Merge from vendor branch TEXINFO:
[dragonfly.git] / sys / dev / netif / an / if_an.c
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
33  * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.32 2005/07/28 16:57:09 joerg Exp $
34  */
35
36 /*
37  * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@ctr.columbia.edu>
40  * Electrical Engineering Department
41  * Columbia University, New York City
42  */
43
44 /*
45  * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
46  * This driver supports all three device types (PCI devices are supported
47  * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
48  * supported either using hard-coded IO port/IRQ settings or via Plug
49  * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
50  * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
51  *
52  * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
53  * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
54  * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
55  * a couple of important differences though:
56  *
57  * - Lucent ISA card looks to the host like a PCMCIA controller with
58  *   a PCMCIA WaveLAN card inserted. This means that even desktop
59  *   machines need to be configured with PCMCIA support in order to
60  *   use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
61  *   actually look like normal ISA and PCI devices to the host, so
62  *   no PCMCIA controller support is needed
63  *
64  * The latter point results in a small gotcha. The Aironet PCMCIA
65  * cards can be configured for one of two operating modes depending
66  * on how the Vpp1 and Vpp2 programming voltages are set when the
67  * card is activated. In order to put the card in proper PCMCIA
68  * operation (where the CIS table is visible and the interface is
69  * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
70  * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
71  * which leaves the card in ISA/PCI mode, which prevents it from
72  * being activated as an PCMCIA device.
73  *
74  * Note that some PCMCIA controller software packages for Windows NT
75  * fail to set the voltages as well.
76  *
77  * The Aironet devices can operate in both station mode and access point
78  * mode. Typically, when programmed for station mode, the card can be set
79  * to automatically perform encapsulation/decapsulation of Ethernet II
80  * and 802.3 frames within 802.11 frames so that the host doesn't have
81  * to do it itself. This driver doesn't program the card that way: the
82  * driver handles all of the encapsulation/decapsulation itself.
83  */
84
85 #include "opt_inet.h"
86
87 #ifdef INET
88 #define ANCACHE                 /* enable signal strength cache */
89 #endif
90
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/kernel.h>
96 #include <sys/proc.h>
97 #include <sys/ucred.h>
98 #include <sys/socket.h>
99 #ifdef ANCACHE
100 #include <sys/syslog.h>
101 #endif
102 #include <sys/sysctl.h>
103 #include <sys/thread2.h>
104
105 #include <sys/module.h>
106 #include <sys/sysctl.h>
107 #include <sys/bus.h>
108 #include <machine/bus.h>
109 #include <sys/rman.h>
110 #include <machine/resource.h>
111 #include <sys/malloc.h>
112
113 #include <net/if.h>
114 #include <net/ifq_var.h>
115 #include <net/if_arp.h>
116 #include <net/ethernet.h>
117 #include <net/if_dl.h>
118 #include <net/if_types.h>
119 #include <net/if_media.h>
120 #include <netproto/802_11/ieee80211.h>
121 #include <netproto/802_11/ieee80211_ioctl.h>
122
123 #ifdef INET
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/in_var.h>
127 #include <netinet/ip.h>
128 #endif
129
130 #include <net/bpf.h>
131
132 #include <machine/md_var.h>
133
134 #include "if_aironet_ieee.h"
135 #include "if_anreg.h"
136
137 /* These are global because we need them in sys/pci/if_an_p.c. */
138 static void an_reset            (struct an_softc *);
139 static int an_init_mpi350_desc  (struct an_softc *);
140 static int an_ioctl             (struct ifnet *, u_long, caddr_t,
141                                         struct ucred *);
142 static void an_init             (void *);
143 static int an_init_tx_ring      (struct an_softc *);
144 static void an_start            (struct ifnet *);
145 static void an_watchdog         (struct ifnet *);
146 static void an_rxeof            (struct an_softc *);
147 static void an_txeof            (struct an_softc *, int);
148
149 static void an_promisc          (struct an_softc *, int);
150 static int an_cmd               (struct an_softc *, int, int);
151 static int an_cmd_struct        (struct an_softc *, struct an_command *,
152                                         struct an_reply *);
153 static int an_read_record       (struct an_softc *, struct an_ltv_gen *);
154 static int an_write_record      (struct an_softc *, struct an_ltv_gen *);
155 static int an_read_data         (struct an_softc *, int,
156                                         int, caddr_t, int);
157 static int an_write_data        (struct an_softc *, int,
158                                         int, caddr_t, int);
159 static int an_seek              (struct an_softc *, int, int, int);
160 static int an_alloc_nicmem      (struct an_softc *, int, int *);
161 static int an_dma_malloc        (struct an_softc *, bus_size_t,
162                                         struct an_dma_alloc *, int);
163 static void an_dma_free         (struct an_softc *, 
164                                         struct an_dma_alloc *);
165 static void an_dma_malloc_cb    (void *, bus_dma_segment_t *, int, int);
166 static void an_stats_update     (void *);
167 static void an_setdef           (struct an_softc *, struct an_req *);
168 #ifdef ANCACHE
169 static void an_cache_store      (struct an_softc *, struct mbuf *,
170                                  uint8_t, uint8_t);
171 #endif
172
173 /* function definitions for use with the Cisco's Linux configuration
174    utilities
175 */
176
177 static int readrids             (struct ifnet*, struct aironet_ioctl*);
178 static int writerids            (struct ifnet*, struct aironet_ioctl*);
179 static int flashcard            (struct ifnet*, struct aironet_ioctl*);
180
181 static int cmdreset             (struct ifnet *);
182 static int setflashmode         (struct ifnet *);
183 static int flashgchar           (struct ifnet *,int,int);
184 static int flashpchar           (struct ifnet *,int,int);
185 static int flashputbuf          (struct ifnet *);
186 static int flashrestart         (struct ifnet *);
187 static int WaitBusy             (struct ifnet *, int);
188 static int unstickbusy          (struct ifnet *);
189
190 static void an_dump_record      (struct an_softc *,struct an_ltv_gen *,
191                                     char *);
192
193 static int an_media_change      (struct ifnet *);
194 static void an_media_status     (struct ifnet *, struct ifmediareq *);
195
196 static int      an_dump = 0;
197 static int      an_cache_mode = 0;
198
199 #define DBM 0
200 #define PERCENT 1
201 #define RAW 2
202
203 static char an_conf[256];
204 static char an_conf_cache[256];
205
206 DECLARE_DUMMY_MODULE(if_an);
207
208 /* sysctl vars */
209
210 SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
211
212 static int
213 sysctl_an_dump(SYSCTL_HANDLER_ARGS)
214 {
215         int     error, r, last;
216         char    *s = an_conf;
217
218         last = an_dump;
219
220         switch (an_dump) {
221         case 0:
222                 strcpy(an_conf, "off");
223                 break;
224         case 1:
225                 strcpy(an_conf, "type");
226                 break;
227         case 2:
228                 strcpy(an_conf, "dump");
229                 break;
230         default:
231                 snprintf(an_conf, 5, "%x", an_dump);
232                 break;
233         }
234
235         error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
236
237         if (strncmp(an_conf,"off", 3) == 0) {
238                 an_dump = 0;
239         }
240         if (strncmp(an_conf,"dump", 4) == 0) {
241                 an_dump = 1;
242         }
243         if (strncmp(an_conf,"type", 4) == 0) {
244                 an_dump = 2;
245         }
246         if (*s == 'f') {
247                 r = 0;
248                 for (;;s++) {
249                         if ((*s >= '0') && (*s <= '9')) {
250                                 r = r * 16 + (*s - '0');
251                         } else if ((*s >= 'a') && (*s <= 'f')) {
252                                 r = r * 16 + (*s - 'a' + 10);
253                         } else {
254                                 break;
255                         }
256                 }
257                 an_dump = r;
258         }
259         if (an_dump != last)
260                 printf("Sysctl changed for Aironet driver\n");
261
262         return error;
263 }
264
265 SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
266             0, sizeof(an_conf), sysctl_an_dump, "A", "");
267
268 static int
269 sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
270 {
271         int     error, last;
272
273         last = an_cache_mode;
274
275         switch (an_cache_mode) {
276         case 1:
277                 strcpy(an_conf_cache, "per");
278                 break;
279         case 2:
280                 strcpy(an_conf_cache, "raw");
281                 break;
282         default:
283                 strcpy(an_conf_cache, "dbm");
284                 break;
285         }
286
287         error = sysctl_handle_string(oidp, an_conf_cache, 
288                         sizeof(an_conf_cache), req);
289
290         if (strncmp(an_conf_cache,"dbm", 3) == 0) {
291                 an_cache_mode = 0;
292         }
293         if (strncmp(an_conf_cache,"per", 3) == 0) {
294                 an_cache_mode = 1;
295         }
296         if (strncmp(an_conf_cache,"raw", 3) == 0) {
297                 an_cache_mode = 2;
298         }
299
300         return error;
301 }
302
303 SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
304             0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
305
306 /*
307  * We probe for an Aironet 4500/4800 card by attempting to
308  * read the default SSID list. On reset, the first entry in
309  * the SSID list will contain the name "tsunami." If we don't
310  * find this, then there's no card present.
311  */
312 int
313 an_probe(dev)
314         device_t                dev;
315 {
316         struct an_softc *sc = device_get_softc(dev);
317         struct an_ltv_ssidlist_new ssid;
318         int     error;
319
320         bzero((char *)&ssid, sizeof(ssid));
321
322         error = an_alloc_port(dev, 0, AN_IOSIZ);
323         if (error)
324                 return (error);
325
326         /* can't do autoprobing */
327         if (rman_get_start(sc->port_res) == -1)
328                 return(ENXIO);
329
330         /*
331          * We need to fake up a softc structure long enough
332          * to be able to issue commands and call some of the
333          * other routines.
334          */
335         sc->an_bhandle = rman_get_bushandle(sc->port_res);
336         sc->an_btag = rman_get_bustag(sc->port_res);
337
338         ssid.an_len = sizeof(ssid);
339         ssid.an_type = AN_RID_SSIDLIST;
340
341         /* Make sure interrupts are disabled. */
342         sc->mpi350 = 0;
343         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
344         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
345
346         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
347                     device_get_unit(dev));
348         an_reset(sc);
349
350         if (an_cmd(sc, AN_CMD_READCFG, 0))
351                 return(ENXIO);
352
353         if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
354                 return(ENXIO);
355
356         /* See if the ssid matches what we expect ... but doesn't have to */
357         if (strcmp(ssid.an_entry[0].an_ssid, AN_DEF_SSID))
358                 return(ENXIO);
359
360         return(0);
361 }
362
363 /*
364  * Allocate a port resource with the given resource id.
365  */
366 int
367 an_alloc_port(dev, rid, size)
368         device_t dev;
369         int rid;
370         int size;
371 {
372         struct an_softc *sc = device_get_softc(dev);
373         struct resource *res;
374
375         res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
376                                  0ul, ~0ul, size, RF_ACTIVE);
377         if (res) {
378                 sc->port_rid = rid;
379                 sc->port_res = res;
380                 return (0);
381         } else {
382                 return (ENOENT);
383         }
384 }
385
386 /*
387  * Allocate a memory resource with the given resource id.
388  */
389 int an_alloc_memory(device_t dev, int rid, int size)
390 {
391         struct an_softc *sc = device_get_softc(dev);
392         struct resource *res;
393
394         res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
395                                  0ul, ~0ul, size, RF_ACTIVE);
396         if (res) {
397                 sc->mem_rid = rid;
398                 sc->mem_res = res;
399                 sc->mem_used = size;
400                 return (0);
401         } else {
402                 return (ENOENT);
403         }
404 }
405
406 /*
407  * Allocate a auxilary memory resource with the given resource id.
408  */
409 int an_alloc_aux_memory(device_t dev, int rid, int size)
410 {
411         struct an_softc *sc = device_get_softc(dev);
412         struct resource *res;
413
414         res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
415                                  0ul, ~0ul, size, RF_ACTIVE);
416         if (res) {
417                 sc->mem_aux_rid = rid;
418                 sc->mem_aux_res = res;
419                 sc->mem_aux_used = size;
420                 return (0);
421         } else {
422                 return (ENOENT);
423         }
424 }
425
426 /*
427  * Allocate an irq resource with the given resource id.
428  */
429 int
430 an_alloc_irq(dev, rid, flags)
431         device_t dev;
432         int rid;
433         int flags;
434 {
435         struct an_softc *sc = device_get_softc(dev);
436         struct resource *res;
437
438         res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
439             (RF_ACTIVE | flags));
440         if (res) {
441                 sc->irq_rid = rid;
442                 sc->irq_res = res;
443                 return (0);
444         } else {
445                 return (ENOENT);
446         }
447 }
448
449 static void
450 an_dma_malloc_cb(arg, segs, nseg, error)
451         void *arg;
452         bus_dma_segment_t *segs;
453         int nseg;
454         int error;
455 {
456         bus_addr_t *paddr = (bus_addr_t*) arg;
457         *paddr = segs->ds_addr;
458 }
459
460 /*
461  * Alloc DMA memory and set the pointer to it
462  */
463 static int
464 an_dma_malloc(sc, size, dma, mapflags)
465         struct an_softc *sc;
466         bus_size_t size;
467         struct an_dma_alloc *dma;
468         int mapflags;
469 {
470         int r;
471
472         r = bus_dmamap_create(sc->an_dtag, 0, &dma->an_dma_map);
473         if (r != 0)
474                 goto fail_0;
475
476         r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
477                              BUS_DMA_WAITOK, &dma->an_dma_map);
478         if (r != 0)
479                 goto fail_1;
480
481         r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
482                             size,
483                             an_dma_malloc_cb,
484                             &dma->an_dma_paddr,
485                             mapflags);
486         if (r != 0)
487                 goto fail_2;
488
489         dma->an_dma_size = size;
490         return (0);
491
492 fail_2:
493         bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
494 fail_1:
495         bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
496 fail_0:
497         bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
498         dma->an_dma_map = NULL;
499         return (r);
500 }
501
502 static void
503 an_dma_free(sc, dma)
504         struct an_softc *sc;
505         struct an_dma_alloc *dma;
506 {
507         bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
508         bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
509         dma->an_dma_vaddr = NULL;
510         bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
511 }
512
513 /*
514  * Release all resources
515  */
516 void
517 an_release_resources(dev)
518         device_t dev;
519 {
520         struct an_softc *sc = device_get_softc(dev);
521         int i;
522
523         if (sc->port_res) {
524                 bus_release_resource(dev, SYS_RES_IOPORT,
525                                      sc->port_rid, sc->port_res);
526                 sc->port_res = 0;
527         }
528         if (sc->mem_res) {
529                 bus_release_resource(dev, SYS_RES_MEMORY,
530                                      sc->mem_rid, sc->mem_res);
531                 sc->mem_res = 0;
532         }
533         if (sc->mem_aux_res) {
534                 bus_release_resource(dev, SYS_RES_MEMORY,
535                                      sc->mem_aux_rid, sc->mem_aux_res);
536                 sc->mem_aux_res = 0;
537         }
538         if (sc->irq_res) {
539                 bus_release_resource(dev, SYS_RES_IRQ,
540                                      sc->irq_rid, sc->irq_res);
541                 sc->irq_res = 0;
542         }
543         if (sc->an_rid_buffer.an_dma_paddr) {
544                 an_dma_free(sc, &sc->an_rid_buffer);
545         }
546         for (i = 0; i < AN_MAX_RX_DESC; i++)
547                 if (sc->an_rx_buffer[i].an_dma_paddr) {
548                         an_dma_free(sc, &sc->an_rx_buffer[i]);
549                 }
550         for (i = 0; i < AN_MAX_TX_DESC; i++)
551                 if (sc->an_tx_buffer[i].an_dma_paddr) {
552                         an_dma_free(sc, &sc->an_tx_buffer[i]);
553                 }
554         if (sc->an_dtag) {
555                 bus_dma_tag_destroy(sc->an_dtag);
556         }
557
558 }
559
560 int
561 an_init_mpi350_desc(sc)
562         struct an_softc *sc;
563 {
564         struct an_command       cmd_struct;
565         struct an_reply         reply;
566         struct an_card_rid_desc an_rid_desc;
567         struct an_card_rx_desc  an_rx_desc;
568         struct an_card_tx_desc  an_tx_desc;
569         int                     i, desc;
570
571         if(!sc->an_rid_buffer.an_dma_paddr)
572                 an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
573                                  &sc->an_rid_buffer, 0);
574         for (i = 0; i < AN_MAX_RX_DESC; i++)
575                 if(!sc->an_rx_buffer[i].an_dma_paddr)
576                         an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
577                                       &sc->an_rx_buffer[i], 0);
578         for (i = 0; i < AN_MAX_TX_DESC; i++)
579                 if(!sc->an_tx_buffer[i].an_dma_paddr)
580                         an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
581                                       &sc->an_tx_buffer[i], 0);
582
583         /*
584          * Allocate RX descriptor
585          */
586         bzero(&reply,sizeof(reply));
587         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
588         cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
589         cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
590         cmd_struct.an_parm2 = AN_MAX_RX_DESC;
591         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
592                 if_printf(&sc->arpcom.ac_if,
593                           "failed to allocate RX descriptor\n");
594                 return(EIO);
595         }
596
597         for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
598                 bzero(&an_rx_desc, sizeof(an_rx_desc));
599                 an_rx_desc.an_valid = 1;
600                 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
601                 an_rx_desc.an_done = 0;
602                 an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
603
604                 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
605                         CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET 
606                                             + (desc * sizeof(an_rx_desc))
607                                             + (i * 4),
608                                             ((u_int32_t*)&an_rx_desc)[i]);
609         }
610
611         /*
612          * Allocate TX descriptor
613          */
614
615         bzero(&reply,sizeof(reply));
616         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
617         cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
618         cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
619         cmd_struct.an_parm2 = AN_MAX_TX_DESC;
620         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
621                 if_printf(&sc->arpcom.ac_if,
622                           "failed to allocate TX descriptor\n");
623                 return(EIO);
624         }
625
626         for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
627                 bzero(&an_tx_desc, sizeof(an_tx_desc));
628                 an_tx_desc.an_offset = 0;
629                 an_tx_desc.an_eoc = 0;
630                 an_tx_desc.an_valid = 0;
631                 an_tx_desc.an_len = 0;
632                 an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
633
634                 for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
635                         CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
636                                             + (desc * sizeof(an_tx_desc))
637                                             + (i * 4),
638                                             ((u_int32_t*)&an_tx_desc)[i]);
639         }
640
641         /*
642          * Allocate RID descriptor
643          */
644
645         bzero(&reply,sizeof(reply));
646         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
647         cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
648         cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
649         cmd_struct.an_parm2 = 1;
650         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
651                 if_printf(&sc->arpcom.ac_if,
652                           "failed to allocate host descriptor\n");
653                 return(EIO);
654         }
655
656         bzero(&an_rid_desc, sizeof(an_rid_desc));
657         an_rid_desc.an_valid = 1;
658         an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
659         an_rid_desc.an_rid = 0;
660         an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
661
662         for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
663                 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
664                                     ((u_int32_t*)&an_rid_desc)[i]);
665
666         return(0);
667 }
668
669 int
670 an_attach(sc, dev, flags)
671         struct an_softc *sc;
672         device_t dev;
673         int flags;
674 {
675         struct ifnet            *ifp = &sc->arpcom.ac_if;
676         int                     error;
677
678         callout_init(&sc->an_stat_timer);
679         sc->an_associated = 0;
680         sc->an_monitor = 0;
681         sc->an_was_monitor = 0;
682         sc->an_flash_buffer = NULL;
683
684         ifp->if_softc = sc;
685         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
686
687         /* Reset the NIC. */
688         an_reset(sc);
689         if (sc->mpi350) {
690                 error = an_init_mpi350_desc(sc);
691                 if (error)
692                         return(error);
693         }
694
695         /* Load factory config */
696         if (an_cmd(sc, AN_CMD_READCFG, 0)) {
697                 device_printf(dev, "failed to load config data\n");
698                 return(EIO);
699         }
700
701         /* Read the current configuration */
702         sc->an_config.an_type = AN_RID_GENCONFIG;
703         sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
704         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
705                 device_printf(dev, "read record failed\n");
706                 return(EIO);
707         }
708
709         /* Read the card capabilities */
710         sc->an_caps.an_type = AN_RID_CAPABILITIES;
711         sc->an_caps.an_len = sizeof(struct an_ltv_caps);
712         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
713                 device_printf(dev, "read record failed\n");
714                 return(EIO);
715         }
716
717         /* Read ssid list */
718         sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
719         sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
720         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
721                 device_printf(dev, "read record failed\n");
722                 return(EIO);
723         }
724
725         /* Read AP list */
726         sc->an_aplist.an_type = AN_RID_APLIST;
727         sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
728         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
729                 device_printf(dev, "read record failed\n");
730                 return(EIO);
731         }
732
733 #ifdef ANCACHE
734         /* Read the RSSI <-> dBm map */
735         sc->an_have_rssimap = 0;
736         if (sc->an_caps.an_softcaps & 8) {
737                 sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
738                 sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
739                 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
740                         device_printf(dev, "unable to get RSSI <-> dBM map\n");
741                 } else {
742                         device_printf(dev, "got RSSI <-> dBM map\n");
743                         sc->an_have_rssimap = 1;
744                 }
745         } else {
746                 device_printf(dev, "no RSSI <-> dBM map\n");
747         }
748 #endif
749
750         ifp->if_mtu = ETHERMTU;
751         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752         ifp->if_ioctl = an_ioctl;
753         ifp->if_start = an_start;
754         ifp->if_watchdog = an_watchdog;
755         ifp->if_init = an_init;
756         ifp->if_baudrate = 10000000;
757         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
758         ifq_set_ready(&ifp->if_snd);
759
760         bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
761         bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
762             sizeof(AN_DEFAULT_NODENAME) - 1);
763
764         bzero(sc->an_ssidlist.an_entry[0].an_ssid,
765               sizeof(sc->an_ssidlist.an_entry[0].an_ssid));
766         bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_entry[0].an_ssid,
767               sizeof(AN_DEFAULT_NETNAME) - 1);
768         sc->an_ssidlist.an_entry[0].an_len = strlen(AN_DEFAULT_NETNAME);
769
770         sc->an_config.an_opmode =
771             AN_OPMODE_INFRASTRUCTURE_STATION;
772
773         sc->an_tx_rate = 0;
774         bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
775
776         ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
777 #define ADD(m, c)       ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
778         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
779             IFM_IEEE80211_ADHOC, 0), 0);
780         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
781         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
782             IFM_IEEE80211_ADHOC, 0), 0);
783         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
784         if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
785                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
786                     IFM_IEEE80211_ADHOC, 0), 0);
787                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
788         }
789         if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
790                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
791                     IFM_IEEE80211_ADHOC, 0), 0);
792                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
793         }
794         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
795             IFM_IEEE80211_ADHOC, 0), 0);
796         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
797 #undef  ADD
798         ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
799             0, 0));
800
801         /*
802          * Call MI attach routine.
803          */
804         ether_ifattach(ifp, sc->an_caps.an_oemaddr);
805
806         return(0);
807 }
808
809 int
810 an_detach(device_t dev)
811 {
812         struct an_softc *sc = device_get_softc(dev);
813         struct ifnet *ifp = &sc->arpcom.ac_if;
814
815         crit_enter();
816         an_stop(sc);
817         ifmedia_removeall(&sc->an_ifmedia);
818         ether_ifdetach(ifp);
819         bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
820         crit_exit();
821
822         an_release_resources(dev);
823         return 0;
824 }
825
826 static void
827 an_rxeof(sc)
828         struct an_softc *sc;
829 {
830         struct ifnet   *ifp;
831         struct ether_header *eh;
832         struct ieee80211_frame *ih;
833         struct an_rxframe rx_frame;
834         struct an_rxframe_802_3 rx_frame_802_3;
835         struct mbuf    *m;
836         int             len, id, error = 0, i, count = 0;
837         int             ieee80211_header_len;
838         u_char          *bpf_buf;
839         u_short         fc1;
840         struct an_card_rx_desc an_rx_desc;
841         u_int8_t        *buf;
842
843         ifp = &sc->arpcom.ac_if;
844
845         if (!sc->mpi350) {
846                 id = CSR_READ_2(sc, AN_RX_FID);
847
848                 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
849                         /* read raw 802.11 packet */
850                         bpf_buf = sc->buf_802_11;
851
852                         /* read header */
853                         if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
854                                          sizeof(rx_frame))) {
855                                 ifp->if_ierrors++;
856                                 return;
857                         }
858
859                         /*
860                          * skip beacon by default since this increases the
861                          * system load a lot
862                          */
863
864                         if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
865                             (rx_frame.an_frame_ctl & 
866                              IEEE80211_FC0_SUBTYPE_BEACON)) {
867                                 return;
868                         }
869
870                         if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
871                                 len = rx_frame.an_rx_payload_len
872                                         + sizeof(rx_frame);
873                                 /* Check for insane frame length */
874                                 if (len > sizeof(sc->buf_802_11)) {
875                                         if_printf(ifp,
876                                                   "oversized packet received "
877                                                   "(%d, %d)\n", len, MCLBYTES);
878                                         ifp->if_ierrors++;
879                                         return;
880                                 }
881
882                                 bcopy((char *)&rx_frame,
883                                       bpf_buf, sizeof(rx_frame));
884
885                                 error = an_read_data(sc, id, sizeof(rx_frame),
886                                             (caddr_t)bpf_buf+sizeof(rx_frame),
887                                             rx_frame.an_rx_payload_len);
888                         } else {
889                                 fc1=rx_frame.an_frame_ctl >> 8;
890                                 ieee80211_header_len = 
891                                         sizeof(struct ieee80211_frame);
892                                 if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
893                                     (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
894                                         ieee80211_header_len += ETHER_ADDR_LEN;
895                                 }
896
897                                 len = rx_frame.an_rx_payload_len
898                                         + ieee80211_header_len;
899                                 /* Check for insane frame length */
900                                 if (len > sizeof(sc->buf_802_11)) {
901                                         if_printf(ifp,
902                                                   "oversized packet received "
903                                                   "(%d, %d)\n", len, MCLBYTES);
904                                         ifp->if_ierrors++;
905                                         return;
906                                 }
907
908                                 ih = (struct ieee80211_frame *)bpf_buf;
909
910                                 bcopy((char *)&rx_frame.an_frame_ctl,
911                                       (char *)ih, ieee80211_header_len);
912
913                                 error = an_read_data(sc, id, sizeof(rx_frame) +
914                                             rx_frame.an_gaplen,
915                                             (caddr_t)ih +ieee80211_header_len,
916                                             rx_frame.an_rx_payload_len);
917                         }
918                         BPF_TAP(ifp, bpf_buf, len);
919                 } else {
920                         m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
921                         if (m == NULL) {
922                                 ifp->if_ierrors++;
923                                 return;
924                         }
925                         m->m_pkthdr.rcvif = ifp;
926                         /* Read Ethernet encapsulated packet */
927
928 #ifdef ANCACHE
929                         /* Read NIC frame header */
930                         if (an_read_data(sc, id, 0, (caddr_t)&rx_frame, 
931                                          sizeof(rx_frame))) {
932                                 ifp->if_ierrors++;
933                                 return;
934                         }
935 #endif
936                         /* Read in the 802_3 frame header */
937                         if (an_read_data(sc, id, 0x34, 
938                                          (caddr_t)&rx_frame_802_3,
939                                          sizeof(rx_frame_802_3))) {
940                                 ifp->if_ierrors++;
941                                 return;
942                         }
943                         if (rx_frame_802_3.an_rx_802_3_status != 0) {
944                                 ifp->if_ierrors++;
945                                 return;
946                         }
947                         /* Check for insane frame length */
948                         len = rx_frame_802_3.an_rx_802_3_payload_len;
949                         if (len > sizeof(sc->buf_802_11)) {
950                                 if_printf(ifp,
951                                     "oversized packet received (%d, %d)\n",
952                                     len, MCLBYTES);
953                                 ifp->if_ierrors++;
954                                 return;
955                         }
956                         m->m_pkthdr.len = m->m_len =
957                                 rx_frame_802_3.an_rx_802_3_payload_len + 12;
958
959                         eh = mtod(m, struct ether_header *);
960
961                         bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
962                               (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
963                         bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
964                               (char *)&eh->ether_shost, ETHER_ADDR_LEN);
965
966                         /* in mbuf header type is just before payload */
967                         error = an_read_data(sc, id, 0x44, 
968                                     (caddr_t)&(eh->ether_type),
969                                     rx_frame_802_3.an_rx_802_3_payload_len);
970
971                         if (error) {
972                                 m_freem(m);
973                                 ifp->if_ierrors++;
974                                 return;
975                         }
976                         ifp->if_ipackets++;
977
978 #ifdef ANCACHE
979                         an_cache_store(sc, m,
980                                 rx_frame.an_rx_signal_strength,
981                                 rx_frame.an_rsvd0);
982 #endif
983                         (*ifp->if_input)(ifp, m);
984                 }
985
986         } else { /* MPI-350 */
987                 for (count = 0; count < AN_MAX_RX_DESC; count++){
988                         for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
989                                 ((u_int32_t*)&an_rx_desc)[i] 
990                                         = CSR_MEM_AUX_READ_4(sc, 
991                                                 AN_RX_DESC_OFFSET 
992                                                 + (count * sizeof(an_rx_desc))
993                                                 + (i * 4));
994
995                         if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
996                                 buf = sc->an_rx_buffer[count].an_dma_vaddr;
997
998                                 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
999                                 if (m == NULL) {
1000                                         ifp->if_ierrors++;
1001                                         return;
1002                                 }
1003                                 m->m_pkthdr.rcvif = ifp;
1004                                 /* Read Ethernet encapsulated packet */
1005
1006                                 /* 
1007                                  * No ANCACHE support since we just get back
1008                                  * an Ethernet packet no 802.11 info
1009                                  */
1010 #if 0
1011 #ifdef ANCACHE
1012                                 /* Read NIC frame header */
1013                                 bcopy(buf, (caddr_t)&rx_frame, 
1014                                       sizeof(rx_frame));
1015 #endif
1016 #endif
1017                                 /* Check for insane frame length */
1018                                 len = an_rx_desc.an_len + 12;
1019                                 if (len > MCLBYTES) {
1020                                         if_printf(ifp,
1021                                                   "oversized packet received "
1022                                                   "(%d, %d)\n", len, MCLBYTES);
1023                                         ifp->if_ierrors++;
1024                                         return;
1025                                 }
1026
1027                                 m->m_pkthdr.len = m->m_len =
1028                                         an_rx_desc.an_len + 12;
1029                                 
1030                                 eh = mtod(m, struct ether_header *);
1031                                 
1032                                 bcopy(buf, (char *)eh,
1033                                       m->m_pkthdr.len);
1034                                 
1035                                 ifp->if_ipackets++;
1036                                 
1037 #if 0
1038 #ifdef ANCACHE
1039                                 an_cache_store(sc, m, 
1040                                         rx_frame.an_rx_signal_strength,
1041                                         rx_frame.an_rsvd0);
1042 #endif
1043 #endif
1044                                 (*ifp->if_input)(ifp, m);
1045                         
1046                                 an_rx_desc.an_valid = 1;
1047                                 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1048                                 an_rx_desc.an_done = 0;
1049                                 an_rx_desc.an_phys = 
1050                                         sc->an_rx_buffer[count].an_dma_paddr;
1051                         
1052                                 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1053                                         CSR_MEM_AUX_WRITE_4(sc, 
1054                                                 AN_RX_DESC_OFFSET 
1055                                                 + (count * sizeof(an_rx_desc))
1056                                                 + (i * 4),
1057                                                 ((u_int32_t*)&an_rx_desc)[i]);
1058                                 
1059                         } else {
1060                                 if_printf(ifp, "Didn't get valid RX packet "
1061                                           "%x %x %d\n",
1062                                           an_rx_desc.an_done,
1063                                           an_rx_desc.an_valid,
1064                                           an_rx_desc.an_len);
1065                         }
1066                 }
1067         }
1068 }
1069
1070 static void
1071 an_txeof(sc, status)
1072         struct an_softc         *sc;
1073         int                     status;
1074 {
1075         struct ifnet            *ifp;
1076         int                     id, i;
1077
1078         ifp = &sc->arpcom.ac_if;
1079
1080         ifp->if_timer = 0;
1081         ifp->if_flags &= ~IFF_OACTIVE;
1082
1083         if (!sc->mpi350) {
1084                 id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1085
1086                 if (status & AN_EV_TX_EXC) {
1087                         ifp->if_oerrors++;
1088                 } else
1089                         ifp->if_opackets++;
1090
1091                 for (i = 0; i < AN_TX_RING_CNT; i++) {
1092                         if (id == sc->an_rdata.an_tx_ring[i]) {
1093                                 sc->an_rdata.an_tx_ring[i] = 0;
1094                                 break;
1095                         }
1096                 }
1097
1098                 AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1099         } else { /* MPI 350 */
1100                 id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1101                 if (!sc->an_rdata.an_tx_empty){
1102                         if (status & AN_EV_TX_EXC) {
1103                                 ifp->if_oerrors++;
1104                         } else
1105                                 ifp->if_opackets++;
1106                         AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1107                         if (sc->an_rdata.an_tx_prod ==
1108                             sc->an_rdata.an_tx_cons)
1109                                 sc->an_rdata.an_tx_empty = 1;
1110                 }
1111         }
1112 }
1113
1114 /*
1115  * We abuse the stats updater to check the current NIC status. This
1116  * is important because we don't want to allow transmissions until
1117  * the NIC has synchronized to the current cell (either as the master
1118  * in an ad-hoc group, or as a station connected to an access point).
1119  */
1120 static void
1121 an_stats_update(xsc)
1122         void                    *xsc;
1123 {
1124         struct an_softc         *sc;
1125         struct ifnet            *ifp;
1126
1127         sc = xsc;
1128         ifp = &sc->arpcom.ac_if;
1129
1130         crit_enter();
1131
1132         sc->an_status.an_type = AN_RID_STATUS;
1133         sc->an_status.an_len = sizeof(struct an_ltv_status);
1134         an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
1135
1136         if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1137                 sc->an_associated = 1;
1138         else
1139                 sc->an_associated = 0;
1140
1141         /* Don't do this while we're not transmitting */
1142         if ((ifp->if_flags & IFF_OACTIVE) == 0) {
1143                 sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1144                 sc->an_stats.an_type = AN_RID_32BITS_CUM;
1145                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
1146         }
1147
1148         callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
1149
1150         crit_exit();
1151 }
1152
1153 void
1154 an_intr(xsc)
1155         void                    *xsc;
1156 {
1157         struct an_softc         *sc;
1158         struct ifnet            *ifp;
1159         u_int16_t               status;
1160
1161         sc = (struct an_softc*)xsc;
1162
1163         ifp = &sc->arpcom.ac_if;
1164
1165         /* Disable interrupts. */
1166         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1167
1168         status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1169         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS(sc->mpi350));
1170
1171         if (status & AN_EV_MIC)
1172                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_MIC);
1173
1174         if (status & AN_EV_LINKSTAT) {
1175                 if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350)) 
1176                     == AN_LINKSTAT_ASSOCIATED)
1177                         sc->an_associated = 1;
1178                 else
1179                         sc->an_associated = 0;
1180                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1181         }
1182
1183         if (status & AN_EV_RX) {
1184                 an_rxeof(sc);
1185                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1186         }
1187
1188         if (sc->mpi350 && status & AN_EV_TX_CPY) {
1189                 an_txeof(sc, status);
1190                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_CPY);
1191         }
1192
1193         if (status & AN_EV_TX) {
1194                 an_txeof(sc, status);
1195                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1196         }
1197
1198         if (status & AN_EV_TX_EXC) {
1199                 an_txeof(sc, status);
1200                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1201         }
1202
1203         if (status & AN_EV_ALLOC)
1204                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1205
1206         /* Re-enable interrupts. */
1207         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
1208
1209         if ((ifp->if_flags & IFF_UP) && !ifq_is_empty(&ifp->if_snd))
1210                 an_start(ifp);
1211
1212         return;
1213 }
1214
1215 static int
1216 an_cmd_struct(sc, cmd, reply)
1217         struct an_softc         *sc;
1218         struct an_command       *cmd;
1219         struct an_reply         *reply;
1220 {
1221         int                     i;
1222
1223         for (i = 0; i != AN_TIMEOUT; i++) {
1224                 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1225                         DELAY(1000);
1226                 } else
1227                         break;
1228         }
1229         if( i == AN_TIMEOUT) {
1230                 printf("BUSY\n");
1231                 return(ETIMEDOUT);
1232         }
1233
1234         CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1235         CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1236         CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1237         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1238
1239         for (i = 0; i < AN_TIMEOUT; i++) {
1240                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1241                         break;
1242                 DELAY(1000);
1243         }
1244
1245         reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1246         reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1247         reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1248         reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1249
1250         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1251                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1252
1253         /* Ack the command */
1254         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1255
1256         if (i == AN_TIMEOUT)
1257                 return(ETIMEDOUT);
1258
1259         return(0);
1260 }
1261
1262 static int
1263 an_cmd(sc, cmd, val)
1264         struct an_softc         *sc;
1265         int                     cmd;
1266         int                     val;
1267 {
1268         int                     i, s = 0;
1269
1270         CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1271         CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1272         CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1273         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1274
1275         for (i = 0; i < AN_TIMEOUT; i++) {
1276                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1277                         break;
1278                 else {
1279                         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1280                                 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1281                 }
1282         }
1283
1284         for (i = 0; i < AN_TIMEOUT; i++) {
1285                 CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1286                 CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1287                 CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1288                 s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1289                 if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1290                         break;
1291         }
1292
1293         /* Ack the command */
1294         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1295
1296         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1297                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1298
1299         if (i == AN_TIMEOUT)
1300                 return(ETIMEDOUT);
1301
1302         return(0);
1303 }
1304
1305 /*
1306  * This reset sequence may look a little strange, but this is the
1307  * most reliable method I've found to really kick the NIC in the
1308  * head and force it to reboot correctly.
1309  */
1310 static void
1311 an_reset(sc)
1312         struct an_softc         *sc;
1313 {
1314         an_cmd(sc, AN_CMD_ENABLE, 0);
1315         an_cmd(sc, AN_CMD_FW_RESTART, 0);
1316         an_cmd(sc, AN_CMD_NOOP2, 0);
1317
1318         if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1319                 if_printf(&sc->arpcom.ac_if, "reset failed\n");
1320
1321         an_cmd(sc, AN_CMD_DISABLE, 0);
1322
1323         return;
1324 }
1325
1326 /*
1327  * Read an LTV record from the NIC.
1328  */
1329 static int
1330 an_read_record(sc, ltv)
1331         struct an_softc         *sc;
1332         struct an_ltv_gen       *ltv;
1333 {
1334         struct an_ltv_gen       *an_ltv;
1335         struct an_card_rid_desc an_rid_desc;
1336         struct an_command       cmd;
1337         struct an_reply         reply;
1338         u_int16_t               *ptr;
1339         u_int8_t                *ptr2;
1340         int                     i, len;
1341
1342         if (ltv->an_len < 4 || ltv->an_type == 0)
1343                 return(EINVAL);
1344
1345         if (!sc->mpi350){
1346                 /* Tell the NIC to enter record read mode. */
1347                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1348                         if_printf(&sc->arpcom.ac_if, "RID access failed\n");
1349                         return(EIO);
1350                 }
1351
1352                 /* Seek to the record. */
1353                 if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1354                         if_printf(&sc->arpcom.ac_if, "seek to record failed\n");
1355                         return(EIO);
1356                 }
1357
1358                 /*
1359                  * Read the length and record type and make sure they
1360                  * match what we expect (this verifies that we have enough
1361                  * room to hold all of the returned data).
1362                  * Length includes type but not length.
1363                  */
1364                 len = CSR_READ_2(sc, AN_DATA1);
1365                 if (len > (ltv->an_len - 2)) {
1366                         if_printf(&sc->arpcom.ac_if,
1367                                   "record length mismatch -- expected %d, "
1368                                   "got %d for Rid %x\n",
1369                                   ltv->an_len - 2, len, ltv->an_type);
1370                         len = ltv->an_len - 2;
1371                 } else {
1372                         ltv->an_len = len + 2;
1373                 }
1374
1375                 /* Now read the data. */
1376                 len -= 2;       /* skip the type */
1377                 ptr = &ltv->an_val;
1378                 for (i = len; i > 1; i -= 2)
1379                         *ptr++ = CSR_READ_2(sc, AN_DATA1);
1380                 if (i) {
1381                         ptr2 = (u_int8_t *)ptr;
1382                         *ptr2 = CSR_READ_1(sc, AN_DATA1);
1383                 }
1384         } else { /* MPI-350 */
1385                 if (sc->an_rid_buffer.an_dma_vaddr == NULL)
1386                         return(EIO);
1387                 an_rid_desc.an_valid = 1;
1388                 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1389                 an_rid_desc.an_rid = 0;
1390                 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1391                 bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1392
1393                 bzero(&cmd, sizeof(cmd));
1394                 bzero(&reply, sizeof(reply));
1395                 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1396                 cmd.an_parm0 = ltv->an_type;
1397
1398                 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1399                         CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
1400                                             ((u_int32_t*)&an_rid_desc)[i]);
1401
1402                 if (an_cmd_struct(sc, &cmd, &reply)
1403                     || reply.an_status & AN_CMD_QUAL_MASK) {
1404                         if_printf(&sc->arpcom.ac_if,
1405                                   "failed to read RID %x %x %x %x %x, %d\n", 
1406                                   ltv->an_type,
1407                                   reply.an_status,
1408                                   reply.an_resp0,
1409                                   reply.an_resp1,
1410                                   reply.an_resp2,
1411                                   i);
1412                         return(EIO);
1413                 }
1414
1415                 an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1416                 if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1417                         an_rid_desc.an_len = an_ltv->an_len;
1418                 }
1419
1420                 len = an_rid_desc.an_len;
1421                 if (len > (ltv->an_len - 2)) {
1422                         if_printf(&sc->arpcom.ac_if,
1423                                   "record length mismatch -- expected %d, "
1424                                   "got %d for Rid %x\n",
1425                                   ltv->an_len - 2, len, ltv->an_type);
1426                         len = ltv->an_len - 2;
1427                 } else {
1428                         ltv->an_len = len + 2;
1429                 }
1430                 bcopy(&an_ltv->an_type, &ltv->an_val, len);
1431         }
1432
1433         if (an_dump)
1434                 an_dump_record(sc, ltv, "Read");
1435
1436         return(0);
1437 }
1438
1439 /*
1440  * Same as read, except we inject data instead of reading it.
1441  */
1442 static int
1443 an_write_record(sc, ltv)
1444         struct an_softc         *sc;
1445         struct an_ltv_gen       *ltv;
1446 {
1447         struct an_card_rid_desc an_rid_desc;
1448         struct an_command       cmd;
1449         struct an_reply         reply;
1450         char                    *buf;
1451         u_int16_t               *ptr;
1452         u_int8_t                *ptr2;
1453         int                     i, len;
1454
1455         if (an_dump)
1456                 an_dump_record(sc, ltv, "Write");
1457
1458         if (!sc->mpi350){
1459                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1460                         return(EIO);
1461
1462                 if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1463                         return(EIO);
1464
1465                 /*
1466                  * Length includes type but not length.
1467                  */
1468                 len = ltv->an_len - 2;
1469                 CSR_WRITE_2(sc, AN_DATA1, len);
1470
1471                 len -= 2;       /* skip the type */
1472                 ptr = &ltv->an_val;
1473                 for (i = len; i > 1; i -= 2)
1474                         CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1475                 if (i) {
1476                         ptr2 = (u_int8_t *)ptr;
1477                         CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1478                 }
1479
1480                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1481                         return(EIO);
1482         } else { 
1483                 /* MPI-350 */
1484
1485                 for (i = 0; i != AN_TIMEOUT; i++) {
1486                         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) 
1487                             & AN_CMD_BUSY) {
1488                                 DELAY(10);
1489                         } else
1490                                 break;
1491                 }
1492                 if (i == AN_TIMEOUT) {
1493                         printf("BUSY\n");
1494                 }
1495
1496                 an_rid_desc.an_valid = 1;
1497                 an_rid_desc.an_len = ltv->an_len - 2;
1498                 an_rid_desc.an_rid = ltv->an_type;
1499                 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1500
1501                 bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1502                       an_rid_desc.an_len);
1503
1504                 bzero(&cmd,sizeof(cmd));
1505                 bzero(&reply,sizeof(reply));
1506                 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1507                 cmd.an_parm0 = ltv->an_type;
1508
1509                 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1510                         CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
1511                                             ((u_int32_t*)&an_rid_desc)[i]);
1512
1513                 if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1514                         if_printf(&sc->arpcom.ac_if,
1515                             "failed to write RID 1 %x %x %x %x %x, %d\n", 
1516                             ltv->an_type, 
1517                             reply.an_status,
1518                             reply.an_resp0,
1519                             reply.an_resp1,
1520                             reply.an_resp2,
1521                             i);
1522                         return(EIO);
1523                 }
1524
1525                 ptr = (u_int16_t *)buf;
1526
1527                 if (reply.an_status & AN_CMD_QUAL_MASK) {
1528                         if_printf(&sc->arpcom.ac_if,
1529                             "failed to write RID 2 %x %x %x %x %x, %d\n", 
1530                             ltv->an_type, 
1531                             reply.an_status,
1532                             reply.an_resp0,
1533                             reply.an_resp1,
1534                             reply.an_resp2,
1535                             i);
1536                         return(EIO);
1537                 }
1538         }
1539
1540         return(0);
1541 }
1542
1543 static void
1544 an_dump_record(sc, ltv, string)
1545         struct an_softc         *sc;
1546         struct an_ltv_gen       *ltv;
1547         char                    *string;
1548 {
1549         u_int8_t                *ptr2;
1550         int                     len;
1551         int                     i;
1552         int                     count = 0;
1553         char                    buf[17], temp;
1554
1555         len = ltv->an_len - 4;
1556         if_printf(&sc->arpcom.ac_if, "RID %4x, Length %4d, Mode %s\n",
1557                   ltv->an_type, ltv->an_len - 4, string);
1558
1559         if (an_dump == 1 || (an_dump == ltv->an_type)) {
1560                 if_printf(&sc->arpcom.ac_if, "\t");
1561                 bzero(buf,sizeof(buf));
1562
1563                 ptr2 = (u_int8_t *)&ltv->an_val;
1564                 for (i = len; i > 0; i--) {
1565                         printf("%02x ", *ptr2);
1566
1567                         temp = *ptr2++;
1568                         if (temp >= ' ' && temp <= '~')
1569                                 buf[count] = temp;
1570                         else if (temp >= 'A' && temp <= 'Z')
1571                                 buf[count] = temp;
1572                         else
1573                                 buf[count] = '.';
1574                         if (++count == 16) {
1575                                 count = 0;
1576                                 printf("%s\n",buf);
1577                                 if_printf(&sc->arpcom.ac_if, "\t");
1578                                 bzero(buf,sizeof(buf));
1579                         }
1580                 }
1581                 for (; count != 16; count++) {
1582                         printf("   ");
1583                 }
1584                 printf(" %s\n",buf);
1585         }
1586 }
1587
1588 static int
1589 an_seek(sc, id, off, chan)
1590         struct an_softc         *sc;
1591         int                     id, off, chan;
1592 {
1593         int                     i;
1594         int                     selreg, offreg;
1595
1596         switch (chan) {
1597         case AN_BAP0:
1598                 selreg = AN_SEL0;
1599                 offreg = AN_OFF0;
1600                 break;
1601         case AN_BAP1:
1602                 selreg = AN_SEL1;
1603                 offreg = AN_OFF1;
1604                 break;
1605         default:
1606                 if_printf(&sc->arpcom.ac_if, "invalid data path: %x\n", chan);
1607                 return(EIO);
1608         }
1609
1610         CSR_WRITE_2(sc, selreg, id);
1611         CSR_WRITE_2(sc, offreg, off);
1612
1613         for (i = 0; i < AN_TIMEOUT; i++) {
1614                 if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1615                         break;
1616         }
1617
1618         if (i == AN_TIMEOUT)
1619                 return(ETIMEDOUT);
1620
1621         return(0);
1622 }
1623
1624 static int
1625 an_read_data(sc, id, off, buf, len)
1626         struct an_softc         *sc;
1627         int                     id, off;
1628         caddr_t                 buf;
1629         int                     len;
1630 {
1631         int                     i;
1632         u_int16_t               *ptr;
1633         u_int8_t                *ptr2;
1634
1635         if (off != -1) {
1636                 if (an_seek(sc, id, off, AN_BAP1))
1637                         return(EIO);
1638         }
1639
1640         ptr = (u_int16_t *)buf;
1641         for (i = len; i > 1; i -= 2)
1642                 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1643         if (i) {
1644                 ptr2 = (u_int8_t *)ptr;
1645                 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1646         }
1647
1648         return(0);
1649 }
1650
1651 static int
1652 an_write_data(sc, id, off, buf, len)
1653         struct an_softc         *sc;
1654         int                     id, off;
1655         caddr_t                 buf;
1656         int                     len;
1657 {
1658         int                     i;
1659         u_int16_t               *ptr;
1660         u_int8_t                *ptr2;
1661
1662         if (off != -1) {
1663                 if (an_seek(sc, id, off, AN_BAP0))
1664                         return(EIO);
1665         }
1666
1667         ptr = (u_int16_t *)buf;
1668         for (i = len; i > 1; i -= 2)
1669                 CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1670         if (i) {
1671                 ptr2 = (u_int8_t *)ptr;
1672                 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1673         }
1674
1675         return(0);
1676 }
1677
1678 /*
1679  * Allocate a region of memory inside the NIC and zero
1680  * it out.
1681  */
1682 static int
1683 an_alloc_nicmem(sc, len, id)
1684         struct an_softc         *sc;
1685         int                     len;
1686         int                     *id;
1687 {
1688         int                     i;
1689
1690         if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1691                 if_printf(&sc->arpcom.ac_if,
1692                           "failed to allocate %d bytes on NIC\n", len);
1693                 return(ENOMEM);
1694         }
1695
1696         for (i = 0; i < AN_TIMEOUT; i++) {
1697                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1698                         break;
1699         }
1700
1701         if (i == AN_TIMEOUT)
1702                 return(ETIMEDOUT);
1703
1704         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1705         *id = CSR_READ_2(sc, AN_ALLOC_FID);
1706
1707         if (an_seek(sc, *id, 0, AN_BAP0))
1708                 return(EIO);
1709
1710         for (i = 0; i < len / 2; i++)
1711                 CSR_WRITE_2(sc, AN_DATA0, 0);
1712
1713         return(0);
1714 }
1715
1716 static void
1717 an_setdef(sc, areq)
1718         struct an_softc         *sc;
1719         struct an_req           *areq;
1720 {
1721         struct ifnet            *ifp;
1722         struct an_ltv_genconfig *cfg;
1723         struct an_ltv_ssidlist_new *ssid;
1724         struct an_ltv_aplist    *ap;
1725         struct an_ltv_gen       *sp;
1726
1727         ifp = &sc->arpcom.ac_if;
1728
1729         switch (areq->an_type) {
1730         case AN_RID_GENCONFIG:
1731                 cfg = (struct an_ltv_genconfig *)areq;
1732
1733                 bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1734                     ETHER_ADDR_LEN);
1735                 bcopy((char *)&cfg->an_macaddr, IF_LLADDR(ifp), ETHER_ADDR_LEN);
1736
1737                 bcopy((char *)cfg, (char *)&sc->an_config,
1738                         sizeof(struct an_ltv_genconfig));
1739                 break;
1740         case AN_RID_SSIDLIST:
1741                 ssid = (struct an_ltv_ssidlist_new *)areq;
1742                 bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1743                       sizeof(struct an_ltv_ssidlist_new));
1744                 break;
1745         case AN_RID_APLIST:
1746                 ap = (struct an_ltv_aplist *)areq;
1747                 bcopy((char *)ap, (char *)&sc->an_aplist,
1748                         sizeof(struct an_ltv_aplist));
1749                 break;
1750         case AN_RID_TX_SPEED:
1751                 sp = (struct an_ltv_gen *)areq;
1752                 sc->an_tx_rate = sp->an_val;
1753
1754                 /* Read the current configuration */
1755                 sc->an_config.an_type = AN_RID_GENCONFIG;
1756                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1757                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1758                 cfg = &sc->an_config;
1759
1760                 /* clear other rates and set the only one we want */
1761                 bzero(cfg->an_rates, sizeof(cfg->an_rates));
1762                 cfg->an_rates[0] = sc->an_tx_rate;
1763
1764                 /* Save the new rate */
1765                 sc->an_config.an_type = AN_RID_GENCONFIG;
1766                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1767                 break;
1768         case AN_RID_WEP_TEMP:
1769                 /* Cache the temp keys */
1770                 bcopy(areq, 
1771                     &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex], 
1772                     sizeof(struct an_ltv_key));
1773         case AN_RID_WEP_PERM:
1774         case AN_RID_LEAPUSERNAME:
1775         case AN_RID_LEAPPASSWORD:
1776                 an_init(sc);
1777
1778                 /* Disable the MAC. */
1779                 an_cmd(sc, AN_CMD_DISABLE, 0);
1780
1781                 /* Write the key */
1782                 an_write_record(sc, (struct an_ltv_gen *)areq);
1783
1784                 /* Turn the MAC back on. */
1785                 an_cmd(sc, AN_CMD_ENABLE, 0);
1786
1787                 break;
1788         case AN_RID_MONITOR_MODE:
1789                 cfg = (struct an_ltv_genconfig *)areq;
1790                 bpfdetach(ifp);
1791                 if (ng_ether_detach_p != NULL)
1792                         (*ng_ether_detach_p) (ifp);
1793                 sc->an_monitor = cfg->an_len;
1794
1795                 if (sc->an_monitor & AN_MONITOR) {
1796                         if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1797                                 bpfattach(ifp, DLT_AIRONET_HEADER,
1798                                         sizeof(struct ether_header));
1799                         } else {
1800                                 bpfattach(ifp, DLT_IEEE802_11,
1801                                         sizeof(struct ether_header));
1802                         }
1803                 } else {
1804                         bpfattach(ifp, DLT_EN10MB,
1805                                   sizeof(struct ether_header));
1806                         if (ng_ether_attach_p != NULL)
1807                                 (*ng_ether_attach_p) (ifp);
1808                 }
1809                 break;
1810         default:
1811                 if_printf(ifp, "unknown RID: %x\n", areq->an_type);
1812                 return;
1813         }
1814
1815
1816         /* Reinitialize the card. */
1817         if (ifp->if_flags)
1818                 an_init(sc);
1819
1820         return;
1821 }
1822
1823 /*
1824  * Derived from Linux driver to enable promiscious mode.
1825  */
1826
1827 static void
1828 an_promisc(sc, promisc)
1829         struct an_softc         *sc;
1830         int                     promisc;
1831 {
1832         if (sc->an_was_monitor)
1833                 an_reset(sc);
1834         if (sc->mpi350)
1835                 an_init_mpi350_desc(sc);        
1836         if (sc->an_monitor || sc->an_was_monitor)
1837                 an_init(sc);
1838
1839         sc->an_was_monitor = sc->an_monitor;
1840         an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1841
1842         return;
1843 }
1844
1845 static int
1846 an_ioctl(ifp, command, data, cr)
1847         struct ifnet            *ifp;
1848         u_long                  command;
1849         caddr_t                 data;
1850         struct ucred            *cr;
1851 {
1852         int                     error = 0;
1853         int                     len;
1854         int                     i, max;
1855         struct an_softc         *sc;
1856         struct ifreq            *ifr;
1857         struct ieee80211req     *ireq;
1858         u_int8_t                tmpstr[IEEE80211_NWID_LEN*2];
1859         u_int8_t                *tmpptr;
1860         struct an_ltv_genconfig *config;
1861         struct an_ltv_key       *key;
1862         struct an_ltv_status    *status;
1863         struct an_ltv_ssidlist_new *ssids;
1864         int                     mode;
1865         struct aironet_ioctl    l_ioctl;
1866
1867         sc = ifp->if_softc;
1868         ifr = (struct ifreq *)data;
1869         ireq = (struct ieee80211req *)data;
1870
1871         crit_enter();
1872
1873         config = (struct an_ltv_genconfig *)&sc->areq;
1874         key = (struct an_ltv_key *)&sc->areq;
1875         status = (struct an_ltv_status *)&sc->areq;
1876         ssids = (struct an_ltv_ssidlist_new *)&sc->areq;
1877
1878         switch (command) {
1879         case SIOCSIFFLAGS:
1880                 if (ifp->if_flags & IFF_UP) {
1881                         if (ifp->if_flags & IFF_RUNNING &&
1882                             ifp->if_flags & IFF_PROMISC &&
1883                             !(sc->an_if_flags & IFF_PROMISC)) {
1884                                 an_promisc(sc, 1);
1885                         } else if (ifp->if_flags & IFF_RUNNING &&
1886                             !(ifp->if_flags & IFF_PROMISC) &&
1887                             sc->an_if_flags & IFF_PROMISC) {
1888                                 an_promisc(sc, 0);
1889                         } else
1890                                 an_init(sc);
1891                 } else {
1892                         if (ifp->if_flags & IFF_RUNNING)
1893                                 an_stop(sc);
1894                 }
1895                 sc->an_if_flags = ifp->if_flags;
1896                 error = 0;
1897                 break;
1898         case SIOCSIFMEDIA:
1899         case SIOCGIFMEDIA:
1900                 error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1901                 break;
1902         case SIOCADDMULTI:
1903         case SIOCDELMULTI:
1904                 /* The Aironet has no multicast filter. */
1905                 error = 0;
1906                 break;
1907         case SIOCGAIRONET:
1908                 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1909                 if (error != 0)
1910                         break;
1911 #ifdef ANCACHE
1912                 if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1913                         error = suser_cred(cr, NULL_CRED_OKAY);
1914                         if (error)
1915                                 break;
1916                         sc->an_sigitems = sc->an_nextitem = 0;
1917                         break;
1918                 } else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1919                         char *pt = (char *)&sc->areq.an_val;
1920                         bcopy((char *)&sc->an_sigitems, (char *)pt,
1921                             sizeof(int));
1922                         pt += sizeof(int);
1923                         sc->areq.an_len = sizeof(int) / 2;
1924                         bcopy((char *)&sc->an_sigcache, (char *)pt,
1925                             sizeof(struct an_sigcache) * sc->an_sigitems);
1926                         sc->areq.an_len += ((sizeof(struct an_sigcache) *
1927                             sc->an_sigitems) / 2) + 1;
1928                 } else
1929 #endif
1930                 if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1931                         error = EINVAL;
1932                         break;
1933                 }
1934                 error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1935                 break;
1936         case SIOCSAIRONET:
1937                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1938                         break;
1939                 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1940                 if (error != 0)
1941                         break;
1942                 an_setdef(sc, &sc->areq);
1943                 break;
1944         case SIOCGPRIVATE_0:              /* used by Cisco client utility */
1945                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1946                         break;
1947                 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1948                 mode = l_ioctl.command;
1949
1950                 if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1951                         error = readrids(ifp, &l_ioctl);
1952                 } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1953                         error = writerids(ifp, &l_ioctl);
1954                 } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1955                         error = flashcard(ifp, &l_ioctl);
1956                 } else {
1957                         error =-1;
1958                 }
1959
1960                 /* copy out the updated command info */
1961                 copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1962
1963                 break;
1964         case SIOCGPRIVATE_1:              /* used by Cisco client utility */
1965                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1966                         break;
1967                 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1968                 l_ioctl.command = 0;
1969                 error = AIROMAGIC;
1970                 copyout(&error, l_ioctl.data, sizeof(error));
1971                 error = 0;
1972                 break;
1973         case SIOCG80211:
1974                 sc->areq.an_len = sizeof(sc->areq);
1975                 /* was that a good idea DJA we are doing a short-cut */
1976                 switch (ireq->i_type) {
1977                 case IEEE80211_IOC_SSID:
1978                         if (ireq->i_val == -1) {
1979                                 sc->areq.an_type = AN_RID_STATUS;
1980                                 if (an_read_record(sc,
1981                                     (struct an_ltv_gen *)&sc->areq)) {
1982                                         error = EINVAL;
1983                                         break;
1984                                 }
1985                                 len = status->an_ssidlen;
1986                                 tmpptr = status->an_ssid;
1987                         } else if (ireq->i_val >= 0) {
1988                                 sc->areq.an_type = AN_RID_SSIDLIST;
1989                                 if (an_read_record(sc,
1990                                     (struct an_ltv_gen *)&sc->areq)) {
1991                                         error = EINVAL;
1992                                         break;
1993                                 }
1994                                 max = (sc->areq.an_len - 4)
1995                                     / sizeof(struct an_ltv_ssid_entry);
1996                                 if ( max > MAX_SSIDS ) {
1997                                         printf("To many SSIDs only using "
1998                                             "%d of %d\n",
1999                                             MAX_SSIDS, max);
2000                                         max = MAX_SSIDS;
2001                                 }
2002                                 if (ireq->i_val > max) {
2003                                         error = EINVAL;
2004                                         break;
2005                                 } else {
2006                                         len = ssids->an_entry[ireq->i_val].an_len;
2007                                         tmpptr = ssids->an_entry[ireq->i_val].an_ssid;
2008                                 }
2009                         } else {
2010                                 error = EINVAL;
2011                                 break;
2012                         }
2013                         if (len > IEEE80211_NWID_LEN) {
2014                                 error = EINVAL;
2015                                 break;
2016                         }
2017                         ireq->i_len = len;
2018                         bzero(tmpstr, IEEE80211_NWID_LEN);
2019                         bcopy(tmpptr, tmpstr, len);
2020                         error = copyout(tmpstr, ireq->i_data,
2021                             IEEE80211_NWID_LEN);
2022                         break;
2023                 case IEEE80211_IOC_NUMSSIDS:
2024                         sc->areq.an_len = sizeof(sc->areq);
2025                         sc->areq.an_type = AN_RID_SSIDLIST;
2026                         if (an_read_record(sc,
2027                             (struct an_ltv_gen *)&sc->areq)) {
2028                                 error = EINVAL;
2029                                 break;
2030                         }
2031                         max = (sc->areq.an_len - 4)
2032                             / sizeof(struct an_ltv_ssid_entry);
2033                         if (max > MAX_SSIDS) {
2034                                 printf("To many SSIDs only using "
2035                                     "%d of %d\n",
2036                                     MAX_SSIDS, max);
2037                                 max = MAX_SSIDS;
2038                         }
2039                         ireq->i_val = max;
2040                         break;
2041                 case IEEE80211_IOC_WEP:
2042                         sc->areq.an_type = AN_RID_ACTUALCFG;
2043                         if (an_read_record(sc,
2044                             (struct an_ltv_gen *)&sc->areq)) {
2045                                 error = EINVAL;
2046                                 break;
2047                         }
2048                         if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2049                                 if (config->an_authtype &
2050                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2051                                         ireq->i_val = IEEE80211_WEP_MIXED;
2052                                 else
2053                                         ireq->i_val = IEEE80211_WEP_ON;
2054                         } else {
2055                                 ireq->i_val = IEEE80211_WEP_OFF;
2056                         }
2057                         break;
2058                 case IEEE80211_IOC_WEPKEY:
2059                         /*
2060                          * XXX: I'm not entierly convinced this is
2061                          * correct, but it's what is implemented in
2062                          * ancontrol so it will have to do until we get
2063                          * access to actual Cisco code.
2064                          */
2065                         if (ireq->i_val < 0 || ireq->i_val > 8) {
2066                                 error = EINVAL;
2067                                 break;
2068                         }
2069                         len = 0;
2070                         if (ireq->i_val < 5) {
2071                                 sc->areq.an_type = AN_RID_WEP_TEMP;
2072                                 for (i = 0; i < 5; i++) {
2073                                         if (an_read_record(sc,
2074                                             (struct an_ltv_gen *)&sc->areq)) {
2075                                                 error = EINVAL;
2076                                                 break;
2077                                         }
2078                                         if (key->kindex == 0xffff)
2079                                                 break;
2080                                         if (key->kindex == ireq->i_val)
2081                                                 len = key->klen;
2082                                         /* Required to get next entry */
2083                                         sc->areq.an_type = AN_RID_WEP_PERM;
2084                                 }
2085                                 if (error != 0)
2086                                         break;
2087                         }
2088                         /* We aren't allowed to read the value of the
2089                          * key from the card so we just output zeros
2090                          * like we would if we could read the card, but
2091                          * denied the user access.
2092                          */
2093                         bzero(tmpstr, len);
2094                         ireq->i_len = len;
2095                         error = copyout(tmpstr, ireq->i_data, len);
2096                         break;
2097                 case IEEE80211_IOC_NUMWEPKEYS:
2098                         ireq->i_val = 9; /* include home key */
2099                         break;
2100                 case IEEE80211_IOC_WEPTXKEY:
2101                         /*
2102                          * For some strange reason, you have to read all
2103                          * keys before you can read the txkey.
2104                          */
2105                         sc->areq.an_type = AN_RID_WEP_TEMP;
2106                         for (i = 0; i < 5; i++) {
2107                                 if (an_read_record(sc,
2108                                     (struct an_ltv_gen *) &sc->areq)) {
2109                                         error = EINVAL;
2110                                         break;
2111                                 }
2112                                 if (key->kindex == 0xffff)
2113                                         break;
2114                                 /* Required to get next entry */
2115                                 sc->areq.an_type = AN_RID_WEP_PERM;
2116                         }
2117                         if (error != 0)
2118                                 break;
2119
2120                         sc->areq.an_type = AN_RID_WEP_PERM;
2121                         key->kindex = 0xffff;
2122                         if (an_read_record(sc,
2123                             (struct an_ltv_gen *)&sc->areq)) {
2124                                 error = EINVAL;
2125                                 break;
2126                         }
2127                         ireq->i_val = key->mac[0];
2128                         /*
2129                          * Check for home mode.  Map home mode into
2130                          * 5th key since that is how it is stored on
2131                          * the card
2132                          */
2133                         sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2134                         sc->areq.an_type = AN_RID_GENCONFIG;
2135                         if (an_read_record(sc,
2136                             (struct an_ltv_gen *)&sc->areq)) {
2137                                 error = EINVAL;
2138                                 break;
2139                         }
2140                         if (config->an_home_product & AN_HOME_NETWORK)
2141                                 ireq->i_val = 4;
2142                         break;
2143                 case IEEE80211_IOC_AUTHMODE:
2144                         sc->areq.an_type = AN_RID_ACTUALCFG;
2145                         if (an_read_record(sc,
2146                             (struct an_ltv_gen *)&sc->areq)) {
2147                                 error = EINVAL;
2148                                 break;
2149                         }
2150                         if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2151                             AN_AUTHTYPE_NONE) {
2152                             ireq->i_val = IEEE80211_AUTH_NONE;
2153                         } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2154                             AN_AUTHTYPE_OPEN) {
2155                             ireq->i_val = IEEE80211_AUTH_OPEN;
2156                         } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2157                             AN_AUTHTYPE_SHAREDKEY) {
2158                             ireq->i_val = IEEE80211_AUTH_SHARED;
2159                         } else
2160                                 error = EINVAL;
2161                         break;
2162                 case IEEE80211_IOC_STATIONNAME:
2163                         sc->areq.an_type = AN_RID_ACTUALCFG;
2164                         if (an_read_record(sc,
2165                             (struct an_ltv_gen *)&sc->areq)) {
2166                                 error = EINVAL;
2167                                 break;
2168                         }
2169                         ireq->i_len = sizeof(config->an_nodename);
2170                         tmpptr = config->an_nodename;
2171                         bzero(tmpstr, IEEE80211_NWID_LEN);
2172                         bcopy(tmpptr, tmpstr, ireq->i_len);
2173                         error = copyout(tmpstr, ireq->i_data,
2174                             IEEE80211_NWID_LEN);
2175                         break;
2176                 case IEEE80211_IOC_CHANNEL:
2177                         sc->areq.an_type = AN_RID_STATUS;
2178                         if (an_read_record(sc,
2179                             (struct an_ltv_gen *)&sc->areq)) {
2180                                 error = EINVAL;
2181                                 break;
2182                         }
2183                         ireq->i_val = status->an_cur_channel;
2184                         break;
2185                 case IEEE80211_IOC_POWERSAVE:
2186                         sc->areq.an_type = AN_RID_ACTUALCFG;
2187                         if (an_read_record(sc,
2188                             (struct an_ltv_gen *)&sc->areq)) {
2189                                 error = EINVAL;
2190                                 break;
2191                         }
2192                         if (config->an_psave_mode == AN_PSAVE_NONE) {
2193                                 ireq->i_val = IEEE80211_POWERSAVE_OFF;
2194                         } else if (config->an_psave_mode == AN_PSAVE_CAM) {
2195                                 ireq->i_val = IEEE80211_POWERSAVE_CAM;
2196                         } else if (config->an_psave_mode == AN_PSAVE_PSP) {
2197                                 ireq->i_val = IEEE80211_POWERSAVE_PSP;
2198                         } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2199                                 ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2200                         } else
2201                                 error = EINVAL;
2202                         break;
2203                 case IEEE80211_IOC_POWERSAVESLEEP:
2204                         sc->areq.an_type = AN_RID_ACTUALCFG;
2205                         if (an_read_record(sc,
2206                             (struct an_ltv_gen *)&sc->areq)) {
2207                                 error = EINVAL;
2208                                 break;
2209                         }
2210                         ireq->i_val = config->an_listen_interval;
2211                         break;
2212                 }
2213                 break;
2214         case SIOCS80211:
2215                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
2216                         break;
2217                 sc->areq.an_len = sizeof(sc->areq);
2218                 /*
2219                  * We need a config structure for everything but the WEP
2220                  * key management and SSIDs so we get it now so avoid
2221                  * duplicating this code every time.
2222                  */
2223                 if (ireq->i_type != IEEE80211_IOC_SSID &&
2224                     ireq->i_type != IEEE80211_IOC_WEPKEY &&
2225                     ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2226                         sc->areq.an_type = AN_RID_GENCONFIG;
2227                         if (an_read_record(sc,
2228                             (struct an_ltv_gen *)&sc->areq)) {
2229                                 error = EINVAL;
2230                                 break;
2231                         }
2232                 }
2233                 switch (ireq->i_type) {
2234                 case IEEE80211_IOC_SSID:
2235                         sc->areq.an_len = sizeof(sc->areq);
2236                         sc->areq.an_type = AN_RID_SSIDLIST;
2237                         if (an_read_record(sc,
2238                             (struct an_ltv_gen *)&sc->areq)) {
2239                                 error = EINVAL;
2240                                 break;
2241                         }
2242                         if (ireq->i_len > IEEE80211_NWID_LEN) {
2243                                 error = EINVAL;
2244                                 break;
2245                         }
2246                         max = (sc->areq.an_len - 4)
2247                             / sizeof(struct an_ltv_ssid_entry);
2248                         if (max > MAX_SSIDS) {
2249                                 printf("To many SSIDs only using "
2250                                     "%d of %d\n",
2251                                     MAX_SSIDS, max);
2252                                 max = MAX_SSIDS;
2253                         }
2254                         if (ireq->i_val > max) {
2255                                 error = EINVAL;
2256                                 break;
2257                         } else {
2258                                 error = copyin(ireq->i_data,
2259                                     ssids->an_entry[ireq->i_val].an_ssid, 
2260                                     ireq->i_len);
2261                                 ssids->an_entry[ireq->i_val].an_len 
2262                                     = ireq->i_len;
2263                                 break;
2264                         }
2265                         break;
2266                 case IEEE80211_IOC_WEP:
2267                         switch (ireq->i_val) {
2268                         case IEEE80211_WEP_OFF:
2269                                 config->an_authtype &=
2270                                     ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2271                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2272                                 break;
2273                         case IEEE80211_WEP_ON:
2274                                 config->an_authtype |=
2275                                     AN_AUTHTYPE_PRIVACY_IN_USE;
2276                                 config->an_authtype &=
2277                                     ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2278                                 break;
2279                         case IEEE80211_WEP_MIXED:
2280                                 config->an_authtype |=
2281                                     AN_AUTHTYPE_PRIVACY_IN_USE |
2282                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2283                                 break;
2284                         default:
2285                                 error = EINVAL;
2286                                 break;
2287                         }
2288                         break;
2289                 case IEEE80211_IOC_WEPKEY:
2290                         if (ireq->i_val < 0 || ireq->i_val > 8 ||
2291                             ireq->i_len > 13) {
2292                                 error = EINVAL;
2293                                 break;
2294                         }
2295                         error = copyin(ireq->i_data, tmpstr, 13);
2296                         if (error != 0)
2297                                 break;
2298                         /*
2299                          * Map the 9th key into the home mode
2300                          * since that is how it is stored on
2301                          * the card
2302                          */
2303                         bzero(&sc->areq, sizeof(struct an_ltv_key));
2304                         sc->areq.an_len = sizeof(struct an_ltv_key);
2305                         key->mac[0] = 1;        /* The others are 0. */
2306                         if (ireq->i_val < 4) {
2307                                 sc->areq.an_type = AN_RID_WEP_TEMP;
2308                                 key->kindex = ireq->i_val;
2309                         } else {
2310                                 sc->areq.an_type = AN_RID_WEP_PERM;
2311                                 key->kindex = ireq->i_val - 4;
2312                         }
2313                         key->klen = ireq->i_len;
2314                         bcopy(tmpstr, key->key, key->klen);
2315                         break;
2316                 case IEEE80211_IOC_WEPTXKEY:
2317                         if (ireq->i_val < 0 || ireq->i_val > 4) {
2318                                 error = EINVAL;
2319                                 break;
2320                         }
2321
2322                         /*
2323                          * Map the 5th key into the home mode
2324                          * since that is how it is stored on
2325                          * the card
2326                          */
2327                         sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2328                         sc->areq.an_type = AN_RID_ACTUALCFG;
2329                         if (an_read_record(sc,
2330                             (struct an_ltv_gen *)&sc->areq)) {
2331                                 error = EINVAL;
2332                                 break;
2333                         }
2334                         if (ireq->i_val ==  4) {
2335                                 config->an_home_product |= AN_HOME_NETWORK;
2336                                 ireq->i_val = 0;
2337                         } else {
2338                                 config->an_home_product &= ~AN_HOME_NETWORK;
2339                         }
2340
2341                         sc->an_config.an_home_product
2342                                 = config->an_home_product;
2343
2344                         /* update configuration */
2345                         an_init(sc);
2346
2347                         bzero(&sc->areq, sizeof(struct an_ltv_key));
2348                         sc->areq.an_len = sizeof(struct an_ltv_key);
2349                         sc->areq.an_type = AN_RID_WEP_PERM;
2350                         key->kindex = 0xffff;
2351                         key->mac[0] = ireq->i_val;
2352                         break;
2353                 case IEEE80211_IOC_AUTHMODE:
2354                         switch (ireq->i_val) {
2355                         case IEEE80211_AUTH_NONE:
2356                                 config->an_authtype = AN_AUTHTYPE_NONE |
2357                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2358                                 break;
2359                         case IEEE80211_AUTH_OPEN:
2360                                 config->an_authtype = AN_AUTHTYPE_OPEN |
2361                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2362                                 break;
2363                         case IEEE80211_AUTH_SHARED:
2364                                 config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2365                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2366                                 break;
2367                         default:
2368                                 error = EINVAL;
2369                         }
2370                         break;
2371                 case IEEE80211_IOC_STATIONNAME:
2372                         if (ireq->i_len > 16) {
2373                                 error = EINVAL;
2374                                 break;
2375                         }
2376                         bzero(config->an_nodename, 16);
2377                         error = copyin(ireq->i_data,
2378                             config->an_nodename, ireq->i_len);
2379                         break;
2380                 case IEEE80211_IOC_CHANNEL:
2381                         /*
2382                          * The actual range is 1-14, but if you set it
2383                          * to 0 you get the default so we let that work
2384                          * too.
2385                          */
2386                         if (ireq->i_val < 0 || ireq->i_val >14) {
2387                                 error = EINVAL;
2388                                 break;
2389                         }
2390                         config->an_ds_channel = ireq->i_val;
2391                         break;
2392                 case IEEE80211_IOC_POWERSAVE:
2393                         switch (ireq->i_val) {
2394                         case IEEE80211_POWERSAVE_OFF:
2395                                 config->an_psave_mode = AN_PSAVE_NONE;
2396                                 break;
2397                         case IEEE80211_POWERSAVE_CAM:
2398                                 config->an_psave_mode = AN_PSAVE_CAM;
2399                                 break;
2400                         case IEEE80211_POWERSAVE_PSP:
2401                                 config->an_psave_mode = AN_PSAVE_PSP;
2402                                 break;
2403                         case IEEE80211_POWERSAVE_PSP_CAM:
2404                                 config->an_psave_mode = AN_PSAVE_PSP_CAM;
2405                                 break;
2406                         default:
2407                                 error = EINVAL;
2408                                 break;
2409                         }
2410                         break;
2411                 case IEEE80211_IOC_POWERSAVESLEEP:
2412                         config->an_listen_interval = ireq->i_val;
2413                         break;
2414                 }
2415
2416                 if (!error)
2417                         an_setdef(sc, &sc->areq);
2418                 break;
2419         default:
2420                 error = ether_ioctl(ifp, command, data);
2421                 break;
2422         }
2423
2424         crit_exit();
2425
2426         return(error != 0);
2427 }
2428
2429 static int
2430 an_init_tx_ring(sc)
2431         struct an_softc         *sc;
2432 {
2433         int                     i;
2434         int                     id;
2435
2436         if (!sc->mpi350) {
2437                 for (i = 0; i < AN_TX_RING_CNT; i++) {
2438                         if (an_alloc_nicmem(sc, 1518 +
2439                             0x44, &id))
2440                                 return(ENOMEM);
2441                         sc->an_rdata.an_tx_fids[i] = id;
2442                         sc->an_rdata.an_tx_ring[i] = 0;
2443                 }
2444         }
2445
2446         sc->an_rdata.an_tx_prod = 0;
2447         sc->an_rdata.an_tx_cons = 0;
2448         sc->an_rdata.an_tx_empty = 1;
2449
2450         return(0);
2451 }
2452
2453 static void
2454 an_init(xsc)
2455         void                    *xsc;
2456 {
2457         struct an_softc         *sc = xsc;
2458         struct ifnet            *ifp = &sc->arpcom.ac_if;
2459
2460         crit_enter();
2461         if (ifp->if_flags & IFF_RUNNING)
2462                 an_stop(sc);
2463
2464         sc->an_associated = 0;
2465
2466         /* Allocate the TX buffers */
2467         if (an_init_tx_ring(sc)) {
2468                 an_reset(sc);
2469                 if (sc->mpi350)
2470                         an_init_mpi350_desc(sc);        
2471                 if (an_init_tx_ring(sc)) {
2472                         crit_exit();
2473                         if_printf(ifp, "tx buffer allocation failed\n");
2474                         return;
2475                 }
2476         }
2477
2478         /* Set our MAC address. */
2479         bcopy((char *)&sc->arpcom.ac_enaddr,
2480             (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2481
2482         if (ifp->if_flags & IFF_BROADCAST)
2483                 sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2484         else
2485                 sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2486
2487         if (ifp->if_flags & IFF_MULTICAST)
2488                 sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2489
2490         if (ifp->if_flags & IFF_PROMISC) {
2491                 if (sc->an_monitor & AN_MONITOR) {
2492                         if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2493                                 sc->an_config.an_rxmode |=
2494                                     AN_RXMODE_80211_MONITOR_ANYBSS |
2495                                     AN_RXMODE_NO_8023_HEADER;
2496                         } else {
2497                                 sc->an_config.an_rxmode |=
2498                                     AN_RXMODE_80211_MONITOR_CURBSS |
2499                                     AN_RXMODE_NO_8023_HEADER;
2500                         }
2501                 }
2502         }
2503
2504         if (sc->an_have_rssimap)
2505                 sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2506
2507         /* Set the ssid list */
2508         sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2509         sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
2510         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2511                 crit_exit();
2512                 if_printf(ifp, "failed to set ssid list\n");
2513                 return;
2514         }
2515
2516         /* Set the AP list */
2517         sc->an_aplist.an_type = AN_RID_APLIST;
2518         sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2519         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2520                 crit_exit();
2521                 if_printf(ifp, "failed to set AP list\n");
2522                 return;
2523         }
2524
2525         /* Set the configuration in the NIC */
2526         sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2527         sc->an_config.an_type = AN_RID_GENCONFIG;
2528         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2529                 crit_exit();
2530                 if_printf(ifp, "failed to set configuration\n");
2531                 return;
2532         }
2533
2534         /* Enable the MAC */
2535         if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2536                 crit_exit();
2537                 if_printf(ifp, "failed to enable MAC\n");
2538                 return;
2539         }
2540
2541         if (ifp->if_flags & IFF_PROMISC)
2542                 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2543
2544         /* enable interrupts */
2545         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2546
2547         ifp->if_flags |= IFF_RUNNING;
2548         ifp->if_flags &= ~IFF_OACTIVE;
2549
2550         callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
2551
2552         crit_exit();
2553 }
2554
2555 static void
2556 an_start(ifp)
2557         struct ifnet            *ifp;
2558 {
2559         struct an_softc         *sc;
2560         struct mbuf             *m0 = NULL;
2561         struct an_txframe_802_3 tx_frame_802_3;
2562         struct ether_header     *eh;
2563         int                     id, idx, i;
2564         unsigned char           txcontrol;
2565         struct an_card_tx_desc an_tx_desc;
2566         u_int8_t                *buf;
2567
2568         sc = ifp->if_softc;
2569
2570         if (ifp->if_flags & IFF_OACTIVE)
2571                 return;
2572
2573         if (!sc->an_associated)
2574                 return;
2575
2576         /* We can't send in monitor mode so toss any attempts. */
2577         if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2578                 ifq_purge(&ifp->if_snd);
2579                 return;
2580         }
2581
2582         idx = sc->an_rdata.an_tx_prod;
2583
2584         if (!sc->mpi350) {
2585                 bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2586
2587                 while (sc->an_rdata.an_tx_ring[idx] == 0) {
2588                         m0 = ifq_dequeue(&ifp->if_snd);
2589                         if (m0 == NULL)
2590                                 break;
2591
2592                         id = sc->an_rdata.an_tx_fids[idx];
2593                         eh = mtod(m0, struct ether_header *);
2594
2595                         bcopy((char *)&eh->ether_dhost,
2596                               (char *)&tx_frame_802_3.an_tx_dst_addr, 
2597                               ETHER_ADDR_LEN);
2598                         bcopy((char *)&eh->ether_shost,
2599                               (char *)&tx_frame_802_3.an_tx_src_addr, 
2600                               ETHER_ADDR_LEN);
2601
2602                         /* minus src/dest mac & type */
2603                         tx_frame_802_3.an_tx_802_3_payload_len =
2604                                 m0->m_pkthdr.len - 12;  
2605
2606                         m_copydata(m0, sizeof(struct ether_header) - 2 ,
2607                                    tx_frame_802_3.an_tx_802_3_payload_len,
2608                                    (caddr_t)&sc->an_txbuf);
2609
2610                         txcontrol = AN_TXCTL_8023;
2611                         /* write the txcontrol only */
2612                         an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2613                                       sizeof(txcontrol));
2614
2615                         /* 802_3 header */
2616                         an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2617                                       sizeof(struct an_txframe_802_3));
2618
2619                         /* in mbuf header type is just before payload */
2620                         an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2621                                       tx_frame_802_3.an_tx_802_3_payload_len);
2622
2623                         BPF_MTAP(ifp, m0);
2624
2625                         m_freem(m0);
2626                         m0 = NULL;
2627
2628                         sc->an_rdata.an_tx_ring[idx] = id;
2629                         if (an_cmd(sc, AN_CMD_TX, id))
2630                                 if_printf(ifp, "xmit failed\n");
2631
2632                         AN_INC(idx, AN_TX_RING_CNT);
2633
2634                         /*
2635                          * Set a timeout in case the chip goes out to lunch.
2636                          */
2637                         ifp->if_timer = 5;
2638                 }
2639         } else { /* MPI-350 */
2640                 /* Disable interrupts. */
2641                 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2642
2643                 while (sc->an_rdata.an_tx_empty ||
2644                     idx != sc->an_rdata.an_tx_cons) {
2645                         m0 = ifq_dequeue(&ifp->if_snd);
2646                         if (m0 == NULL) {
2647                                 break;
2648                         }
2649                         buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2650
2651                         eh = mtod(m0, struct ether_header *);
2652
2653                         /* DJA optimize this to limit bcopy */
2654                         bcopy((char *)&eh->ether_dhost,
2655                               (char *)&tx_frame_802_3.an_tx_dst_addr, 
2656                               ETHER_ADDR_LEN);
2657                         bcopy((char *)&eh->ether_shost,
2658                               (char *)&tx_frame_802_3.an_tx_src_addr, 
2659                               ETHER_ADDR_LEN);
2660
2661                         /* minus src/dest mac & type */
2662                         tx_frame_802_3.an_tx_802_3_payload_len =
2663                                 m0->m_pkthdr.len - 12; 
2664
2665                         m_copydata(m0, sizeof(struct ether_header) - 2 ,
2666                                    tx_frame_802_3.an_tx_802_3_payload_len,
2667                                    (caddr_t)&sc->an_txbuf);
2668
2669                         txcontrol = AN_TXCTL_8023;
2670                         /* write the txcontrol only */
2671                         bcopy((caddr_t)&txcontrol, &buf[0x08],
2672                               sizeof(txcontrol));
2673
2674                         /* 802_3 header */
2675                         bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2676                               sizeof(struct an_txframe_802_3));
2677
2678                         /* in mbuf header type is just before payload */
2679                         bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2680                               tx_frame_802_3.an_tx_802_3_payload_len);
2681
2682
2683                         bzero(&an_tx_desc, sizeof(an_tx_desc));
2684                         an_tx_desc.an_offset = 0;
2685                         an_tx_desc.an_eoc = 1;
2686                         an_tx_desc.an_valid = 1;
2687                         an_tx_desc.an_len =  0x44 +
2688                                 tx_frame_802_3.an_tx_802_3_payload_len;
2689                         an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr;
2690                         for (i = 0; i < sizeof(an_tx_desc) / 4 ; i++) {
2691                                 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
2692                                     /* zero for now */ 
2693                                     + (0 * sizeof(an_tx_desc))
2694                                     + (i * 4),
2695                                     ((u_int32_t*)&an_tx_desc)[i]);
2696                         }
2697
2698                         BPF_MTAP(ifp, m0);
2699
2700                         m_freem(m0);
2701                         m0 = NULL;
2702
2703                         AN_INC(idx, AN_MAX_TX_DESC);
2704                         sc->an_rdata.an_tx_empty = 0;
2705
2706                         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2707
2708                         /*
2709                          * Set a timeout in case the chip goes out to lunch.
2710                          */
2711                         ifp->if_timer = 5;
2712                 }
2713
2714                 /* Re-enable interrupts. */
2715                 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2716         }
2717
2718         if (m0 != NULL)
2719                 ifp->if_flags |= IFF_OACTIVE;
2720
2721         sc->an_rdata.an_tx_prod = idx;
2722 }
2723
2724 void
2725 an_stop(sc)
2726         struct an_softc         *sc;
2727 {
2728         struct ifnet            *ifp;
2729         int                     i;
2730
2731         ifp = &sc->arpcom.ac_if;
2732
2733         crit_enter();
2734
2735         an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2736         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2737         an_cmd(sc, AN_CMD_DISABLE, 0);
2738
2739         for (i = 0; i < AN_TX_RING_CNT; i++)
2740                 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2741
2742         callout_stop(&sc->an_stat_timer);
2743
2744         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2745
2746         if (sc->an_flash_buffer) {
2747                 free(sc->an_flash_buffer, M_DEVBUF);
2748                 sc->an_flash_buffer = NULL;
2749         }
2750
2751         crit_exit();
2752 }
2753
2754 static void
2755 an_watchdog(ifp)
2756         struct ifnet            *ifp;
2757 {
2758         struct an_softc         *sc;
2759
2760         sc = ifp->if_softc;
2761
2762         crit_enter();
2763         an_reset(sc);
2764         if (sc->mpi350)
2765                 an_init_mpi350_desc(sc);        
2766         an_init(sc);
2767
2768         ifp->if_oerrors++;
2769         crit_exit();
2770
2771         if_printf(ifp, "device timeout\n");
2772 }
2773
2774 void
2775 an_shutdown(dev)
2776         device_t                dev;
2777 {
2778         struct an_softc         *sc;
2779
2780         sc = device_get_softc(dev);
2781         an_stop(sc);
2782
2783         return;
2784 }
2785
2786 void
2787 an_resume(dev)
2788         device_t                dev;
2789 {
2790         struct an_softc         *sc;
2791         struct ifnet            *ifp;
2792         int                     i;
2793
2794         sc = device_get_softc(dev);
2795         ifp = &sc->arpcom.ac_if;
2796
2797         an_reset(sc);
2798         if (sc->mpi350)
2799                 an_init_mpi350_desc(sc);        
2800         an_init(sc);
2801
2802         /* Recovery temporary keys */
2803         for (i = 0; i < 4; i++) {
2804                 sc->areq.an_type = AN_RID_WEP_TEMP;
2805                 sc->areq.an_len = sizeof(struct an_ltv_key);            
2806                 bcopy(&sc->an_temp_keys[i],
2807                     &sc->areq, sizeof(struct an_ltv_key));
2808                 an_setdef(sc, &sc->areq);
2809         }
2810
2811         if (ifp->if_flags & IFF_UP)
2812                 an_start(ifp);
2813
2814         return;
2815 }
2816
2817 #ifdef ANCACHE
2818 /* Aironet signal strength cache code.
2819  * store signal/noise/quality on per MAC src basis in
2820  * a small fixed cache.  The cache wraps if > MAX slots
2821  * used.  The cache may be zeroed out to start over.
2822  * Two simple filters exist to reduce computation:
2823  * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2824  * to ignore some packets.  It defaults to ip only.
2825  * it could be used to focus on broadcast, non-IP 802.11 beacons.
2826  * 2. multicast/broadcast only.  This may be used to
2827  * ignore unicast packets and only cache signal strength
2828  * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2829  * beacons and not unicast traffic.
2830  *
2831  * The cache stores (MAC src(index), IP src (major clue), signal,
2832  *      quality, noise)
2833  *
2834  * No apologies for storing IP src here.  It's easy and saves much
2835  * trouble elsewhere.  The cache is assumed to be INET dependent,
2836  * although it need not be.
2837  *
2838  * Note: the Aironet only has a single byte of signal strength value
2839  * in the rx frame header, and it's not scaled to anything sensible.
2840  * This is kind of lame, but it's all we've got.
2841  */
2842
2843 #ifdef documentation
2844
2845 int an_sigitems;                                /* number of cached entries */
2846 struct an_sigcache an_sigcache[MAXANCACHE];  /*  array of cache entries */
2847 int an_nextitem;                                /*  index/# of entries */
2848
2849
2850 #endif
2851
2852 /* control variables for cache filtering.  Basic idea is
2853  * to reduce cost (e.g., to only Mobile-IP agent beacons
2854  * which are broadcast or multicast).  Still you might
2855  * want to measure signal strength anth unicast ping packets
2856  * on a pt. to pt. ant. setup.
2857  */
2858 /* set true if you want to limit cache items to broadcast/mcast
2859  * only packets (not unicast).  Useful for mobile-ip beacons which
2860  * are broadcast/multicast at network layer.  Default is all packets
2861  * so ping/unicast anll work say anth pt. to pt. antennae setup.
2862  */
2863 static int an_cache_mcastonly = 0;
2864 SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2865         &an_cache_mcastonly, 0, "");
2866
2867 /* set true if you want to limit cache items to IP packets only
2868 */
2869 static int an_cache_iponly = 1;
2870 SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2871         &an_cache_iponly, 0, "");
2872
2873 /*
2874  * an_cache_store, per rx packet store signal
2875  * strength in MAC (src) indexed cache.
2876  */
2877 static void
2878 an_cache_store (sc, m, rx_rssi, rx_quality)
2879         struct an_softc *sc;
2880         struct mbuf *m;
2881         u_int8_t rx_rssi;
2882         u_int8_t rx_quality;
2883 {
2884         struct ether_header *eh = mtod(m, struct ether_header *);
2885         struct ip *ip = NULL;
2886         int i;
2887         static int cache_slot = 0;      /* use this cache entry */
2888         static int wrapindex = 0;       /* next "free" cache entry */
2889
2890         /* filters:
2891          * 1. ip only
2892          * 2. configurable filter to throw out unicast packets,
2893          * keep multicast only.
2894          */
2895
2896         if ((ntohs(eh->ether_type) == ETHERTYPE_IP))
2897                 ip = (struct ip *)(mtod(m, uint8_t *) + ETHER_HDR_LEN);
2898         else if (an_cache_iponly)
2899                 return;
2900
2901         /* filter for broadcast/multicast only
2902          */
2903         if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2904                 return;
2905         }
2906
2907 #ifdef SIGDEBUG
2908         if_printf(&sc->arpcom.ac_if, "q value %x (MSB=0x%x, LSB=0x%x)\n",
2909                   rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
2910 #endif
2911
2912         /* do a linear search for a matching MAC address
2913          * in the cache table
2914          * . MAC address is 6 bytes,
2915          * . var w_nextitem holds total number of entries already cached
2916          */
2917         for (i = 0; i < sc->an_nextitem; i++) {
2918                 if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc,  6 )) {
2919                         /* Match!,
2920                          * so we already have this entry,
2921                          * update the data
2922                          */
2923                         break;
2924                 }
2925         }
2926
2927         /* did we find a matching mac address?
2928          * if yes, then overwrite a previously existing cache entry
2929          */
2930         if (i < sc->an_nextitem )   {
2931                 cache_slot = i;
2932         }
2933         /* else, have a new address entry,so
2934          * add this new entry,
2935          * if table full, then we need to replace LRU entry
2936          */
2937         else    {
2938
2939                 /* check for space in cache table
2940                  * note: an_nextitem also holds number of entries
2941                  * added in the cache table
2942                  */
2943                 if ( sc->an_nextitem < MAXANCACHE ) {
2944                         cache_slot = sc->an_nextitem;
2945                         sc->an_nextitem++;
2946                         sc->an_sigitems = sc->an_nextitem;
2947                 }
2948                 /* no space found, so simply wrap anth wrap index
2949                  * and "zap" the next entry
2950                  */
2951                 else {
2952                         if (wrapindex == MAXANCACHE) {
2953                                 wrapindex = 0;
2954                         }
2955                         cache_slot = wrapindex++;
2956                 }
2957         }
2958
2959         /* invariant: cache_slot now points at some slot
2960          * in cache.
2961          */
2962         if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
2963                 log(LOG_ERR, "an_cache_store, bad index: %d of "
2964                     "[0..%d], gross cache error\n",
2965                     cache_slot, MAXANCACHE);
2966                 return;
2967         }
2968
2969         /*  store items in cache
2970          *  .ip source address
2971          *  .mac src
2972          *  .signal, etc.
2973          */
2974         if (ip != NULL) {
2975                 sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2976         }
2977         bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc,  6);
2978
2979
2980         switch (an_cache_mode) {
2981         case DBM:
2982                 if (sc->an_have_rssimap) {
2983                         sc->an_sigcache[cache_slot].signal = 
2984                                 - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
2985                         sc->an_sigcache[cache_slot].quality = 
2986                                 - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
2987                 } else {
2988                         sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
2989                         sc->an_sigcache[cache_slot].quality = rx_quality - 100;
2990                 }
2991                 break;
2992         case PERCENT:
2993                 if (sc->an_have_rssimap) {
2994                         sc->an_sigcache[cache_slot].signal = 
2995                                 sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
2996                         sc->an_sigcache[cache_slot].quality = 
2997                                 sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
2998                 } else {
2999                         if (rx_rssi > 100)
3000                                 rx_rssi = 100;
3001                         if (rx_quality > 100)
3002                                 rx_quality = 100;
3003                         sc->an_sigcache[cache_slot].signal = rx_rssi;
3004                         sc->an_sigcache[cache_slot].quality = rx_quality;
3005                 }
3006                 break;
3007         case RAW:
3008                 sc->an_sigcache[cache_slot].signal = rx_rssi;
3009                 sc->an_sigcache[cache_slot].quality = rx_quality;
3010                 break;
3011         }
3012
3013         sc->an_sigcache[cache_slot].noise = 0;
3014
3015         return;
3016 }
3017 #endif
3018
3019 static int
3020 an_media_change(ifp)
3021         struct ifnet            *ifp;
3022 {
3023         struct an_softc *sc = ifp->if_softc;
3024         struct an_ltv_genconfig *cfg;
3025         int otype = sc->an_config.an_opmode;
3026         int orate = sc->an_tx_rate;
3027
3028         switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
3029         case IFM_IEEE80211_DS1:
3030                 sc->an_tx_rate = AN_RATE_1MBPS;
3031                 break;
3032         case IFM_IEEE80211_DS2:
3033                 sc->an_tx_rate = AN_RATE_2MBPS;
3034                 break;
3035         case IFM_IEEE80211_DS5:
3036                 sc->an_tx_rate = AN_RATE_5_5MBPS;
3037                 break;
3038         case IFM_IEEE80211_DS11:
3039                 sc->an_tx_rate = AN_RATE_11MBPS;
3040                 break;
3041         case IFM_AUTO:
3042                 sc->an_tx_rate = 0;
3043                 break;
3044         }
3045
3046         if (orate != sc->an_tx_rate) {
3047                 /* Read the current configuration */
3048                 sc->an_config.an_type = AN_RID_GENCONFIG;
3049                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3050                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3051                 cfg = &sc->an_config;
3052
3053                 /* clear other rates and set the only one we want */
3054                 bzero(cfg->an_rates, sizeof(cfg->an_rates));
3055                 cfg->an_rates[0] = sc->an_tx_rate;
3056
3057                 /* Save the new rate */
3058                 sc->an_config.an_type = AN_RID_GENCONFIG;
3059                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3060         }
3061
3062         if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
3063                 sc->an_config.an_opmode &= ~AN_OPMODE_INFRASTRUCTURE_STATION;
3064         else
3065                 sc->an_config.an_opmode |= AN_OPMODE_INFRASTRUCTURE_STATION;
3066
3067         if (otype != sc->an_config.an_opmode ||
3068             orate != sc->an_tx_rate)
3069                 an_init(sc);
3070
3071         return(0);
3072 }
3073
3074 static void
3075 an_media_status(ifp, imr)
3076         struct ifnet            *ifp;
3077         struct ifmediareq       *imr;
3078 {
3079         struct an_ltv_status    status;
3080         struct an_softc         *sc = ifp->if_softc;
3081
3082         status.an_len = sizeof(status);
3083         status.an_type = AN_RID_STATUS;
3084         if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3085                 /* If the status read fails, just lie. */
3086                 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3087                 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3088         }
3089
3090         if (sc->an_tx_rate == 0) {
3091                 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3092                 if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3093                         imr->ifm_active |= IFM_IEEE80211_ADHOC;
3094                 switch (status.an_current_tx_rate) {
3095                 case AN_RATE_1MBPS:
3096                         imr->ifm_active |= IFM_IEEE80211_DS1;
3097                         break;
3098                 case AN_RATE_2MBPS:
3099                         imr->ifm_active |= IFM_IEEE80211_DS2;
3100                         break;
3101                 case AN_RATE_5_5MBPS:
3102                         imr->ifm_active |= IFM_IEEE80211_DS5;
3103                         break;
3104                 case AN_RATE_11MBPS:
3105                         imr->ifm_active |= IFM_IEEE80211_DS11;
3106                         break;
3107                 }
3108         } else {
3109                 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3110         }
3111
3112         imr->ifm_status = IFM_AVALID;
3113         if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3114                 imr->ifm_status |= IFM_ACTIVE;
3115 }
3116
3117 /********************** Cisco utility support routines *************/
3118
3119 /*
3120  * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3121  * Linux driver
3122  */
3123
3124 static int
3125 readrids(ifp, l_ioctl)
3126         struct ifnet   *ifp;
3127         struct aironet_ioctl *l_ioctl;
3128 {
3129         unsigned short  rid;
3130         struct an_softc *sc;
3131
3132         switch (l_ioctl->command) {
3133         case AIROGCAP:
3134                 rid = AN_RID_CAPABILITIES;
3135                 break;
3136         case AIROGCFG:
3137                 rid = AN_RID_GENCONFIG;
3138                 break;
3139         case AIROGSLIST:
3140                 rid = AN_RID_SSIDLIST;
3141                 break;
3142         case AIROGVLIST:
3143                 rid = AN_RID_APLIST;
3144                 break;
3145         case AIROGDRVNAM:
3146                 rid = AN_RID_DRVNAME;
3147                 break;
3148         case AIROGEHTENC:
3149                 rid = AN_RID_ENCAPPROTO;
3150                 break;
3151         case AIROGWEPKTMP:
3152                 rid = AN_RID_WEP_TEMP;
3153                 break;
3154         case AIROGWEPKNV:
3155                 rid = AN_RID_WEP_PERM;
3156                 break;
3157         case AIROGSTAT:
3158                 rid = AN_RID_STATUS;
3159                 break;
3160         case AIROGSTATSD32:
3161                 rid = AN_RID_32BITS_DELTA;
3162                 break;
3163         case AIROGSTATSC32:
3164                 rid = AN_RID_32BITS_CUM;
3165                 break;
3166         default:
3167                 rid = 999;
3168                 break;
3169         }
3170
3171         if (rid == 999) /* Is bad command */
3172                 return -EINVAL;
3173
3174         sc = ifp->if_softc;
3175         sc->areq.an_len  = AN_MAX_DATALEN;
3176         sc->areq.an_type = rid;
3177
3178         an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3179
3180         l_ioctl->len = sc->areq.an_len - 4;     /* just data */
3181
3182         /* the data contains the length at first */
3183         if (copyout(&(sc->areq.an_len), l_ioctl->data,
3184                     sizeof(sc->areq.an_len))) {
3185                 return -EFAULT;
3186         }
3187         /* Just copy the data back */
3188         if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3189                     l_ioctl->len)) {
3190                 return -EFAULT;
3191         }
3192         return 0;
3193 }
3194
3195 static int
3196 writerids(ifp, l_ioctl)
3197         struct ifnet   *ifp;
3198         struct aironet_ioctl *l_ioctl;
3199 {
3200         struct an_softc *sc;
3201         int             rid, command;
3202
3203         sc = ifp->if_softc;
3204         rid = 0;
3205         command = l_ioctl->command;
3206
3207         switch (command) {
3208         case AIROPSIDS:
3209                 rid = AN_RID_SSIDLIST;
3210                 break;
3211         case AIROPCAP:
3212                 rid = AN_RID_CAPABILITIES;
3213                 break;
3214         case AIROPAPLIST:
3215                 rid = AN_RID_APLIST;
3216                 break;
3217         case AIROPCFG:
3218                 rid = AN_RID_GENCONFIG;
3219                 break;
3220         case AIROPMACON:
3221                 an_cmd(sc, AN_CMD_ENABLE, 0);
3222                 return 0;
3223                 break;
3224         case AIROPMACOFF:
3225                 an_cmd(sc, AN_CMD_DISABLE, 0);
3226                 return 0;
3227                 break;
3228         case AIROPSTCLR:
3229                 /*
3230                  * This command merely clears the counts does not actually
3231                  * store any data only reads rid. But as it changes the cards
3232                  * state, I put it in the writerid routines.
3233                  */
3234
3235                 rid = AN_RID_32BITS_DELTACLR;
3236                 sc = ifp->if_softc;
3237                 sc->areq.an_len = AN_MAX_DATALEN;
3238                 sc->areq.an_type = rid;
3239
3240                 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3241                 l_ioctl->len = sc->areq.an_len - 4;     /* just data */
3242
3243                 /* the data contains the length at first */
3244                 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3245                             sizeof(sc->areq.an_len))) {
3246                         return -EFAULT;
3247                 }
3248                 /* Just copy the data */
3249                 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3250                             l_ioctl->len)) {
3251                         return -EFAULT;
3252                 }
3253                 return 0;
3254                 break;
3255         case AIROPWEPKEY:
3256                 rid = AN_RID_WEP_TEMP;
3257                 break;
3258         case AIROPWEPKEYNV:
3259                 rid = AN_RID_WEP_PERM;
3260                 break;
3261         case AIROPLEAPUSR:
3262                 rid = AN_RID_LEAPUSERNAME;
3263                 break;
3264         case AIROPLEAPPWD:
3265                 rid = AN_RID_LEAPPASSWORD;
3266                 break;
3267         default:
3268                 return -EOPNOTSUPP;
3269         }
3270
3271         if (rid) {
3272                 if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3273                         return -EINVAL;
3274                 sc->areq.an_len = l_ioctl->len + 4;     /* add type & length */
3275                 sc->areq.an_type = rid;
3276
3277                 /* Just copy the data back */
3278                 copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3279                        l_ioctl->len);
3280
3281                 an_cmd(sc, AN_CMD_DISABLE, 0);
3282                 an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3283                 an_cmd(sc, AN_CMD_ENABLE, 0);
3284                 return 0;
3285         }
3286         return -EOPNOTSUPP;
3287 }
3288
3289 /*
3290  * General Flash utilities derived from Cisco driver additions to Ben Reed's
3291  * Linux driver
3292  */
3293
3294 #define FLASH_DELAY(x)  tsleep(ifp, 0, "flash", ((x) / hz) + 1);
3295 #define FLASH_COMMAND   0x7e7e
3296 #define FLASH_SIZE      32 * 1024
3297
3298 static int
3299 unstickbusy(ifp)
3300         struct ifnet   *ifp;
3301 {
3302         struct an_softc *sc = ifp->if_softc;
3303
3304         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3305                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 
3306                             AN_EV_CLR_STUCK_BUSY);
3307                 return 1;
3308         }
3309         return 0;
3310 }
3311
3312 /*
3313  * Wait for busy completion from card wait for delay uSec's Return true for
3314  * success meaning command reg is clear
3315  */
3316
3317 static int
3318 WaitBusy(ifp, uSec)
3319         struct ifnet   *ifp;
3320         int             uSec;
3321 {
3322         int             statword = 0xffff;
3323         int             delay = 0;
3324         struct an_softc *sc = ifp->if_softc;
3325
3326         while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3327                 FLASH_DELAY(10);
3328                 delay += 10;
3329                 statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3330
3331                 if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3332                         unstickbusy(ifp);
3333                 }
3334         }
3335
3336         return 0 == (AN_CMD_BUSY & statword);
3337 }
3338
3339 /*
3340  * STEP 1) Disable MAC and do soft reset on card.
3341  */
3342
3343 static int
3344 cmdreset(ifp)
3345         struct ifnet   *ifp;
3346 {
3347         int             status;
3348         struct an_softc *sc = ifp->if_softc;
3349
3350         an_stop(sc);
3351
3352         an_cmd(sc, AN_CMD_DISABLE, 0);
3353
3354         if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3355                 if_printf(ifp, "Waitbusy hang b4 RESET =%d\n", status);
3356                 return -EBUSY;
3357         }
3358         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3359
3360         FLASH_DELAY(1000);      /* WAS 600 12/7/00 */
3361
3362
3363         if (!(status = WaitBusy(ifp, 100))) {
3364                 if_printf(ifp, "Waitbusy hang AFTER RESET =%d\n", status);
3365                 return -EBUSY;
3366         }
3367         return 0;
3368 }
3369
3370 /*
3371  * STEP 2) Put the card in legendary flash mode
3372  */
3373
3374 static int
3375 setflashmode(ifp)
3376         struct ifnet   *ifp;
3377 {
3378         int             status;
3379         struct an_softc *sc = ifp->if_softc;
3380
3381         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3382         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3383         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3384         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3385
3386         /*
3387          * mdelay(500); // 500ms delay
3388          */
3389
3390         FLASH_DELAY(500);
3391
3392         if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3393                 printf("Waitbusy hang after setflash mode\n");
3394                 return -EIO;
3395         }
3396         return 0;
3397 }
3398
3399 /*
3400  * Get a character from the card matching matchbyte Step 3)
3401  */
3402
3403 static int
3404 flashgchar(ifp, matchbyte, dwelltime)
3405         struct ifnet   *ifp;
3406         int             matchbyte;
3407         int             dwelltime;
3408 {
3409         int             rchar;
3410         unsigned char   rbyte = 0;
3411         int             success = -1;
3412         struct an_softc *sc = ifp->if_softc;
3413
3414
3415         do {
3416                 rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3417
3418                 if (dwelltime && !(0x8000 & rchar)) {
3419                         dwelltime -= 10;
3420                         FLASH_DELAY(10);
3421                         continue;
3422                 }
3423                 rbyte = 0xff & rchar;
3424
3425                 if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3426                         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3427                         success = 1;
3428                         break;
3429                 }
3430                 if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3431                         break;
3432                 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3433
3434         } while (dwelltime > 0);
3435         return success;
3436 }
3437
3438 /*
3439  * Put character to SWS0 wait for dwelltime x 50us for  echo .
3440  */
3441
3442 static int
3443 flashpchar(ifp, byte, dwelltime)
3444         struct ifnet   *ifp;
3445         int             byte;
3446         int             dwelltime;
3447 {
3448         int             echo;
3449         int             pollbusy, waittime;
3450         struct an_softc *sc = ifp->if_softc;
3451
3452         byte |= 0x8000;
3453
3454         if (dwelltime == 0)
3455                 dwelltime = 200;
3456
3457         waittime = dwelltime;
3458
3459         /*
3460          * Wait for busy bit d15 to go false indicating buffer empty
3461          */
3462         do {
3463                 pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3464
3465                 if (pollbusy & 0x8000) {
3466                         FLASH_DELAY(50);
3467                         waittime -= 50;
3468                         continue;
3469                 } else
3470                         break;
3471         }
3472         while (waittime >= 0);
3473
3474         /* timeout for busy clear wait */
3475
3476         if (waittime <= 0) {
3477                 if_printf(ifp, "flash putchar busywait timeout!\n");
3478                 return -1;
3479         }
3480         /*
3481          * Port is clear now write byte and wait for it to echo back
3482          */
3483         do {
3484                 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3485                 FLASH_DELAY(50);
3486                 dwelltime -= 50;
3487                 echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3488         } while (dwelltime >= 0 && echo != byte);
3489
3490
3491         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3492
3493         return echo == byte;
3494 }
3495
3496 /*
3497  * Transfer 32k of firmware data from user buffer to our buffer and send to
3498  * the card
3499  */
3500
3501 static int
3502 flashputbuf(ifp)
3503         struct ifnet   *ifp;
3504 {
3505         unsigned short *bufp;
3506         int             nwords;
3507         struct an_softc *sc = ifp->if_softc;
3508
3509         /* Write stuff */
3510
3511         bufp = sc->an_flash_buffer;
3512
3513         if (!sc->mpi350) {
3514                 CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3515                 CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3516
3517                 for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3518                         CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3519                 }
3520         } else {
3521                 for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3522                         CSR_MEM_AUX_WRITE_4(sc, 0x8000, 
3523                                 ((u_int32_t *)bufp)[nwords] & 0xffff);
3524                 }
3525         }
3526
3527         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3528
3529         return 0;
3530 }
3531
3532 /*
3533  * After flashing restart the card.
3534  */
3535
3536 static int
3537 flashrestart(ifp)
3538         struct ifnet   *ifp;
3539 {
3540         int             status = 0;
3541         struct an_softc *sc = ifp->if_softc;
3542
3543         FLASH_DELAY(1024);              /* Added 12/7/00 */
3544
3545         an_init(sc);
3546
3547         FLASH_DELAY(1024);              /* Added 12/7/00 */
3548         return status;
3549 }
3550
3551 /*
3552  * Entry point for flash ioclt.
3553  */
3554
3555 static int
3556 flashcard(ifp, l_ioctl)
3557         struct ifnet   *ifp;
3558         struct aironet_ioctl *l_ioctl;
3559 {
3560         int             z = 0, status;
3561         struct an_softc *sc;
3562
3563         sc = ifp->if_softc;
3564         if (sc->mpi350) {
3565                 if_printf(ifp, "flashing not supported on MPI 350 yet\n");
3566                 return(-1);
3567         }
3568         status = l_ioctl->command;
3569
3570         switch (l_ioctl->command) {
3571         case AIROFLSHRST:
3572                 return cmdreset(ifp);
3573                 break;
3574         case AIROFLSHSTFL:
3575                 if (sc->an_flash_buffer) {
3576                         free(sc->an_flash_buffer, M_DEVBUF);
3577                         sc->an_flash_buffer = NULL;
3578                 }
3579                 sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, 0);
3580                 if (sc->an_flash_buffer)
3581                         return setflashmode(ifp);
3582                 else
3583                         return ENOBUFS;
3584                 break;
3585         case AIROFLSHGCHR:      /* Get char from aux */
3586                 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3587                 z = *(int *)&sc->areq;
3588                 if ((status = flashgchar(ifp, z, 8000)) == 1)
3589                         return 0;
3590                 else
3591                         return -1;
3592                 break;
3593         case AIROFLSHPCHR:      /* Send char to card. */
3594                 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3595                 z = *(int *)&sc->areq;
3596                 if ((status = flashpchar(ifp, z, 8000)) == -1)
3597                         return -EIO;
3598                 else
3599                         return 0;
3600                 break;
3601         case AIROFLPUTBUF:      /* Send 32k to card */
3602                 if (l_ioctl->len > FLASH_SIZE) {
3603                         if_printf(ifp, "Buffer to big, %x %x\n",
3604                                   l_ioctl->len, FLASH_SIZE);
3605                         return -EINVAL;
3606                 }
3607                 copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3608
3609                 if ((status = flashputbuf(ifp)) != 0)
3610                         return -EIO;
3611                 else
3612                         return 0;
3613                 break;
3614         case AIRORESTART:
3615                 if ((status = flashrestart(ifp)) != 0) {
3616                         if_printf(ifp, "FLASHRESTART returned %d\n", status);
3617                         return -EIO;
3618                 } else
3619                         return 0;
3620
3621                 break;
3622         default:
3623                 return -EINVAL;
3624         }
3625
3626         return -EINVAL;
3627 }