bnx: Remove unused code
[dragonfly.git] / sys / dev / netif / bnx / if_bnx.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 #include "opt_bnx.h"
37 #include "opt_polling.h"
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/rman.h>
48 #include <sys/serialize.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52
53 #include <netinet/ip.h>
54 #include <netinet/tcp.h>
55
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_types.h>
63 #include <net/ifq_var.h>
64 #include <net/vlan/if_vlan_var.h>
65 #include <net/vlan/if_vlan_ether.h>
66
67 #include <dev/netif/mii_layer/mii.h>
68 #include <dev/netif/mii_layer/miivar.h>
69 #include <dev/netif/mii_layer/brgphyreg.h>
70
71 #include <bus/pci/pcidevs.h>
72 #include <bus/pci/pcireg.h>
73 #include <bus/pci/pcivar.h>
74
75 #include <dev/netif/bge/if_bgereg.h>
76 #include <dev/netif/bnx/if_bnxvar.h>
77
78 /* "device miibus" required.  See GENERIC if you get errors here. */
79 #include "miibus_if.h"
80
81 #define BNX_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
82
83 #define BNX_INTR_CKINTVL        ((10 * hz) / 1000)      /* 10ms */
84
85 static const struct bnx_type {
86         uint16_t                bnx_vid;
87         uint16_t                bnx_did;
88         char                    *bnx_name;
89 } bnx_devs[] = {
90         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717,
91                 "Broadcom BCM5717 Gigabit Ethernet" },
92         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5718,
93                 "Broadcom BCM5718 Gigabit Ethernet" },
94         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5719,
95                 "Broadcom BCM5719 Gigabit Ethernet" },
96         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720_ALT,
97                 "Broadcom BCM5720 Gigabit Ethernet" },
98
99         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57761,
100                 "Broadcom BCM57761 Gigabit Ethernet" },
101         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57762,
102                 "Broadcom BCM57762 Gigabit Ethernet" },
103         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57765,
104                 "Broadcom BCM57765 Gigabit Ethernet" },
105         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57766,
106                 "Broadcom BCM57766 Gigabit Ethernet" },
107         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57781,
108                 "Broadcom BCM57781 Gigabit Ethernet" },
109         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57782,
110                 "Broadcom BCM57782 Gigabit Ethernet" },
111         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57785,
112                 "Broadcom BCM57785 Gigabit Ethernet" },
113         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57786,
114                 "Broadcom BCM57786 Gigabit Ethernet" },
115         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57791,
116                 "Broadcom BCM57791 Fast Ethernet" },
117         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57795,
118                 "Broadcom BCM57795 Fast Ethernet" },
119
120         { 0, 0, NULL }
121 };
122
123 #define BNX_IS_JUMBO_CAPABLE(sc)        ((sc)->bnx_flags & BNX_FLAG_JUMBO)
124 #define BNX_IS_5717_PLUS(sc)            ((sc)->bnx_flags & BNX_FLAG_5717_PLUS)
125 #define BNX_IS_57765_PLUS(sc)           ((sc)->bnx_flags & BNX_FLAG_57765_PLUS)
126 #define BNX_IS_57765_FAMILY(sc)  \
127         ((sc)->bnx_flags & BNX_FLAG_57765_FAMILY)
128
129 typedef int     (*bnx_eaddr_fcn_t)(struct bnx_softc *, uint8_t[]);
130
131 static int      bnx_probe(device_t);
132 static int      bnx_attach(device_t);
133 static int      bnx_detach(device_t);
134 static void     bnx_shutdown(device_t);
135 static int      bnx_suspend(device_t);
136 static int      bnx_resume(device_t);
137 static int      bnx_miibus_readreg(device_t, int, int);
138 static int      bnx_miibus_writereg(device_t, int, int, int);
139 static void     bnx_miibus_statchg(device_t);
140
141 #ifdef DEVICE_POLLING
142 static void     bnx_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
143 #endif
144 static void     bnx_intr_legacy(void *);
145 static void     bnx_msi(void *);
146 static void     bnx_msi_oneshot(void *);
147 static void     bnx_intr(struct bnx_softc *);
148 static void     bnx_enable_intr(struct bnx_softc *);
149 static void     bnx_disable_intr(struct bnx_softc *);
150 static void     bnx_txeof(struct bnx_softc *, uint16_t);
151 static void     bnx_rxeof(struct bnx_softc *, uint16_t);
152
153 static void     bnx_start(struct ifnet *);
154 static int      bnx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
155 static void     bnx_init(void *);
156 static void     bnx_stop(struct bnx_softc *);
157 static void     bnx_watchdog(struct ifnet *);
158 static int      bnx_ifmedia_upd(struct ifnet *);
159 static void     bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
160 static void     bnx_tick(void *);
161
162 static int      bnx_alloc_jumbo_mem(struct bnx_softc *);
163 static void     bnx_free_jumbo_mem(struct bnx_softc *);
164 static struct bnx_jslot
165                 *bnx_jalloc(struct bnx_softc *);
166 static void     bnx_jfree(void *);
167 static void     bnx_jref(void *);
168 static int      bnx_newbuf_std(struct bnx_softc *, int, int);
169 static int      bnx_newbuf_jumbo(struct bnx_softc *, int, int);
170 static void     bnx_setup_rxdesc_std(struct bnx_softc *, int);
171 static void     bnx_setup_rxdesc_jumbo(struct bnx_softc *, int);
172 static int      bnx_init_rx_ring_std(struct bnx_softc *);
173 static void     bnx_free_rx_ring_std(struct bnx_softc *);
174 static int      bnx_init_rx_ring_jumbo(struct bnx_softc *);
175 static void     bnx_free_rx_ring_jumbo(struct bnx_softc *);
176 static void     bnx_free_tx_ring(struct bnx_softc *);
177 static int      bnx_init_tx_ring(struct bnx_softc *);
178 static int      bnx_dma_alloc(struct bnx_softc *);
179 static void     bnx_dma_free(struct bnx_softc *);
180 static int      bnx_dma_block_alloc(struct bnx_softc *, bus_size_t,
181                     bus_dma_tag_t *, bus_dmamap_t *, void **, bus_addr_t *);
182 static void     bnx_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
183 static struct mbuf *
184                 bnx_defrag_shortdma(struct mbuf *);
185 static int      bnx_encap(struct bnx_softc *, struct mbuf **, uint32_t *);
186 static int      bnx_setup_tso(struct bnx_softc *, struct mbuf **,
187                     uint16_t *, uint16_t *);
188
189 static void     bnx_reset(struct bnx_softc *);
190 static int      bnx_chipinit(struct bnx_softc *);
191 static int      bnx_blockinit(struct bnx_softc *);
192 static void     bnx_stop_block(struct bnx_softc *, bus_size_t, uint32_t);
193 static void     bnx_enable_msi(struct bnx_softc *sc);
194 static void     bnx_setmulti(struct bnx_softc *);
195 static void     bnx_setpromisc(struct bnx_softc *);
196 static void     bnx_stats_update_regs(struct bnx_softc *);
197 static uint32_t bnx_dma_swap_options(struct bnx_softc *);
198
199 static uint32_t bnx_readmem_ind(struct bnx_softc *, uint32_t);
200 static void     bnx_writemem_ind(struct bnx_softc *, uint32_t, uint32_t);
201 #ifdef notdef
202 static uint32_t bnx_readreg_ind(struct bnx_softc *, uint32_t);
203 #endif
204 static void     bnx_writereg_ind(struct bnx_softc *, uint32_t, uint32_t);
205 static void     bnx_writemem_direct(struct bnx_softc *, uint32_t, uint32_t);
206 static void     bnx_writembx(struct bnx_softc *, int, int);
207 static uint8_t  bnx_nvram_getbyte(struct bnx_softc *, int, uint8_t *);
208 static int      bnx_read_nvram(struct bnx_softc *, caddr_t, int, int);
209 static uint8_t  bnx_eeprom_getbyte(struct bnx_softc *, uint32_t, uint8_t *);
210 static int      bnx_read_eeprom(struct bnx_softc *, caddr_t, uint32_t, size_t);
211
212 static void     bnx_tbi_link_upd(struct bnx_softc *, uint32_t);
213 static void     bnx_copper_link_upd(struct bnx_softc *, uint32_t);
214 static void     bnx_autopoll_link_upd(struct bnx_softc *, uint32_t);
215 static void     bnx_link_poll(struct bnx_softc *);
216
217 static int      bnx_get_eaddr_mem(struct bnx_softc *, uint8_t[]);
218 static int      bnx_get_eaddr_nvram(struct bnx_softc *, uint8_t[]);
219 static int      bnx_get_eaddr_eeprom(struct bnx_softc *, uint8_t[]);
220 static int      bnx_get_eaddr(struct bnx_softc *, uint8_t[]);
221
222 static void     bnx_coal_change(struct bnx_softc *);
223 static int      bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
224 static int      bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
225 static int      bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
226 static int      bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
227 static int      bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
228 static int      bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
229 static int      bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
230                     int, int, uint32_t);
231
232 static int      bnx_msi_enable = 1;
233 TUNABLE_INT("hw.bnx.msi.enable", &bnx_msi_enable);
234
235 static device_method_t bnx_methods[] = {
236         /* Device interface */
237         DEVMETHOD(device_probe,         bnx_probe),
238         DEVMETHOD(device_attach,        bnx_attach),
239         DEVMETHOD(device_detach,        bnx_detach),
240         DEVMETHOD(device_shutdown,      bnx_shutdown),
241         DEVMETHOD(device_suspend,       bnx_suspend),
242         DEVMETHOD(device_resume,        bnx_resume),
243
244         /* bus interface */
245         DEVMETHOD(bus_print_child,      bus_generic_print_child),
246         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
247
248         /* MII interface */
249         DEVMETHOD(miibus_readreg,       bnx_miibus_readreg),
250         DEVMETHOD(miibus_writereg,      bnx_miibus_writereg),
251         DEVMETHOD(miibus_statchg,       bnx_miibus_statchg),
252
253         { 0, 0 }
254 };
255
256 static DEFINE_CLASS_0(bnx, bnx_driver, bnx_methods, sizeof(struct bnx_softc));
257 static devclass_t bnx_devclass;
258
259 DECLARE_DUMMY_MODULE(if_bnx);
260 DRIVER_MODULE(if_bnx, pci, bnx_driver, bnx_devclass, NULL, NULL);
261 DRIVER_MODULE(miibus, bnx, miibus_driver, miibus_devclass, NULL, NULL);
262
263 static uint32_t
264 bnx_readmem_ind(struct bnx_softc *sc, uint32_t off)
265 {
266         device_t dev = sc->bnx_dev;
267         uint32_t val;
268
269         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906 &&
270             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
271                 return 0;
272
273         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
274         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
275         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
276         return (val);
277 }
278
279 static void
280 bnx_writemem_ind(struct bnx_softc *sc, uint32_t off, uint32_t val)
281 {
282         device_t dev = sc->bnx_dev;
283
284         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906 &&
285             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
286                 return;
287
288         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
289         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
290         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
291 }
292
293 #ifdef notdef
294 static uint32_t
295 bnx_readreg_ind(struct bnx_softc *sc, uin32_t off)
296 {
297         device_t dev = sc->bnx_dev;
298
299         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
300         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
301 }
302 #endif
303
304 static void
305 bnx_writereg_ind(struct bnx_softc *sc, uint32_t off, uint32_t val)
306 {
307         device_t dev = sc->bnx_dev;
308
309         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
310         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
311 }
312
313 static void
314 bnx_writemem_direct(struct bnx_softc *sc, uint32_t off, uint32_t val)
315 {
316         CSR_WRITE_4(sc, off, val);
317 }
318
319 static void
320 bnx_writembx(struct bnx_softc *sc, int off, int val)
321 {
322         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906)
323                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
324
325         CSR_WRITE_4(sc, off, val);
326 }
327
328 static uint8_t
329 bnx_nvram_getbyte(struct bnx_softc *sc, int addr, uint8_t *dest)
330 {
331         uint32_t access, byte = 0;
332         int i;
333
334         /* Lock. */
335         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
336         for (i = 0; i < 8000; i++) {
337                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
338                         break;
339                 DELAY(20);
340         }
341         if (i == 8000)
342                 return (1);
343
344         /* Enable access. */
345         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
346         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
347
348         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
349         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
350         for (i = 0; i < BNX_TIMEOUT * 10; i++) {
351                 DELAY(10);
352                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
353                         DELAY(10);
354                         break;
355                 }
356         }
357
358         if (i == BNX_TIMEOUT * 10) {
359                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
360                 return (1);
361         }
362
363         /* Get result. */
364         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
365
366         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
367
368         /* Disable access. */
369         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
370
371         /* Unlock. */
372         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
373         CSR_READ_4(sc, BGE_NVRAM_SWARB);
374
375         return (0);
376 }
377
378 /*
379  * Read a sequence of bytes from NVRAM.
380  */
381 static int
382 bnx_read_nvram(struct bnx_softc *sc, caddr_t dest, int off, int cnt)
383 {
384         int err = 0, i;
385         uint8_t byte = 0;
386
387         if (sc->bnx_asicrev != BGE_ASICREV_BCM5906)
388                 return (1);
389
390         for (i = 0; i < cnt; i++) {
391                 err = bnx_nvram_getbyte(sc, off + i, &byte);
392                 if (err)
393                         break;
394                 *(dest + i) = byte;
395         }
396
397         return (err ? 1 : 0);
398 }
399
400 /*
401  * Read a byte of data stored in the EEPROM at address 'addr.' The
402  * BCM570x supports both the traditional bitbang interface and an
403  * auto access interface for reading the EEPROM. We use the auto
404  * access method.
405  */
406 static uint8_t
407 bnx_eeprom_getbyte(struct bnx_softc *sc, uint32_t addr, uint8_t *dest)
408 {
409         int i;
410         uint32_t byte = 0;
411
412         /*
413          * Enable use of auto EEPROM access so we can avoid
414          * having to use the bitbang method.
415          */
416         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
417
418         /* Reset the EEPROM, load the clock period. */
419         CSR_WRITE_4(sc, BGE_EE_ADDR,
420             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
421         DELAY(20);
422
423         /* Issue the read EEPROM command. */
424         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
425
426         /* Wait for completion */
427         for(i = 0; i < BNX_TIMEOUT * 10; i++) {
428                 DELAY(10);
429                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
430                         break;
431         }
432
433         if (i == BNX_TIMEOUT) {
434                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
435                 return(1);
436         }
437
438         /* Get result. */
439         byte = CSR_READ_4(sc, BGE_EE_DATA);
440
441         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
442
443         return(0);
444 }
445
446 /*
447  * Read a sequence of bytes from the EEPROM.
448  */
449 static int
450 bnx_read_eeprom(struct bnx_softc *sc, caddr_t dest, uint32_t off, size_t len)
451 {
452         size_t i;
453         int err;
454         uint8_t byte;
455
456         for (byte = 0, err = 0, i = 0; i < len; i++) {
457                 err = bnx_eeprom_getbyte(sc, off + i, &byte);
458                 if (err)
459                         break;
460                 *(dest + i) = byte;
461         }
462
463         return(err ? 1 : 0);
464 }
465
466 static int
467 bnx_miibus_readreg(device_t dev, int phy, int reg)
468 {
469         struct bnx_softc *sc = device_get_softc(dev);
470         uint32_t val;
471         int i;
472
473         KASSERT(phy == sc->bnx_phyno,
474             ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
475
476         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
477         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
478                 CSR_WRITE_4(sc, BGE_MI_MODE,
479                     sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
480                 DELAY(80);
481         }
482
483         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
484             BGE_MIPHY(phy) | BGE_MIREG(reg));
485
486         /* Poll for the PHY register access to complete. */
487         for (i = 0; i < BNX_TIMEOUT; i++) {
488                 DELAY(10);
489                 val = CSR_READ_4(sc, BGE_MI_COMM);
490                 if ((val & BGE_MICOMM_BUSY) == 0) {
491                         DELAY(5);
492                         val = CSR_READ_4(sc, BGE_MI_COMM);
493                         break;
494                 }
495         }
496         if (i == BNX_TIMEOUT) {
497                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
498                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
499                 val = 0;
500         }
501
502         /* Restore the autopoll bit if necessary. */
503         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
504                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
505                 DELAY(80);
506         }
507
508         if (val & BGE_MICOMM_READFAIL)
509                 return 0;
510
511         return (val & 0xFFFF);
512 }
513
514 static int
515 bnx_miibus_writereg(device_t dev, int phy, int reg, int val)
516 {
517         struct bnx_softc *sc = device_get_softc(dev);
518         int i;
519
520         KASSERT(phy == sc->bnx_phyno,
521             ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
522
523         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906 &&
524             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
525                return 0;
526
527         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
528         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
529                 CSR_WRITE_4(sc, BGE_MI_MODE,
530                     sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
531                 DELAY(80);
532         }
533
534         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
535             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
536
537         for (i = 0; i < BNX_TIMEOUT; i++) {
538                 DELAY(10);
539                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
540                         DELAY(5);
541                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
542                         break;
543                 }
544         }
545         if (i == BNX_TIMEOUT) {
546                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
547                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
548         }
549
550         /* Restore the autopoll bit if necessary. */
551         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
552                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
553                 DELAY(80);
554         }
555
556         return 0;
557 }
558
559 static void
560 bnx_miibus_statchg(device_t dev)
561 {
562         struct bnx_softc *sc;
563         struct mii_data *mii;
564
565         sc = device_get_softc(dev);
566         mii = device_get_softc(sc->bnx_miibus);
567
568         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
569             (IFM_ACTIVE | IFM_AVALID)) {
570                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
571                 case IFM_10_T:
572                 case IFM_100_TX:
573                         sc->bnx_link = 1;
574                         break;
575                 case IFM_1000_T:
576                 case IFM_1000_SX:
577                 case IFM_2500_SX:
578                         if (sc->bnx_asicrev != BGE_ASICREV_BCM5906)
579                                 sc->bnx_link = 1;
580                         else
581                                 sc->bnx_link = 0;
582                         break;
583                 default:
584                         sc->bnx_link = 0;
585                         break;
586                 }
587         } else {
588                 sc->bnx_link = 0;
589         }
590         if (sc->bnx_link == 0)
591                 return;
592
593         BNX_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
594         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
595             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
596                 BNX_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
597         } else {
598                 BNX_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
599         }
600
601         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
602                 BNX_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
603         } else {
604                 BNX_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
605         }
606 }
607
608 /*
609  * Memory management for jumbo frames.
610  */
611 static int
612 bnx_alloc_jumbo_mem(struct bnx_softc *sc)
613 {
614         struct ifnet *ifp = &sc->arpcom.ac_if;
615         struct bnx_jslot *entry;
616         uint8_t *ptr;
617         bus_addr_t paddr;
618         int i, error;
619
620         /*
621          * Create tag for jumbo mbufs.
622          * This is really a bit of a kludge. We allocate a special
623          * jumbo buffer pool which (thanks to the way our DMA
624          * memory allocation works) will consist of contiguous
625          * pages. This means that even though a jumbo buffer might
626          * be larger than a page size, we don't really need to
627          * map it into more than one DMA segment. However, the
628          * default mbuf tag will result in multi-segment mappings,
629          * so we have to create a special jumbo mbuf tag that
630          * lets us get away with mapping the jumbo buffers as
631          * a single segment. I think eventually the driver should
632          * be changed so that it uses ordinary mbufs and cluster
633          * buffers, i.e. jumbo frames can span multiple DMA
634          * descriptors. But that's a project for another day.
635          */
636
637         /*
638          * Create DMA stuffs for jumbo RX ring.
639          */
640         error = bnx_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
641                                     &sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
642                                     &sc->bnx_cdata.bnx_rx_jumbo_ring_map,
643                                     (void *)&sc->bnx_ldata.bnx_rx_jumbo_ring,
644                                     &sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
645         if (error) {
646                 if_printf(ifp, "could not create jumbo RX ring\n");
647                 return error;
648         }
649
650         /*
651          * Create DMA stuffs for jumbo buffer block.
652          */
653         error = bnx_dma_block_alloc(sc, BNX_JMEM,
654                                     &sc->bnx_cdata.bnx_jumbo_tag,
655                                     &sc->bnx_cdata.bnx_jumbo_map,
656                                     (void **)&sc->bnx_ldata.bnx_jumbo_buf,
657                                     &paddr);
658         if (error) {
659                 if_printf(ifp, "could not create jumbo buffer\n");
660                 return error;
661         }
662
663         SLIST_INIT(&sc->bnx_jfree_listhead);
664
665         /*
666          * Now divide it up into 9K pieces and save the addresses
667          * in an array. Note that we play an evil trick here by using
668          * the first few bytes in the buffer to hold the the address
669          * of the softc structure for this interface. This is because
670          * bnx_jfree() needs it, but it is called by the mbuf management
671          * code which will not pass it to us explicitly.
672          */
673         for (i = 0, ptr = sc->bnx_ldata.bnx_jumbo_buf; i < BNX_JSLOTS; i++) {
674                 entry = &sc->bnx_cdata.bnx_jslots[i];
675                 entry->bnx_sc = sc;
676                 entry->bnx_buf = ptr;
677                 entry->bnx_paddr = paddr;
678                 entry->bnx_inuse = 0;
679                 entry->bnx_slot = i;
680                 SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, entry, jslot_link);
681
682                 ptr += BNX_JLEN;
683                 paddr += BNX_JLEN;
684         }
685         return 0;
686 }
687
688 static void
689 bnx_free_jumbo_mem(struct bnx_softc *sc)
690 {
691         /* Destroy jumbo RX ring. */
692         bnx_dma_block_free(sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
693                            sc->bnx_cdata.bnx_rx_jumbo_ring_map,
694                            sc->bnx_ldata.bnx_rx_jumbo_ring);
695
696         /* Destroy jumbo buffer block. */
697         bnx_dma_block_free(sc->bnx_cdata.bnx_jumbo_tag,
698                            sc->bnx_cdata.bnx_jumbo_map,
699                            sc->bnx_ldata.bnx_jumbo_buf);
700 }
701
702 /*
703  * Allocate a jumbo buffer.
704  */
705 static struct bnx_jslot *
706 bnx_jalloc(struct bnx_softc *sc)
707 {
708         struct bnx_jslot *entry;
709
710         lwkt_serialize_enter(&sc->bnx_jslot_serializer);
711         entry = SLIST_FIRST(&sc->bnx_jfree_listhead);
712         if (entry) {
713                 SLIST_REMOVE_HEAD(&sc->bnx_jfree_listhead, jslot_link);
714                 entry->bnx_inuse = 1;
715         } else {
716                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
717         }
718         lwkt_serialize_exit(&sc->bnx_jslot_serializer);
719         return(entry);
720 }
721
722 /*
723  * Adjust usage count on a jumbo buffer.
724  */
725 static void
726 bnx_jref(void *arg)
727 {
728         struct bnx_jslot *entry = (struct bnx_jslot *)arg;
729         struct bnx_softc *sc = entry->bnx_sc;
730
731         if (sc == NULL)
732                 panic("bnx_jref: can't find softc pointer!");
733
734         if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
735                 panic("bnx_jref: asked to reference buffer "
736                     "that we don't manage!");
737         } else if (entry->bnx_inuse == 0) {
738                 panic("bnx_jref: buffer already free!");
739         } else {
740                 atomic_add_int(&entry->bnx_inuse, 1);
741         }
742 }
743
744 /*
745  * Release a jumbo buffer.
746  */
747 static void
748 bnx_jfree(void *arg)
749 {
750         struct bnx_jslot *entry = (struct bnx_jslot *)arg;
751         struct bnx_softc *sc = entry->bnx_sc;
752
753         if (sc == NULL)
754                 panic("bnx_jfree: can't find softc pointer!");
755
756         if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
757                 panic("bnx_jfree: asked to free buffer that we don't manage!");
758         } else if (entry->bnx_inuse == 0) {
759                 panic("bnx_jfree: buffer already free!");
760         } else {
761                 /*
762                  * Possible MP race to 0, use the serializer.  The atomic insn
763                  * is still needed for races against bnx_jref().
764                  */
765                 lwkt_serialize_enter(&sc->bnx_jslot_serializer);
766                 atomic_subtract_int(&entry->bnx_inuse, 1);
767                 if (entry->bnx_inuse == 0) {
768                         SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, 
769                                           entry, jslot_link);
770                 }
771                 lwkt_serialize_exit(&sc->bnx_jslot_serializer);
772         }
773 }
774
775
776 /*
777  * Intialize a standard receive ring descriptor.
778  */
779 static int
780 bnx_newbuf_std(struct bnx_softc *sc, int i, int init)
781 {
782         struct mbuf *m_new = NULL;
783         bus_dma_segment_t seg;
784         bus_dmamap_t map;
785         int error, nsegs;
786
787         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
788         if (m_new == NULL)
789                 return ENOBUFS;
790         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
791         m_adj(m_new, ETHER_ALIGN);
792
793         error = bus_dmamap_load_mbuf_segment(sc->bnx_cdata.bnx_rx_mtag,
794                         sc->bnx_cdata.bnx_rx_tmpmap, m_new,
795                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
796         if (error) {
797                 m_freem(m_new);
798                 return error;
799         }
800
801         if (!init) {
802                 bus_dmamap_sync(sc->bnx_cdata.bnx_rx_mtag,
803                                 sc->bnx_cdata.bnx_rx_std_dmamap[i],
804                                 BUS_DMASYNC_POSTREAD);
805                 bus_dmamap_unload(sc->bnx_cdata.bnx_rx_mtag,
806                         sc->bnx_cdata.bnx_rx_std_dmamap[i]);
807         }
808
809         map = sc->bnx_cdata.bnx_rx_tmpmap;
810         sc->bnx_cdata.bnx_rx_tmpmap = sc->bnx_cdata.bnx_rx_std_dmamap[i];
811         sc->bnx_cdata.bnx_rx_std_dmamap[i] = map;
812
813         sc->bnx_cdata.bnx_rx_std_chain[i].bnx_mbuf = m_new;
814         sc->bnx_cdata.bnx_rx_std_chain[i].bnx_paddr = seg.ds_addr;
815
816         bnx_setup_rxdesc_std(sc, i);
817         return 0;
818 }
819
820 static void
821 bnx_setup_rxdesc_std(struct bnx_softc *sc, int i)
822 {
823         struct bnx_rxchain *rc;
824         struct bge_rx_bd *r;
825
826         rc = &sc->bnx_cdata.bnx_rx_std_chain[i];
827         r = &sc->bnx_ldata.bnx_rx_std_ring[i];
828
829         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bnx_paddr);
830         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bnx_paddr);
831         r->bge_len = rc->bnx_mbuf->m_len;
832         r->bge_idx = i;
833         r->bge_flags = BGE_RXBDFLAG_END;
834 }
835
836 /*
837  * Initialize a jumbo receive ring descriptor. This allocates
838  * a jumbo buffer from the pool managed internally by the driver.
839  */
840 static int
841 bnx_newbuf_jumbo(struct bnx_softc *sc, int i, int init)
842 {
843         struct mbuf *m_new = NULL;
844         struct bnx_jslot *buf;
845         bus_addr_t paddr;
846
847         /* Allocate the mbuf. */
848         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
849         if (m_new == NULL)
850                 return ENOBUFS;
851
852         /* Allocate the jumbo buffer */
853         buf = bnx_jalloc(sc);
854         if (buf == NULL) {
855                 m_freem(m_new);
856                 return ENOBUFS;
857         }
858
859         /* Attach the buffer to the mbuf. */
860         m_new->m_ext.ext_arg = buf;
861         m_new->m_ext.ext_buf = buf->bnx_buf;
862         m_new->m_ext.ext_free = bnx_jfree;
863         m_new->m_ext.ext_ref = bnx_jref;
864         m_new->m_ext.ext_size = BNX_JUMBO_FRAMELEN;
865
866         m_new->m_flags |= M_EXT;
867
868         m_new->m_data = m_new->m_ext.ext_buf;
869         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
870
871         paddr = buf->bnx_paddr;
872         m_adj(m_new, ETHER_ALIGN);
873         paddr += ETHER_ALIGN;
874
875         /* Save necessary information */
876         sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_mbuf = m_new;
877         sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_paddr = paddr;
878
879         /* Set up the descriptor. */
880         bnx_setup_rxdesc_jumbo(sc, i);
881         return 0;
882 }
883
884 static void
885 bnx_setup_rxdesc_jumbo(struct bnx_softc *sc, int i)
886 {
887         struct bge_rx_bd *r;
888         struct bnx_rxchain *rc;
889
890         r = &sc->bnx_ldata.bnx_rx_jumbo_ring[i];
891         rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
892
893         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bnx_paddr);
894         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bnx_paddr);
895         r->bge_len = rc->bnx_mbuf->m_len;
896         r->bge_idx = i;
897         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
898 }
899
900 static int
901 bnx_init_rx_ring_std(struct bnx_softc *sc)
902 {
903         int i, error;
904
905         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
906                 error = bnx_newbuf_std(sc, i, 1);
907                 if (error)
908                         return error;
909         };
910
911         sc->bnx_std = BGE_STD_RX_RING_CNT - 1;
912         bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bnx_std);
913
914         return(0);
915 }
916
917 static void
918 bnx_free_rx_ring_std(struct bnx_softc *sc)
919 {
920         int i;
921
922         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
923                 struct bnx_rxchain *rc = &sc->bnx_cdata.bnx_rx_std_chain[i];
924
925                 if (rc->bnx_mbuf != NULL) {
926                         bus_dmamap_unload(sc->bnx_cdata.bnx_rx_mtag,
927                                           sc->bnx_cdata.bnx_rx_std_dmamap[i]);
928                         m_freem(rc->bnx_mbuf);
929                         rc->bnx_mbuf = NULL;
930                 }
931                 bzero(&sc->bnx_ldata.bnx_rx_std_ring[i],
932                     sizeof(struct bge_rx_bd));
933         }
934 }
935
936 static int
937 bnx_init_rx_ring_jumbo(struct bnx_softc *sc)
938 {
939         struct bge_rcb *rcb;
940         int i, error;
941
942         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
943                 error = bnx_newbuf_jumbo(sc, i, 1);
944                 if (error)
945                         return error;
946         };
947
948         sc->bnx_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
949
950         rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
951         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
952         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
953
954         bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bnx_jumbo);
955
956         return(0);
957 }
958
959 static void
960 bnx_free_rx_ring_jumbo(struct bnx_softc *sc)
961 {
962         int i;
963
964         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
965                 struct bnx_rxchain *rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
966
967                 if (rc->bnx_mbuf != NULL) {
968                         m_freem(rc->bnx_mbuf);
969                         rc->bnx_mbuf = NULL;
970                 }
971                 bzero(&sc->bnx_ldata.bnx_rx_jumbo_ring[i],
972                     sizeof(struct bge_rx_bd));
973         }
974 }
975
976 static void
977 bnx_free_tx_ring(struct bnx_softc *sc)
978 {
979         int i;
980
981         for (i = 0; i < BGE_TX_RING_CNT; i++) {
982                 if (sc->bnx_cdata.bnx_tx_chain[i] != NULL) {
983                         bus_dmamap_unload(sc->bnx_cdata.bnx_tx_mtag,
984                                           sc->bnx_cdata.bnx_tx_dmamap[i]);
985                         m_freem(sc->bnx_cdata.bnx_tx_chain[i]);
986                         sc->bnx_cdata.bnx_tx_chain[i] = NULL;
987                 }
988                 bzero(&sc->bnx_ldata.bnx_tx_ring[i],
989                     sizeof(struct bge_tx_bd));
990         }
991 }
992
993 static int
994 bnx_init_tx_ring(struct bnx_softc *sc)
995 {
996         sc->bnx_txcnt = 0;
997         sc->bnx_tx_saved_considx = 0;
998         sc->bnx_tx_prodidx = 0;
999
1000         /* Initialize transmit producer index for host-memory send ring. */
1001         bnx_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bnx_tx_prodidx);
1002         bnx_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1003
1004         return(0);
1005 }
1006
1007 static void
1008 bnx_setmulti(struct bnx_softc *sc)
1009 {
1010         struct ifnet *ifp;
1011         struct ifmultiaddr *ifma;
1012         uint32_t hashes[4] = { 0, 0, 0, 0 };
1013         int h, i;
1014
1015         ifp = &sc->arpcom.ac_if;
1016
1017         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1018                 for (i = 0; i < 4; i++)
1019                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1020                 return;
1021         }
1022
1023         /* First, zot all the existing filters. */
1024         for (i = 0; i < 4; i++)
1025                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1026
1027         /* Now program new ones. */
1028         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1029                 if (ifma->ifma_addr->sa_family != AF_LINK)
1030                         continue;
1031                 h = ether_crc32_le(
1032                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1033                     ETHER_ADDR_LEN) & 0x7f;
1034                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1035         }
1036
1037         for (i = 0; i < 4; i++)
1038                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1039 }
1040
1041 /*
1042  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1043  * self-test results.
1044  */
1045 static int
1046 bnx_chipinit(struct bnx_softc *sc)
1047 {
1048         uint32_t dma_rw_ctl, mode_ctl;
1049         int i;
1050
1051         /* Set endian type before we access any non-PCI registers. */
1052         pci_write_config(sc->bnx_dev, BGE_PCI_MISC_CTL,
1053             BGE_INIT | BGE_PCIMISCCTL_TAGGED_STATUS, 4);
1054
1055         /* Clear the MAC control register */
1056         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1057
1058         /*
1059          * Clear the MAC statistics block in the NIC's
1060          * internal memory.
1061          */
1062         for (i = BGE_STATS_BLOCK;
1063             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1064                 BNX_MEMWIN_WRITE(sc, i, 0);
1065
1066         for (i = BGE_STATUS_BLOCK;
1067             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1068                 BNX_MEMWIN_WRITE(sc, i, 0);
1069
1070         if (BNX_IS_57765_FAMILY(sc)) {
1071                 uint32_t val;
1072
1073                 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0) {
1074                         mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1075                         val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1076
1077                         /* Access the lower 1K of PL PCI-E block registers. */
1078                         CSR_WRITE_4(sc, BGE_MODE_CTL,
1079                             val | BGE_MODECTL_PCIE_PL_SEL);
1080
1081                         val = CSR_READ_4(sc, BGE_PCIE_PL_LO_PHYCTL5);
1082                         val |= BGE_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ;
1083                         CSR_WRITE_4(sc, BGE_PCIE_PL_LO_PHYCTL5, val);
1084
1085                         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1086                 }
1087                 if (sc->bnx_chiprev != BGE_CHIPREV_57765_AX) {
1088                         mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1089                         val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1090
1091                         /* Access the lower 1K of DL PCI-E block registers. */
1092                         CSR_WRITE_4(sc, BGE_MODE_CTL,
1093                             val | BGE_MODECTL_PCIE_DL_SEL);
1094
1095                         val = CSR_READ_4(sc, BGE_PCIE_DL_LO_FTSMAX);
1096                         val &= ~BGE_PCIE_DL_LO_FTSMAX_MASK;
1097                         val |= BGE_PCIE_DL_LO_FTSMAX_VAL;
1098                         CSR_WRITE_4(sc, BGE_PCIE_DL_LO_FTSMAX, val);
1099
1100                         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1101                 }
1102
1103                 val = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
1104                 val &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
1105                 val |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
1106                 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, val);
1107         }
1108
1109         /*
1110          * Set up the PCI DMA control register.
1111          */
1112         dma_rw_ctl = pci_read_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, 4);
1113         /*
1114          * Disable 32bytes cache alignment for DMA write to host memory
1115          *
1116          * NOTE:
1117          * 64bytes cache alignment for DMA write to host memory is still
1118          * enabled.
1119          */
1120         dma_rw_ctl |= BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1121         if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
1122                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1123         /*
1124          * Enable HW workaround for controllers that misinterpret
1125          * a status tag update and leave interrupts permanently
1126          * disabled.
1127          */
1128         if (sc->bnx_asicrev != BGE_ASICREV_BCM5717 &&
1129             !BNX_IS_57765_FAMILY(sc))
1130                 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1131         if (bootverbose) {
1132                 if_printf(&sc->arpcom.ac_if, "DMA read/write %#x\n",
1133                     dma_rw_ctl);
1134         }
1135         pci_write_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1136
1137         /*
1138          * Set up general mode register.
1139          */
1140         mode_ctl = bnx_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR |
1141             BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1142         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1143
1144         /*
1145          * Disable memory write invalidate.  Apparently it is not supported
1146          * properly by these devices.  Also ensure that INTx isn't disabled,
1147          * as these chips need it even when using MSI.
1148          */
1149         PCI_CLRBIT(sc->bnx_dev, BGE_PCI_CMD,
1150             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1151
1152         /* Set the timer prescaler (always 66Mhz) */
1153         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1154
1155         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
1156                 DELAY(40);      /* XXX */
1157
1158                 /* Put PHY into ready state */
1159                 BNX_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1160                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1161                 DELAY(40);
1162         }
1163
1164         return(0);
1165 }
1166
1167 static int
1168 bnx_blockinit(struct bnx_softc *sc)
1169 {
1170         struct bge_rcb *rcb;
1171         bus_size_t vrcb;
1172         bge_hostaddr taddr;
1173         uint32_t val;
1174         int i, limit;
1175
1176         /*
1177          * Initialize the memory window pointer register so that
1178          * we can access the first 32K of internal NIC RAM. This will
1179          * allow us to set up the TX send ring RCBs and the RX return
1180          * ring RCBs, plus other things which live in NIC memory.
1181          */
1182         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1183
1184         /* Configure mbuf pool watermarks */
1185         if (BNX_IS_57765_PLUS(sc)) {
1186                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1187                 if (sc->arpcom.ac_if.if_mtu > ETHERMTU) {
1188                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1189                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1190                 } else {
1191                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1192                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1193                 }
1194         } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
1195                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1196                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1197                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1198         } else {
1199                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1200                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1201                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1202         }
1203
1204         /* Configure DMA resource watermarks */
1205         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1206         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1207
1208         /* Enable buffer manager */
1209         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1210         /*
1211          * Change the arbitration algorithm of TXMBUF read request to
1212          * round-robin instead of priority based for BCM5719.  When
1213          * TXFIFO is almost empty, RDMA will hold its request until
1214          * TXFIFO is not almost empty.
1215          */
1216         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719)
1217                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1218         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1219             sc->bnx_chipid == BGE_CHIPID_BCM5719_A0 ||
1220             sc->bnx_chipid == BGE_CHIPID_BCM5720_A0)
1221                 val |= BGE_BMANMODE_LOMBUF_ATTN;
1222         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1223
1224         /* Poll for buffer manager start indication */
1225         for (i = 0; i < BNX_TIMEOUT; i++) {
1226                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1227                         break;
1228                 DELAY(10);
1229         }
1230
1231         if (i == BNX_TIMEOUT) {
1232                 if_printf(&sc->arpcom.ac_if,
1233                           "buffer manager failed to start\n");
1234                 return(ENXIO);
1235         }
1236
1237         /* Enable flow-through queues */
1238         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1239         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1240
1241         /* Wait until queue initialization is complete */
1242         for (i = 0; i < BNX_TIMEOUT; i++) {
1243                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1244                         break;
1245                 DELAY(10);
1246         }
1247
1248         if (i == BNX_TIMEOUT) {
1249                 if_printf(&sc->arpcom.ac_if,
1250                           "flow-through queue init failed\n");
1251                 return(ENXIO);
1252         }
1253
1254         /*
1255          * Summary of rings supported by the controller:
1256          *
1257          * Standard Receive Producer Ring
1258          * - This ring is used to feed receive buffers for "standard"
1259          *   sized frames (typically 1536 bytes) to the controller.
1260          *
1261          * Jumbo Receive Producer Ring
1262          * - This ring is used to feed receive buffers for jumbo sized
1263          *   frames (i.e. anything bigger than the "standard" frames)
1264          *   to the controller.
1265          *
1266          * Mini Receive Producer Ring
1267          * - This ring is used to feed receive buffers for "mini"
1268          *   sized frames to the controller.
1269          * - This feature required external memory for the controller
1270          *   but was never used in a production system.  Should always
1271          *   be disabled.
1272          *
1273          * Receive Return Ring
1274          * - After the controller has placed an incoming frame into a
1275          *   receive buffer that buffer is moved into a receive return
1276          *   ring.  The driver is then responsible to passing the
1277          *   buffer up to the stack.  Many versions of the controller
1278          *   support multiple RR rings.
1279          *
1280          * Send Ring
1281          * - This ring is used for outgoing frames.  Many versions of
1282          *   the controller support multiple send rings.
1283          */
1284
1285         /* Initialize the standard receive producer ring control block. */
1286         rcb = &sc->bnx_ldata.bnx_info.bnx_std_rx_rcb;
1287         rcb->bge_hostaddr.bge_addr_lo =
1288             BGE_ADDR_LO(sc->bnx_ldata.bnx_rx_std_ring_paddr);
1289         rcb->bge_hostaddr.bge_addr_hi =
1290             BGE_ADDR_HI(sc->bnx_ldata.bnx_rx_std_ring_paddr);
1291         if (BNX_IS_57765_PLUS(sc)) {
1292                 /*
1293                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1294                  * Bits 15-2 : Maximum RX frame size
1295                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1296                  * Bit 0     : Reserved
1297                  */
1298                 rcb->bge_maxlen_flags =
1299                     BGE_RCB_MAXLEN_FLAGS(512, BNX_MAX_FRAMELEN << 2);
1300         } else {
1301                 /*
1302                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1303                  * Bits 15-2 : Reserved (should be 0)
1304                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1305                  * Bit 0     : Reserved
1306                  */
1307                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1308         }
1309         if (BNX_IS_5717_PLUS(sc))
1310                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1311         else
1312                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1313         /* Write the standard receive producer ring control block. */
1314         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1315         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1316         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1317         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1318         /* Reset the standard receive producer ring producer index. */
1319         bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1320
1321         /*
1322          * Initialize the jumbo RX producer ring control
1323          * block.  We set the 'ring disabled' bit in the
1324          * flags field until we're actually ready to start
1325          * using this ring (i.e. once we set the MTU
1326          * high enough to require it).
1327          */
1328         if (BNX_IS_JUMBO_CAPABLE(sc)) {
1329                 rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
1330                 /* Get the jumbo receive producer ring RCB parameters. */
1331                 rcb->bge_hostaddr.bge_addr_lo =
1332                     BGE_ADDR_LO(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1333                 rcb->bge_hostaddr.bge_addr_hi =
1334                     BGE_ADDR_HI(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1335                 rcb->bge_maxlen_flags =
1336                     BGE_RCB_MAXLEN_FLAGS(BNX_MAX_FRAMELEN,
1337                     BGE_RCB_FLAG_RING_DISABLED);
1338                 if (BNX_IS_5717_PLUS(sc))
1339                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1340                 else
1341                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1342                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1343                     rcb->bge_hostaddr.bge_addr_hi);
1344                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1345                     rcb->bge_hostaddr.bge_addr_lo);
1346                 /* Program the jumbo receive producer ring RCB parameters. */
1347                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1348                     rcb->bge_maxlen_flags);
1349                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1350                 /* Reset the jumbo receive producer ring producer index. */
1351                 bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1352         }
1353
1354         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1355         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906 &&
1356             (sc->bnx_chipid == BGE_CHIPID_BCM5906_A0 ||
1357              sc->bnx_chipid == BGE_CHIPID_BCM5906_A1 ||
1358              sc->bnx_chipid == BGE_CHIPID_BCM5906_A2)) {
1359                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1360                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1361         }
1362
1363         /*
1364          * The BD ring replenish thresholds control how often the
1365          * hardware fetches new BD's from the producer rings in host
1366          * memory.  Setting the value too low on a busy system can
1367          * starve the hardware and recue the throughpout.
1368          *
1369          * Set the BD ring replentish thresholds. The recommended
1370          * values are 1/8th the number of descriptors allocated to
1371          * each ring.
1372          */
1373         val = 8;
1374         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1375         if (BNX_IS_JUMBO_CAPABLE(sc)) {
1376                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1377                     BGE_JUMBO_RX_RING_CNT/8);
1378         }
1379         if (BNX_IS_57765_PLUS(sc)) {
1380                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1381                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1382         }
1383
1384         /*
1385          * Disable all send rings by setting the 'ring disabled' bit
1386          * in the flags field of all the TX send ring control blocks,
1387          * located in NIC memory.
1388          */
1389         if (BNX_IS_5717_PLUS(sc))
1390                 limit = 4;
1391         else if (BNX_IS_57765_FAMILY(sc))
1392                 limit = 2;
1393         else
1394                 limit = 1;
1395         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1396         for (i = 0; i < limit; i++) {
1397                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1398                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1399                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1400                 vrcb += sizeof(struct bge_rcb);
1401         }
1402
1403         /* Configure send ring RCB 0 (we use only the first ring) */
1404         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1405         BGE_HOSTADDR(taddr, sc->bnx_ldata.bnx_tx_ring_paddr);
1406         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1407         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1408         if (BNX_IS_5717_PLUS(sc)) {
1409                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1410         } else {
1411                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1412                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1413         }
1414         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1415             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1416
1417         /*
1418          * Disable all receive return rings by setting the
1419          * 'ring disabled' bit in the flags field of all the receive
1420          * return ring control blocks, located in NIC memory.
1421          */
1422         if (BNX_IS_5717_PLUS(sc)) {
1423                 /* Should be 17, use 16 until we get an SRAM map. */
1424                 limit = 16;
1425         } else if (BNX_IS_57765_FAMILY(sc)) {
1426                 limit = 4;
1427         } else {
1428                 limit = 1;
1429         }
1430         /* Disable all receive return rings. */
1431         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1432         for (i = 0; i < limit; i++) {
1433                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1434                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1435                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1436                     BGE_RCB_FLAG_RING_DISABLED);
1437                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1438                 bnx_writembx(sc, BGE_MBX_RX_CONS0_LO +
1439                     (i * (sizeof(uint64_t))), 0);
1440                 vrcb += sizeof(struct bge_rcb);
1441         }
1442
1443         /*
1444          * Set up receive return ring 0.  Note that the NIC address
1445          * for RX return rings is 0x0.  The return rings live entirely
1446          * within the host, so the nicaddr field in the RCB isn't used.
1447          */
1448         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1449         BGE_HOSTADDR(taddr, sc->bnx_ldata.bnx_rx_return_ring_paddr);
1450         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1451         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1452         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1453         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1454             BGE_RCB_MAXLEN_FLAGS(sc->bnx_return_ring_cnt, 0));
1455
1456         /* Set random backoff seed for TX */
1457         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1458             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1459             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1460             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1461             BGE_TX_BACKOFF_SEED_MASK);
1462
1463         /* Set inter-packet gap */
1464         val = 0x2620;
1465         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
1466                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1467                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1468         }
1469         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1470
1471         /*
1472          * Specify which ring to use for packets that don't match
1473          * any RX rules.
1474          */
1475         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1476
1477         /*
1478          * Configure number of RX lists. One interrupt distribution
1479          * list, sixteen active lists, one bad frames class.
1480          */
1481         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1482
1483         /* Inialize RX list placement stats mask. */
1484         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1485         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1486
1487         /* Disable host coalescing until we get it set up */
1488         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1489
1490         /* Poll to make sure it's shut down. */
1491         for (i = 0; i < BNX_TIMEOUT; i++) {
1492                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1493                         break;
1494                 DELAY(10);
1495         }
1496
1497         if (i == BNX_TIMEOUT) {
1498                 if_printf(&sc->arpcom.ac_if,
1499                           "host coalescing engine failed to idle\n");
1500                 return(ENXIO);
1501         }
1502
1503         /* Set up host coalescing defaults */
1504         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bnx_rx_coal_ticks);
1505         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bnx_tx_coal_ticks);
1506         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bnx_rx_coal_bds);
1507         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bnx_tx_coal_bds);
1508         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bnx_rx_coal_bds_int);
1509         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bnx_tx_coal_bds_int);
1510
1511         /* Set up address of status block */
1512         bzero(sc->bnx_ldata.bnx_status_block, BGE_STATUS_BLK_SZ);
1513         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1514             BGE_ADDR_HI(sc->bnx_ldata.bnx_status_block_paddr));
1515         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1516             BGE_ADDR_LO(sc->bnx_ldata.bnx_status_block_paddr));
1517
1518         /* Set up status block partail update size. */
1519         val = BGE_STATBLKSZ_32BYTE;
1520 #if 0
1521         /*
1522          * Does not seem to have visible effect in both
1523          * bulk data (1472B UDP datagram) and tiny data
1524          * (18B UDP datagram) TX tests.
1525          */
1526         val |= BGE_HCCMODE_CLRTICK_TX;
1527 #endif
1528         /* Turn on host coalescing state machine */
1529         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1530
1531         /* Turn on RX BD completion state machine and enable attentions */
1532         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1533             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1534
1535         /* Turn on RX list placement state machine */
1536         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1537
1538         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1539             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1540             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1541             BGE_MACMODE_FRMHDR_DMA_ENB;
1542
1543         if (sc->bnx_flags & BNX_FLAG_TBI)
1544                 val |= BGE_PORTMODE_TBI;
1545         else if (sc->bnx_flags & BNX_FLAG_MII_SERDES)
1546                 val |= BGE_PORTMODE_GMII;
1547         else
1548                 val |= BGE_PORTMODE_MII;
1549
1550         /* Turn on DMA, clear stats */
1551         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1552
1553         /* Set misc. local control, enable interrupts on attentions */
1554         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1555
1556 #ifdef notdef
1557         /* Assert GPIO pins for PHY reset */
1558         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1559             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1560         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1561             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1562 #endif
1563
1564         /* Turn on write DMA state machine */
1565         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1566         /* Enable host coalescing bug fix. */
1567         val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1568         if (sc->bnx_asicrev == BGE_ASICREV_BCM5785) {
1569                 /* Request larger DMA burst size to get better performance. */
1570                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1571         }
1572         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1573         DELAY(40);
1574
1575         if (BNX_IS_57765_PLUS(sc)) {
1576                 uint32_t dmactl;
1577
1578                 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1579                 /*
1580                  * Adjust tx margin to prevent TX data corruption and
1581                  * fix internal FIFO overflow.
1582                  */
1583                 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1584                     sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
1585                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
1586                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
1587                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
1588                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
1589                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
1590                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
1591                 }
1592                 /*
1593                  * Enable fix for read DMA FIFO overruns.
1594                  * The fix is to limit the number of RX BDs
1595                  * the hardware would fetch at a fime.
1596                  */
1597                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1598                     dmactl | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1599         }
1600
1601         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719) {
1602                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
1603                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
1604                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
1605                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1606         } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
1607                 /*
1608                  * Allow 4KB burst length reads for non-LSO frames.
1609                  * Enable 512B burst length reads for buffer descriptors.
1610                  */
1611                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
1612                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
1613                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
1614                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1615         }
1616
1617         /* Turn on read DMA state machine */
1618         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1619         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717)
1620                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
1621         if (sc->bnx_asicrev == BGE_ASICREV_BCM5784 ||
1622             sc->bnx_asicrev == BGE_ASICREV_BCM5785 ||
1623             sc->bnx_asicrev == BGE_ASICREV_BCM57780) {
1624                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1625                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1626                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1627         }
1628         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
1629                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
1630                     BGE_RDMAMODE_H2BNC_VLAN_DET;
1631                 /*
1632                  * Allow multiple outstanding read requests from
1633                  * non-LSO read DMA engine.
1634                  */
1635                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
1636         }
1637         if (sc->bnx_flags & BNX_FLAG_TSO)
1638                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1639         val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1640         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1641         DELAY(40);
1642
1643         /* Turn on RX data completion state machine */
1644         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1645
1646         /* Turn on RX BD initiator state machine */
1647         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1648
1649         /* Turn on RX data and RX BD initiator state machine */
1650         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1651
1652         /* Turn on send BD completion state machine */
1653         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1654
1655         /* Turn on send data completion state machine */
1656         val = BGE_SDCMODE_ENABLE;
1657         if (sc->bnx_asicrev == BGE_ASICREV_BCM5761)
1658                 val |= BGE_SDCMODE_CDELAY; 
1659         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1660
1661         /* Turn on send data initiator state machine */
1662         if (sc->bnx_flags & BNX_FLAG_TSO) {
1663                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1664                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1665         } else {
1666                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1667         }
1668
1669         /* Turn on send BD initiator state machine */
1670         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1671
1672         /* Turn on send BD selector state machine */
1673         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1674
1675         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1676         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1677             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1678
1679         /* ack/clear link change events */
1680         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1681             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1682             BGE_MACSTAT_LINK_CHANGED);
1683         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1684
1685         /*
1686          * Enable attention when the link has changed state for
1687          * devices that use auto polling.
1688          */
1689         if (sc->bnx_flags & BNX_FLAG_TBI) {
1690                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1691         } else {
1692                 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
1693                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
1694                         DELAY(80);
1695                 }
1696         }
1697
1698         /*
1699          * Clear any pending link state attention.
1700          * Otherwise some link state change events may be lost until attention
1701          * is cleared by bnx_intr() -> bnx_softc.bnx_link_upd() sequence.
1702          * It's not necessary on newer BCM chips - perhaps enabling link
1703          * state change attentions implies clearing pending attention.
1704          */
1705         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1706             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1707             BGE_MACSTAT_LINK_CHANGED);
1708
1709         /* Enable link state change attentions. */
1710         BNX_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1711
1712         return(0);
1713 }
1714
1715 /*
1716  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1717  * against our list and return its name if we find a match. Note
1718  * that since the Broadcom controller contains VPD support, we
1719  * can get the device name string from the controller itself instead
1720  * of the compiled-in string. This is a little slow, but it guarantees
1721  * we'll always announce the right product name.
1722  */
1723 static int
1724 bnx_probe(device_t dev)
1725 {
1726         const struct bnx_type *t;
1727         uint16_t product, vendor;
1728
1729         if (!pci_is_pcie(dev))
1730                 return ENXIO;
1731
1732         product = pci_get_device(dev);
1733         vendor = pci_get_vendor(dev);
1734
1735         for (t = bnx_devs; t->bnx_name != NULL; t++) {
1736                 if (vendor == t->bnx_vid && product == t->bnx_did)
1737                         break;
1738         }
1739         if (t->bnx_name == NULL)
1740                 return ENXIO;
1741
1742         device_set_desc(dev, t->bnx_name);
1743         return 0;
1744 }
1745
1746 static int
1747 bnx_attach(device_t dev)
1748 {
1749         struct ifnet *ifp;
1750         struct bnx_softc *sc;
1751         uint32_t hwcfg = 0, misccfg;
1752         int error = 0, rid, capmask;
1753         uint8_t ether_addr[ETHER_ADDR_LEN];
1754         uint16_t product, vendor;
1755         driver_intr_t *intr_func;
1756         uintptr_t mii_priv = 0;
1757         u_int intr_flags;
1758 #ifdef BNX_TSO_DEBUG
1759         char desc[32];
1760         int i;
1761 #endif
1762
1763         sc = device_get_softc(dev);
1764         sc->bnx_dev = dev;
1765         callout_init_mp(&sc->bnx_stat_timer);
1766         callout_init_mp(&sc->bnx_intr_timer);
1767         lwkt_serialize_init(&sc->bnx_jslot_serializer);
1768
1769         product = pci_get_device(dev);
1770         vendor = pci_get_vendor(dev);
1771
1772 #ifndef BURN_BRIDGES
1773         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1774                 uint32_t irq, mem;
1775
1776                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1777                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1778
1779                 device_printf(dev, "chip is in D%d power mode "
1780                     "-- setting to D0\n", pci_get_powerstate(dev));
1781
1782                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1783
1784                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1785                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1786         }
1787 #endif  /* !BURN_BRIDGE */
1788
1789         /*
1790          * Map control/status registers.
1791          */
1792         pci_enable_busmaster(dev);
1793
1794         rid = BGE_PCI_BAR0;
1795         sc->bnx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1796             RF_ACTIVE);
1797
1798         if (sc->bnx_res == NULL) {
1799                 device_printf(dev, "couldn't map memory\n");
1800                 return ENXIO;
1801         }
1802
1803         sc->bnx_btag = rman_get_bustag(sc->bnx_res);
1804         sc->bnx_bhandle = rman_get_bushandle(sc->bnx_res);
1805
1806         /* Save various chip information */
1807         sc->bnx_chipid =
1808             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1809             BGE_PCIMISCCTL_ASICREV_SHIFT;
1810         if (BGE_ASICREV(sc->bnx_chipid) == BGE_ASICREV_USE_PRODID_REG) {
1811                 /* All chips having dedicated ASICREV register have CPMU */
1812                 sc->bnx_flags |= BNX_FLAG_CPMU;
1813
1814                 switch (product) {
1815                 case PCI_PRODUCT_BROADCOM_BCM5717:
1816                 case PCI_PRODUCT_BROADCOM_BCM5718:
1817                 case PCI_PRODUCT_BROADCOM_BCM5719:
1818                 case PCI_PRODUCT_BROADCOM_BCM5720_ALT:
1819                         sc->bnx_chipid = pci_read_config(dev,
1820                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
1821                         break;
1822
1823                 case PCI_PRODUCT_BROADCOM_BCM57761:
1824                 case PCI_PRODUCT_BROADCOM_BCM57762:
1825                 case PCI_PRODUCT_BROADCOM_BCM57765:
1826                 case PCI_PRODUCT_BROADCOM_BCM57766:
1827                 case PCI_PRODUCT_BROADCOM_BCM57781:
1828                 case PCI_PRODUCT_BROADCOM_BCM57782:
1829                 case PCI_PRODUCT_BROADCOM_BCM57785:
1830                 case PCI_PRODUCT_BROADCOM_BCM57786:
1831                 case PCI_PRODUCT_BROADCOM_BCM57791:
1832                 case PCI_PRODUCT_BROADCOM_BCM57795:
1833                         sc->bnx_chipid = pci_read_config(dev,
1834                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
1835                         break;
1836
1837                 default:
1838                         sc->bnx_chipid = pci_read_config(dev,
1839                             BGE_PCI_PRODID_ASICREV, 4);
1840                         break;
1841                 }
1842         }
1843         sc->bnx_asicrev = BGE_ASICREV(sc->bnx_chipid);
1844         sc->bnx_chiprev = BGE_CHIPREV(sc->bnx_chipid);
1845
1846         switch (sc->bnx_asicrev) {
1847         case BGE_ASICREV_BCM5717:
1848         case BGE_ASICREV_BCM5719:
1849         case BGE_ASICREV_BCM5720:
1850                 sc->bnx_flags |= BNX_FLAG_5717_PLUS | BNX_FLAG_57765_PLUS;
1851                 break;
1852
1853         case BGE_ASICREV_BCM57765:
1854         case BGE_ASICREV_BCM57766:
1855                 sc->bnx_flags |= BNX_FLAG_57765_FAMILY | BNX_FLAG_57765_PLUS;
1856                 break;
1857         }
1858         sc->bnx_flags |= BNX_FLAG_SHORTDMA;
1859
1860         sc->bnx_flags |= BNX_FLAG_TSO;
1861         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 &&
1862             sc->bnx_chipid == BGE_CHIPID_BCM5719_A0)
1863                 sc->bnx_flags &= ~BNX_FLAG_TSO;
1864
1865         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1866             BNX_IS_57765_FAMILY(sc)) {
1867                 /*
1868                  * All BCM57785 and BCM5718 families chips have a bug that
1869                  * under certain situation interrupt will not be enabled
1870                  * even if status tag is written to BGE_MBX_IRQ0_LO mailbox.
1871                  *
1872                  * While BCM5719 and BCM5720 have a hardware workaround
1873                  * which could fix the above bug.
1874                  * See the comment near BGE_PCIDMARWCTL_TAGGED_STATUS_WA in
1875                  * bnx_chipinit().
1876                  *
1877                  * For the rest of the chips in these two families, we will
1878                  * have to poll the status block at high rate (10ms currently)
1879                  * to check whether the interrupt is hosed or not.
1880                  * See bnx_intr_check() for details.
1881                  */
1882                 sc->bnx_flags |= BNX_FLAG_STATUSTAG_BUG;
1883         }
1884
1885         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
1886
1887         sc->bnx_pciecap = pci_get_pciecap_ptr(sc->bnx_dev);
1888         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1889             sc->bnx_asicrev == BGE_ASICREV_BCM5720)
1890                 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_2048);
1891         else
1892                 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
1893         device_printf(dev, "CHIP ID 0x%08x; "
1894                       "ASIC REV 0x%02x; CHIP REV 0x%02x\n",
1895                       sc->bnx_chipid, sc->bnx_asicrev, sc->bnx_chiprev);
1896
1897         /*
1898          * Set various PHY quirk flags.
1899          */
1900
1901         capmask = MII_CAPMASK_DEFAULT;
1902         if (product == PCI_PRODUCT_BROADCOM_BCM57791 ||
1903             product == PCI_PRODUCT_BROADCOM_BCM57795) {
1904                 /* 10/100 only */
1905                 capmask &= ~BMSR_EXTSTAT;
1906         }
1907
1908         mii_priv |= BRGPHY_FLAG_WIRESPEED;
1909
1910         /*
1911          * Allocate interrupt
1912          */
1913         sc->bnx_irq_type = pci_alloc_1intr(dev, bnx_msi_enable, &sc->bnx_irq_rid,
1914             &intr_flags);
1915
1916         sc->bnx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bnx_irq_rid,
1917             intr_flags);
1918         if (sc->bnx_irq == NULL) {
1919                 device_printf(dev, "couldn't map interrupt\n");
1920                 error = ENXIO;
1921                 goto fail;
1922         }
1923
1924         if (sc->bnx_irq_type == PCI_INTR_TYPE_MSI) {
1925                 sc->bnx_flags |= BNX_FLAG_ONESHOT_MSI;
1926                 bnx_enable_msi(sc);
1927         }
1928
1929         /* Initialize if_name earlier, so if_printf could be used */
1930         ifp = &sc->arpcom.ac_if;
1931         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1932
1933         /* Try to reset the chip. */
1934         bnx_reset(sc);
1935
1936         if (bnx_chipinit(sc)) {
1937                 device_printf(dev, "chip initialization failed\n");
1938                 error = ENXIO;
1939                 goto fail;
1940         }
1941
1942         /*
1943          * Get station address
1944          */
1945         error = bnx_get_eaddr(sc, ether_addr);
1946         if (error) {
1947                 device_printf(dev, "failed to read station address\n");
1948                 goto fail;
1949         }
1950
1951         if (BNX_IS_57765_PLUS(sc)) {
1952                 sc->bnx_return_ring_cnt = BGE_RETURN_RING_CNT;
1953         } else {
1954                 /* 5705/5750 limits RX return ring to 512 entries. */
1955                 sc->bnx_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1956         }
1957
1958         error = bnx_dma_alloc(sc);
1959         if (error)
1960                 goto fail;
1961
1962         /* Set default tuneable values. */
1963         sc->bnx_rx_coal_ticks = BNX_RX_COAL_TICKS_DEF;
1964         sc->bnx_tx_coal_ticks = BNX_TX_COAL_TICKS_DEF;
1965         sc->bnx_rx_coal_bds = BNX_RX_COAL_BDS_DEF;
1966         sc->bnx_tx_coal_bds = BNX_TX_COAL_BDS_DEF;
1967         sc->bnx_rx_coal_bds_int = BNX_RX_COAL_BDS_DEF;
1968         sc->bnx_tx_coal_bds_int = BNX_TX_COAL_BDS_DEF;
1969
1970         /* Set up ifnet structure */
1971         ifp->if_softc = sc;
1972         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1973         ifp->if_ioctl = bnx_ioctl;
1974         ifp->if_start = bnx_start;
1975 #ifdef DEVICE_POLLING
1976         ifp->if_poll = bnx_poll;
1977 #endif
1978         ifp->if_watchdog = bnx_watchdog;
1979         ifp->if_init = bnx_init;
1980         ifp->if_mtu = ETHERMTU;
1981         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1982         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1983         ifq_set_ready(&ifp->if_snd);
1984
1985         ifp->if_capabilities |= IFCAP_HWCSUM;
1986         ifp->if_hwassist = BNX_CSUM_FEATURES;
1987         if (sc->bnx_flags & BNX_FLAG_TSO) {
1988                 ifp->if_capabilities |= IFCAP_TSO;
1989                 ifp->if_hwassist |= CSUM_TSO;
1990         }
1991         ifp->if_capenable = ifp->if_capabilities;
1992
1993         /*
1994          * Figure out what sort of media we have by checking the
1995          * hardware config word in the first 32k of NIC internal memory,
1996          * or fall back to examining the EEPROM if necessary.
1997          * Note: on some BCM5700 cards, this value appears to be unset.
1998          * If that's the case, we have to rely on identifying the NIC
1999          * by its PCI subsystem ID, as we do below for the SysKonnect
2000          * SK-9D41.
2001          */
2002         if (bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2003                 hwcfg = bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2004         } else {
2005                 if (bnx_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2006                                     sizeof(hwcfg))) {
2007                         device_printf(dev, "failed to read EEPROM\n");
2008                         error = ENXIO;
2009                         goto fail;
2010                 }
2011                 hwcfg = ntohl(hwcfg);
2012         }
2013
2014         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2015         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2016             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2017                 sc->bnx_flags |= BNX_FLAG_TBI;
2018
2019         /* Setup MI MODE */
2020         if (sc->bnx_flags & BNX_FLAG_CPMU)
2021                 sc->bnx_mi_mode = BGE_MIMODE_500KHZ_CONST;
2022         else
2023                 sc->bnx_mi_mode = BGE_MIMODE_BASE;
2024
2025         /* Setup link status update stuffs */
2026         if (sc->bnx_flags & BNX_FLAG_TBI) {
2027                 sc->bnx_link_upd = bnx_tbi_link_upd;
2028                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2029         } else if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
2030                 sc->bnx_link_upd = bnx_autopoll_link_upd;
2031                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2032         } else {
2033                 sc->bnx_link_upd = bnx_copper_link_upd;
2034                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2035         }
2036
2037         /* Set default PHY address */
2038         sc->bnx_phyno = 1;
2039
2040         /*
2041          * PHY address mapping for various devices.
2042          *
2043          *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2044          * ---------+-------+-------+-------+-------+
2045          * BCM57XX  |   1   |   X   |   X   |   X   |
2046          * BCM5704  |   1   |   X   |   1   |   X   |
2047          * BCM5717  |   1   |   8   |   2   |   9   |
2048          * BCM5719  |   1   |   8   |   2   |   9   |
2049          * BCM5720  |   1   |   8   |   2   |   9   |
2050          *
2051          * Other addresses may respond but they are not
2052          * IEEE compliant PHYs and should be ignored.
2053          */
2054         if (BNX_IS_5717_PLUS(sc)) {
2055                 int f;
2056
2057                 f = pci_get_function(dev);
2058                 if (sc->bnx_chipid == BGE_CHIPID_BCM5717_A0) {
2059                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2060                             BGE_SGDIGSTS_IS_SERDES)
2061                                 sc->bnx_phyno = f + 8;
2062                         else
2063                                 sc->bnx_phyno = f + 1;
2064                 } else {
2065                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2066                             BGE_CPMU_PHY_STRAP_IS_SERDES)
2067                                 sc->bnx_phyno = f + 8;
2068                         else
2069                                 sc->bnx_phyno = f + 1;
2070                 }
2071         }
2072
2073         if (sc->bnx_flags & BNX_FLAG_TBI) {
2074                 ifmedia_init(&sc->bnx_ifmedia, IFM_IMASK,
2075                     bnx_ifmedia_upd, bnx_ifmedia_sts);
2076                 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2077                 ifmedia_add(&sc->bnx_ifmedia,
2078                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2079                 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2080                 ifmedia_set(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO);
2081                 sc->bnx_ifmedia.ifm_media = sc->bnx_ifmedia.ifm_cur->ifm_media;
2082         } else {
2083                 struct mii_probe_args mii_args;
2084
2085                 mii_probe_args_init(&mii_args, bnx_ifmedia_upd, bnx_ifmedia_sts);
2086                 mii_args.mii_probemask = 1 << sc->bnx_phyno;
2087                 mii_args.mii_capmask = capmask;
2088                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2089                 mii_args.mii_priv = mii_priv;
2090
2091                 error = mii_probe(dev, &sc->bnx_miibus, &mii_args);
2092                 if (error) {
2093                         device_printf(dev, "MII without any PHY!\n");
2094                         goto fail;
2095                 }
2096         }
2097
2098         /*
2099          * Create sysctl nodes.
2100          */
2101         sysctl_ctx_init(&sc->bnx_sysctl_ctx);
2102         sc->bnx_sysctl_tree = SYSCTL_ADD_NODE(&sc->bnx_sysctl_ctx,
2103                                               SYSCTL_STATIC_CHILDREN(_hw),
2104                                               OID_AUTO,
2105                                               device_get_nameunit(dev),
2106                                               CTLFLAG_RD, 0, "");
2107         if (sc->bnx_sysctl_tree == NULL) {
2108                 device_printf(dev, "can't add sysctl node\n");
2109                 error = ENXIO;
2110                 goto fail;
2111         }
2112
2113         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2114                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2115                         OID_AUTO, "rx_coal_ticks",
2116                         CTLTYPE_INT | CTLFLAG_RW,
2117                         sc, 0, bnx_sysctl_rx_coal_ticks, "I",
2118                         "Receive coalescing ticks (usec).");
2119         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2120                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2121                         OID_AUTO, "tx_coal_ticks",
2122                         CTLTYPE_INT | CTLFLAG_RW,
2123                         sc, 0, bnx_sysctl_tx_coal_ticks, "I",
2124                         "Transmit coalescing ticks (usec).");
2125         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2126                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2127                         OID_AUTO, "rx_coal_bds",
2128                         CTLTYPE_INT | CTLFLAG_RW,
2129                         sc, 0, bnx_sysctl_rx_coal_bds, "I",
2130                         "Receive max coalesced BD count.");
2131         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2132                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2133                         OID_AUTO, "tx_coal_bds",
2134                         CTLTYPE_INT | CTLFLAG_RW,
2135                         sc, 0, bnx_sysctl_tx_coal_bds, "I",
2136                         "Transmit max coalesced BD count.");
2137         /*
2138          * A common design characteristic for many Broadcom
2139          * client controllers is that they only support a
2140          * single outstanding DMA read operation on the PCIe
2141          * bus. This means that it will take twice as long to
2142          * fetch a TX frame that is split into header and
2143          * payload buffers as it does to fetch a single,
2144          * contiguous TX frame (2 reads vs. 1 read). For these
2145          * controllers, coalescing buffers to reduce the number
2146          * of memory reads is effective way to get maximum
2147          * performance(about 940Mbps).  Without collapsing TX
2148          * buffers the maximum TCP bulk transfer performance
2149          * is about 850Mbps. However forcing coalescing mbufs
2150          * consumes a lot of CPU cycles, so leave it off by
2151          * default.
2152          */
2153         SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2154             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2155             "force_defrag", CTLFLAG_RW, &sc->bnx_force_defrag, 0,
2156             "Force defragment on TX path");
2157
2158         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2159             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2160             "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2161             sc, 0, bnx_sysctl_rx_coal_bds_int, "I",
2162             "Receive max coalesced BD count during interrupt.");
2163         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2164             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2165             "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2166             sc, 0, bnx_sysctl_tx_coal_bds_int, "I",
2167             "Transmit max coalesced BD count during interrupt.");
2168
2169 #ifdef BNX_TSO_DEBUG
2170         for (i = 0; i < BNX_TSO_NSTATS; ++i) {
2171                 ksnprintf(desc, sizeof(desc), "tso%d", i + 1);
2172                 SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2173                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2174                     desc, CTLFLAG_RW, &sc->bnx_tsosegs[i], "");
2175         }
2176 #endif
2177
2178         /*
2179          * Call MI attach routine.
2180          */
2181         ether_ifattach(ifp, ether_addr, NULL);
2182
2183         if (sc->bnx_irq_type == PCI_INTR_TYPE_MSI) {
2184                 if (sc->bnx_flags & BNX_FLAG_ONESHOT_MSI) {
2185                         intr_func = bnx_msi_oneshot;
2186                         if (bootverbose)
2187                                 device_printf(dev, "oneshot MSI\n");
2188                 } else {
2189                         intr_func = bnx_msi;
2190                 }
2191         } else {
2192                 intr_func = bnx_intr_legacy;
2193         }
2194         error = bus_setup_intr(dev, sc->bnx_irq, INTR_MPSAFE, intr_func, sc,
2195             &sc->bnx_intrhand, ifp->if_serializer);
2196         if (error) {
2197                 ether_ifdetach(ifp);
2198                 device_printf(dev, "couldn't set up irq\n");
2199                 goto fail;
2200         }
2201
2202         ifp->if_cpuid = rman_get_cpuid(sc->bnx_irq);
2203         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2204
2205         sc->bnx_stat_cpuid = ifp->if_cpuid;
2206         sc->bnx_intr_cpuid = ifp->if_cpuid;
2207
2208         return(0);
2209 fail:
2210         bnx_detach(dev);
2211         return(error);
2212 }
2213
2214 static int
2215 bnx_detach(device_t dev)
2216 {
2217         struct bnx_softc *sc = device_get_softc(dev);
2218
2219         if (device_is_attached(dev)) {
2220                 struct ifnet *ifp = &sc->arpcom.ac_if;
2221
2222                 lwkt_serialize_enter(ifp->if_serializer);
2223                 bnx_stop(sc);
2224                 bnx_reset(sc);
2225                 bus_teardown_intr(dev, sc->bnx_irq, sc->bnx_intrhand);
2226                 lwkt_serialize_exit(ifp->if_serializer);
2227
2228                 ether_ifdetach(ifp);
2229         }
2230
2231         if (sc->bnx_flags & BNX_FLAG_TBI)
2232                 ifmedia_removeall(&sc->bnx_ifmedia);
2233         if (sc->bnx_miibus)
2234                 device_delete_child(dev, sc->bnx_miibus);
2235         bus_generic_detach(dev);
2236
2237         if (sc->bnx_irq != NULL) {
2238                 bus_release_resource(dev, SYS_RES_IRQ, sc->bnx_irq_rid,
2239                     sc->bnx_irq);
2240         }
2241         if (sc->bnx_irq_type == PCI_INTR_TYPE_MSI)
2242                 pci_release_msi(dev);
2243
2244         if (sc->bnx_res != NULL) {
2245                 bus_release_resource(dev, SYS_RES_MEMORY,
2246                     BGE_PCI_BAR0, sc->bnx_res);
2247         }
2248
2249         if (sc->bnx_sysctl_tree != NULL)
2250                 sysctl_ctx_free(&sc->bnx_sysctl_ctx);
2251
2252         bnx_dma_free(sc);
2253
2254         return 0;
2255 }
2256
2257 static void
2258 bnx_reset(struct bnx_softc *sc)
2259 {
2260         device_t dev;
2261         uint32_t cachesize, command, pcistate, reset;
2262         void (*write_op)(struct bnx_softc *, uint32_t, uint32_t);
2263         int i, val = 0;
2264         uint16_t devctl;
2265
2266         dev = sc->bnx_dev;
2267
2268         if (sc->bnx_asicrev != BGE_ASICREV_BCM5906)
2269                 write_op = bnx_writemem_direct;
2270         else
2271                 write_op = bnx_writereg_ind;
2272
2273         /* Save some important PCI state. */
2274         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2275         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2276         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2277
2278         pci_write_config(dev, BGE_PCI_MISC_CTL,
2279             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2280             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2281             BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2282
2283         /* Disable fastboot on controllers that support it. */
2284         if (bootverbose)
2285                 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2286         CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2287
2288         /*
2289          * Write the magic number to SRAM at offset 0xB50.
2290          * When firmware finishes its initialization it will
2291          * write ~BGE_MAGIC_NUMBER to the same location.
2292          */
2293         bnx_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2294
2295         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2296
2297         /* XXX: Broadcom Linux driver. */
2298         /* Force PCI-E 1.0a mode */
2299         if (!BNX_IS_57765_PLUS(sc) &&
2300             CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2301             (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2302              BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2303                 CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2304                     BGE_PCIE_PHY_TSTCTL_PSCRAM);
2305         }
2306         if (sc->bnx_chipid != BGE_CHIPID_BCM5750_A0) {
2307                 /* Prevent PCIE link training during global reset */
2308                 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2309                 reset |= (1<<29);
2310         }
2311
2312         /* 
2313          * Set GPHY Power Down Override to leave GPHY
2314          * powered up in D0 uninitialized.
2315          */
2316         if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0)
2317                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2318
2319         /* Issue global reset */
2320         write_op(sc, BGE_MISC_CFG, reset);
2321
2322         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
2323                 uint32_t status, ctrl;
2324
2325                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2326                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2327                     status | BGE_VCPU_STATUS_DRV_RESET);
2328                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2329                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2330                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2331         }
2332
2333         DELAY(1000);
2334
2335         /* XXX: Broadcom Linux driver. */
2336         if (sc->bnx_chipid == BGE_CHIPID_BCM5750_A0) {
2337                 uint32_t v;
2338
2339                 DELAY(500000); /* wait for link training to complete */
2340                 v = pci_read_config(dev, 0xc4, 4);
2341                 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2342         }
2343
2344         devctl = pci_read_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL, 2);
2345
2346         /* Disable no snoop and disable relaxed ordering. */
2347         devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2348
2349         /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2350         if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0) {
2351                 devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2352                 devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2353         }
2354
2355         pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL,
2356             devctl, 2);
2357
2358         /* Clear error status. */
2359         pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVSTS,
2360             PCIEM_DEVSTS_CORR_ERR |
2361             PCIEM_DEVSTS_NFATAL_ERR |
2362             PCIEM_DEVSTS_FATAL_ERR |
2363             PCIEM_DEVSTS_UNSUPP_REQ, 2);
2364
2365         /* Reset some of the PCI state that got zapped by reset */
2366         pci_write_config(dev, BGE_PCI_MISC_CTL,
2367             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2368             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2369             BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2370         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2371         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2372         write_op(sc, BGE_MISC_CFG, (65 << 1));
2373
2374         /* Enable memory arbiter */
2375         CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2376
2377         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
2378                 for (i = 0; i < BNX_TIMEOUT; i++) {
2379                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2380                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2381                                 break;
2382                         DELAY(100);
2383                 }
2384                 if (i == BNX_TIMEOUT) {
2385                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2386                         return;
2387                 }
2388         } else {
2389                 /*
2390                  * Poll until we see the 1's complement of the magic number.
2391                  * This indicates that the firmware initialization
2392                  * is complete.
2393                  */
2394                 for (i = 0; i < BNX_FIRMWARE_TIMEOUT; i++) {
2395                         val = bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2396                         if (val == ~BGE_MAGIC_NUMBER)
2397                                 break;
2398                         DELAY(10);
2399                 }
2400                 if (i == BNX_FIRMWARE_TIMEOUT) {
2401                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2402                                   "timed out, found 0x%08x\n", val);
2403                 }
2404
2405                 /* BCM57765 A0 needs additional time before accessing. */
2406                 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
2407                         DELAY(10 * 1000);
2408         }
2409
2410         /*
2411          * XXX Wait for the value of the PCISTATE register to
2412          * return to its original pre-reset state. This is a
2413          * fairly good indicator of reset completion. If we don't
2414          * wait for the reset to fully complete, trying to read
2415          * from the device's non-PCI registers may yield garbage
2416          * results.
2417          */
2418         for (i = 0; i < BNX_TIMEOUT; i++) {
2419                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2420                         break;
2421                 DELAY(10);
2422         }
2423
2424         /* Fix up byte swapping */
2425         CSR_WRITE_4(sc, BGE_MODE_CTL, bnx_dma_swap_options(sc));
2426
2427         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2428
2429         /*
2430          * The 5704 in TBI mode apparently needs some special
2431          * adjustment to insure the SERDES drive level is set
2432          * to 1.2V.
2433          */
2434         if (sc->bnx_asicrev == BGE_ASICREV_BCM5704 &&
2435             (sc->bnx_flags & BNX_FLAG_TBI)) {
2436                 uint32_t serdescfg;
2437
2438                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2439                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2440                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2441         }
2442
2443         /* XXX: Broadcom Linux driver. */
2444         if (!BNX_IS_57765_PLUS(sc)) {
2445                 uint32_t v;
2446
2447                 /* Enable Data FIFO protection. */
2448                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2449                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2450         }
2451
2452         DELAY(10000);
2453
2454         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
2455                 BNX_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
2456                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
2457         }
2458 }
2459
2460 /*
2461  * Frame reception handling. This is called if there's a frame
2462  * on the receive return list.
2463  *
2464  * Note: we have to be able to handle two possibilities here:
2465  * 1) the frame is from the jumbo recieve ring
2466  * 2) the frame is from the standard receive ring
2467  */
2468
2469 static void
2470 bnx_rxeof(struct bnx_softc *sc, uint16_t rx_prod)
2471 {
2472         struct ifnet *ifp;
2473         int stdcnt = 0, jumbocnt = 0;
2474
2475         ifp = &sc->arpcom.ac_if;
2476
2477         while (sc->bnx_rx_saved_considx != rx_prod) {
2478                 struct bge_rx_bd        *cur_rx;
2479                 uint32_t                rxidx;
2480                 struct mbuf             *m = NULL;
2481                 uint16_t                vlan_tag = 0;
2482                 int                     have_tag = 0;
2483
2484                 cur_rx =
2485             &sc->bnx_ldata.bnx_rx_return_ring[sc->bnx_rx_saved_considx];
2486
2487                 rxidx = cur_rx->bge_idx;
2488                 BNX_INC(sc->bnx_rx_saved_considx, sc->bnx_return_ring_cnt);
2489
2490                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2491                         have_tag = 1;
2492                         vlan_tag = cur_rx->bge_vlan_tag;
2493                 }
2494
2495                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2496                         BNX_INC(sc->bnx_jumbo, BGE_JUMBO_RX_RING_CNT);
2497                         jumbocnt++;
2498
2499                         if (rxidx != sc->bnx_jumbo) {
2500                                 ifp->if_ierrors++;
2501                                 if_printf(ifp, "sw jumbo index(%d) "
2502                                     "and hw jumbo index(%d) mismatch, drop!\n",
2503                                     sc->bnx_jumbo, rxidx);
2504                                 bnx_setup_rxdesc_jumbo(sc, rxidx);
2505                                 continue;
2506                         }
2507
2508                         m = sc->bnx_cdata.bnx_rx_jumbo_chain[rxidx].bnx_mbuf;
2509                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2510                                 ifp->if_ierrors++;
2511                                 bnx_setup_rxdesc_jumbo(sc, sc->bnx_jumbo);
2512                                 continue;
2513                         }
2514                         if (bnx_newbuf_jumbo(sc, sc->bnx_jumbo, 0)) {
2515                                 ifp->if_ierrors++;
2516                                 bnx_setup_rxdesc_jumbo(sc, sc->bnx_jumbo);
2517                                 continue;
2518                         }
2519                 } else {
2520                         BNX_INC(sc->bnx_std, BGE_STD_RX_RING_CNT);
2521                         stdcnt++;
2522
2523                         if (rxidx != sc->bnx_std) {
2524                                 ifp->if_ierrors++;
2525                                 if_printf(ifp, "sw std index(%d) "
2526                                     "and hw std index(%d) mismatch, drop!\n",
2527                                     sc->bnx_std, rxidx);
2528                                 bnx_setup_rxdesc_std(sc, rxidx);
2529                                 continue;
2530                         }
2531
2532                         m = sc->bnx_cdata.bnx_rx_std_chain[rxidx].bnx_mbuf;
2533                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2534                                 ifp->if_ierrors++;
2535                                 bnx_setup_rxdesc_std(sc, sc->bnx_std);
2536                                 continue;
2537                         }
2538                         if (bnx_newbuf_std(sc, sc->bnx_std, 0)) {
2539                                 ifp->if_ierrors++;
2540                                 bnx_setup_rxdesc_std(sc, sc->bnx_std);
2541                                 continue;
2542                         }
2543                 }
2544
2545                 ifp->if_ipackets++;
2546                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2547                 m->m_pkthdr.rcvif = ifp;
2548
2549                 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2550                     (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
2551                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2552                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2553                                 if ((cur_rx->bge_error_flag &
2554                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
2555                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2556                         }
2557                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2558                                 m->m_pkthdr.csum_data =
2559                                     cur_rx->bge_tcp_udp_csum;
2560                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2561                                     CSUM_PSEUDO_HDR;
2562                         }
2563                 }
2564
2565                 /*
2566                  * If we received a packet with a vlan tag, pass it
2567                  * to vlan_input() instead of ether_input().
2568                  */
2569                 if (have_tag) {
2570                         m->m_flags |= M_VLANTAG;
2571                         m->m_pkthdr.ether_vlantag = vlan_tag;
2572                         have_tag = vlan_tag = 0;
2573                 }
2574                 ifp->if_input(ifp, m);
2575         }
2576
2577         bnx_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bnx_rx_saved_considx);
2578         if (stdcnt)
2579                 bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bnx_std);
2580         if (jumbocnt)
2581                 bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bnx_jumbo);
2582 }
2583
2584 static void
2585 bnx_txeof(struct bnx_softc *sc, uint16_t tx_cons)
2586 {
2587         struct bge_tx_bd *cur_tx = NULL;
2588         struct ifnet *ifp;
2589
2590         ifp = &sc->arpcom.ac_if;
2591
2592         /*
2593          * Go through our tx ring and free mbufs for those
2594          * frames that have been sent.
2595          */
2596         while (sc->bnx_tx_saved_considx != tx_cons) {
2597                 uint32_t idx = 0;
2598
2599                 idx = sc->bnx_tx_saved_considx;
2600                 cur_tx = &sc->bnx_ldata.bnx_tx_ring[idx];
2601                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2602                         ifp->if_opackets++;
2603                 if (sc->bnx_cdata.bnx_tx_chain[idx] != NULL) {
2604                         bus_dmamap_unload(sc->bnx_cdata.bnx_tx_mtag,
2605                             sc->bnx_cdata.bnx_tx_dmamap[idx]);
2606                         m_freem(sc->bnx_cdata.bnx_tx_chain[idx]);
2607                         sc->bnx_cdata.bnx_tx_chain[idx] = NULL;
2608                 }
2609                 sc->bnx_txcnt--;
2610                 BNX_INC(sc->bnx_tx_saved_considx, BGE_TX_RING_CNT);
2611         }
2612
2613         if (cur_tx != NULL &&
2614             (BGE_TX_RING_CNT - sc->bnx_txcnt) >=
2615             (BNX_NSEG_RSVD + BNX_NSEG_SPARE))
2616                 ifp->if_flags &= ~IFF_OACTIVE;
2617
2618         if (sc->bnx_txcnt == 0)
2619                 ifp->if_timer = 0;
2620
2621         if (!ifq_is_empty(&ifp->if_snd))
2622                 if_devstart(ifp);
2623 }
2624
2625 #ifdef DEVICE_POLLING
2626
2627 static void
2628 bnx_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2629 {
2630         struct bnx_softc *sc = ifp->if_softc;
2631         struct bge_status_block *sblk = sc->bnx_ldata.bnx_status_block;
2632         uint16_t rx_prod, tx_cons;
2633
2634         switch(cmd) {
2635         case POLL_REGISTER:
2636                 bnx_disable_intr(sc);
2637                 break;
2638         case POLL_DEREGISTER:
2639                 bnx_enable_intr(sc);
2640                 break;
2641         case POLL_AND_CHECK_STATUS:
2642                 /*
2643                  * Process link state changes.
2644                  */
2645                 bnx_link_poll(sc);
2646                 /* Fall through */
2647         case POLL_ONLY:
2648                 sc->bnx_status_tag = sblk->bge_status_tag;
2649                 /*
2650                  * Use a load fence to ensure that status_tag
2651                  * is saved  before rx_prod and tx_cons.
2652                  */
2653                 cpu_lfence();
2654
2655                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2656                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2657                 if (ifp->if_flags & IFF_RUNNING) {
2658                         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2659                         if (sc->bnx_rx_saved_considx != rx_prod)
2660                                 bnx_rxeof(sc, rx_prod);
2661
2662                         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2663                         if (sc->bnx_tx_saved_considx != tx_cons)
2664                                 bnx_txeof(sc, tx_cons);
2665                 }
2666                 break;
2667         }
2668 }
2669
2670 #endif
2671
2672 static void
2673 bnx_intr_legacy(void *xsc)
2674 {
2675         struct bnx_softc *sc = xsc;
2676         struct bge_status_block *sblk = sc->bnx_ldata.bnx_status_block;
2677
2678         if (sc->bnx_status_tag == sblk->bge_status_tag) {
2679                 uint32_t val;
2680
2681                 val = pci_read_config(sc->bnx_dev, BGE_PCI_PCISTATE, 4);
2682                 if (val & BGE_PCISTAT_INTR_NOTACT)
2683                         return;
2684         }
2685
2686         /*
2687          * NOTE:
2688          * Interrupt will have to be disabled if tagged status
2689          * is used, else interrupt will always be asserted on
2690          * certain chips (at least on BCM5750 AX/BX).
2691          */
2692         bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
2693
2694         bnx_intr(sc);
2695 }
2696
2697 static void
2698 bnx_msi(void *xsc)
2699 {
2700         struct bnx_softc *sc = xsc;
2701
2702         /* Disable interrupt first */
2703         bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
2704         bnx_intr(sc);
2705 }
2706
2707 static void
2708 bnx_msi_oneshot(void *xsc)
2709 {
2710         bnx_intr(xsc);
2711 }
2712
2713 static void
2714 bnx_intr(struct bnx_softc *sc)
2715 {
2716         struct ifnet *ifp = &sc->arpcom.ac_if;
2717         struct bge_status_block *sblk = sc->bnx_ldata.bnx_status_block;
2718         uint16_t rx_prod, tx_cons;
2719         uint32_t status;
2720
2721         sc->bnx_status_tag = sblk->bge_status_tag;
2722         /*
2723          * Use a load fence to ensure that status_tag is saved 
2724          * before rx_prod, tx_cons and status.
2725          */
2726         cpu_lfence();
2727
2728         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2729         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2730         status = sblk->bge_status;
2731
2732         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bnx_link_evt)
2733                 bnx_link_poll(sc);
2734
2735         if (ifp->if_flags & IFF_RUNNING) {
2736                 if (sc->bnx_rx_saved_considx != rx_prod)
2737                         bnx_rxeof(sc, rx_prod);
2738
2739                 if (sc->bnx_tx_saved_considx != tx_cons)
2740                         bnx_txeof(sc, tx_cons);
2741         }
2742
2743         bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_status_tag << 24);
2744
2745         if (sc->bnx_coal_chg)
2746                 bnx_coal_change(sc);
2747 }
2748
2749 static void
2750 bnx_tick(void *xsc)
2751 {
2752         struct bnx_softc *sc = xsc;
2753         struct ifnet *ifp = &sc->arpcom.ac_if;
2754
2755         lwkt_serialize_enter(ifp->if_serializer);
2756
2757         KKASSERT(mycpuid == sc->bnx_stat_cpuid);
2758
2759         bnx_stats_update_regs(sc);
2760
2761         if (sc->bnx_flags & BNX_FLAG_TBI) {
2762                 /*
2763                  * Since in TBI mode auto-polling can't be used we should poll
2764                  * link status manually. Here we register pending link event
2765                  * and trigger interrupt.
2766                  */
2767                 sc->bnx_link_evt++;
2768                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
2769         } else if (!sc->bnx_link) {
2770                 mii_tick(device_get_softc(sc->bnx_miibus));
2771         }
2772
2773         callout_reset(&sc->bnx_stat_timer, hz, bnx_tick, sc);
2774
2775         lwkt_serialize_exit(ifp->if_serializer);
2776 }
2777
2778 static void
2779 bnx_stats_update_regs(struct bnx_softc *sc)
2780 {
2781         struct ifnet *ifp = &sc->arpcom.ac_if;
2782         struct bge_mac_stats_regs stats;
2783         uint32_t *s;
2784         int i;
2785
2786         s = (uint32_t *)&stats;
2787         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2788                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2789                 s++;
2790         }
2791
2792         ifp->if_collisions +=
2793            (stats.dot3StatsSingleCollisionFrames +
2794            stats.dot3StatsMultipleCollisionFrames +
2795            stats.dot3StatsExcessiveCollisions +
2796            stats.dot3StatsLateCollisions) -
2797            ifp->if_collisions;
2798 }
2799
2800 /*
2801  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2802  * pointers to descriptors.
2803  */
2804 static int
2805 bnx_encap(struct bnx_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2806 {
2807         struct bge_tx_bd *d = NULL;
2808         uint16_t csum_flags = 0, vlan_tag = 0, mss = 0;
2809         bus_dma_segment_t segs[BNX_NSEG_NEW];
2810         bus_dmamap_t map;
2811         int error, maxsegs, nsegs, idx, i;
2812         struct mbuf *m_head = *m_head0, *m_new;
2813
2814         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
2815 #ifdef BNX_TSO_DEBUG
2816                 int tso_nsegs;
2817 #endif
2818
2819                 error = bnx_setup_tso(sc, m_head0, &mss, &csum_flags);
2820                 if (error)
2821                         return error;
2822                 m_head = *m_head0;
2823
2824 #ifdef BNX_TSO_DEBUG
2825                 tso_nsegs = (m_head->m_pkthdr.len /
2826                     m_head->m_pkthdr.tso_segsz) - 1;
2827                 if (tso_nsegs > (BNX_TSO_NSTATS - 1))
2828                         tso_nsegs = BNX_TSO_NSTATS - 1;
2829                 else if (tso_nsegs < 0)
2830                         tso_nsegs = 0;
2831                 sc->bnx_tsosegs[tso_nsegs]++;
2832 #endif
2833         } else if (m_head->m_pkthdr.csum_flags & BNX_CSUM_FEATURES) {
2834                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2835                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2836                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2837                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2838                 if (m_head->m_flags & M_LASTFRAG)
2839                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2840                 else if (m_head->m_flags & M_FRAG)
2841                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2842         }
2843         if (m_head->m_flags & M_VLANTAG) {
2844                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
2845                 vlan_tag = m_head->m_pkthdr.ether_vlantag;
2846         }
2847
2848         idx = *txidx;
2849         map = sc->bnx_cdata.bnx_tx_dmamap[idx];
2850
2851         maxsegs = (BGE_TX_RING_CNT - sc->bnx_txcnt) - BNX_NSEG_RSVD;
2852         KASSERT(maxsegs >= BNX_NSEG_SPARE,
2853                 ("not enough segments %d", maxsegs));
2854
2855         if (maxsegs > BNX_NSEG_NEW)
2856                 maxsegs = BNX_NSEG_NEW;
2857
2858         /*
2859          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
2860          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
2861          * but when such padded frames employ the bge IP/TCP checksum
2862          * offload, the hardware checksum assist gives incorrect results
2863          * (possibly from incorporating its own padding into the UDP/TCP
2864          * checksum; who knows).  If we pad such runts with zeros, the
2865          * onboard checksum comes out correct.
2866          */
2867         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2868             m_head->m_pkthdr.len < BNX_MIN_FRAMELEN) {
2869                 error = m_devpad(m_head, BNX_MIN_FRAMELEN);
2870                 if (error)
2871                         goto back;
2872         }
2873
2874         if ((sc->bnx_flags & BNX_FLAG_SHORTDMA) && m_head->m_next != NULL) {
2875                 m_new = bnx_defrag_shortdma(m_head);
2876                 if (m_new == NULL) {
2877                         error = ENOBUFS;
2878                         goto back;
2879                 }
2880                 *m_head0 = m_head = m_new;
2881         }
2882         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
2883             sc->bnx_force_defrag && m_head->m_next != NULL) {
2884                 /*
2885                  * Forcefully defragment mbuf chain to overcome hardware
2886                  * limitation which only support a single outstanding
2887                  * DMA read operation.  If it fails, keep moving on using
2888                  * the original mbuf chain.
2889                  */
2890                 m_new = m_defrag(m_head, MB_DONTWAIT);
2891                 if (m_new != NULL)
2892                         *m_head0 = m_head = m_new;
2893         }
2894
2895         error = bus_dmamap_load_mbuf_defrag(sc->bnx_cdata.bnx_tx_mtag, map,
2896                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2897         if (error)
2898                 goto back;
2899
2900         m_head = *m_head0;
2901         bus_dmamap_sync(sc->bnx_cdata.bnx_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2902
2903         for (i = 0; ; i++) {
2904                 d = &sc->bnx_ldata.bnx_tx_ring[idx];
2905
2906                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
2907                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
2908                 d->bge_len = segs[i].ds_len;
2909                 d->bge_flags = csum_flags;
2910                 d->bge_vlan_tag = vlan_tag;
2911                 d->bge_mss = mss;
2912
2913                 if (i == nsegs - 1)
2914                         break;
2915                 BNX_INC(idx, BGE_TX_RING_CNT);
2916         }
2917         /* Mark the last segment as end of packet... */
2918         d->bge_flags |= BGE_TXBDFLAG_END;
2919
2920         /*
2921          * Insure that the map for this transmission is placed at
2922          * the array index of the last descriptor in this chain.
2923          */
2924         sc->bnx_cdata.bnx_tx_dmamap[*txidx] = sc->bnx_cdata.bnx_tx_dmamap[idx];
2925         sc->bnx_cdata.bnx_tx_dmamap[idx] = map;
2926         sc->bnx_cdata.bnx_tx_chain[idx] = m_head;
2927         sc->bnx_txcnt += nsegs;
2928
2929         BNX_INC(idx, BGE_TX_RING_CNT);
2930         *txidx = idx;
2931 back:
2932         if (error) {
2933                 m_freem(*m_head0);
2934                 *m_head0 = NULL;
2935         }
2936         return error;
2937 }
2938
2939 /*
2940  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2941  * to the mbuf data regions directly in the transmit descriptors.
2942  */
2943 static void
2944 bnx_start(struct ifnet *ifp)
2945 {
2946         struct bnx_softc *sc = ifp->if_softc;
2947         struct mbuf *m_head = NULL;
2948         uint32_t prodidx;
2949         int need_trans;
2950
2951         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2952                 return;
2953
2954         prodidx = sc->bnx_tx_prodidx;
2955
2956         need_trans = 0;
2957         while (sc->bnx_cdata.bnx_tx_chain[prodidx] == NULL) {
2958                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2959                 if (m_head == NULL)
2960                         break;
2961
2962                 /*
2963                  * XXX
2964                  * The code inside the if() block is never reached since we
2965                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2966                  * requests to checksum TCP/UDP in a fragmented packet.
2967                  * 
2968                  * XXX
2969                  * safety overkill.  If this is a fragmented packet chain
2970                  * with delayed TCP/UDP checksums, then only encapsulate
2971                  * it if we have enough descriptors to handle the entire
2972                  * chain at once.
2973                  * (paranoia -- may not actually be needed)
2974                  */
2975                 if ((m_head->m_flags & M_FIRSTFRAG) &&
2976                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
2977                         if ((BGE_TX_RING_CNT - sc->bnx_txcnt) <
2978                             m_head->m_pkthdr.csum_data + BNX_NSEG_RSVD) {
2979                                 ifp->if_flags |= IFF_OACTIVE;
2980                                 ifq_prepend(&ifp->if_snd, m_head);
2981                                 break;
2982                         }
2983                 }
2984
2985                 /*
2986                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2987                  * descriptors of the end of the ring.  Also make
2988                  * sure there are BGE_NSEG_SPARE descriptors for
2989                  * jumbo buffers' defragmentation.
2990                  */
2991                 if ((BGE_TX_RING_CNT - sc->bnx_txcnt) <
2992                     (BNX_NSEG_RSVD + BNX_NSEG_SPARE)) {
2993                         ifp->if_flags |= IFF_OACTIVE;
2994                         ifq_prepend(&ifp->if_snd, m_head);
2995                         break;
2996                 }
2997
2998                 /*
2999                  * Pack the data into the transmit ring. If we
3000                  * don't have room, set the OACTIVE flag and wait
3001                  * for the NIC to drain the ring.
3002                  */
3003                 if (bnx_encap(sc, &m_head, &prodidx)) {
3004                         ifp->if_flags |= IFF_OACTIVE;
3005                         ifp->if_oerrors++;
3006                         break;
3007                 }
3008                 need_trans = 1;
3009
3010                 ETHER_BPF_MTAP(ifp, m_head);
3011         }
3012
3013         if (!need_trans)
3014                 return;
3015
3016         /* Transmit */
3017         bnx_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3018
3019         sc->bnx_tx_prodidx = prodidx;
3020
3021         /*
3022          * Set a timeout in case the chip goes out to lunch.
3023          */
3024         ifp->if_timer = 5;
3025 }
3026
3027 static void
3028 bnx_init(void *xsc)
3029 {
3030         struct bnx_softc *sc = xsc;
3031         struct ifnet *ifp = &sc->arpcom.ac_if;
3032         uint16_t *m;
3033         uint32_t mode;
3034
3035         ASSERT_SERIALIZED(ifp->if_serializer);
3036
3037         /* Cancel pending I/O and flush buffers. */
3038         bnx_stop(sc);
3039         bnx_reset(sc);
3040         bnx_chipinit(sc);
3041
3042         /*
3043          * Init the various state machines, ring
3044          * control blocks and firmware.
3045          */
3046         if (bnx_blockinit(sc)) {
3047                 if_printf(ifp, "initialization failure\n");
3048                 bnx_stop(sc);
3049                 return;
3050         }
3051
3052         /* Specify MTU. */
3053         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3054             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3055
3056         /* Load our MAC address. */
3057         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3058         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3059         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3060
3061         /* Enable or disable promiscuous mode as needed. */
3062         bnx_setpromisc(sc);
3063
3064         /* Program multicast filter. */
3065         bnx_setmulti(sc);
3066
3067         /* Init RX ring. */
3068         if (bnx_init_rx_ring_std(sc)) {
3069                 if_printf(ifp, "RX ring initialization failed\n");
3070                 bnx_stop(sc);
3071                 return;
3072         }
3073
3074         /* Init jumbo RX ring. */
3075         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3076                 if (bnx_init_rx_ring_jumbo(sc)) {
3077                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3078                         bnx_stop(sc);
3079                         return;
3080                 }
3081         }
3082
3083         /* Init our RX return ring index */
3084         sc->bnx_rx_saved_considx = 0;
3085
3086         /* Init TX ring. */
3087         bnx_init_tx_ring(sc);
3088
3089         /* Enable TX MAC state machine lockup fix. */
3090         mode = CSR_READ_4(sc, BGE_TX_MODE);
3091         mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3092         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
3093                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3094                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
3095                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3096         }
3097         /* Turn on transmitter */
3098         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3099
3100         /* Turn on receiver */
3101         BNX_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3102
3103         /*
3104          * Set the number of good frames to receive after RX MBUF
3105          * Low Watermark has been reached.  After the RX MAC receives
3106          * this number of frames, it will drop subsequent incoming
3107          * frames until the MBUF High Watermark is reached.
3108          */
3109         if (BNX_IS_57765_FAMILY(sc))
3110                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
3111         else
3112                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3113
3114         if (sc->bnx_irq_type == PCI_INTR_TYPE_MSI) {
3115                 if (bootverbose) {
3116                         if_printf(ifp, "MSI_MODE: %#x\n",
3117                             CSR_READ_4(sc, BGE_MSI_MODE));
3118                 }
3119         }
3120
3121         /* Tell firmware we're alive. */
3122         BNX_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3123
3124         /* Enable host interrupts if polling(4) is not enabled. */
3125         PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3126 #ifdef DEVICE_POLLING
3127         if (ifp->if_flags & IFF_POLLING)
3128                 bnx_disable_intr(sc);
3129         else
3130 #endif
3131         bnx_enable_intr(sc);
3132
3133         bnx_ifmedia_upd(ifp);
3134
3135         ifp->if_flags |= IFF_RUNNING;
3136         ifp->if_flags &= ~IFF_OACTIVE;
3137
3138         callout_reset_bycpu(&sc->bnx_stat_timer, hz, bnx_tick, sc,
3139             sc->bnx_stat_cpuid);
3140 }
3141
3142 /*
3143  * Set media options.
3144  */
3145 static int
3146 bnx_ifmedia_upd(struct ifnet *ifp)
3147 {
3148         struct bnx_softc *sc = ifp->if_softc;
3149
3150         /* If this is a 1000baseX NIC, enable the TBI port. */
3151         if (sc->bnx_flags & BNX_FLAG_TBI) {
3152                 struct ifmedia *ifm = &sc->bnx_ifmedia;
3153
3154                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3155                         return(EINVAL);
3156
3157                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3158                 case IFM_AUTO:
3159                         break;
3160
3161                 case IFM_1000_SX:
3162                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3163                                 BNX_CLRBIT(sc, BGE_MAC_MODE,
3164                                     BGE_MACMODE_HALF_DUPLEX);
3165                         } else {
3166                                 BNX_SETBIT(sc, BGE_MAC_MODE,
3167                                     BGE_MACMODE_HALF_DUPLEX);
3168                         }
3169                         break;
3170                 default:
3171                         return(EINVAL);
3172                 }
3173         } else {
3174                 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3175
3176                 sc->bnx_link_evt++;
3177                 sc->bnx_link = 0;
3178                 if (mii->mii_instance) {
3179                         struct mii_softc *miisc;
3180
3181                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3182                                 mii_phy_reset(miisc);
3183                 }
3184                 mii_mediachg(mii);
3185
3186                 /*
3187                  * Force an interrupt so that we will call bnx_link_upd
3188                  * if needed and clear any pending link state attention.
3189                  * Without this we are not getting any further interrupts
3190                  * for link state changes and thus will not UP the link and
3191                  * not be able to send in bnx_start.  The only way to get
3192                  * things working was to receive a packet and get an RX
3193                  * intr.
3194                  *
3195                  * bnx_tick should help for fiber cards and we might not
3196                  * need to do this here if BNX_FLAG_TBI is set but as
3197                  * we poll for fiber anyway it should not harm.
3198                  */
3199                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3200         }
3201         return(0);
3202 }
3203
3204 /*
3205  * Report current media status.
3206  */
3207 static void
3208 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3209 {
3210         struct bnx_softc *sc = ifp->if_softc;
3211
3212         if (sc->bnx_flags & BNX_FLAG_TBI) {
3213                 ifmr->ifm_status = IFM_AVALID;
3214                 ifmr->ifm_active = IFM_ETHER;
3215                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3216                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3217                         ifmr->ifm_status |= IFM_ACTIVE;
3218                 } else {
3219                         ifmr->ifm_active |= IFM_NONE;
3220                         return;
3221                 }
3222
3223                 ifmr->ifm_active |= IFM_1000_SX;
3224                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3225                         ifmr->ifm_active |= IFM_HDX;    
3226                 else
3227                         ifmr->ifm_active |= IFM_FDX;
3228         } else {
3229                 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3230
3231                 mii_pollstat(mii);
3232                 ifmr->ifm_active = mii->mii_media_active;
3233                 ifmr->ifm_status = mii->mii_media_status;
3234         }
3235 }
3236
3237 static int
3238 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3239 {
3240         struct bnx_softc *sc = ifp->if_softc;
3241         struct ifreq *ifr = (struct ifreq *)data;
3242         int mask, error = 0;
3243
3244         ASSERT_SERIALIZED(ifp->if_serializer);
3245
3246         switch (command) {
3247         case SIOCSIFMTU:
3248                 if ((!BNX_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3249                     (BNX_IS_JUMBO_CAPABLE(sc) &&
3250                      ifr->ifr_mtu > BNX_JUMBO_MTU)) {
3251                         error = EINVAL;
3252                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3253                         ifp->if_mtu = ifr->ifr_mtu;
3254                         if (ifp->if_flags & IFF_RUNNING)
3255                                 bnx_init(sc);
3256                 }
3257                 break;
3258         case SIOCSIFFLAGS:
3259                 if (ifp->if_flags & IFF_UP) {
3260                         if (ifp->if_flags & IFF_RUNNING) {
3261                                 mask = ifp->if_flags ^ sc->bnx_if_flags;
3262
3263                                 /*
3264                                  * If only the state of the PROMISC flag
3265                                  * changed, then just use the 'set promisc
3266                                  * mode' command instead of reinitializing
3267                                  * the entire NIC. Doing a full re-init
3268                                  * means reloading the firmware and waiting
3269                                  * for it to start up, which may take a
3270                                  * second or two.  Similarly for ALLMULTI.
3271                                  */
3272                                 if (mask & IFF_PROMISC)
3273                                         bnx_setpromisc(sc);
3274                                 if (mask & IFF_ALLMULTI)
3275                                         bnx_setmulti(sc);
3276                         } else {
3277                                 bnx_init(sc);
3278                         }
3279                 } else if (ifp->if_flags & IFF_RUNNING) {
3280                         bnx_stop(sc);
3281                 }
3282                 sc->bnx_if_flags = ifp->if_flags;
3283                 break;
3284         case SIOCADDMULTI:
3285         case SIOCDELMULTI:
3286                 if (ifp->if_flags & IFF_RUNNING)
3287                         bnx_setmulti(sc);
3288                 break;
3289         case SIOCSIFMEDIA:
3290         case SIOCGIFMEDIA:
3291                 if (sc->bnx_flags & BNX_FLAG_TBI) {
3292                         error = ifmedia_ioctl(ifp, ifr,
3293                             &sc->bnx_ifmedia, command);
3294                 } else {
3295                         struct mii_data *mii;
3296
3297                         mii = device_get_softc(sc->bnx_miibus);
3298                         error = ifmedia_ioctl(ifp, ifr,
3299                                               &mii->mii_media, command);
3300                 }
3301                 break;
3302         case SIOCSIFCAP:
3303                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3304                 if (mask & IFCAP_HWCSUM) {
3305                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3306                         if (ifp->if_capenable & IFCAP_TXCSUM)
3307                                 ifp->if_hwassist |= BNX_CSUM_FEATURES;
3308                         else
3309                                 ifp->if_hwassist &= ~BNX_CSUM_FEATURES;
3310                 }
3311                 if (mask & IFCAP_TSO) {
3312                         ifp->if_capenable ^= (mask & IFCAP_TSO);
3313                         if (ifp->if_capenable & IFCAP_TSO)
3314                                 ifp->if_hwassist |= CSUM_TSO;
3315                         else
3316                                 ifp->if_hwassist &= ~CSUM_TSO;
3317                 }
3318                 break;
3319         default:
3320                 error = ether_ioctl(ifp, command, data);
3321                 break;
3322         }
3323         return error;
3324 }
3325
3326 static void
3327 bnx_watchdog(struct ifnet *ifp)
3328 {
3329         struct bnx_softc *sc = ifp->if_softc;
3330
3331         if_printf(ifp, "watchdog timeout -- resetting\n");
3332
3333         bnx_init(sc);
3334
3335         ifp->if_oerrors++;
3336
3337         if (!ifq_is_empty(&ifp->if_snd))
3338                 if_devstart(ifp);
3339 }
3340
3341 /*
3342  * Stop the adapter and free any mbufs allocated to the
3343  * RX and TX lists.
3344  */
3345 static void
3346 bnx_stop(struct bnx_softc *sc)
3347 {
3348         struct ifnet *ifp = &sc->arpcom.ac_if;
3349
3350         ASSERT_SERIALIZED(ifp->if_serializer);
3351
3352         callout_stop(&sc->bnx_stat_timer);
3353
3354         /*
3355          * Disable all of the receiver blocks
3356          */
3357         bnx_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3358         bnx_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3359         bnx_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3360         bnx_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3361         bnx_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3362         bnx_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3363
3364         /*
3365          * Disable all of the transmit blocks
3366          */
3367         bnx_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3368         bnx_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3369         bnx_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3370         bnx_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3371         bnx_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3372         bnx_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3373
3374         /*
3375          * Shut down all of the memory managers and related
3376          * state machines.
3377          */
3378         bnx_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3379         bnx_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3380         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3381         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3382
3383         /* Disable host interrupts. */
3384         bnx_disable_intr(sc);
3385
3386         /*
3387          * Tell firmware we're shutting down.
3388          */
3389         BNX_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3390
3391         /* Free the RX lists. */
3392         bnx_free_rx_ring_std(sc);
3393
3394         /* Free jumbo RX list. */
3395         if (BNX_IS_JUMBO_CAPABLE(sc))
3396                 bnx_free_rx_ring_jumbo(sc);
3397
3398         /* Free TX buffers. */
3399         bnx_free_tx_ring(sc);
3400
3401         sc->bnx_status_tag = 0;
3402         sc->bnx_link = 0;
3403         sc->bnx_coal_chg = 0;
3404
3405         sc->bnx_tx_saved_considx = BNX_TXCONS_UNSET;
3406
3407         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3408         ifp->if_timer = 0;
3409 }
3410
3411 /*
3412  * Stop all chip I/O so that the kernel's probe routines don't
3413  * get confused by errant DMAs when rebooting.
3414  */
3415 static void
3416 bnx_shutdown(device_t dev)
3417 {
3418         struct bnx_softc *sc = device_get_softc(dev);
3419         struct ifnet *ifp = &sc->arpcom.ac_if;
3420
3421         lwkt_serialize_enter(ifp->if_serializer);
3422         bnx_stop(sc);
3423         bnx_reset(sc);
3424         lwkt_serialize_exit(ifp->if_serializer);
3425 }
3426
3427 static int
3428 bnx_suspend(device_t dev)
3429 {
3430         struct bnx_softc *sc = device_get_softc(dev);
3431         struct ifnet *ifp = &sc->arpcom.ac_if;
3432
3433         lwkt_serialize_enter(ifp->if_serializer);
3434         bnx_stop(sc);
3435         lwkt_serialize_exit(ifp->if_serializer);
3436
3437         return 0;
3438 }
3439
3440 static int
3441 bnx_resume(device_t dev)
3442 {
3443         struct bnx_softc *sc = device_get_softc(dev);
3444         struct ifnet *ifp = &sc->arpcom.ac_if;
3445
3446         lwkt_serialize_enter(ifp->if_serializer);
3447
3448         if (ifp->if_flags & IFF_UP) {
3449                 bnx_init(sc);
3450
3451                 if (!ifq_is_empty(&ifp->if_snd))
3452                         if_devstart(ifp);
3453         }
3454
3455         lwkt_serialize_exit(ifp->if_serializer);
3456
3457         return 0;
3458 }
3459
3460 static void
3461 bnx_setpromisc(struct bnx_softc *sc)
3462 {
3463         struct ifnet *ifp = &sc->arpcom.ac_if;
3464
3465         if (ifp->if_flags & IFF_PROMISC)
3466                 BNX_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3467         else
3468                 BNX_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3469 }
3470
3471 static void
3472 bnx_dma_free(struct bnx_softc *sc)
3473 {
3474         int i;
3475
3476         /* Destroy RX mbuf DMA stuffs. */
3477         if (sc->bnx_cdata.bnx_rx_mtag != NULL) {
3478                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3479                         bus_dmamap_destroy(sc->bnx_cdata.bnx_rx_mtag,
3480                             sc->bnx_cdata.bnx_rx_std_dmamap[i]);
3481                 }
3482                 bus_dmamap_destroy(sc->bnx_cdata.bnx_rx_mtag,
3483                                    sc->bnx_cdata.bnx_rx_tmpmap);
3484                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_rx_mtag);
3485         }
3486
3487         /* Destroy TX mbuf DMA stuffs. */
3488         if (sc->bnx_cdata.bnx_tx_mtag != NULL) {
3489                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3490                         bus_dmamap_destroy(sc->bnx_cdata.bnx_tx_mtag,
3491                             sc->bnx_cdata.bnx_tx_dmamap[i]);
3492                 }
3493                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_tx_mtag);
3494         }
3495
3496         /* Destroy standard RX ring */
3497         bnx_dma_block_free(sc->bnx_cdata.bnx_rx_std_ring_tag,
3498                            sc->bnx_cdata.bnx_rx_std_ring_map,
3499                            sc->bnx_ldata.bnx_rx_std_ring);
3500
3501         if (BNX_IS_JUMBO_CAPABLE(sc))
3502                 bnx_free_jumbo_mem(sc);
3503
3504         /* Destroy RX return ring */
3505         bnx_dma_block_free(sc->bnx_cdata.bnx_rx_return_ring_tag,
3506                            sc->bnx_cdata.bnx_rx_return_ring_map,
3507                            sc->bnx_ldata.bnx_rx_return_ring);
3508
3509         /* Destroy TX ring */
3510         bnx_dma_block_free(sc->bnx_cdata.bnx_tx_ring_tag,
3511                            sc->bnx_cdata.bnx_tx_ring_map,
3512                            sc->bnx_ldata.bnx_tx_ring);
3513
3514         /* Destroy status block */
3515         bnx_dma_block_free(sc->bnx_cdata.bnx_status_tag,
3516                            sc->bnx_cdata.bnx_status_map,
3517                            sc->bnx_ldata.bnx_status_block);
3518
3519         /* Destroy the parent tag */
3520         if (sc->bnx_cdata.bnx_parent_tag != NULL)
3521                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_parent_tag);
3522 }
3523
3524 static int
3525 bnx_dma_alloc(struct bnx_softc *sc)
3526 {
3527         struct ifnet *ifp = &sc->arpcom.ac_if;
3528         bus_size_t txmaxsz;
3529         int i, error;
3530
3531         /*
3532          * Allocate the parent bus DMA tag appropriate for PCI.
3533          *
3534          * All of the NetExtreme/NetLink controllers have 4GB boundary
3535          * DMA bug.
3536          * Whenever an address crosses a multiple of the 4GB boundary
3537          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3538          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3539          * state machine will lockup and cause the device to hang.
3540          */
3541         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
3542                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3543                                    NULL, NULL,
3544                                    BUS_SPACE_MAXSIZE_32BIT, 0,
3545                                    BUS_SPACE_MAXSIZE_32BIT,
3546                                    0, &sc->bnx_cdata.bnx_parent_tag);
3547         if (error) {
3548                 if_printf(ifp, "could not allocate parent dma tag\n");
3549                 return error;
3550         }
3551
3552         /*
3553          * Create DMA tag and maps for RX mbufs.
3554          */
3555         error = bus_dma_tag_create(sc->bnx_cdata.bnx_parent_tag, 1, 0,
3556                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3557                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
3558                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3559                                    &sc->bnx_cdata.bnx_rx_mtag);
3560         if (error) {
3561                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
3562                 return error;
3563         }
3564
3565         error = bus_dmamap_create(sc->bnx_cdata.bnx_rx_mtag,
3566                                   BUS_DMA_WAITOK, &sc->bnx_cdata.bnx_rx_tmpmap);
3567         if (error) {
3568                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_rx_mtag);
3569                 sc->bnx_cdata.bnx_rx_mtag = NULL;
3570                 return error;
3571         }
3572
3573         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3574                 error = bus_dmamap_create(sc->bnx_cdata.bnx_rx_mtag,
3575                                           BUS_DMA_WAITOK,
3576                                           &sc->bnx_cdata.bnx_rx_std_dmamap[i]);
3577                 if (error) {
3578                         int j;
3579
3580                         for (j = 0; j < i; ++j) {
3581                                 bus_dmamap_destroy(sc->bnx_cdata.bnx_rx_mtag,
3582                                         sc->bnx_cdata.bnx_rx_std_dmamap[j]);
3583                         }
3584                         bus_dma_tag_destroy(sc->bnx_cdata.bnx_rx_mtag);
3585                         sc->bnx_cdata.bnx_rx_mtag = NULL;
3586
3587                         if_printf(ifp, "could not create DMA map for RX\n");
3588                         return error;
3589                 }
3590         }
3591
3592         /*
3593          * Create DMA tag and maps for TX mbufs.
3594          */
3595         if (sc->bnx_flags & BNX_FLAG_TSO)
3596                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
3597         else
3598                 txmaxsz = BNX_JUMBO_FRAMELEN;
3599         error = bus_dma_tag_create(sc->bnx_cdata.bnx_parent_tag, 1, 0,
3600                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3601                                    NULL, NULL,
3602                                    txmaxsz, BNX_NSEG_NEW, PAGE_SIZE,
3603                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
3604                                    BUS_DMA_ONEBPAGE,
3605                                    &sc->bnx_cdata.bnx_tx_mtag);
3606         if (error) {
3607                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
3608                 return error;
3609         }
3610
3611         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3612                 error = bus_dmamap_create(sc->bnx_cdata.bnx_tx_mtag,
3613                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
3614                                           &sc->bnx_cdata.bnx_tx_dmamap[i]);
3615                 if (error) {
3616                         int j;
3617
3618                         for (j = 0; j < i; ++j) {
3619                                 bus_dmamap_destroy(sc->bnx_cdata.bnx_tx_mtag,
3620                                         sc->bnx_cdata.bnx_tx_dmamap[j]);
3621                         }
3622                         bus_dma_tag_destroy(sc->bnx_cdata.bnx_tx_mtag);
3623                         sc->bnx_cdata.bnx_tx_mtag = NULL;
3624
3625                         if_printf(ifp, "could not create DMA map for TX\n");
3626                         return error;
3627                 }
3628         }
3629
3630         /*
3631          * Create DMA stuffs for standard RX ring.
3632          */
3633         error = bnx_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3634                                     &sc->bnx_cdata.bnx_rx_std_ring_tag,
3635                                     &sc->bnx_cdata.bnx_rx_std_ring_map,
3636                                     (void *)&sc->bnx_ldata.bnx_rx_std_ring,
3637                                     &sc->bnx_ldata.bnx_rx_std_ring_paddr);
3638         if (error) {
3639                 if_printf(ifp, "could not create std RX ring\n");
3640                 return error;
3641         }
3642
3643         /*
3644          * Create jumbo buffer pool.
3645          */
3646         if (BNX_IS_JUMBO_CAPABLE(sc)) {
3647                 error = bnx_alloc_jumbo_mem(sc);
3648                 if (error) {
3649                         if_printf(ifp, "could not create jumbo buffer pool\n");
3650                         return error;
3651                 }
3652         }
3653
3654         /*
3655          * Create DMA stuffs for RX return ring.
3656          */
3657         error = bnx_dma_block_alloc(sc,
3658             BGE_RX_RTN_RING_SZ(sc->bnx_return_ring_cnt),
3659             &sc->bnx_cdata.bnx_rx_return_ring_tag,
3660             &sc->bnx_cdata.bnx_rx_return_ring_map,
3661             (void *)&sc->bnx_ldata.bnx_rx_return_ring,
3662             &sc->bnx_ldata.bnx_rx_return_ring_paddr);
3663         if (error) {
3664                 if_printf(ifp, "could not create RX ret ring\n");
3665                 return error;
3666         }
3667
3668         /*
3669          * Create DMA stuffs for TX ring.
3670          */
3671         error = bnx_dma_block_alloc(sc, BGE_TX_RING_SZ,
3672                                     &sc->bnx_cdata.bnx_tx_ring_tag,
3673                                     &sc->bnx_cdata.bnx_tx_ring_map,
3674                                     (void *)&sc->bnx_ldata.bnx_tx_ring,
3675                                     &sc->bnx_ldata.bnx_tx_ring_paddr);
3676         if (error) {
3677                 if_printf(ifp, "could not create TX ring\n");
3678                 return error;
3679         }
3680
3681         /*
3682          * Create DMA stuffs for status block.
3683          */
3684         error = bnx_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3685                                     &sc->bnx_cdata.bnx_status_tag,
3686                                     &sc->bnx_cdata.bnx_status_map,
3687                                     (void *)&sc->bnx_ldata.bnx_status_block,
3688                                     &sc->bnx_ldata.bnx_status_block_paddr);
3689         if (error) {
3690                 if_printf(ifp, "could not create status block\n");
3691                 return error;
3692         }
3693
3694         return 0;
3695 }
3696
3697 static int
3698 bnx_dma_block_alloc(struct bnx_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3699                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3700 {
3701         bus_dmamem_t dmem;
3702         int error;
3703
3704         error = bus_dmamem_coherent(sc->bnx_cdata.bnx_parent_tag, PAGE_SIZE, 0,
3705                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3706                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3707         if (error)
3708                 return error;
3709
3710         *tag = dmem.dmem_tag;
3711         *map = dmem.dmem_map;
3712         *addr = dmem.dmem_addr;
3713         *paddr = dmem.dmem_busaddr;
3714
3715         return 0;
3716 }
3717
3718 static void
3719 bnx_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3720 {
3721         if (tag != NULL) {
3722                 bus_dmamap_unload(tag, map);
3723                 bus_dmamem_free(tag, addr, map);
3724                 bus_dma_tag_destroy(tag);
3725         }
3726 }
3727
3728 static void
3729 bnx_tbi_link_upd(struct bnx_softc *sc, uint32_t status)
3730 {
3731         struct ifnet *ifp = &sc->arpcom.ac_if;
3732
3733 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3734
3735         /*
3736          * Sometimes PCS encoding errors are detected in
3737          * TBI mode (on fiber NICs), and for some reason
3738          * the chip will signal them as link changes.
3739          * If we get a link change event, but the 'PCS
3740          * encoding error' bit in the MAC status register
3741          * is set, don't bother doing a link check.
3742          * This avoids spurious "gigabit link up" messages
3743          * that sometimes appear on fiber NICs during
3744          * periods of heavy traffic.
3745          */
3746         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3747                 if (!sc->bnx_link) {
3748                         sc->bnx_link++;
3749                         if (sc->bnx_asicrev == BGE_ASICREV_BCM5704) {
3750                                 BNX_CLRBIT(sc, BGE_MAC_MODE,
3751                                     BGE_MACMODE_TBI_SEND_CFGS);
3752                         }
3753                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3754
3755                         if (bootverbose)
3756                                 if_printf(ifp, "link UP\n");
3757
3758                         ifp->if_link_state = LINK_STATE_UP;
3759                         if_link_state_change(ifp);
3760                 }
3761         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3762                 if (sc->bnx_link) {
3763                         sc->bnx_link = 0;
3764
3765                         if (bootverbose)
3766                                 if_printf(ifp, "link DOWN\n");
3767
3768                         ifp->if_link_state = LINK_STATE_DOWN;
3769                         if_link_state_change(ifp);
3770                 }
3771         }
3772
3773 #undef PCS_ENCODE_ERR
3774
3775         /* Clear the attention. */
3776         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3777             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3778             BGE_MACSTAT_LINK_CHANGED);
3779 }
3780
3781 static void
3782 bnx_copper_link_upd(struct bnx_softc *sc, uint32_t status __unused)
3783 {
3784         struct ifnet *ifp = &sc->arpcom.ac_if;
3785         struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3786
3787         mii_pollstat(mii);
3788         bnx_miibus_statchg(sc->bnx_dev);
3789
3790         if (bootverbose) {
3791                 if (sc->bnx_link)
3792                         if_printf(ifp, "link UP\n");
3793                 else
3794                         if_printf(ifp, "link DOWN\n");
3795         }
3796
3797         /* Clear the attention. */
3798         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3799             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3800             BGE_MACSTAT_LINK_CHANGED);
3801 }
3802
3803 static void
3804 bnx_autopoll_link_upd(struct bnx_softc *sc, uint32_t status __unused)
3805 {
3806         struct ifnet *ifp = &sc->arpcom.ac_if;
3807         struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3808
3809         mii_pollstat(mii);
3810
3811         if (!sc->bnx_link &&
3812             (mii->mii_media_status & IFM_ACTIVE) &&
3813             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3814                 sc->bnx_link++;
3815                 if (bootverbose)
3816                         if_printf(ifp, "link UP\n");
3817         } else if (sc->bnx_link &&
3818             (!(mii->mii_media_status & IFM_ACTIVE) ||
3819             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3820                 sc->bnx_link = 0;
3821                 if (bootverbose)
3822                         if_printf(ifp, "link DOWN\n");
3823         }
3824
3825         /* Clear the attention. */
3826         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3827             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3828             BGE_MACSTAT_LINK_CHANGED);
3829 }
3830
3831 static int
3832 bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3833 {
3834         struct bnx_softc *sc = arg1;
3835
3836         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3837             &sc->bnx_rx_coal_ticks,
3838             BNX_RX_COAL_TICKS_MIN, BNX_RX_COAL_TICKS_MAX,
3839             BNX_RX_COAL_TICKS_CHG);
3840 }
3841
3842 static int
3843 bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3844 {
3845         struct bnx_softc *sc = arg1;
3846
3847         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3848             &sc->bnx_tx_coal_ticks,
3849             BNX_TX_COAL_TICKS_MIN, BNX_TX_COAL_TICKS_MAX,
3850             BNX_TX_COAL_TICKS_CHG);
3851 }
3852
3853 static int
3854 bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
3855 {
3856         struct bnx_softc *sc = arg1;
3857
3858         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3859             &sc->bnx_rx_coal_bds,
3860             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
3861             BNX_RX_COAL_BDS_CHG);
3862 }
3863
3864 static int
3865 bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
3866 {
3867         struct bnx_softc *sc = arg1;
3868
3869         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3870             &sc->bnx_tx_coal_bds,
3871             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
3872             BNX_TX_COAL_BDS_CHG);
3873 }
3874
3875 static int
3876 bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
3877 {
3878         struct bnx_softc *sc = arg1;
3879
3880         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3881             &sc->bnx_rx_coal_bds_int,
3882             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
3883             BNX_RX_COAL_BDS_INT_CHG);
3884 }
3885
3886 static int
3887 bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
3888 {
3889         struct bnx_softc *sc = arg1;
3890
3891         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3892             &sc->bnx_tx_coal_bds_int,
3893             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
3894             BNX_TX_COAL_BDS_INT_CHG);
3895 }
3896
3897 static int
3898 bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3899     int coal_min, int coal_max, uint32_t coal_chg_mask)
3900 {
3901         struct bnx_softc *sc = arg1;
3902         struct ifnet *ifp = &sc->arpcom.ac_if;
3903         int error = 0, v;
3904
3905         lwkt_serialize_enter(ifp->if_serializer);
3906
3907         v = *coal;
3908         error = sysctl_handle_int(oidp, &v, 0, req);
3909         if (!error && req->newptr != NULL) {
3910                 if (v < coal_min || v > coal_max) {
3911                         error = EINVAL;
3912                 } else {
3913                         *coal = v;
3914                         sc->bnx_coal_chg |= coal_chg_mask;
3915                 }
3916         }
3917
3918         lwkt_serialize_exit(ifp->if_serializer);
3919         return error;
3920 }
3921
3922 static void
3923 bnx_coal_change(struct bnx_softc *sc)
3924 {
3925         struct ifnet *ifp = &sc->arpcom.ac_if;
3926         uint32_t val;
3927
3928         ASSERT_SERIALIZED(ifp->if_serializer);
3929
3930         if (sc->bnx_coal_chg & BNX_RX_COAL_TICKS_CHG) {
3931                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3932                             sc->bnx_rx_coal_ticks);
3933                 DELAY(10);
3934                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3935
3936                 if (bootverbose) {
3937                         if_printf(ifp, "rx_coal_ticks -> %u\n",
3938                                   sc->bnx_rx_coal_ticks);
3939                 }
3940         }
3941
3942         if (sc->bnx_coal_chg & BNX_TX_COAL_TICKS_CHG) {
3943                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3944                             sc->bnx_tx_coal_ticks);
3945                 DELAY(10);
3946                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3947
3948                 if (bootverbose) {
3949                         if_printf(ifp, "tx_coal_ticks -> %u\n",
3950                                   sc->bnx_tx_coal_ticks);
3951                 }
3952         }
3953
3954         if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_CHG) {
3955                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3956                             sc->bnx_rx_coal_bds);
3957                 DELAY(10);
3958                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3959
3960                 if (bootverbose) {
3961                         if_printf(ifp, "rx_coal_bds -> %u\n",
3962                                   sc->bnx_rx_coal_bds);
3963                 }
3964         }
3965
3966         if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_CHG) {
3967                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3968                             sc->bnx_tx_coal_bds);
3969                 DELAY(10);
3970                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3971
3972                 if (bootverbose) {
3973                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
3974                                   sc->bnx_tx_coal_bds);
3975                 }
3976         }
3977
3978         if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_INT_CHG) {
3979                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
3980                     sc->bnx_rx_coal_bds_int);
3981                 DELAY(10);
3982                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
3983
3984                 if (bootverbose) {
3985                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
3986                             sc->bnx_rx_coal_bds_int);
3987                 }
3988         }
3989
3990         if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_INT_CHG) {
3991                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
3992                     sc->bnx_tx_coal_bds_int);
3993                 DELAY(10);
3994                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
3995
3996                 if (bootverbose) {
3997                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
3998                             sc->bnx_tx_coal_bds_int);
3999                 }
4000         }
4001
4002         sc->bnx_coal_chg = 0;
4003 }
4004
4005 static void
4006 bnx_intr_check(void *xsc)
4007 {
4008         struct bnx_softc *sc = xsc;
4009         struct ifnet *ifp = &sc->arpcom.ac_if;
4010         struct bge_status_block *sblk = sc->bnx_ldata.bnx_status_block;
4011
4012         lwkt_serialize_enter(ifp->if_serializer);
4013
4014         KKASSERT(mycpuid == sc->bnx_intr_cpuid);
4015
4016         if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) != IFF_RUNNING) {
4017                 lwkt_serialize_exit(ifp->if_serializer);
4018                 return;
4019         }
4020
4021         if (sblk->bge_idx[0].bge_rx_prod_idx != sc->bnx_rx_saved_considx ||
4022             sblk->bge_idx[0].bge_tx_cons_idx != sc->bnx_tx_saved_considx) {
4023                 if (sc->bnx_rx_check_considx == sc->bnx_rx_saved_considx &&
4024                     sc->bnx_tx_check_considx == sc->bnx_tx_saved_considx) {
4025                         if (!sc->bnx_intr_maylose) {
4026                                 sc->bnx_intr_maylose = TRUE;
4027                                 goto done;
4028                         }
4029                         if (bootverbose)
4030                                 if_printf(ifp, "lost interrupt\n");
4031                         bnx_msi(sc);
4032                 }
4033         }
4034         sc->bnx_intr_maylose = FALSE;
4035         sc->bnx_rx_check_considx = sc->bnx_rx_saved_considx;
4036         sc->bnx_tx_check_considx = sc->bnx_tx_saved_considx;
4037
4038 done:
4039         callout_reset(&sc->bnx_intr_timer, BNX_INTR_CKINTVL,
4040             bnx_intr_check, sc);
4041         lwkt_serialize_exit(ifp->if_serializer);
4042 }
4043
4044 static void
4045 bnx_enable_intr(struct bnx_softc *sc)
4046 {
4047         struct ifnet *ifp = &sc->arpcom.ac_if;
4048
4049         lwkt_serialize_handler_enable(ifp->if_serializer);
4050
4051         /*
4052          * Enable interrupt.
4053          */
4054         bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_status_tag << 24);
4055         if (sc->bnx_flags & BNX_FLAG_ONESHOT_MSI) {
4056                 /* XXX Linux driver */
4057                 bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_status_tag << 24);
4058         }
4059
4060         /*
4061          * Unmask the interrupt when we stop polling.
4062          */
4063         PCI_CLRBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4064             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4065
4066         /*
4067          * Trigger another interrupt, since above writing
4068          * to interrupt mailbox0 may acknowledge pending
4069          * interrupt.
4070          */
4071         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4072
4073         if (sc->bnx_flags & BNX_FLAG_STATUSTAG_BUG) {
4074                 sc->bnx_intr_maylose = FALSE;
4075                 sc->bnx_rx_check_considx = 0;
4076                 sc->bnx_tx_check_considx = 0;
4077
4078                 if (bootverbose)
4079                         if_printf(ifp, "status tag bug workaround\n");
4080
4081                 /* 10ms check interval */
4082                 callout_reset_bycpu(&sc->bnx_intr_timer, BNX_INTR_CKINTVL,
4083                     bnx_intr_check, sc, sc->bnx_intr_cpuid);
4084         }
4085 }
4086
4087 static void
4088 bnx_disable_intr(struct bnx_softc *sc)
4089 {
4090         struct ifnet *ifp = &sc->arpcom.ac_if;
4091
4092         /*
4093          * Mask the interrupt when we start polling.
4094          */
4095         PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4096             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4097
4098         /*
4099          * Acknowledge possible asserted interrupt.
4100          */
4101         bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4102
4103         callout_stop(&sc->bnx_intr_timer);
4104         sc->bnx_intr_maylose = FALSE;
4105         sc->bnx_rx_check_considx = 0;
4106         sc->bnx_tx_check_considx = 0;
4107
4108         lwkt_serialize_handler_disable(ifp->if_serializer);
4109 }
4110
4111 static int
4112 bnx_get_eaddr_mem(struct bnx_softc *sc, uint8_t ether_addr[])
4113 {
4114         uint32_t mac_addr;
4115         int ret = 1;
4116
4117         mac_addr = bnx_readmem_ind(sc, 0x0c14);
4118         if ((mac_addr >> 16) == 0x484b) {
4119                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4120                 ether_addr[1] = (uint8_t)mac_addr;
4121                 mac_addr = bnx_readmem_ind(sc, 0x0c18);
4122                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4123                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4124                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4125                 ether_addr[5] = (uint8_t)mac_addr;
4126                 ret = 0;
4127         }
4128         return ret;
4129 }
4130
4131 static int
4132 bnx_get_eaddr_nvram(struct bnx_softc *sc, uint8_t ether_addr[])
4133 {
4134         int mac_offset = BGE_EE_MAC_OFFSET;
4135
4136         if (BNX_IS_5717_PLUS(sc)) {
4137                 int f;
4138
4139                 f = pci_get_function(sc->bnx_dev);
4140                 if (f & 1)
4141                         mac_offset = BGE_EE_MAC_OFFSET_5717;
4142                 if (f > 1)
4143                         mac_offset += BGE_EE_MAC_OFFSET_5717_OFF;
4144         } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
4145                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4146         }
4147
4148         return bnx_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4149 }
4150
4151 static int
4152 bnx_get_eaddr_eeprom(struct bnx_softc *sc, uint8_t ether_addr[])
4153 {
4154         if (sc->bnx_flags & BNX_FLAG_NO_EEPROM)
4155                 return 1;
4156
4157         return bnx_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4158                                ETHER_ADDR_LEN);
4159 }
4160
4161 static int
4162 bnx_get_eaddr(struct bnx_softc *sc, uint8_t eaddr[])
4163 {
4164         static const bnx_eaddr_fcn_t bnx_eaddr_funcs[] = {
4165                 /* NOTE: Order is critical */
4166                 bnx_get_eaddr_mem,
4167                 bnx_get_eaddr_nvram,
4168                 bnx_get_eaddr_eeprom,
4169                 NULL
4170         };
4171         const bnx_eaddr_fcn_t *func;
4172
4173         for (func = bnx_eaddr_funcs; *func != NULL; ++func) {
4174                 if ((*func)(sc, eaddr) == 0)
4175                         break;
4176         }
4177         return (*func == NULL ? ENXIO : 0);
4178 }
4179
4180 /*
4181  * NOTE: 'm' is not freed upon failure
4182  */
4183 struct mbuf *
4184 bnx_defrag_shortdma(struct mbuf *m)
4185 {
4186         struct mbuf *n;
4187         int found;
4188
4189         /*
4190          * If device receive two back-to-back send BDs with less than
4191          * or equal to 8 total bytes then the device may hang.  The two
4192          * back-to-back send BDs must in the same frame for this failure
4193          * to occur.  Scan mbuf chains and see whether two back-to-back
4194          * send BDs are there.  If this is the case, allocate new mbuf
4195          * and copy the frame to workaround the silicon bug.
4196          */
4197         for (n = m, found = 0; n != NULL; n = n->m_next) {
4198                 if (n->m_len < 8) {
4199                         found++;
4200                         if (found > 1)
4201                                 break;
4202                         continue;
4203                 }
4204                 found = 0;
4205         }
4206
4207         if (found > 1)
4208                 n = m_defrag(m, MB_DONTWAIT);
4209         else
4210                 n = m;
4211         return n;
4212 }
4213
4214 static void
4215 bnx_stop_block(struct bnx_softc *sc, bus_size_t reg, uint32_t bit)
4216 {
4217         int i;
4218
4219         BNX_CLRBIT(sc, reg, bit);
4220         for (i = 0; i < BNX_TIMEOUT; i++) {
4221                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4222                         return;
4223                 DELAY(100);
4224         }
4225 }
4226
4227 static void
4228 bnx_link_poll(struct bnx_softc *sc)
4229 {
4230         uint32_t status;
4231
4232         status = CSR_READ_4(sc, BGE_MAC_STS);
4233         if ((status & sc->bnx_link_chg) || sc->bnx_link_evt) {
4234                 sc->bnx_link_evt = 0;
4235                 sc->bnx_link_upd(sc, status);
4236         }
4237 }
4238
4239 static void
4240 bnx_enable_msi(struct bnx_softc *sc)
4241 {
4242         uint32_t msi_mode;
4243
4244         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4245         msi_mode |= BGE_MSIMODE_ENABLE;
4246         if (sc->bnx_flags & BNX_FLAG_ONESHOT_MSI) {
4247                 /*
4248                  * NOTE:
4249                  * 5718-PG105-R says that "one shot" mode
4250                  * does not work if MSI is used, however,
4251                  * it obviously works.
4252                  */
4253                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4254         }
4255         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4256 }
4257
4258 static uint32_t
4259 bnx_dma_swap_options(struct bnx_softc *sc)
4260 {
4261         uint32_t dma_options;
4262
4263         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
4264             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
4265 #if BYTE_ORDER == BIG_ENDIAN
4266         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
4267 #endif
4268         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
4269                 dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA |
4270                     BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE |
4271                     BGE_MODECTL_HTX2B_ENABLE;
4272         }
4273         return dma_options;
4274 }
4275
4276 static int
4277 bnx_setup_tso(struct bnx_softc *sc, struct mbuf **mp,
4278     uint16_t *mss0, uint16_t *flags0)
4279 {
4280         struct mbuf *m;
4281         struct ip *ip;
4282         struct tcphdr *th;
4283         int thoff, iphlen, hoff, hlen;
4284         uint16_t flags, mss;
4285
4286         m = *mp;
4287         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4288
4289         hoff = m->m_pkthdr.csum_lhlen;
4290         iphlen = m->m_pkthdr.csum_iphlen;
4291         thoff = m->m_pkthdr.csum_thlen;
4292
4293         KASSERT(hoff > 0, ("invalid ether header len"));
4294         KASSERT(iphlen > 0, ("invalid ip header len"));
4295         KASSERT(thoff > 0, ("invalid tcp header len"));
4296
4297         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4298                 m = m_pullup(m, hoff + iphlen + thoff);
4299                 if (m == NULL) {
4300                         *mp = NULL;
4301                         return ENOBUFS;
4302                 }
4303                 *mp = m;
4304         }
4305         ip = mtodoff(m, struct ip *, hoff);
4306         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
4307
4308         mss = m->m_pkthdr.tso_segsz;
4309         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
4310
4311         ip->ip_len = htons(mss + iphlen + thoff);
4312         th->th_sum = 0;
4313
4314         hlen = (iphlen + thoff) >> 2;
4315         mss |= ((hlen & 0x3) << 14);
4316         flags |= ((hlen & 0xf8) << 7) | ((hlen & 0x4) << 2);
4317
4318         *mss0 = mss;
4319         *flags0 = flags;
4320
4321         return 0;
4322 }