kernel: Use NELEM() where we can.
[dragonfly.git] / sys / dev / netif / ath / hal / ath_hal / ar5212 / ar5413.c
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD: head/sys/dev/ath/ath_hal/ar5212/ar5413.c 188979 2009-02-24 01:07:06Z sam $
18  * $DragonFly$
19  */
20 #include "opt_ah.h"
21
22 #include "ah.h"
23 #include "ah_internal.h"
24
25 #include "ah_eeprom_v3.h"
26
27 #include "ar5212/ar5212.h"
28 #include "ar5212/ar5212reg.h"
29 #include "ar5212/ar5212phy.h"
30
31 #define AH_5212_5413
32 #include "ar5212/ar5212.ini"
33
34 struct ar5413State {
35         RF_HAL_FUNCS    base;           /* public state, must be first */
36         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
37
38         uint32_t        Bank1Data[NELEM(ar5212Bank1_5413)];
39         uint32_t        Bank2Data[NELEM(ar5212Bank2_5413)];
40         uint32_t        Bank3Data[NELEM(ar5212Bank3_5413)];
41         uint32_t        Bank6Data[NELEM(ar5212Bank6_5413)];
42         uint32_t        Bank7Data[NELEM(ar5212Bank7_5413)];
43
44         /*
45          * Private state for reduced stack usage.
46          */
47         /* filled out Vpd table for all pdGains (chanL) */
48         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
49                             [MAX_PWR_RANGE_IN_HALF_DB];
50         /* filled out Vpd table for all pdGains (chanR) */
51         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
52                             [MAX_PWR_RANGE_IN_HALF_DB];
53         /* filled out Vpd table for all pdGains (interpolated) */
54         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
55                             [MAX_PWR_RANGE_IN_HALF_DB];
56 };
57 #define AR5413(ah)      ((struct ar5413State *) AH5212(ah)->ah_rfHal)
58
59 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
60                 uint32_t numBits, uint32_t firstBit, uint32_t column);
61
62 static void
63 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
64         int writes)
65 {
66         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
67         HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
68         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
69 }
70
71 /*
72  * Take the MHz channel value and set the Channel value
73  *
74  * ASSUMES: Writes enabled to analog bus
75  */
76 static HAL_BOOL
77 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
78 {
79         uint16_t freq = ath_hal_gethwchannel(ah, chan);
80         uint32_t channelSel  = 0;
81         uint32_t bModeSynth  = 0;
82         uint32_t aModeRefSel = 0;
83         uint32_t reg32       = 0;
84
85         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
86
87         if (freq < 4800) {
88                 uint32_t txctl;
89
90                 if (((freq - 2192) % 5) == 0) {
91                         channelSel = ((freq - 672) * 2 - 3040)/10;
92                         bModeSynth = 0;
93                 } else if (((freq - 2224) % 5) == 0) {
94                         channelSel = ((freq - 704) * 2 - 3040) / 10;
95                         bModeSynth = 1;
96                 } else {
97                         HALDEBUG(ah, HAL_DEBUG_ANY,
98                             "%s: invalid channel %u MHz\n",
99                             __func__, freq);
100                         return AH_FALSE;
101                 }
102
103                 channelSel = (channelSel << 2) & 0xff;
104                 channelSel = ath_hal_reverseBits(channelSel, 8);
105
106                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
107                 if (freq == 2484) {
108                         /* Enable channel spreading for channel 14 */
109                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
110                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
111                 } else {
112                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
114                 }
115         } else if (((freq % 5) == 2) && (freq <= 5435)) {
116                 freq = freq - 2; /* Align to even 5MHz raster */
117                 channelSel = ath_hal_reverseBits(
118                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
119                 aModeRefSel = ath_hal_reverseBits(0, 2);
120         } else if ((freq % 20) == 0 && freq >= 5120) {
121                 channelSel = ath_hal_reverseBits(
122                         ((freq - 4800) / 20 << 2), 8);
123                 aModeRefSel = ath_hal_reverseBits(1, 2);
124         } else if ((freq % 10) == 0) {
125                 channelSel = ath_hal_reverseBits(
126                         ((freq - 4800) / 10 << 1), 8);
127                 aModeRefSel = ath_hal_reverseBits(1, 2);
128         } else if ((freq % 5) == 0) {
129                 channelSel = ath_hal_reverseBits(
130                         (freq - 4800) / 5, 8);
131                 aModeRefSel = ath_hal_reverseBits(1, 2);
132         } else {
133                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
134                     __func__, freq);
135                 return AH_FALSE;
136         }
137
138         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
139                         (1 << 12) | 0x1;
140         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
141
142         reg32 >>= 8;
143         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
144
145         AH_PRIVATE(ah)->ah_curchan = chan;
146         return AH_TRUE;
147 }
148
149 /*
150  * Reads EEPROM header info from device structure and programs
151  * all rf registers
152  *
153  * REQUIRES: Access to the analog rf device
154  */
155 static HAL_BOOL
156 ar5413SetRfRegs(struct ath_hal *ah,
157         const struct ieee80211_channel *chan,
158         uint16_t modesIndex, uint16_t *rfXpdGain)
159 {
160 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
161         int i;                                                              \
162         for (i = 0; i < NELEM(ar5212Bank##_ix##_5413); i++)                 \
163                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
164 } while (0)
165         struct ath_hal_5212 *ahp = AH5212(ah);
166         uint16_t freq = ath_hal_gethwchannel(ah, chan);
167         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
168         uint16_t ob5GHz = 0, db5GHz = 0;        
169         uint16_t ob2GHz = 0, db2GHz = 0;
170         struct ar5413State *priv = AR5413(ah);
171         int regWrites = 0;
172
173         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
174             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
175
176         HALASSERT(priv != AH_NULL);
177
178         /* Setup rf parameters */
179         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
180         case IEEE80211_CHAN_A:
181                 if (freq > 4000 && freq < 5260) {
182                         ob5GHz = ee->ee_ob1;
183                         db5GHz = ee->ee_db1;
184                 } else if (freq >= 5260 && freq < 5500) {
185                         ob5GHz = ee->ee_ob2;
186                         db5GHz = ee->ee_db2;
187                 } else if (freq >= 5500 && freq < 5725) {
188                         ob5GHz = ee->ee_ob3;
189                         db5GHz = ee->ee_db3;
190                 } else if (freq >= 5725) {
191                         ob5GHz = ee->ee_ob4;
192                         db5GHz = ee->ee_db4;
193                 } else {
194                         /* XXX else */
195                 }
196                 break;
197         case IEEE80211_CHAN_B:
198                 ob2GHz = ee->ee_obFor24;
199                 db2GHz = ee->ee_dbFor24;
200                 break;
201         case IEEE80211_CHAN_G:
202         case IEEE80211_CHAN_PUREG:      /* NB: really 108G */
203                 ob2GHz = ee->ee_obFor24g;
204                 db2GHz = ee->ee_dbFor24g;
205                 break;
206         default:
207                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
208                     __func__, chan->ic_flags);
209                 return AH_FALSE;
210         }
211
212         /* Bank 1 Write */
213         RF_BANK_SETUP(priv, 1, 1);
214
215         /* Bank 2 Write */
216         RF_BANK_SETUP(priv, 2, modesIndex);
217
218         /* Bank 3 Write */
219         RF_BANK_SETUP(priv, 3, modesIndex);
220
221         /* Bank 6 Write */
222         RF_BANK_SETUP(priv, 6, modesIndex);
223
224         /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
225         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
226                 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
227                 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
228
229                         /* TODO - only for Eagle 1.0 2GHz - remove for production */
230                         /* XXX: but without this bit G doesn't work. */
231                         ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
232
233                         /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
234                         if (AH_PRIVATE(ah)->ah_ispcie) {
235                                 ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
236                                                  3, 131, 3);
237                         }
238         } else {
239                 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
240                 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
241
242         }
243
244         /* Bank 7 Setup */
245         RF_BANK_SETUP(priv, 7, modesIndex);
246
247         /* Write Analog registers */
248         HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
249         HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
250         HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
251         HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
252         HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
253
254         /* Now that we have reprogrammed rfgain value, clear the flag. */
255         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
256
257         return AH_TRUE;
258 #undef  RF_BANK_SETUP
259 }
260
261 /*
262  * Return a reference to the requested RF Bank.
263  */
264 static uint32_t *
265 ar5413GetRfBank(struct ath_hal *ah, int bank)
266 {
267         struct ar5413State *priv = AR5413(ah);
268
269         HALASSERT(priv != AH_NULL);
270         switch (bank) {
271         case 1: return priv->Bank1Data;
272         case 2: return priv->Bank2Data;
273         case 3: return priv->Bank3Data;
274         case 6: return priv->Bank6Data;
275         case 7: return priv->Bank7Data;
276         }
277         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
278             __func__, bank);
279         return AH_NULL;
280 }
281
282 /*
283  * Return indices surrounding the value in sorted integer lists.
284  *
285  * NB: the input list is assumed to be sorted in ascending order
286  */
287 static void
288 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
289                           uint32_t *vlo, uint32_t *vhi)
290 {
291         int16_t target = v;
292         const uint16_t *ep = lp+listSize;
293         const uint16_t *tp;
294
295         /*
296          * Check first and last elements for out-of-bounds conditions.
297          */
298         if (target < lp[0]) {
299                 *vlo = *vhi = 0;
300                 return;
301         }
302         if (target >= ep[-1]) {
303                 *vlo = *vhi = listSize - 1;
304                 return;
305         }
306
307         /* look for value being near or between 2 values in list */
308         for (tp = lp; tp < ep; tp++) {
309                 /*
310                  * If value is close to the current value of the list
311                  * then target is not between values, it is one of the values
312                  */
313                 if (*tp == target) {
314                         *vlo = *vhi = tp - (const uint16_t *) lp;
315                         return;
316                 }
317                 /*
318                  * Look for value being between current value and next value
319                  * if so return these 2 values
320                  */
321                 if (target < tp[1]) {
322                         *vlo = tp - (const uint16_t *) lp;
323                         *vhi = *vlo + 1;
324                         return;
325                 }
326         }
327 }
328
329 /*
330  * Fill the Vpdlist for indices Pmax-Pmin
331  */
332 static HAL_BOOL
333 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
334                    const int16_t *pwrList, const uint16_t *VpdList,
335                    uint16_t numIntercepts,
336                    uint16_t retVpdList[][64])
337 {
338         uint16_t ii, jj, kk;
339         int16_t currPwr = (int16_t)(2*Pmin);
340         /* since Pmin is pwr*2 and pwrList is 4*pwr */
341         uint32_t  idxL, idxR;
342
343         ii = 0;
344         jj = 0;
345
346         if (numIntercepts < 2)
347                 return AH_FALSE;
348
349         while (ii <= (uint16_t)(Pmax - Pmin)) {
350                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
351                                    numIntercepts, &(idxL), &(idxR));
352                 if (idxR < 1)
353                         idxR = 1;                       /* extrapolate below */
354                 if (idxL == (uint32_t)(numIntercepts - 1))
355                         idxL = numIntercepts - 2;       /* extrapolate above */
356                 if (pwrList[idxL] == pwrList[idxR])
357                         kk = VpdList[idxL];
358                 else
359                         kk = (uint16_t)
360                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
361                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
362                                  (pwrList[idxR] - pwrList[idxL]));
363                 retVpdList[pdGainIdx][ii] = kk;
364                 ii++;
365                 currPwr += 2;                           /* half dB steps */
366         }
367
368         return AH_TRUE;
369 }
370
371 /*
372  * Returns interpolated or the scaled up interpolated value
373  */
374 static int16_t
375 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
376         int16_t targetLeft, int16_t targetRight)
377 {
378         int16_t rv;
379
380         if (srcRight != srcLeft) {
381                 rv = ((target - srcLeft)*targetRight +
382                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
383         } else {
384                 rv = targetLeft;
385         }
386         return rv;
387 }
388
389 /*
390  * Uses the data points read from EEPROM to reconstruct the pdadc power table
391  * Called by ar5413SetPowerTable()
392  */
393 static int 
394 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
395                 const RAW_DATA_STRUCT_2413 *pRawDataset,
396                 uint16_t pdGainOverlap_t2, 
397                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
398                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
399 {
400         struct ar5413State *priv = AR5413(ah);
401 #define VpdTable_L      priv->vpdTable_L
402 #define VpdTable_R      priv->vpdTable_R
403 #define VpdTable_I      priv->vpdTable_I
404         uint32_t ii, jj, kk;
405         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
406         uint32_t idxL, idxR;
407         uint32_t numPdGainsUsed = 0;
408         /* 
409          * If desired to support -ve power levels in future, just
410          * change pwr_I_0 to signed 5-bits.
411          */
412         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
413         /* to accomodate -ve power levels later on. */
414         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
415         /* to accomodate -ve power levels later on */
416         uint16_t numVpd = 0;
417         uint16_t Vpd_step;
418         int16_t tmpVal ; 
419         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
420     
421         /* Get upper lower index */
422         GetLowerUpperIndex(channel, pRawDataset->pChannels,
423                                  pRawDataset->numChannels, &(idxL), &(idxR));
424
425         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
426                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
427                 /* work backwards 'cause highest pdGain for lowest power */
428                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
429                 if (numVpd > 0) {
430                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
431                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
432                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
433                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
434                         }
435                         Pmin_t2[numPdGainsUsed] = (int16_t)
436                                 (Pmin_t2[numPdGainsUsed] / 2);
437                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
438                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
439                                 Pmax_t2[numPdGainsUsed] = 
440                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
441                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
442                         ar5413FillVpdTable(
443                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
444                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
445                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
446                                            );
447                         ar5413FillVpdTable(
448                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
449                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
450                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
451                                            );
452                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
453                                 VpdTable_I[numPdGainsUsed][kk] = 
454                                         interpolate_signed(
455                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
456                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
457                         }
458                         /* fill VpdTable_I for this pdGain */
459                         numPdGainsUsed++;
460                 }
461                 /* if this pdGain is used */
462         }
463
464         *pMinCalPower = Pmin_t2[0];
465         kk = 0; /* index for the final table */
466         for (ii = 0; ii < numPdGainsUsed; ii++) {
467                 if (ii == (numPdGainsUsed - 1))
468                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
469                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
470                 else 
471                         pPdGainBoundaries[ii] = (uint16_t)
472                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
473                 if (pPdGainBoundaries[ii] > 63) {
474                         HALDEBUG(ah, HAL_DEBUG_ANY,
475                             "%s: clamp pPdGainBoundaries[%d] %d\n",
476                             __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
477                         pPdGainBoundaries[ii] = 63;
478                 }
479
480                 /* Find starting index for this pdGain */
481                 if (ii == 0) 
482                         ss = 0; /* for the first pdGain, start from index 0 */
483                 else 
484                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
485                                 pdGainOverlap_t2;
486                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
487                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
488                 /*
489                  *-ve ss indicates need to extrapolate data below for this pdGain
490                  */
491                 while (ss < 0) {
492                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
493                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
494                         ss++;
495                 }
496
497                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
498                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
499                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
500
501                 while (ss < (int16_t)maxIndex)
502                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
503
504                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
505                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
506                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
507                 /*
508                  * for last gain, pdGainBoundary == Pmax_t2, so will 
509                  * have to extrapolate
510                  */
511                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
512                         while(ss < (int16_t)tgtIndex) {
513                                 tmpVal = (uint16_t)
514                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
515                                          (ss-maxIndex)*Vpd_step);
516                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
517                                         127 : tmpVal;
518                                 ss++;
519                         }
520                 }                               /* extrapolated above */
521         }                                       /* for all pdGainUsed */
522
523         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
524                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
525                 ii++;
526         }
527         while (kk < 128) {
528                 pPDADCValues[kk] = pPDADCValues[kk-1];
529                 kk++;
530         }
531
532         return numPdGainsUsed;
533 #undef VpdTable_L
534 #undef VpdTable_R
535 #undef VpdTable_I
536 }
537
538 static HAL_BOOL
539 ar5413SetPowerTable(struct ath_hal *ah,
540         int16_t *minPower, int16_t *maxPower,
541         const struct ieee80211_channel *chan, 
542         uint16_t *rfXpdGain)
543 {
544         struct ath_hal_5212 *ahp = AH5212(ah);
545         uint16_t freq = ath_hal_gethwchannel(ah, chan);
546         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
547         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
548         uint16_t pdGainOverlap_t2;
549         int16_t minCalPower5413_t2;
550         uint16_t *pdadcValues = ahp->ah_pcdacTable;
551         uint16_t gainBoundaries[4];
552         uint32_t reg32, regoffset;
553         int i, numPdGainsUsed;
554 #ifndef AH_USE_INIPDGAIN
555         uint32_t tpcrg1;
556 #endif
557
558         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
559             __func__, chan->ic_freq, chan->ic_flags);
560
561         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
562                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
563         else if (IEEE80211_IS_CHAN_B(chan))
564                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
565         else {
566                 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
567                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
568         }
569
570         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
571                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
572     
573         numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
574                 freq, pRawDataset, pdGainOverlap_t2,
575                 &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
576         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
577
578 #ifdef AH_USE_INIPDGAIN
579         /*
580          * Use pd_gains curve from eeprom; Atheros always uses
581          * the default curve from the ini file but some vendors
582          * (e.g. Zcomax) want to override this curve and not
583          * honoring their settings results in tx power 5dBm low.
584          */
585         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
586                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
587 #else
588         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
589         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
590                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
591         switch (numPdGainsUsed) {
592         case 3:
593                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
594                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
595                 /* fall thru... */
596         case 2:
597                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
598                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
599                 /* fall thru... */
600         case 1:
601                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
602                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
603                 break;
604         }
605 #ifdef AH_DEBUG
606         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
607                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
608                     "pd_gains (default 0x%x, calculated 0x%x)\n",
609                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
610 #endif
611         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
612 #endif
613
614         /*
615          * Note the pdadc table may not start at 0 dBm power, could be
616          * negative or greater than 0.  Need to offset the power
617          * values by the amount of minPower for griffin
618          */
619         if (minCalPower5413_t2 != 0)
620                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
621         else
622                 ahp->ah_txPowerIndexOffset = 0;
623
624         /* Finally, write the power values into the baseband power table */
625         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
626         for (i = 0; i < 32; i++) {
627                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
628                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
629                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
630                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
631                 OS_REG_WRITE(ah, regoffset, reg32);
632                 regoffset += 4;
633         }
634
635         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
636                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
637                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
638                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
639                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
640                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
641
642         return AH_TRUE;
643 }
644
645 static int16_t
646 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
647 {
648         uint32_t ii,jj;
649         uint16_t Pmin=0,numVpd;
650
651         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
652                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
653                 /* work backwards 'cause highest pdGain for lowest power */
654                 numVpd = data->pDataPerPDGain[jj].numVpd;
655                 if (numVpd > 0) {
656                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
657                         return(Pmin);
658                 }
659         }
660         return(Pmin);
661 }
662
663 static int16_t
664 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
665 {
666         uint32_t ii;
667         uint16_t Pmax=0,numVpd;
668         
669         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
670                 /* work forwards cuase lowest pdGain for highest power */
671                 numVpd = data->pDataPerPDGain[ii].numVpd;
672                 if (numVpd > 0) {
673                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
674                         return(Pmax);
675                 }
676         }
677         return(Pmax);
678 }
679
680 static HAL_BOOL
681 ar5413GetChannelMaxMinPower(struct ath_hal *ah,
682         const struct ieee80211_channel *chan,
683         int16_t *maxPow, int16_t *minPow)
684 {
685         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
686         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
687         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
688         const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
689         uint16_t numChannels;
690         int totalD,totalF, totalMin,last, i;
691
692         *maxPow = 0;
693
694         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
695                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
696         else if (IEEE80211_IS_CHAN_B(chan))
697                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
698         else {
699                 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
700                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
701         }
702
703         numChannels = pRawDataset->numChannels;
704         data = pRawDataset->pDataPerChannel;
705         
706         /* Make sure the channel is in the range of the TP values 
707          *  (freq piers)
708          */
709         if (numChannels < 1)
710                 return(AH_FALSE);
711
712         if ((freq < data[0].channelValue) ||
713             (freq > data[numChannels-1].channelValue)) {
714                 if (freq < data[0].channelValue) {
715                         *maxPow = ar5413GetMaxPower(ah, &data[0]);
716                         *minPow = ar5413GetMinPower(ah, &data[0]);
717                         return(AH_TRUE);
718                 } else {
719                         *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
720                         *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
721                         return(AH_TRUE);
722                 }
723         }
724
725         /* Linearly interpolate the power value now */
726         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
727              last = i++);
728         totalD = data[i].channelValue - data[last].channelValue;
729         if (totalD > 0) {
730                 totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
731                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
732                                      ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
733                 totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
734                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
735                                      ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
736                 return(AH_TRUE);
737         } else {
738                 if (freq == data[i].channelValue) {
739                         *maxPow = ar5413GetMaxPower(ah, &data[i]);
740                         *minPow = ar5413GetMinPower(ah, &data[i]);
741                         return(AH_TRUE);
742                 } else
743                         return(AH_FALSE);
744         }
745 }
746
747 /*
748  * Free memory for analog bank scratch buffers
749  */
750 static void
751 ar5413RfDetach(struct ath_hal *ah)
752 {
753         struct ath_hal_5212 *ahp = AH5212(ah);
754
755         HALASSERT(ahp->ah_rfHal != AH_NULL);
756         ath_hal_free(ahp->ah_rfHal);
757         ahp->ah_rfHal = AH_NULL;
758 }
759
760 /*
761  * Allocate memory for analog bank scratch buffers
762  * Scratch Buffer will be reinitialized every reset so no need to zero now
763  */
764 static HAL_BOOL
765 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
766 {
767         struct ath_hal_5212 *ahp = AH5212(ah);
768         struct ar5413State *priv;
769
770         HALASSERT(ah->ah_magic == AR5212_MAGIC);
771
772         HALASSERT(ahp->ah_rfHal == AH_NULL);
773         priv = ath_hal_malloc(sizeof(struct ar5413State));
774         if (priv == AH_NULL) {
775                 HALDEBUG(ah, HAL_DEBUG_ANY,
776                     "%s: cannot allocate private state\n", __func__);
777                 *status = HAL_ENOMEM;           /* XXX */
778                 return AH_FALSE;
779         }
780         priv->base.rfDetach             = ar5413RfDetach;
781         priv->base.writeRegs            = ar5413WriteRegs;
782         priv->base.getRfBank            = ar5413GetRfBank;
783         priv->base.setChannel           = ar5413SetChannel;
784         priv->base.setRfRegs            = ar5413SetRfRegs;
785         priv->base.setPowerTable        = ar5413SetPowerTable;
786         priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
787         priv->base.getNfAdjust          = ar5212GetNfAdjust;
788
789         ahp->ah_pcdacTable = priv->pcdacTable;
790         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
791         ahp->ah_rfHal = &priv->base;
792
793         return AH_TRUE;
794 }
795
796 static HAL_BOOL
797 ar5413Probe(struct ath_hal *ah)
798 {
799         return IS_5413(ah);
800 }
801 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);