Import libarchive-3.0.2.
[dragonfly.git] / contrib / libarchive / libarchive / archive_rb.c
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com>.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  *
29  * Based on: NetBSD: rb.c,v 1.6 2010/04/30 13:58:09 joerg Exp
30  */
31
32 #include "archive_platform.h"
33
34 #include <stddef.h>
35
36 #include "archive_rb.h"
37
38 /* Keep in sync with archive_rb.h */
39 #define RB_DIR_LEFT             0
40 #define RB_DIR_RIGHT            1
41 #define RB_DIR_OTHER            1
42 #define rb_left                 rb_nodes[RB_DIR_LEFT]
43 #define rb_right                rb_nodes[RB_DIR_RIGHT]
44
45 #define RB_FLAG_POSITION        0x2
46 #define RB_FLAG_RED             0x1
47 #define RB_FLAG_MASK            (RB_FLAG_POSITION|RB_FLAG_RED)
48 #define RB_FATHER(rb) \
49     ((struct archive_rb_node *)((rb)->rb_info & ~RB_FLAG_MASK))
50 #define RB_SET_FATHER(rb, father) \
51     ((void)((rb)->rb_info = (uintptr_t)(father)|((rb)->rb_info & RB_FLAG_MASK)))
52
53 #define RB_SENTINEL_P(rb)       ((rb) == NULL)
54 #define RB_LEFT_SENTINEL_P(rb)  RB_SENTINEL_P((rb)->rb_left)
55 #define RB_RIGHT_SENTINEL_P(rb) RB_SENTINEL_P((rb)->rb_right)
56 #define RB_FATHER_SENTINEL_P(rb) RB_SENTINEL_P(RB_FATHER((rb)))
57 #define RB_CHILDLESS_P(rb) \
58     (RB_SENTINEL_P(rb) || (RB_LEFT_SENTINEL_P(rb) && RB_RIGHT_SENTINEL_P(rb)))
59 #define RB_TWOCHILDREN_P(rb) \
60     (!RB_SENTINEL_P(rb) && !RB_LEFT_SENTINEL_P(rb) && !RB_RIGHT_SENTINEL_P(rb))
61
62 #define RB_POSITION(rb) \
63     (((rb)->rb_info & RB_FLAG_POSITION) ? RB_DIR_RIGHT : RB_DIR_LEFT)
64 #define RB_RIGHT_P(rb)          (RB_POSITION(rb) == RB_DIR_RIGHT)
65 #define RB_LEFT_P(rb)           (RB_POSITION(rb) == RB_DIR_LEFT)
66 #define RB_RED_P(rb)            (!RB_SENTINEL_P(rb) && ((rb)->rb_info & RB_FLAG_RED) != 0)
67 #define RB_BLACK_P(rb)          (RB_SENTINEL_P(rb) || ((rb)->rb_info & RB_FLAG_RED) == 0)
68 #define RB_MARK_RED(rb)         ((void)((rb)->rb_info |= RB_FLAG_RED))
69 #define RB_MARK_BLACK(rb)       ((void)((rb)->rb_info &= ~RB_FLAG_RED))
70 #define RB_INVERT_COLOR(rb)     ((void)((rb)->rb_info ^= RB_FLAG_RED))
71 #define RB_ROOT_P(rbt, rb)      ((rbt)->rbt_root == (rb))
72 #define RB_SET_POSITION(rb, position) \
73     ((void)((position) ? ((rb)->rb_info |= RB_FLAG_POSITION) : \
74     ((rb)->rb_info &= ~RB_FLAG_POSITION)))
75 #define RB_ZERO_PROPERTIES(rb)  ((void)((rb)->rb_info &= ~RB_FLAG_MASK))
76 #define RB_COPY_PROPERTIES(dst, src) \
77     ((void)((dst)->rb_info ^= ((dst)->rb_info ^ (src)->rb_info) & RB_FLAG_MASK))
78 #define RB_SWAP_PROPERTIES(a, b) do { \
79     uintptr_t xorinfo = ((a)->rb_info ^ (b)->rb_info) & RB_FLAG_MASK; \
80     (a)->rb_info ^= xorinfo; \
81     (b)->rb_info ^= xorinfo; \
82   } while (/*CONSTCOND*/ 0)
83
84 static void __archive_rb_tree_insert_rebalance(struct archive_rb_tree *,
85     struct archive_rb_node *);
86 static void __archive_rb_tree_removal_rebalance(struct archive_rb_tree *,
87     struct archive_rb_node *, unsigned int);
88
89 #define RB_SENTINEL_NODE        NULL
90
91 #define T       1
92 #define F       0
93
94 void
95 __archive_rb_tree_init(struct archive_rb_tree *rbt,
96     const struct archive_rb_tree_ops *ops)
97 {
98         rbt->rbt_ops = ops;
99         *((const struct archive_rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
100 }
101
102 struct archive_rb_node *
103 __archive_rb_tree_find_node(struct archive_rb_tree *rbt, const void *key)
104 {
105         archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
106         struct archive_rb_node *parent = rbt->rbt_root;
107
108         while (!RB_SENTINEL_P(parent)) {
109                 const signed int diff = (*compare_key)(parent, key);
110                 if (diff == 0)
111                         return parent;
112                 parent = parent->rb_nodes[diff > 0];
113         }
114
115         return NULL;
116 }
117  
118 struct archive_rb_node *
119 __archive_rb_tree_find_node_geq(struct archive_rb_tree *rbt, const void *key)
120 {
121         archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
122         struct archive_rb_node *parent = rbt->rbt_root;
123         struct archive_rb_node *last = NULL;
124
125         while (!RB_SENTINEL_P(parent)) {
126                 const signed int diff = (*compare_key)(parent, key);
127                 if (diff == 0)
128                         return parent;
129                 if (diff < 0)
130                         last = parent;
131                 parent = parent->rb_nodes[diff > 0];
132         }
133
134         return last;
135 }
136  
137 struct archive_rb_node *
138 __archive_rb_tree_find_node_leq(struct archive_rb_tree *rbt, const void *key)
139 {
140         archive_rbto_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
141         struct archive_rb_node *parent = rbt->rbt_root;
142         struct archive_rb_node *last = NULL;
143
144         while (!RB_SENTINEL_P(parent)) {
145                 const signed int diff = (*compare_key)(parent, key);
146                 if (diff == 0)
147                         return parent;
148                 if (diff > 0)
149                         last = parent;
150                 parent = parent->rb_nodes[diff > 0];
151         }
152
153         return last;
154 }
155 \f
156 int
157 __archive_rb_tree_insert_node(struct archive_rb_tree *rbt,
158     struct archive_rb_node *self)
159 {
160         archive_rbto_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
161         struct archive_rb_node *parent, *tmp;
162         unsigned int position;
163         int rebalance;
164
165         tmp = rbt->rbt_root;
166         /*
167          * This is a hack.  Because rbt->rbt_root is just a
168          * struct archive_rb_node *, just like rb_node->rb_nodes[RB_DIR_LEFT],
169          * we can use this fact to avoid a lot of tests for root and know
170          * that even at root, updating
171          * RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
172          * update rbt->rbt_root.
173          */
174         parent = (struct archive_rb_node *)(void *)&rbt->rbt_root;
175         position = RB_DIR_LEFT;
176
177         /*
178          * Find out where to place this new leaf.
179          */
180         while (!RB_SENTINEL_P(tmp)) {
181                 const signed int diff = (*compare_nodes)(tmp, self);
182                 if (diff == 0) {
183                         /*
184                          * Node already exists; don't insert.
185                          */
186                         return F;
187                 }
188                 parent = tmp;
189                 position = (diff > 0);
190                 tmp = parent->rb_nodes[position];
191         }
192
193         /*
194          * Initialize the node and insert as a leaf into the tree.
195          */
196         RB_SET_FATHER(self, parent);
197         RB_SET_POSITION(self, position);
198         if (parent == (struct archive_rb_node *)(void *)&rbt->rbt_root) {
199                 RB_MARK_BLACK(self);            /* root is always black */
200                 rebalance = F;
201         } else {
202                 /*
203                  * All new nodes are colored red.  We only need to rebalance
204                  * if our parent is also red.
205                  */
206                 RB_MARK_RED(self);
207                 rebalance = RB_RED_P(parent);
208         }
209         self->rb_left = parent->rb_nodes[position];
210         self->rb_right = parent->rb_nodes[position];
211         parent->rb_nodes[position] = self;
212
213         /*
214          * Rebalance tree after insertion
215          */
216         if (rebalance)
217                 __archive_rb_tree_insert_rebalance(rbt, self);
218
219         return T;
220 }
221 \f
222 /*
223  * Swap the location and colors of 'self' and its child @ which.  The child
224  * can not be a sentinel node.  This is our rotation function.  However,
225  * since it preserves coloring, it great simplifies both insertion and
226  * removal since rotation almost always involves the exchanging of colors
227  * as a separate step.
228  */
229 /*ARGSUSED*/
230 static void
231 __archive_rb_tree_reparent_nodes(
232     struct archive_rb_node *old_father, const unsigned int which)
233 {
234         const unsigned int other = which ^ RB_DIR_OTHER;
235         struct archive_rb_node * const grandpa = RB_FATHER(old_father);
236         struct archive_rb_node * const old_child = old_father->rb_nodes[which];
237         struct archive_rb_node * const new_father = old_child;
238         struct archive_rb_node * const new_child = old_father;
239
240         /*
241          * Exchange descendant linkages.
242          */
243         grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
244         new_child->rb_nodes[which] = old_child->rb_nodes[other];
245         new_father->rb_nodes[other] = new_child;
246
247         /*
248          * Update ancestor linkages
249          */
250         RB_SET_FATHER(new_father, grandpa);
251         RB_SET_FATHER(new_child, new_father);
252
253         /*
254          * Exchange properties between new_father and new_child.  The only
255          * change is that new_child's position is now on the other side.
256          */
257         RB_SWAP_PROPERTIES(new_father, new_child);
258         RB_SET_POSITION(new_child, other);
259
260         /*
261          * Make sure to reparent the new child to ourself.
262          */
263         if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
264                 RB_SET_FATHER(new_child->rb_nodes[which], new_child);
265                 RB_SET_POSITION(new_child->rb_nodes[which], which);
266         }
267
268 }
269 \f
270 static void
271 __archive_rb_tree_insert_rebalance(struct archive_rb_tree *rbt,
272     struct archive_rb_node *self)
273 {
274         struct archive_rb_node * father = RB_FATHER(self);
275         struct archive_rb_node * grandpa;
276         struct archive_rb_node * uncle;
277         unsigned int which;
278         unsigned int other;
279
280         for (;;) {
281                 /*
282                  * We are red and our parent is red, therefore we must have a
283                  * grandfather and he must be black.
284                  */
285                 grandpa = RB_FATHER(father);
286                 which = (father == grandpa->rb_right);
287                 other = which ^ RB_DIR_OTHER;
288                 uncle = grandpa->rb_nodes[other];
289
290                 if (RB_BLACK_P(uncle))
291                         break;
292
293                 /*
294                  * Case 1: our uncle is red
295                  *   Simply invert the colors of our parent and
296                  *   uncle and make our grandparent red.  And
297                  *   then solve the problem up at his level.
298                  */
299                 RB_MARK_BLACK(uncle);
300                 RB_MARK_BLACK(father);
301                 if (RB_ROOT_P(rbt, grandpa)) {
302                         /*
303                          * If our grandpa is root, don't bother
304                          * setting him to red, just return.
305                          */
306                         return;
307                 }
308                 RB_MARK_RED(grandpa);
309                 self = grandpa;
310                 father = RB_FATHER(self);
311                 if (RB_BLACK_P(father)) {
312                         /*
313                          * If our greatgrandpa is black, we're done.
314                          */
315                         return;
316                 }
317         }
318
319         /*
320          * Case 2&3: our uncle is black.
321          */
322         if (self == father->rb_nodes[other]) {
323                 /*
324                  * Case 2: we are on the same side as our uncle
325                  *   Swap ourselves with our parent so this case
326                  *   becomes case 3.  Basically our parent becomes our
327                  *   child.
328                  */
329                 __archive_rb_tree_reparent_nodes(father, other);
330         }
331         /*
332          * Case 3: we are opposite a child of a black uncle.
333          *   Swap our parent and grandparent.  Since our grandfather
334          *   is black, our father will become black and our new sibling
335          *   (former grandparent) will become red.
336          */
337         __archive_rb_tree_reparent_nodes(grandpa, which);
338
339         /*
340          * Final step: Set the root to black.
341          */
342         RB_MARK_BLACK(rbt->rbt_root);
343 }
344 \f
345 static void
346 __archive_rb_tree_prune_node(struct archive_rb_tree *rbt,
347     struct archive_rb_node *self, int rebalance)
348 {
349         const unsigned int which = RB_POSITION(self);
350         struct archive_rb_node *father = RB_FATHER(self);
351
352         /*
353          * Since we are childless, we know that self->rb_left is pointing
354          * to the sentinel node.
355          */
356         father->rb_nodes[which] = self->rb_left;
357
358         /*
359          * Rebalance if requested.
360          */
361         if (rebalance)
362                 __archive_rb_tree_removal_rebalance(rbt, father, which);
363 }
364 \f
365 /*
366  * When deleting an interior node
367  */
368 static void
369 __archive_rb_tree_swap_prune_and_rebalance(struct archive_rb_tree *rbt,
370     struct archive_rb_node *self, struct archive_rb_node *standin)
371 {
372         const unsigned int standin_which = RB_POSITION(standin);
373         unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
374         struct archive_rb_node *standin_son;
375         struct archive_rb_node *standin_father = RB_FATHER(standin);
376         int rebalance = RB_BLACK_P(standin);
377
378         if (standin_father == self) {
379                 /*
380                  * As a child of self, any childen would be opposite of
381                  * our parent.
382                  */
383                 standin_son = standin->rb_nodes[standin_which];
384         } else {
385                 /*
386                  * Since we aren't a child of self, any childen would be
387                  * on the same side as our parent.
388                  */
389                 standin_son = standin->rb_nodes[standin_other];
390         }
391
392         if (RB_RED_P(standin_son)) {
393                 /*
394                  * We know we have a red child so if we flip it to black
395                  * we don't have to rebalance.
396                  */
397                 RB_MARK_BLACK(standin_son);
398                 rebalance = F;
399
400                 if (standin_father != self) {
401                         /*
402                          * Change the son's parentage to point to his grandpa.
403                          */
404                         RB_SET_FATHER(standin_son, standin_father);
405                         RB_SET_POSITION(standin_son, standin_which);
406                 }
407         }
408
409         if (standin_father == self) {
410                 /*
411                  * If we are about to delete the standin's father, then when
412                  * we call rebalance, we need to use ourselves as our father.
413                  * Otherwise remember our original father.  Also, sincef we are
414                  * our standin's father we only need to reparent the standin's
415                  * brother.
416                  *
417                  * |    R      -->     S    |
418                  * |  Q   S    -->   Q   T  |
419                  * |        t  -->          |
420                  *
421                  * Have our son/standin adopt his brother as his new son.
422                  */
423                 standin_father = standin;
424         } else {
425                 /*
426                  * |    R          -->    S       .  |
427                  * |   / \  |   T  -->   / \  |  /   |
428                  * |  ..... | S    -->  ..... | T    |
429                  *
430                  * Sever standin's connection to his father.
431                  */
432                 standin_father->rb_nodes[standin_which] = standin_son;
433                 /*
434                  * Adopt the far son.
435                  */
436                 standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
437                 RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
438                 /*
439                  * Use standin_other because we need to preserve standin_which
440                  * for the removal_rebalance.
441                  */
442                 standin_other = standin_which;
443         }
444
445         /*
446          * Move the only remaining son to our standin.  If our standin is our
447          * son, this will be the only son needed to be moved.
448          */
449         standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
450         RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
451
452         /*
453          * Now copy the result of self to standin and then replace
454          * self with standin in the tree.
455          */
456         RB_COPY_PROPERTIES(standin, self);
457         RB_SET_FATHER(standin, RB_FATHER(self));
458         RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
459
460         if (rebalance)
461                 __archive_rb_tree_removal_rebalance(rbt, standin_father, standin_which);
462 }
463
464 /*
465  * We could do this by doing
466  *      __archive_rb_tree_node_swap(rbt, self, which);
467  *      __archive_rb_tree_prune_node(rbt, self, F);
468  *
469  * But it's more efficient to just evalate and recolor the child.
470  */
471 static void
472 __archive_rb_tree_prune_blackred_branch(
473     struct archive_rb_node *self, unsigned int which)
474 {
475         struct archive_rb_node *father = RB_FATHER(self);
476         struct archive_rb_node *son = self->rb_nodes[which];
477
478         /*
479          * Remove ourselves from the tree and give our former child our
480          * properties (position, color, root).
481          */
482         RB_COPY_PROPERTIES(son, self);
483         father->rb_nodes[RB_POSITION(son)] = son;
484         RB_SET_FATHER(son, father);
485 }
486 /*
487  *
488  */
489 void
490 __archive_rb_tree_remove_node(struct archive_rb_tree *rbt,
491     struct archive_rb_node *self)
492 {
493         struct archive_rb_node *standin;
494         unsigned int which;
495
496         /*
497          * In the following diagrams, we (the node to be removed) are S.  Red
498          * nodes are lowercase.  T could be either red or black.
499          *
500          * Remember the major axiom of the red-black tree: the number of
501          * black nodes from the root to each leaf is constant across all
502          * leaves, only the number of red nodes varies.
503          *
504          * Thus removing a red leaf doesn't require any other changes to a
505          * red-black tree.  So if we must remove a node, attempt to rearrange
506          * the tree so we can remove a red node.
507          *
508          * The simpliest case is a childless red node or a childless root node:
509          *
510          * |    T  -->    T  |    or    |  R  -->  *  |
511          * |  s    -->  *    |
512          */
513         if (RB_CHILDLESS_P(self)) {
514                 const int rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
515                 __archive_rb_tree_prune_node(rbt, self, rebalance);
516                 return;
517         }
518         if (!RB_TWOCHILDREN_P(self)) {
519                 /*
520                  * The next simpliest case is the node we are deleting is
521                  * black and has one red child.
522                  *
523                  * |      T  -->      T  -->      T  |
524                  * |    S    -->  R      -->  R      |
525                  * |  r      -->    s    -->    *    |
526                  */
527                 which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
528                 __archive_rb_tree_prune_blackred_branch(self, which);
529                 return;
530         }
531
532         /*
533          * We invert these because we prefer to remove from the inside of
534          * the tree.
535          */
536         which = RB_POSITION(self) ^ RB_DIR_OTHER;
537
538         /*
539          * Let's find the node closes to us opposite of our parent
540          * Now swap it with ourself, "prune" it, and rebalance, if needed.
541          */
542         standin = __archive_rb_tree_iterate(rbt, self, which);
543         __archive_rb_tree_swap_prune_and_rebalance(rbt, self, standin);
544 }
545
546 static void
547 __archive_rb_tree_removal_rebalance(struct archive_rb_tree *rbt,
548     struct archive_rb_node *parent, unsigned int which)
549 {
550
551         while (RB_BLACK_P(parent->rb_nodes[which])) {
552                 unsigned int other = which ^ RB_DIR_OTHER;
553                 struct archive_rb_node *brother = parent->rb_nodes[other];
554
555                 /*
556                  * For cases 1, 2a, and 2b, our brother's children must
557                  * be black and our father must be black
558                  */
559                 if (RB_BLACK_P(parent)
560                     && RB_BLACK_P(brother->rb_left)
561                     && RB_BLACK_P(brother->rb_right)) {
562                         if (RB_RED_P(brother)) {
563                                 /*
564                                  * Case 1: Our brother is red, swap its
565                                  * position (and colors) with our parent. 
566                                  * This should now be case 2b (unless C or E
567                                  * has a red child which is case 3; thus no
568                                  * explicit branch to case 2b).
569                                  *
570                                  *    B         ->        D
571                                  *  A     d     ->    b     E
572                                  *      C   E   ->  A   C
573                                  */
574                                 __archive_rb_tree_reparent_nodes(parent, other);
575                                 brother = parent->rb_nodes[other];
576                         } else {
577                                 /*
578                                  * Both our parent and brother are black.
579                                  * Change our brother to red, advance up rank
580                                  * and go through the loop again.
581                                  *
582                                  *    B         ->   *B
583                                  * *A     D     ->  A     d
584                                  *      C   E   ->      C   E
585                                  */
586                                 RB_MARK_RED(brother);
587                                 if (RB_ROOT_P(rbt, parent))
588                                         return; /* root == parent == black */
589                                 which = RB_POSITION(parent);
590                                 parent = RB_FATHER(parent);
591                                 continue;
592                         }
593                 }
594                 /*
595                  * Avoid an else here so that case 2a above can hit either
596                  * case 2b, 3, or 4.
597                  */
598                 if (RB_RED_P(parent)
599                     && RB_BLACK_P(brother)
600                     && RB_BLACK_P(brother->rb_left)
601                     && RB_BLACK_P(brother->rb_right)) {
602                         /*
603                          * We are black, our father is red, our brother and
604                          * both nephews are black.  Simply invert/exchange the
605                          * colors of our father and brother (to black and red
606                          * respectively).
607                          *
608                          *      |    f        -->    F        |
609                          *      |  *     B    -->  *     b    |
610                          *      |      N   N  -->      N   N  |
611                          */
612                         RB_MARK_BLACK(parent);
613                         RB_MARK_RED(brother);
614                         break;          /* We're done! */
615                 } else {
616                         /*
617                          * Our brother must be black and have at least one
618                          * red child (it may have two).
619                          */
620                         if (RB_BLACK_P(brother->rb_nodes[other])) {
621                                 /*
622                                  * Case 3: our brother is black, our near
623                                  * nephew is red, and our far nephew is black.
624                                  * Swap our brother with our near nephew.  
625                                  * This result in a tree that matches case 4.
626                                  * (Our father could be red or black).
627                                  *
628                                  *      |    F      -->    F      |
629                                  *      |  x     B  -->  x   B    |
630                                  *      |      n    -->        n  |
631                                  */
632                                 __archive_rb_tree_reparent_nodes(brother, which);
633                                 brother = parent->rb_nodes[other];
634                         }
635                         /*
636                          * Case 4: our brother is black and our far nephew
637                          * is red.  Swap our father and brother locations and
638                          * change our far nephew to black.  (these can be
639                          * done in either order so we change the color first).
640                          * The result is a valid red-black tree and is a
641                          * terminal case.  (again we don't care about the
642                          * father's color)
643                          *
644                          * If the father is red, we will get a red-black-black
645                          * tree:
646                          *      |  f      ->  f      -->    b    |
647                          *      |    B    ->    B    -->  F   N  |
648                          *      |      n  ->      N  -->         |
649                          *
650                          * If the father is black, we will get an all black
651                          * tree:
652                          *      |  F      ->  F      -->    B    |
653                          *      |    B    ->    B    -->  F   N  |
654                          *      |      n  ->      N  -->         |
655                          *
656                          * If we had two red nephews, then after the swap,
657                          * our former father would have a red grandson. 
658                          */
659                         RB_MARK_BLACK(brother->rb_nodes[other]);
660                         __archive_rb_tree_reparent_nodes(parent, other);
661                         break;          /* We're done! */
662                 }
663         }
664 }
665
666 struct archive_rb_node *
667 __archive_rb_tree_iterate(struct archive_rb_tree *rbt,
668     struct archive_rb_node *self, const unsigned int direction)
669 {
670         const unsigned int other = direction ^ RB_DIR_OTHER;
671
672         if (self == NULL) {
673                 self = rbt->rbt_root;
674                 if (RB_SENTINEL_P(self))
675                         return NULL;
676                 while (!RB_SENTINEL_P(self->rb_nodes[direction]))
677                         self = self->rb_nodes[direction];
678                 return self;
679         }
680         /*
681          * We can't go any further in this direction.  We proceed up in the
682          * opposite direction until our parent is in direction we want to go.
683          */
684         if (RB_SENTINEL_P(self->rb_nodes[direction])) {
685                 while (!RB_ROOT_P(rbt, self)) {
686                         if (other == RB_POSITION(self))
687                                 return RB_FATHER(self);
688                         self = RB_FATHER(self);
689                 }
690                 return NULL;
691         }
692
693         /*
694          * Advance down one in current direction and go down as far as possible
695          * in the opposite direction.
696          */
697         self = self->rb_nodes[direction];
698         while (!RB_SENTINEL_P(self->rb_nodes[other]))
699                 self = self->rb_nodes[other];
700         return self;
701 }