS) is turned on every intr_nsegs
3247                  * descriptors (roughly).
3248                  */
3249                 txr->tx_nsegs = 0;
3250                 cmd_rs = E1000_ADVTXD_DCMD_RS;
3251         }
3252
3253         /* Calculate payload length */
3254         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3255             << E1000_ADVTXD_PAYLEN_SHIFT);
3256
3257         /* 82575 needs the queue index added */
3258         if (txr->sc->hw.mac.type == e1000_82575)
3259                 olinfo_status |= txr->me << 4;
3260
3261         /* Set up our transmit descriptors */
3262         i = txr->next_avail_desc;
3263         for (j = 0; j < nsegs; j++) {
3264                 bus_size_t seg_len;
3265                 bus_addr_t seg_addr;
3266
3267                 tx_buf = &txr->tx_buf[i];
3268                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3269                 seg_addr = segs[j].ds_addr;
3270                 seg_len = segs[j].ds_len;
3271
3272                 txd->read.buffer_addr = htole64(seg_addr);
3273                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3274                 txd->read.olinfo_status = htole32(olinfo_status);
3275                 last = i;
3276                 if (++i == txr->num_tx_desc)
3277                         i = 0;
3278                 tx_buf->m_head = NULL;
3279         }
3280
3281         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3282         txr->next_avail_desc = i;
3283         txr->tx_avail -= nsegs;
3284
3285         tx_buf->m_head = m_head;
3286         tx_buf_mapped->map = tx_buf->map;
3287         tx_buf->map = map;
3288
3289         /*
3290          * Last Descriptor of Packet needs End Of Packet (EOP)
3291          */
3292         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3293
3294         /*
3295          * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
3296          * that this frame is available to transmit.
3297          */
3298         *idx = i;
3299         ++txr->tx_packets;
3300
3301         return 0;
3302 }
3303
3304 static void
3305 igb_start(struct ifnet *ifp)
3306 {
3307         struct igb_softc *sc = ifp->if_softc;
3308         struct igb_tx_ring *txr = &sc->tx_rings[0];
3309         struct mbuf *m_head;
3310         int idx = -1, nsegs = 0;
3311
3312         ASSERT_SERIALIZED(&txr->tx_serialize);
3313
3314         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3315                 return;
3316
3317         if (!sc->link_active) {
3318                 ifq_purge(&ifp->if_snd);
3319                 return;
3320         }
3321
3322         if (!IGB_IS_NOT_OACTIVE(txr))
3323                 igb_txeof(txr);
3324
3325         while (!ifq_is_empty(&ifp->if_snd)) {
3326                 if (IGB_IS_OACTIVE(txr)) {
3327                         ifp->if_flags |= IFF_OACTIVE;
3328                         /* Set watchdog on */
3329                         ifp->if_timer = 5;
3330                         break;
3331                 }
3332
3333                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3334                 if (m_head == NULL)
3335                         break;
3336
3337                 if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3338                         ifp->if_oerrors++;
3339                         continue;
3340                 }
3341
3342                 if (nsegs >= txr->wreg_nsegs) {
3343                         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3344                         idx = -1;
3345                         nsegs = 0;
3346                 }
3347
3348                 /* Send a copy of the frame to the BPF listener */
3349                 ETHER_BPF_MTAP(ifp, m_head);
3350         }
3351         if (idx >= 0)
3352                 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3353 }
3354
3355 static void
3356 igb_watchdog(struct ifnet *ifp)
3357 {
3358         struct igb_softc *sc = ifp->if_softc;
3359         struct igb_tx_ring *txr = &sc->tx_rings[0];
3360
3361         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3362
3363         /* 
3364          * If flow control has paused us since last checking
3365          * it invalidates the watchdog timing, so dont run it.
3366          */
3367         if (sc->pause_frames) {
3368                 sc->pause_frames = 0;
3369                 ifp->if_timer = 5;
3370                 return;
3371         }
3372
3373         if_printf(ifp, "Watchdog timeout -- resetting\n");
3374         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3375             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3376             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3377         if_printf(ifp, "TX(%d) desc avail = %d, "
3378             "Next TX to Clean = %d\n",
3379             txr->me, txr->tx_avail, txr->next_to_clean);
3380
3381         ifp->if_oerrors++;
3382         sc->watchdog_events++;
3383
3384         igb_init(sc);
3385         if (!ifq_is_empty(&ifp->if_snd))
3386                 if_devstart(ifp);
3387 }
3388
3389 static void
3390 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3391 {
3392         uint32_t eitr = 0;
3393
3394         if (rate > 0) {
3395                 if (sc->hw.mac.type == e1000_82575) {
3396                         eitr = 1000000000 / 256 / rate;
3397                         /*
3398                          * NOTE:
3399                          * Document is wrong on the 2 bits left shift
3400                          */
3401                 } else {
3402                         eitr = 1000000 / rate;
3403                         eitr <<= IGB_EITR_INTVL_SHIFT;
3404                 }
3405
3406                 if (eitr == 0) {
3407                         /* Don't disable it */
3408                         eitr = 1 << IGB_EITR_INTVL_SHIFT;
3409                 } else if (eitr > IGB_EITR_INTVL_MASK) {
3410                         /* Don't allow it to be too large */
3411                         eitr = IGB_EITR_INTVL_MASK;
3412                 }
3413         }
3414         if (sc->hw.mac.type == e1000_82575)
3415                 eitr |= eitr << 16;
3416         else
3417                 eitr |= E1000_EITR_CNT_IGNR;
3418         E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3419 }
3420
3421 static int
3422 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3423 {
3424         struct igb_softc *sc = (void *)arg1;
3425         struct ifnet *ifp = &sc->arpcom.ac_if;
3426         int error, intr_rate;
3427
3428         intr_rate = sc->intr_rate;
3429         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3430         if (error || req->newptr == NULL)
3431                 return error;
3432         if (intr_rate < 0)
3433                 return EINVAL;
3434
3435         ifnet_serialize_all(ifp);
3436
3437         sc->intr_rate = intr_rate;
3438         if (ifp->if_flags & IFF_RUNNING)
3439                 igb_set_eitr(sc, 0, sc->intr_rate);
3440
3441         if (bootverbose)
3442                 if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3443
3444         ifnet_deserialize_all(ifp);
3445
3446         return 0;
3447 }
3448
3449 static int
3450 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3451 {
3452         struct igb_msix_data *msix = (void *)arg1;
3453         struct igb_softc *sc = msix->msix_sc;
3454         struct ifnet *ifp = &sc->arpcom.ac_if;
3455         int error, msix_rate;
3456
3457         msix_rate = msix->msix_rate;
3458         error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3459         if (error || req->newptr == NULL)
3460                 return error;
3461         if (msix_rate < 0)
3462                 return EINVAL;
3463
3464         lwkt_serialize_enter(msix->msix_serialize);
3465
3466         msix->msix_rate = msix_rate;
3467         if (ifp->if_flags & IFF_RUNNING)
3468                 igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3469
3470         if (bootverbose) {
3471                 if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3472                     msix->msix_rate);
3473         }
3474
3475         lwkt_serialize_exit(msix->msix_serialize);
3476
3477         return 0;
3478 }
3479
3480 static int
3481 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3482 {
3483         struct igb_softc *sc = (void *)arg1;
3484         struct ifnet *ifp = &sc->arpcom.ac_if;
3485         struct igb_tx_ring *txr = &sc->tx_rings[0];
3486         int error, nsegs;
3487
3488         nsegs = txr->intr_nsegs;
3489         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3490         if (error || req->newptr == NULL)
3491                 return error;
3492         if (nsegs <= 0)
3493                 return EINVAL;
3494
3495         ifnet_serialize_all(ifp);
3496
3497         if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3498             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3499                 error = EINVAL;
3500         } else {
3501                 error = 0;
3502                 txr->intr_nsegs = nsegs;
3503         }
3504
3505         ifnet_deserialize_all(ifp);
3506
3507         return error;
3508 }
3509
3510 #ifdef IFPOLL_ENABLE
3511
3512 static int
3513 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3514 {
3515         struct igb_softc *sc = (void *)arg1;
3516         struct ifnet *ifp = &sc->arpcom.ac_if;
3517         int error, off;
3518
3519         off = sc->rx_npoll_off;
3520         error = sysctl_handle_int(oidp, &off, 0, req);
3521         if (error || req->newptr == NULL)
3522                 return error;
3523         if (off < 0)
3524                 return EINVAL;
3525
3526         ifnet_serialize_all(ifp);
3527         if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3528                 error = EINVAL;
3529         } else {
3530                 error = 0;
3531                 sc->rx_npoll_off = off;
3532         }
3533         ifnet_deserialize_all(ifp);
3534
3535         return error;
3536 }
3537
3538 static int
3539 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3540 {
3541         struct igb_softc *sc = (void *)arg1;
3542         struct ifnet *ifp = &sc->arpcom.ac_if;
3543         int error, off;
3544
3545         off = sc->tx_npoll_off;
3546         error = sysctl_handle_int(oidp, &off, 0, req);
3547         if (error || req->newptr == NULL)
3548                 return error;
3549         if (off < 0)
3550                 return EINVAL;
3551
3552         ifnet_serialize_all(ifp);
3553         if (off >= ncpus2) {
3554                 error = EINVAL;
3555         } else {
3556                 error = 0;
3557                 sc->tx_npoll_off = off;
3558         }
3559         ifnet_deserialize_all(ifp);
3560
3561         return error;
3562 }
3563
3564 #endif  /* IFPOLL_ENABLE */
3565
3566 static void
3567 igb_init_intr(struct igb_softc *sc)
3568 {
3569         igb_set_intr_mask(sc);
3570
3571         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3572                 igb_init_unshared_intr(sc);
3573
3574         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3575                 igb_set_eitr(sc, 0, sc->intr_rate);
3576         } else {
3577                 int i;
3578
3579                 for (i = 0; i < sc->msix_cnt; ++i)
3580                         igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3581         }
3582 }
3583
3584 static void
3585 igb_init_unshared_intr(struct igb_softc *sc)
3586 {
3587         struct e1000_hw *hw = &sc->hw;
3588         const struct igb_rx_ring *rxr;
3589         const struct igb_tx_ring *txr;
3590         uint32_t ivar, index;
3591         int i;
3592
3593         /*
3594          * Enable extended mode
3595          */
3596         if (sc->hw.mac.type != e1000_82575) {
3597                 uint32_t gpie;
3598                 int ivar_max;
3599
3600                 gpie = E1000_GPIE_NSICR;
3601                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3602                         gpie |= E1000_GPIE_MSIX_MODE |
3603                             E1000_GPIE_EIAME |
3604                             E1000_GPIE_PBA;
3605                 }
3606                 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3607
3608                 /*
3609                  * Clear IVARs
3610                  */
3611                 switch (sc->hw.mac.type) {
3612                 case e1000_82580:
3613                         ivar_max = IGB_MAX_IVAR_82580;
3614                         break;
3615
3616                 case e1000_i350:
3617                         ivar_max = IGB_MAX_IVAR_I350;
3618                         break;
3619
3620                 case e1000_vfadapt:
3621                 case e1000_vfadapt_i350:
3622                         ivar_max = IGB_MAX_IVAR_VF;
3623                         break;
3624
3625                 case e1000_82576:
3626                         ivar_max = IGB_MAX_IVAR_82576;
3627                         break;
3628
3629                 default:
3630                         panic("unknown mac type %d\n", sc->hw.mac.type);
3631                 }
3632                 for (i = 0; i < ivar_max; ++i)
3633                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3634                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3635         } else {
3636                 uint32_t tmp;
3637
3638                 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3639                     ("82575 w/ MSI-X"));
3640                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3641                 tmp |= E1000_CTRL_EXT_IRCA;
3642                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3643         }
3644
3645         /*
3646          * Map TX/RX interrupts to EICR
3647          */
3648         switch (sc->hw.mac.type) {
3649         case e1000_82580:
3650         case e1000_i350:
3651         case e1000_vfadapt:
3652         case e1000_vfadapt_i350:
3653                 /* RX entries */
3654                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3655                         rxr = &sc->rx_rings[i];
3656
3657                         index = i >> 1;
3658                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3659
3660                         if (i & 1) {
3661                                 ivar &= 0xff00ffff;
3662                                 ivar |=
3663                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3664                         } else {
3665                                 ivar &= 0xffffff00;
3666                                 ivar |=
3667                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3668                         }
3669                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3670                 }
3671                 /* TX entries */
3672                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3673                         txr = &sc->tx_rings[i];
3674
3675                         index = i >> 1;
3676                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3677
3678                         if (i & 1) {
3679                                 ivar &= 0x00ffffff;
3680                                 ivar |=
3681                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3682                         } else {
3683                                 ivar &= 0xffff00ff;
3684                                 ivar |=
3685                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3686                         }
3687                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3688                 }
3689                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3690                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3691                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3692                 }
3693                 break;
3694
3695         case e1000_82576:
3696                 /* RX entries */
3697                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3698                         rxr = &sc->rx_rings[i];
3699
3700                         index = i & 0x7; /* Each IVAR has two entries */
3701                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3702
3703                         if (i < 8) {
3704                                 ivar &= 0xffffff00;
3705                                 ivar |=
3706                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3707                         } else {
3708                                 ivar &= 0xff00ffff;
3709                                 ivar |=
3710                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3711                         }
3712                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3713                 }
3714                 /* TX entries */
3715                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3716                         txr = &sc->tx_rings[i];
3717
3718                         index = i & 0x7; /* Each IVAR has two entries */
3719                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3720
3721                         if (i < 8) {
3722                                 ivar &= 0xffff00ff;
3723                                 ivar |=
3724                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3725                         } else {
3726                                 ivar &= 0x00ffffff;
3727                                 ivar |=
3728                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3729                         }
3730                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3731                 }
3732                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3733                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3734                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3735                 }
3736                 break;
3737
3738         case e1000_82575:
3739                 /*
3740                  * Enable necessary interrupt bits.
3741                  *
3742                  * The name of the register is confusing; in addition to
3743                  * configuring the first vector of MSI-X, it also configures
3744                  * which bits of EICR could be set by the hardware even when
3745                  * MSI or line interrupt is used; it thus controls interrupt
3746                  * generation.  It MUST be configured explicitly; the default
3747                  * value mentioned in the datasheet is wrong: RX queue0 and
3748                  * TX queue0 are NOT enabled by default.
3749                  */
3750                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3751                 break;
3752
3753         default:
3754                 panic("unknown mac type %d\n", sc->hw.mac.type);
3755         }
3756 }
3757
3758 static int
3759 igb_setup_intr(struct igb_softc *sc)
3760 {
3761         struct ifnet *ifp = &sc->arpcom.ac_if;
3762         int error;
3763
3764         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3765                 return igb_msix_setup(sc);
3766
3767         error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3768             (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3769             sc, &sc->intr_tag, &sc->main_serialize);
3770         if (error) {
3771                 device_printf(sc->dev, "Failed to register interrupt handler");
3772                 return error;
3773         }
3774
3775         ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
3776         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
3777
3778         return 0;
3779 }
3780
3781 static void
3782 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3783 {
3784         if (txr->sc->hw.mac.type == e1000_82575) {
3785                 txr->tx_intr_bit = 0;   /* unused */
3786                 switch (txr->me) {
3787                 case 0:
3788                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3789                         break;
3790                 case 1:
3791                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3792                         break;
3793                 case 2:
3794                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3795                         break;
3796                 case 3:
3797                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3798                         break;
3799                 default:
3800                         panic("unsupported # of TX ring, %d\n", txr->me);
3801                 }
3802         } else {
3803                 int intr_bit = *intr_bit0;
3804
3805                 txr->tx_intr_bit = intr_bit % intr_bitmax;
3806                 txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3807
3808                 *intr_bit0 = intr_bit + 1;
3809         }
3810 }
3811
3812 static void
3813 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3814 {
3815         if (rxr->sc->hw.mac.type == e1000_82575) {
3816                 rxr->rx_intr_bit = 0;   /* unused */
3817                 switch (rxr->me) {
3818                 case 0:
3819                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3820                         break;
3821                 case 1:
3822                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3823                         break;
3824                 case 2:
3825                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3826                         break;
3827                 case 3:
3828                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3829                         break;
3830                 default:
3831                         panic("unsupported # of RX ring, %d\n", rxr->me);
3832                 }
3833         } else {
3834                 int intr_bit = *intr_bit0;
3835
3836                 rxr->rx_intr_bit = intr_bit % intr_bitmax;
3837                 rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3838
3839                 *intr_bit0 = intr_bit + 1;
3840         }
3841 }
3842
3843 static void
3844 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3845 {
3846         struct igb_softc *sc = ifp->if_softc;
3847
3848         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3849             sc->tx_serialize, sc->rx_serialize, slz);
3850 }
3851
3852 static void
3853 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3854 {
3855         struct igb_softc *sc = ifp->if_softc;
3856
3857         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3858             sc->tx_serialize, sc->rx_serialize, slz);
3859 }
3860
3861 static int
3862 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3863 {
3864         struct igb_softc *sc = ifp->if_softc;
3865
3866         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3867             sc->tx_serialize, sc->rx_serialize, slz);
3868 }
3869
3870 #ifdef INVARIANTS
3871
3872 static void
3873 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3874     boolean_t serialized)
3875 {
3876         struct igb_softc *sc = ifp->if_softc;
3877
3878         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3879             sc->tx_serialize, sc->rx_serialize, slz, serialized);
3880 }
3881
3882 #endif  /* INVARIANTS */
3883
3884 static void
3885 igb_set_intr_mask(struct igb_softc *sc)
3886 {
3887         int i;
3888
3889         sc->intr_mask = sc->sts_intr_mask;
3890         for (i = 0; i < sc->rx_ring_inuse; ++i)
3891                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
3892         for (i = 0; i < sc->tx_ring_cnt; ++i)
3893                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
3894         if (bootverbose) {
3895                 if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
3896                     sc->intr_mask);
3897         }
3898 }
3899
3900 static int
3901 igb_alloc_intr(struct igb_softc *sc)
3902 {
3903         int i, intr_bit, intr_bitmax;
3904         u_int intr_flags;
3905
3906         igb_msix_try_alloc(sc);
3907         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3908                 goto done;
3909
3910         /*
3911          * Allocate MSI/legacy interrupt resource
3912          */
3913         sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
3914             &sc->intr_rid, &intr_flags);
3915
3916         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
3917                 int unshared;
3918
3919                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
3920                 if (!unshared) {
3921                         sc->flags |= IGB_FLAG_SHARED_INTR;
3922                         if (bootverbose)
3923                                 device_printf(sc->dev, "IRQ shared\n");
3924                 } else {
3925                         intr_flags &= ~RF_SHAREABLE;
3926                         if (bootverbose)
3927                                 device_printf(sc->dev, "IRQ unshared\n");
3928                 }
3929         }
3930
3931         sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
3932             &sc->intr_rid, intr_flags);
3933         if (sc->intr_res == NULL) {
3934                 device_printf(sc->dev, "Unable to allocate bus resource: "
3935                     "interrupt\n");
3936                 return ENXIO;
3937         }
3938
3939         /*
3940          * Setup MSI/legacy interrupt mask
3941          */
3942         switch (sc->hw.mac.type) {
3943         case e1000_82575:
3944                 intr_bitmax = IGB_MAX_TXRXINT_82575;
3945                 break;
3946         case e1000_82580:
3947                 intr_bitmax = IGB_MAX_TXRXINT_82580;
3948                 break;
3949         case e1000_i350:
3950                 intr_bitmax = IGB_MAX_TXRXINT_I350;
3951                 break;
3952         case e1000_82576:
3953                 intr_bitmax = IGB_MAX_TXRXINT_82576;
3954                 break;
3955         default:
3956                 intr_bitmax = IGB_MIN_TXRXINT;
3957                 break;
3958         }
3959         intr_bit = 0;
3960         for (i = 0; i < sc->tx_ring_cnt; ++i)
3961                 igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
3962         for (i = 0; i < sc->rx_ring_cnt; ++i)
3963                 igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
3964         sc->sts_intr_bit = 0;
3965         sc->sts_intr_mask = E1000_EICR_OTHER;
3966
3967         /* Initialize interrupt rate */
3968         sc->intr_rate = IGB_INTR_RATE;
3969 done:
3970         igb_set_ring_inuse(sc, FALSE);
3971         igb_set_intr_mask(sc);
3972         return 0;
3973 }
3974
3975 static void
3976 igb_free_intr(struct igb_softc *sc)
3977 {
3978         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3979                 if (sc->intr_res != NULL) {
3980                         bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
3981                             sc->intr_res);
3982                 }
3983                 if (sc->intr_type == PCI_INTR_TYPE_MSI)
3984                         pci_release_msi(sc->dev);
3985         } else {
3986                 igb_msix_free(sc, TRUE);
3987         }
3988 }
3989
3990 static void
3991 igb_teardown_intr(struct igb_softc *sc)
3992 {
3993         if (sc->intr_type != PCI_INTR_TYPE_MSIX)
3994                 bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
3995         else
3996                 igb_msix_teardown(sc, sc->msix_cnt);
3997 }
3998
3999 static void
4000 igb_msix_try_alloc(struct igb_softc *sc)
4001 {
4002         int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4003         int i, x, error;
4004         struct igb_msix_data *msix;
4005         boolean_t aggregate, setup = FALSE;
4006
4007         /*
4008          * Don't enable MSI-X on 82575, see:
4009          * 82575 specification update errata #25
4010          */
4011         if (sc->hw.mac.type == e1000_82575)
4012                 return;
4013
4014         /* Don't enable MSI-X on VF */
4015         if (sc->vf_ifp)
4016                 return;
4017
4018         msix_enable = device_getenv_int(sc->dev, "msix.enable",
4019             igb_msix_enable);
4020         if (!msix_enable)
4021                 return;
4022
4023         msix_cnt = pci_msix_count(sc->dev);
4024 #ifdef IGB_MSIX_DEBUG
4025         msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4026 #endif
4027         if (msix_cnt <= 1) {
4028                 /* One MSI-X model does not make sense */
4029                 return;
4030         }
4031
4032         i = 0;
4033         while ((1 << (i + 1)) <= msix_cnt)
4034                 ++i;
4035         msix_cnt2 = 1 << i;
4036
4037         if (bootverbose) {
4038                 device_printf(sc->dev, "MSI-X count %d/%d\n",
4039                     msix_cnt2, msix_cnt);
4040         }
4041
4042         KKASSERT(msix_cnt2 <= msix_cnt);
4043         if (msix_cnt == msix_cnt2) {
4044                 /* We need at least one MSI-X for link status */
4045                 msix_cnt2 >>= 1;
4046                 if (msix_cnt2 <= 1) {
4047                         /* One MSI-X for RX/TX does not make sense */
4048                         device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4049                             "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4050                         return;
4051                 }
4052                 KKASSERT(msix_cnt > msix_cnt2);
4053
4054                 if (bootverbose) {
4055                         device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4056                             msix_cnt2, msix_cnt);
4057                 }
4058         }
4059
4060         sc->rx_ring_msix = sc->rx_ring_cnt;
4061         if (sc->rx_ring_msix > msix_cnt2)
4062                 sc->rx_ring_msix = msix_cnt2;
4063
4064         if (msix_cnt >= sc->tx_ring_cnt + sc->rx_ring_msix + 1) {
4065                 /*
4066                  * Independent TX/RX MSI-X
4067                  */
4068                 aggregate = FALSE;
4069                 if (bootverbose)
4070                         device_printf(sc->dev, "independent TX/RX MSI-X\n");
4071                 alloc_cnt = sc->tx_ring_cnt + sc->rx_ring_msix;
4072         } else {
4073                 /*
4074                  * Aggregate TX/RX MSI-X
4075                  */
4076                 aggregate = TRUE;