Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
71  */
72
73 /*
74  *      Page fault handling module.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
87 #include <sys/sysctl.h>
88
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pageout.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_pager.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/vm_extern.h>
100
101 #include <sys/thread2.h>
102 #include <vm/vm_page2.h>
103
104 #define VM_FAULT_READ_AHEAD 8
105 #define VM_FAULT_READ_BEHIND 7
106 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
107
108 struct faultstate {
109         vm_page_t m;
110         vm_object_t object;
111         vm_pindex_t pindex;
112         vm_prot_t prot;
113         vm_page_t first_m;
114         vm_object_t first_object;
115         vm_prot_t first_prot;
116         vm_map_t map;
117         vm_map_entry_t entry;
118         int lookup_still_valid;
119         int didlimit;
120         int hardfault;
121         int fault_flags;
122         int map_generation;
123         boolean_t wired;
124         struct vnode *vp;
125 };
126
127 static int burst_fault = 1;
128 SYSCTL_INT(_vm, OID_AUTO, burst_fault, CTLFLAG_RW, &burst_fault, 0, "");
129
130 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
131 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
132 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
133 static int vm_fault_ratelimit(struct vmspace *);
134
135 static __inline void
136 release_page(struct faultstate *fs)
137 {
138         vm_page_deactivate(fs->m);
139         vm_page_wakeup(fs->m);
140         fs->m = NULL;
141 }
142
143 static __inline void
144 unlock_map(struct faultstate *fs)
145 {
146         if (fs->lookup_still_valid && fs->map) {
147                 vm_map_lookup_done(fs->map, fs->entry, 0);
148                 fs->lookup_still_valid = FALSE;
149         }
150 }
151
152 /*
153  * Clean up after a successful call to vm_fault_object() so another call
154  * to vm_fault_object() can be made.
155  */
156 static void
157 _cleanup_successful_fault(struct faultstate *fs, int relock)
158 {
159         if (fs->object != fs->first_object) {
160                 vm_page_free(fs->first_m);
161                 vm_object_pip_wakeup(fs->object);
162                 fs->first_m = NULL;
163         }
164         fs->object = fs->first_object;
165         if (relock && fs->lookup_still_valid == FALSE) {
166                 if (fs->map)
167                         vm_map_lock_read(fs->map);
168                 fs->lookup_still_valid = TRUE;
169         }
170 }
171
172 static void
173 _unlock_things(struct faultstate *fs, int dealloc)
174 {
175         vm_object_pip_wakeup(fs->first_object);
176         _cleanup_successful_fault(fs, 0);
177         if (dealloc) {
178                 vm_object_deallocate(fs->first_object);
179                 fs->first_object = NULL;
180         }
181         unlock_map(fs); 
182         if (fs->vp != NULL) { 
183                 vput(fs->vp);
184                 fs->vp = NULL;
185         }
186 }
187
188 #define unlock_things(fs) _unlock_things(fs, 0)
189 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
190 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
191
192 /*
193  * TRYPAGER 
194  *
195  * Determine if the pager for the current object *might* contain the page.
196  *
197  * We only need to try the pager if this is not a default object (default
198  * objects are zero-fill and have no real pager), and if we are not taking
199  * a wiring fault or if the FS entry is wired.
200  */
201 #define TRYPAGER(fs)    \
202                 (fs->object->type != OBJT_DEFAULT && \
203                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
204
205 /*
206  * vm_fault:
207  *
208  * Handle a page fault occuring at the given address, requiring the given
209  * permissions, in the map specified.  If successful, the page is inserted
210  * into the associated physical map.
211  *
212  * NOTE: The given address should be truncated to the proper page address.
213  *
214  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
215  * a standard error specifying why the fault is fatal is returned.
216  *
217  * The map in question must be referenced, and remains so.
218  * The caller may hold no locks.
219  */
220 int
221 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
222 {
223         int result;
224         vm_pindex_t first_pindex;
225         struct faultstate fs;
226
227         mycpu->gd_cnt.v_vm_faults++;
228
229         fs.didlimit = 0;
230         fs.hardfault = 0;
231         fs.fault_flags = fault_flags;
232
233 RetryFault:
234         /*
235          * Find the vm_map_entry representing the backing store and resolve
236          * the top level object and page index.  This may have the side
237          * effect of executing a copy-on-write on the map entry and/or
238          * creating a shadow object, but will not COW any actual VM pages.
239          *
240          * On success fs.map is left read-locked and various other fields 
241          * are initialized but not otherwise referenced or locked.
242          *
243          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
244          * VM_FAULT_WRITE if the map entry is a virtual page table and also
245          * writable, so we can set the 'A'accessed bit in the virtual page
246          * table entry.
247          */
248         fs.map = map;
249         result = vm_map_lookup(&fs.map, vaddr, fault_type,
250                                &fs.entry, &fs.first_object,
251                                &first_pindex, &fs.first_prot, &fs.wired);
252
253         /*
254          * If the lookup failed or the map protections are incompatible,
255          * the fault generally fails.  However, if the caller is trying
256          * to do a user wiring we have more work to do.
257          */
258         if (result != KERN_SUCCESS) {
259                 if (result != KERN_PROTECTION_FAILURE)
260                         return result;
261                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
262                         return result;
263
264                 /*
265                  * If we are user-wiring a r/w segment, and it is COW, then
266                  * we need to do the COW operation.  Note that we don't
267                  * currently COW RO sections now, because it is NOT desirable
268                  * to COW .text.  We simply keep .text from ever being COW'ed
269                  * and take the heat that one cannot debug wired .text sections.
270                  */
271                 result = vm_map_lookup(&fs.map, vaddr,
272                                        VM_PROT_READ|VM_PROT_WRITE|
273                                         VM_PROT_OVERRIDE_WRITE,
274                                        &fs.entry, &fs.first_object,
275                                        &first_pindex, &fs.first_prot,
276                                        &fs.wired);
277                 if (result != KERN_SUCCESS)
278                         return result;
279
280                 /*
281                  * If we don't COW now, on a user wire, the user will never
282                  * be able to write to the mapping.  If we don't make this
283                  * restriction, the bookkeeping would be nearly impossible.
284                  */
285                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
286                         fs.entry->max_protection &= ~VM_PROT_WRITE;
287         }
288
289         /*
290          * fs.map is read-locked
291          *
292          * Misc checks.  Save the map generation number to detect races.
293          */
294         fs.map_generation = fs.map->timestamp;
295
296         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
297                 panic("vm_fault: fault on nofault entry, addr: %lx",
298                     (u_long)vaddr);
299         }
300
301         /*
302          * A system map entry may return a NULL object.  No object means
303          * no pager means an unrecoverable kernel fault.
304          */
305         if (fs.first_object == NULL) {
306                 panic("vm_fault: unrecoverable fault at %p in entry %p",
307                         (void *)vaddr, fs.entry);
308         }
309
310         /*
311          * Make a reference to this object to prevent its disposal while we
312          * are messing with it.  Once we have the reference, the map is free
313          * to be diddled.  Since objects reference their shadows (and copies),
314          * they will stay around as well.
315          *
316          * Bump the paging-in-progress count to prevent size changes (e.g.
317          * truncation operations) during I/O.  This must be done after
318          * obtaining the vnode lock in order to avoid possible deadlocks.
319          */
320         vm_object_reference(fs.first_object);
321         fs.vp = vnode_pager_lock(fs.first_object);
322         vm_object_pip_add(fs.first_object, 1);
323
324         fs.lookup_still_valid = TRUE;
325         fs.first_m = NULL;
326         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
327
328         /*
329          * If the entry is wired we cannot change the page protection.
330          */
331         if (fs.wired)
332                 fault_type = fs.first_prot;
333
334         /*
335          * The page we want is at (first_object, first_pindex), but if the
336          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
337          * page table to figure out the actual pindex.
338          *
339          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
340          * ONLY
341          */
342         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
343                 result = vm_fault_vpagetable(&fs, &first_pindex,
344                                              fs.entry->aux.master_pde,
345                                              fault_type);
346                 if (result == KERN_TRY_AGAIN)
347                         goto RetryFault;
348                 if (result != KERN_SUCCESS)
349                         return (result);
350         }
351
352         /*
353          * Now we have the actual (object, pindex), fault in the page.  If
354          * vm_fault_object() fails it will unlock and deallocate the FS
355          * data.   If it succeeds everything remains locked and fs->object
356          * will have an additinal PIP count if it is not equal to
357          * fs->first_object
358          *
359          * vm_fault_object will set fs->prot for the pmap operation.  It is
360          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
361          * page can be safely written.  However, it will force a read-only
362          * mapping for a read fault if the memory is managed by a virtual
363          * page table.
364          */
365         result = vm_fault_object(&fs, first_pindex, fault_type);
366
367         if (result == KERN_TRY_AGAIN)
368                 goto RetryFault;
369         if (result != KERN_SUCCESS)
370                 return (result);
371
372         /*
373          * On success vm_fault_object() does not unlock or deallocate, and fs.m
374          * will contain a busied page.
375          *
376          * Enter the page into the pmap and do pmap-related adjustments.
377          */
378         unlock_things(&fs);
379         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
380
381         if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
382                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
383         }
384
385         vm_page_flag_clear(fs.m, PG_ZERO);
386         vm_page_flag_set(fs.m, PG_REFERENCED);
387
388         /*
389          * If the page is not wired down, then put it where the pageout daemon
390          * can find it.
391          */
392         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
393                 if (fs.wired)
394                         vm_page_wire(fs.m);
395                 else
396                         vm_page_unwire(fs.m, 1);
397         } else {
398                 vm_page_activate(fs.m);
399         }
400
401         if (curthread->td_lwp) {
402                 if (fs.hardfault) {
403                         curthread->td_lwp->lwp_ru.ru_majflt++;
404                 } else {
405                         curthread->td_lwp->lwp_ru.ru_minflt++;
406                 }
407         }
408
409         /*
410          * Unlock everything, and return
411          */
412         vm_page_wakeup(fs.m);
413         vm_object_deallocate(fs.first_object);
414
415         return (KERN_SUCCESS);
416 }
417
418 /*
419  * Fault in the specified virtual address in the current process map, 
420  * returning a held VM page or NULL.  See vm_fault_page() for more 
421  * information.
422  */
423 vm_page_t
424 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
425 {
426         struct lwp *lp = curthread->td_lwp;
427         vm_page_t m;
428
429         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
430                           fault_type, VM_FAULT_NORMAL, errorp);
431         return(m);
432 }
433
434 /*
435  * Fault in the specified virtual address in the specified map, doing all
436  * necessary manipulation of the object store and all necessary I/O.  Return
437  * a held VM page or NULL, and set *errorp.  The related pmap is not
438  * updated.
439  *
440  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
441  * and marked PG_REFERENCED as well.
442  *
443  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
444  * error will be returned.
445  */
446 vm_page_t
447 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
448               int fault_flags, int *errorp)
449 {
450         vm_pindex_t first_pindex;
451         struct faultstate fs;
452         int result;
453         vm_prot_t orig_fault_type = fault_type;
454
455         mycpu->gd_cnt.v_vm_faults++;
456
457         fs.didlimit = 0;
458         fs.hardfault = 0;
459         fs.fault_flags = fault_flags;
460         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
461
462 RetryFault:
463         /*
464          * Find the vm_map_entry representing the backing store and resolve
465          * the top level object and page index.  This may have the side
466          * effect of executing a copy-on-write on the map entry and/or
467          * creating a shadow object, but will not COW any actual VM pages.
468          *
469          * On success fs.map is left read-locked and various other fields 
470          * are initialized but not otherwise referenced or locked.
471          *
472          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
473          * if the map entry is a virtual page table and also writable,
474          * so we can set the 'A'accessed bit in the virtual page table entry.
475          */
476         fs.map = map;
477         result = vm_map_lookup(&fs.map, vaddr, fault_type,
478                                &fs.entry, &fs.first_object,
479                                &first_pindex, &fs.first_prot, &fs.wired);
480
481         if (result != KERN_SUCCESS) {
482                 *errorp = result;
483                 return (NULL);
484         }
485
486         /*
487          * fs.map is read-locked
488          *
489          * Misc checks.  Save the map generation number to detect races.
490          */
491         fs.map_generation = fs.map->timestamp;
492
493         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
494                 panic("vm_fault: fault on nofault entry, addr: %lx",
495                     (u_long)vaddr);
496         }
497
498         /*
499          * A system map entry may return a NULL object.  No object means
500          * no pager means an unrecoverable kernel fault.
501          */
502         if (fs.first_object == NULL) {
503                 panic("vm_fault: unrecoverable fault at %p in entry %p",
504                         (void *)vaddr, fs.entry);
505         }
506
507         /*
508          * Make a reference to this object to prevent its disposal while we
509          * are messing with it.  Once we have the reference, the map is free
510          * to be diddled.  Since objects reference their shadows (and copies),
511          * they will stay around as well.
512          *
513          * Bump the paging-in-progress count to prevent size changes (e.g.
514          * truncation operations) during I/O.  This must be done after
515          * obtaining the vnode lock in order to avoid possible deadlocks.
516          */
517         vm_object_reference(fs.first_object);
518         fs.vp = vnode_pager_lock(fs.first_object);
519         vm_object_pip_add(fs.first_object, 1);
520
521         fs.lookup_still_valid = TRUE;
522         fs.first_m = NULL;
523         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
524
525         /*
526          * If the entry is wired we cannot change the page protection.
527          */
528         if (fs.wired)
529                 fault_type = fs.first_prot;
530
531         /*
532          * The page we want is at (first_object, first_pindex), but if the
533          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
534          * page table to figure out the actual pindex.
535          *
536          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
537          * ONLY
538          */
539         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
540                 result = vm_fault_vpagetable(&fs, &first_pindex,
541                                              fs.entry->aux.master_pde,
542                                              fault_type);
543                 if (result == KERN_TRY_AGAIN)
544                         goto RetryFault;
545                 if (result != KERN_SUCCESS) {
546                         *errorp = result;
547                         return (NULL);
548                 }
549         }
550
551         /*
552          * Now we have the actual (object, pindex), fault in the page.  If
553          * vm_fault_object() fails it will unlock and deallocate the FS
554          * data.   If it succeeds everything remains locked and fs->object
555          * will have an additinal PIP count if it is not equal to
556          * fs->first_object
557          */
558         result = vm_fault_object(&fs, first_pindex, fault_type);
559
560         if (result == KERN_TRY_AGAIN)
561                 goto RetryFault;
562         if (result != KERN_SUCCESS) {
563                 *errorp = result;
564                 return(NULL);
565         }
566
567         if ((orig_fault_type & VM_PROT_WRITE) &&
568             (fs.prot & VM_PROT_WRITE) == 0) {
569                 *errorp = KERN_PROTECTION_FAILURE;
570                 unlock_and_deallocate(&fs);
571                 return(NULL);
572         }
573
574         /*
575          * On success vm_fault_object() does not unlock or deallocate, and fs.m
576          * will contain a busied page.
577          */
578         unlock_things(&fs);
579
580         /*
581          * Return a held page.  We are not doing any pmap manipulation so do
582          * not set PG_MAPPED.  However, adjust the page flags according to
583          * the fault type because the caller may not use a managed pmapping
584          * (so we don't want to lose the fact that the page will be dirtied
585          * if a write fault was specified).
586          */
587         vm_page_hold(fs.m);
588         vm_page_flag_clear(fs.m, PG_ZERO);
589         if (fault_type & VM_PROT_WRITE)
590                 vm_page_dirty(fs.m);
591
592         /*
593          * Update the pmap.  We really only have to do this if a COW
594          * occured to replace the read-only page with the new page.  For
595          * now just do it unconditionally. XXX
596          */
597         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
598         vm_page_flag_set(fs.m, PG_REFERENCED);
599
600         /*
601          * Unbusy the page by activating it.  It remains held and will not
602          * be reclaimed.
603          */
604         vm_page_activate(fs.m);
605
606         if (curthread->td_lwp) {
607                 if (fs.hardfault) {
608                         curthread->td_lwp->lwp_ru.ru_majflt++;
609                 } else {
610                         curthread->td_lwp->lwp_ru.ru_minflt++;
611                 }
612         }
613
614         /*
615          * Unlock everything, and return the held page.
616          */
617         vm_page_wakeup(fs.m);
618         vm_object_deallocate(fs.first_object);
619
620         *errorp = 0;
621         return(fs.m);
622 }
623
624 /*
625  * Fault in the specified (object,offset), dirty the returned page as
626  * needed.  If the requested fault_type cannot be done NULL and an
627  * error is returned.
628  */
629 vm_page_t
630 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
631                      vm_prot_t fault_type, int fault_flags, int *errorp)
632 {
633         int result;
634         vm_pindex_t first_pindex;
635         struct faultstate fs;
636         struct vm_map_entry entry;
637
638         bzero(&entry, sizeof(entry));
639         entry.object.vm_object = object;
640         entry.maptype = VM_MAPTYPE_NORMAL;
641         entry.protection = entry.max_protection = fault_type;
642
643         fs.didlimit = 0;
644         fs.hardfault = 0;
645         fs.fault_flags = fault_flags;
646         fs.map = NULL;
647         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
648
649 RetryFault:
650         
651         fs.first_object = object;
652         first_pindex = OFF_TO_IDX(offset);
653         fs.entry = &entry;
654         fs.first_prot = fault_type;
655         fs.wired = 0;
656         /*fs.map_generation = 0; unused */
657
658         /*
659          * Make a reference to this object to prevent its disposal while we
660          * are messing with it.  Once we have the reference, the map is free
661          * to be diddled.  Since objects reference their shadows (and copies),
662          * they will stay around as well.
663          *
664          * Bump the paging-in-progress count to prevent size changes (e.g.
665          * truncation operations) during I/O.  This must be done after
666          * obtaining the vnode lock in order to avoid possible deadlocks.
667          */
668         vm_object_reference(fs.first_object);
669         fs.vp = vnode_pager_lock(fs.first_object);
670         vm_object_pip_add(fs.first_object, 1);
671
672         fs.lookup_still_valid = TRUE;
673         fs.first_m = NULL;
674         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
675
676 #if 0
677         /* XXX future - ability to operate on VM object using vpagetable */
678         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
679                 result = vm_fault_vpagetable(&fs, &first_pindex,
680                                              fs.entry->aux.master_pde,
681                                              fault_type);
682                 if (result == KERN_TRY_AGAIN)
683                         goto RetryFault;
684                 if (result != KERN_SUCCESS) {
685                         *errorp = result;
686                         return (NULL);
687                 }
688         }
689 #endif
690
691         /*
692          * Now we have the actual (object, pindex), fault in the page.  If
693          * vm_fault_object() fails it will unlock and deallocate the FS
694          * data.   If it succeeds everything remains locked and fs->object
695          * will have an additinal PIP count if it is not equal to
696          * fs->first_object
697          */
698         result = vm_fault_object(&fs, first_pindex, fault_type);
699
700         if (result == KERN_TRY_AGAIN)
701                 goto RetryFault;
702         if (result != KERN_SUCCESS) {
703                 *errorp = result;
704                 return(NULL);
705         }
706
707         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
708                 *errorp = KERN_PROTECTION_FAILURE;
709                 unlock_and_deallocate(&fs);
710                 return(NULL);
711         }
712
713         /*
714          * On success vm_fault_object() does not unlock or deallocate, and fs.m
715          * will contain a busied page.
716          */
717         unlock_things(&fs);
718
719         /*
720          * Return a held page.  We are not doing any pmap manipulation so do
721          * not set PG_MAPPED.  However, adjust the page flags according to
722          * the fault type because the caller may not use a managed pmapping
723          * (so we don't want to lose the fact that the page will be dirtied
724          * if a write fault was specified).
725          */
726         vm_page_hold(fs.m);
727         vm_page_flag_clear(fs.m, PG_ZERO);
728         if (fault_type & VM_PROT_WRITE)
729                 vm_page_dirty(fs.m);
730
731         /*
732          * Indicate that the page was accessed.
733          */
734         vm_page_flag_set(fs.m, PG_REFERENCED);
735
736         /*
737          * Unbusy the page by activating it.  It remains held and will not
738          * be reclaimed.
739          */
740         vm_page_activate(fs.m);
741
742         if (curthread->td_lwp) {
743                 if (fs.hardfault) {
744                         mycpu->gd_cnt.v_vm_faults++;
745                         curthread->td_lwp->lwp_ru.ru_majflt++;
746                 } else {
747                         curthread->td_lwp->lwp_ru.ru_minflt++;
748                 }
749         }
750
751         /*
752          * Unlock everything, and return the held page.
753          */
754         vm_page_wakeup(fs.m);
755         vm_object_deallocate(fs.first_object);
756
757         *errorp = 0;
758         return(fs.m);
759 }
760
761 /*
762  * Translate the virtual page number (first_pindex) that is relative
763  * to the address space into a logical page number that is relative to the
764  * backing object.  Use the virtual page table pointed to by (vpte).
765  *
766  * This implements an N-level page table.  Any level can terminate the
767  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
768  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
769  */
770 static
771 int
772 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
773                     vpte_t vpte, int fault_type)
774 {
775         struct sf_buf *sf;
776         int vshift = 32 - PAGE_SHIFT;   /* page index bits remaining */
777         int result = KERN_SUCCESS;
778         vpte_t *ptep;
779
780         for (;;) {
781                 /*
782                  * We cannot proceed if the vpte is not valid, not readable
783                  * for a read fault, or not writable for a write fault.
784                  */
785                 if ((vpte & VPTE_V) == 0) {
786                         unlock_and_deallocate(fs);
787                         return (KERN_FAILURE);
788                 }
789                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
790                         unlock_and_deallocate(fs);
791                         return (KERN_FAILURE);
792                 }
793                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
794                         unlock_and_deallocate(fs);
795                         return (KERN_FAILURE);
796                 }
797                 if ((vpte & VPTE_PS) || vshift == 0)
798                         break;
799                 KKASSERT(vshift >= VPTE_PAGE_BITS);
800
801                 /*
802                  * Get the page table page.  Nominally we only read the page
803                  * table, but since we are actively setting VPTE_M and VPTE_A,
804                  * tell vm_fault_object() that we are writing it. 
805                  *
806                  * There is currently no real need to optimize this.
807                  */
808                 result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
809                                          VM_PROT_READ|VM_PROT_WRITE);
810                 if (result != KERN_SUCCESS)
811                         return (result);
812
813                 /*
814                  * Process the returned fs.m and look up the page table
815                  * entry in the page table page.
816                  */
817                 vshift -= VPTE_PAGE_BITS;
818                 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
819                 ptep = ((vpte_t *)sf_buf_kva(sf) +
820                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
821                 vpte = *ptep;
822
823                 /*
824                  * Page table write-back.  If the vpte is valid for the
825                  * requested operation, do a write-back to the page table.
826                  *
827                  * XXX VPTE_M is not set properly for page directory pages.
828                  * It doesn't get set in the page directory if the page table
829                  * is modified during a read access.
830                  */
831                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
832                     (vpte & VPTE_W)) {
833                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
834                                 atomic_set_int(ptep, VPTE_M|VPTE_A);
835                                 vm_page_dirty(fs->m);
836                         }
837                 }
838                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
839                     (vpte & VPTE_R)) {
840                         if ((vpte & VPTE_A) == 0) {
841                                 atomic_set_int(ptep, VPTE_A);
842                                 vm_page_dirty(fs->m);
843                         }
844                 }
845                 sf_buf_free(sf);
846                 vm_page_flag_set(fs->m, PG_REFERENCED);
847                 vm_page_activate(fs->m);
848                 vm_page_wakeup(fs->m);
849                 cleanup_successful_fault(fs);
850         }
851         /*
852          * Combine remaining address bits with the vpte.
853          */
854         *pindex = (vpte >> PAGE_SHIFT) +
855                   (*pindex & ((1 << vshift) - 1));
856         return (KERN_SUCCESS);
857 }
858
859
860 /*
861  * Do all operations required to fault-in (fs.first_object, pindex).  Run
862  * through the shadow chain as necessary and do required COW or virtual
863  * copy operations.  The caller has already fully resolved the vm_map_entry
864  * and, if appropriate, has created a copy-on-write layer.  All we need to
865  * do is iterate the object chain.
866  *
867  * On failure (fs) is unlocked and deallocated and the caller may return or
868  * retry depending on the failure code.  On success (fs) is NOT unlocked or
869  * deallocated, fs.m will contained a resolved, busied page, and fs.object
870  * will have an additional PIP count if it is not equal to fs.first_object.
871  */
872 static
873 int
874 vm_fault_object(struct faultstate *fs,
875                 vm_pindex_t first_pindex, vm_prot_t fault_type)
876 {
877         vm_object_t next_object;
878         vm_page_t marray[VM_FAULT_READ];
879         vm_pindex_t pindex;
880         int faultcount;
881
882         fs->prot = fs->first_prot;
883         fs->object = fs->first_object;
884         pindex = first_pindex;
885
886         /* 
887          * If a read fault occurs we try to make the page writable if
888          * possible.  There are three cases where we cannot make the
889          * page mapping writable:
890          *
891          * (1) The mapping is read-only or the VM object is read-only,
892          *     fs->prot above will simply not have VM_PROT_WRITE set.
893          *
894          * (2) If the mapping is a virtual page table we need to be able
895          *     to detect writes so we can set VPTE_M in the virtual page
896          *     table.
897          *
898          * (3) If the VM page is read-only or copy-on-write, upgrading would
899          *     just result in an unnecessary COW fault.
900          *
901          * VM_PROT_VPAGED is set if faulting via a virtual page table and
902          * causes adjustments to the 'M'odify bit to also turn off write
903          * access to force a re-fault.
904          */
905         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
906                 if ((fault_type & VM_PROT_WRITE) == 0)
907                         fs->prot &= ~VM_PROT_WRITE;
908         }
909
910         for (;;) {
911                 /*
912                  * If the object is dead, we stop here
913                  */
914                 if (fs->object->flags & OBJ_DEAD) {
915                         unlock_and_deallocate(fs);
916                         return (KERN_PROTECTION_FAILURE);
917                 }
918
919                 /*
920                  * See if page is resident.  spl protection is required
921                  * to avoid an interrupt unbusy/free race against our
922                  * lookup.  We must hold the protection through a page
923                  * allocation or busy.
924                  */
925                 crit_enter();
926                 fs->m = vm_page_lookup(fs->object, pindex);
927                 if (fs->m != NULL) {
928                         int queue;
929                         /*
930                          * Wait/Retry if the page is busy.  We have to do this
931                          * if the page is busy via either PG_BUSY or 
932                          * vm_page_t->busy because the vm_pager may be using
933                          * vm_page_t->busy for pageouts ( and even pageins if
934                          * it is the vnode pager ), and we could end up trying
935                          * to pagein and pageout the same page simultaneously.
936                          *
937                          * We can theoretically allow the busy case on a read
938                          * fault if the page is marked valid, but since such
939                          * pages are typically already pmap'd, putting that
940                          * special case in might be more effort then it is 
941                          * worth.  We cannot under any circumstances mess
942                          * around with a vm_page_t->busy page except, perhaps,
943                          * to pmap it.
944                          */
945                         if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
946                                 unlock_things(fs);
947                                 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
948                                 mycpu->gd_cnt.v_intrans++;
949                                 vm_object_deallocate(fs->first_object);
950                                 fs->first_object = NULL;
951                                 crit_exit();
952                                 return (KERN_TRY_AGAIN);
953                         }
954
955                         /*
956                          * If reactivating a page from PQ_CACHE we may have
957                          * to rate-limit.
958                          */
959                         queue = fs->m->queue;
960                         vm_page_unqueue_nowakeup(fs->m);
961
962                         if ((queue - fs->m->pc) == PQ_CACHE && 
963                             vm_page_count_severe()) {
964                                 vm_page_activate(fs->m);
965                                 unlock_and_deallocate(fs);
966                                 vm_waitpfault();
967                                 crit_exit();
968                                 return (KERN_TRY_AGAIN);
969                         }
970
971                         /*
972                          * Mark page busy for other processes, and the 
973                          * pagedaemon.  If it still isn't completely valid
974                          * (readable), jump to readrest, else we found the
975                          * page and can return.
976                          *
977                          * We can release the spl once we have marked the
978                          * page busy.
979                          */
980                         vm_page_busy(fs->m);
981                         crit_exit();
982
983                         if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
984                             fs->m->object != &kernel_object) {
985                                 goto readrest;
986                         }
987                         break; /* break to PAGE HAS BEEN FOUND */
988                 }
989
990                 /*
991                  * Page is not resident, If this is the search termination
992                  * or the pager might contain the page, allocate a new page.
993                  *
994                  * NOTE: We are still in a critical section.
995                  */
996                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
997                         /*
998                          * If the page is beyond the object size we fail
999                          */
1000                         if (pindex >= fs->object->size) {
1001                                 crit_exit();
1002                                 unlock_and_deallocate(fs);
1003                                 return (KERN_PROTECTION_FAILURE);
1004                         }
1005
1006                         /*
1007                          * Ratelimit.
1008                          */
1009                         if (fs->didlimit == 0 && curproc != NULL) {
1010                                 int limticks;
1011
1012                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1013                                 if (limticks) {
1014                                         crit_exit();
1015                                         unlock_and_deallocate(fs);
1016                                         tsleep(curproc, 0, "vmrate", limticks);
1017                                         fs->didlimit = 1;
1018                                         return (KERN_TRY_AGAIN);
1019                                 }
1020                         }
1021
1022                         /*
1023                          * Allocate a new page for this object/offset pair.
1024                          */
1025                         fs->m = NULL;
1026                         if (!vm_page_count_severe()) {
1027                                 fs->m = vm_page_alloc(fs->object, pindex,
1028                                     (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1029                         }
1030                         if (fs->m == NULL) {
1031                                 crit_exit();
1032                                 unlock_and_deallocate(fs);
1033                                 vm_waitpfault();
1034                                 return (KERN_TRY_AGAIN);
1035                         }
1036                 }
1037                 crit_exit();
1038
1039 readrest:
1040                 /*
1041                  * We have found a valid page or we have allocated a new page.
1042                  * The page thus may not be valid or may not be entirely 
1043                  * valid.
1044                  *
1045                  * Attempt to fault-in the page if there is a chance that the
1046                  * pager has it, and potentially fault in additional pages
1047                  * at the same time.
1048                  *
1049                  * We are NOT in splvm here and if TRYPAGER is true then
1050                  * fs.m will be non-NULL and will be PG_BUSY for us.
1051                  */
1052
1053                 if (TRYPAGER(fs)) {
1054                         int rv;
1055                         int reqpage;
1056                         int ahead, behind;
1057                         u_char behavior = vm_map_entry_behavior(fs->entry);
1058
1059                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
1060                                 ahead = 0;
1061                                 behind = 0;
1062                         } else {
1063                                 behind = pindex;
1064                                 KKASSERT(behind >= 0);
1065                                 if (behind > VM_FAULT_READ_BEHIND)
1066                                         behind = VM_FAULT_READ_BEHIND;
1067
1068                                 ahead = fs->object->size - pindex;
1069                                 if (ahead < 1)
1070                                         ahead = 1;
1071                                 if (ahead > VM_FAULT_READ_AHEAD)
1072                                         ahead = VM_FAULT_READ_AHEAD;
1073                         }
1074
1075                         if ((fs->first_object->type != OBJT_DEVICE) &&
1076                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1077                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1078                                 pindex >= fs->entry->lastr &&
1079                                 pindex < fs->entry->lastr + VM_FAULT_READ))
1080                         ) {
1081                                 vm_pindex_t firstpindex, tmppindex;
1082
1083                                 if (first_pindex < 2 * VM_FAULT_READ)
1084                                         firstpindex = 0;
1085                                 else
1086                                         firstpindex = first_pindex - 2 * VM_FAULT_READ;
1087
1088                                 /*
1089                                  * note: partially valid pages cannot be 
1090                                  * included in the lookahead - NFS piecemeal
1091                                  * writes will barf on it badly.
1092                                  *
1093                                  * spl protection is required to avoid races
1094                                  * between the lookup and an interrupt
1095                                  * unbusy/free sequence occuring prior to
1096                                  * our busy check.
1097                                  */
1098                                 crit_enter();
1099                                 for (tmppindex = first_pindex - 1;
1100                                     tmppindex >= firstpindex;
1101                                     --tmppindex
1102                                 ) {
1103                                         vm_page_t mt;
1104
1105                                         mt = vm_page_lookup(fs->first_object, tmppindex);
1106                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
1107                                                 break;
1108                                         if (mt->busy ||
1109                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1110                                                 mt->hold_count ||
1111                                                 mt->wire_count) 
1112                                                 continue;
1113                                         if (mt->dirty == 0)
1114                                                 vm_page_test_dirty(mt);
1115                                         if (mt->dirty) {
1116                                                 vm_page_busy(mt);
1117                                                 vm_page_protect(mt, VM_PROT_NONE);
1118                                                 vm_page_deactivate(mt);
1119                                                 vm_page_wakeup(mt);
1120                                         } else {
1121                                                 vm_page_cache(mt);
1122                                         }
1123                                 }
1124                                 crit_exit();
1125
1126                                 ahead += behind;
1127                                 behind = 0;
1128                         }
1129
1130                         /*
1131                          * now we find out if any other pages should be paged
1132                          * in at this time this routine checks to see if the
1133                          * pages surrounding this fault reside in the same
1134                          * object as the page for this fault.  If they do,
1135                          * then they are faulted in also into the object.  The
1136                          * array "marray" returned contains an array of
1137                          * vm_page_t structs where one of them is the
1138                          * vm_page_t passed to the routine.  The reqpage
1139                          * return value is the index into the marray for the
1140                          * vm_page_t passed to the routine.
1141                          *
1142                          * fs.m plus the additional pages are PG_BUSY'd.
1143                          */
1144                         faultcount = vm_fault_additional_pages(
1145                             fs->m, behind, ahead, marray, &reqpage);
1146
1147                         /*
1148                          * update lastr imperfectly (we do not know how much
1149                          * getpages will actually read), but good enough.
1150                          */
1151                         fs->entry->lastr = pindex + faultcount - behind;
1152
1153                         /*
1154                          * Call the pager to retrieve the data, if any, after
1155                          * releasing the lock on the map.  We hold a ref on
1156                          * fs.object and the pages are PG_BUSY'd.
1157                          */
1158                         unlock_map(fs);
1159
1160                         if (faultcount) {
1161                                 rv = vm_pager_get_pages(fs->object, marray, 
1162                                                         faultcount, reqpage);
1163                         } else {
1164                                 rv = VM_PAGER_FAIL;
1165                         }
1166
1167                         if (rv == VM_PAGER_OK) {
1168                                 /*
1169                                  * Found the page. Leave it busy while we play
1170                                  * with it.
1171                                  */
1172
1173                                 /*
1174                                  * Relookup in case pager changed page. Pager
1175                                  * is responsible for disposition of old page
1176                                  * if moved.
1177                                  *
1178                                  * XXX other code segments do relookups too.
1179                                  * It's a bad abstraction that needs to be
1180                                  * fixed/removed.
1181                                  */
1182                                 fs->m = vm_page_lookup(fs->object, pindex);
1183                                 if (fs->m == NULL) {
1184                                         unlock_and_deallocate(fs);
1185                                         return (KERN_TRY_AGAIN);
1186                                 }
1187
1188                                 ++fs->hardfault;
1189                                 break; /* break to PAGE HAS BEEN FOUND */
1190                         }
1191
1192                         /*
1193                          * Remove the bogus page (which does not exist at this
1194                          * object/offset); before doing so, we must get back
1195                          * our object lock to preserve our invariant.
1196                          *
1197                          * Also wake up any other process that may want to bring
1198                          * in this page.
1199                          *
1200                          * If this is the top-level object, we must leave the
1201                          * busy page to prevent another process from rushing
1202                          * past us, and inserting the page in that object at
1203                          * the same time that we are.
1204                          */
1205                         if (rv == VM_PAGER_ERROR) {
1206                                 if (curproc)
1207                                         kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1208                                 else
1209                                         kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1210                         }
1211                         /*
1212                          * Data outside the range of the pager or an I/O error
1213                          *
1214                          * The page may have been wired during the pagein,
1215                          * e.g. by the buffer cache, and cannot simply be
1216                          * freed.  Call vnode_pager_freepag() to deal with it.
1217                          */
1218                         /*
1219                          * XXX - the check for kernel_map is a kludge to work
1220                          * around having the machine panic on a kernel space
1221                          * fault w/ I/O error.
1222                          */
1223                         if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
1224                                 (rv == VM_PAGER_BAD)) {
1225                                 vnode_pager_freepage(fs->m);
1226                                 fs->m = NULL;
1227                                 unlock_and_deallocate(fs);
1228                                 if (rv == VM_PAGER_ERROR)
1229                                         return (KERN_FAILURE);
1230                                 else
1231                                         return (KERN_PROTECTION_FAILURE);
1232                                 /* NOT REACHED */
1233                         }
1234                         if (fs->object != fs->first_object) {
1235                                 vnode_pager_freepage(fs->m);
1236                                 fs->m = NULL;
1237                                 /*
1238                                  * XXX - we cannot just fall out at this
1239                                  * point, m has been freed and is invalid!
1240                                  */
1241                         }
1242                 }
1243
1244                 /*
1245                  * We get here if the object has a default pager (or unwiring) 
1246                  * or the pager doesn't have the page.
1247                  */
1248                 if (fs->object == fs->first_object)
1249                         fs->first_m = fs->m;
1250
1251                 /*
1252                  * Move on to the next object.  Lock the next object before
1253                  * unlocking the current one.
1254                  */
1255                 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1256                 next_object = fs->object->backing_object;
1257                 if (next_object == NULL) {
1258                         /*
1259                          * If there's no object left, fill the page in the top
1260                          * object with zeros.
1261                          */
1262                         if (fs->object != fs->first_object) {
1263                                 vm_object_pip_wakeup(fs->object);
1264
1265                                 fs->object = fs->first_object;
1266                                 pindex = first_pindex;
1267                                 fs->m = fs->first_m;
1268                         }
1269                         fs->first_m = NULL;
1270
1271                         /*
1272                          * Zero the page if necessary and mark it valid.
1273                          */
1274                         if ((fs->m->flags & PG_ZERO) == 0) {
1275                                 vm_page_zero_fill(fs->m);
1276                         } else {
1277                                 mycpu->gd_cnt.v_ozfod++;
1278                         }
1279                         mycpu->gd_cnt.v_zfod++;
1280                         fs->m->valid = VM_PAGE_BITS_ALL;
1281                         break;  /* break to PAGE HAS BEEN FOUND */
1282                 } else {
1283                         if (fs->object != fs->first_object) {
1284                                 vm_object_pip_wakeup(fs->object);
1285                         }
1286                         KASSERT(fs->object != next_object, ("object loop %p", next_object));
1287                         fs->object = next_object;
1288                         vm_object_pip_add(fs->object, 1);
1289                 }
1290         }
1291
1292         KASSERT((fs->m->flags & PG_BUSY) != 0,
1293                 ("vm_fault: not busy after main loop"));
1294
1295         /*
1296          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1297          * is held.]
1298          */
1299
1300         /*
1301          * If the page is being written, but isn't already owned by the
1302          * top-level object, we have to copy it into a new page owned by the
1303          * top-level object.
1304          */
1305         if (fs->object != fs->first_object) {
1306                 /*
1307                  * We only really need to copy if we want to write it.
1308                  */
1309                 if (fault_type & VM_PROT_WRITE) {
1310                         /*
1311                          * This allows pages to be virtually copied from a 
1312                          * backing_object into the first_object, where the 
1313                          * backing object has no other refs to it, and cannot
1314                          * gain any more refs.  Instead of a bcopy, we just 
1315                          * move the page from the backing object to the 
1316                          * first object.  Note that we must mark the page 
1317                          * dirty in the first object so that it will go out 
1318                          * to swap when needed.
1319                          */
1320                         if (
1321                                 /*
1322                                  * Map, if present, has not changed
1323                                  */
1324                                 (fs->map == NULL ||
1325                                 fs->map_generation == fs->map->timestamp) &&
1326                                 /*
1327                                  * Only one shadow object
1328                                  */
1329                                 (fs->object->shadow_count == 1) &&
1330                                 /*
1331                                  * No COW refs, except us
1332                                  */
1333                                 (fs->object->ref_count == 1) &&
1334                                 /*
1335                                  * No one else can look this object up
1336                                  */
1337                                 (fs->object->handle == NULL) &&
1338                                 /*
1339                                  * No other ways to look the object up
1340                                  */
1341                                 ((fs->object->type == OBJT_DEFAULT) ||
1342                                  (fs->object->type == OBJT_SWAP)) &&
1343                                 /*
1344                                  * We don't chase down the shadow chain
1345                                  */
1346                                 (fs->object == fs->first_object->backing_object) &&
1347
1348                                 /*
1349                                  * grab the lock if we need to
1350                                  */
1351                                 (fs->lookup_still_valid ||
1352                                  fs->map == NULL ||
1353                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1354                             ) {
1355                                 
1356                                 fs->lookup_still_valid = 1;
1357                                 /*
1358                                  * get rid of the unnecessary page
1359                                  */
1360                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1361                                 vm_page_free(fs->first_m);
1362                                 fs->first_m = NULL;
1363
1364                                 /*
1365                                  * grab the page and put it into the 
1366                                  * process'es object.  The page is 
1367                                  * automatically made dirty.
1368                                  */
1369                                 vm_page_rename(fs->m, fs->first_object, first_pindex);
1370                                 fs->first_m = fs->m;
1371                                 vm_page_busy(fs->first_m);
1372                                 fs->m = NULL;
1373                                 mycpu->gd_cnt.v_cow_optim++;
1374                         } else {
1375                                 /*
1376                                  * Oh, well, lets copy it.
1377                                  */
1378                                 vm_page_copy(fs->m, fs->first_m);
1379                                 vm_page_event(fs->m, VMEVENT_COW);
1380                         }
1381
1382                         if (fs->m) {
1383                                 /*
1384                                  * We no longer need the old page or object.
1385                                  */
1386                                 release_page(fs);
1387                         }
1388
1389                         /*
1390                          * fs->object != fs->first_object due to above 
1391                          * conditional
1392                          */
1393                         vm_object_pip_wakeup(fs->object);
1394
1395                         /*
1396                          * Only use the new page below...
1397                          */
1398
1399                         mycpu->gd_cnt.v_cow_faults++;
1400                         fs->m = fs->first_m;
1401                         fs->object = fs->first_object;
1402                         pindex = first_pindex;
1403                 } else {
1404                         /*
1405                          * If it wasn't a write fault avoid having to copy
1406                          * the page by mapping it read-only.
1407                          */
1408                         fs->prot &= ~VM_PROT_WRITE;
1409                 }
1410         }
1411
1412         /*
1413          * We may have had to unlock a map to do I/O.  If we did then
1414          * lookup_still_valid will be FALSE.  If the map generation count
1415          * also changed then all sorts of things could have happened while
1416          * we were doing the I/O and we need to retry.
1417          */
1418
1419         if (!fs->lookup_still_valid &&
1420             fs->map != NULL &&
1421             (fs->map->timestamp != fs->map_generation)) {
1422                 release_page(fs);
1423                 unlock_and_deallocate(fs);
1424                 return (KERN_TRY_AGAIN);
1425         }
1426
1427         /*
1428          * If the fault is a write, we know that this page is being
1429          * written NOW so dirty it explicitly to save on pmap_is_modified()
1430          * calls later.
1431          *
1432          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1433          * if the page is already dirty to prevent data written with
1434          * the expectation of being synced from not being synced.
1435          * Likewise if this entry does not request NOSYNC then make
1436          * sure the page isn't marked NOSYNC.  Applications sharing
1437          * data should use the same flags to avoid ping ponging.
1438          *
1439          * Also tell the backing pager, if any, that it should remove
1440          * any swap backing since the page is now dirty.
1441          */
1442         if (fs->prot & VM_PROT_WRITE) {
1443                 vm_object_set_writeable_dirty(fs->m->object);
1444                 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1445                         if (fs->m->dirty == 0)
1446                                 vm_page_flag_set(fs->m, PG_NOSYNC);
1447                 } else {
1448                         vm_page_flag_clear(fs->m, PG_NOSYNC);
1449                 }
1450                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1451                         crit_enter();
1452                         vm_page_dirty(fs->m);
1453                         vm_pager_page_unswapped(fs->m);
1454                         crit_exit();
1455                 }
1456         }
1457
1458         /*
1459          * Page had better still be busy.  We are still locked up and 
1460          * fs->object will have another PIP reference if it is not equal
1461          * to fs->first_object.
1462          */
1463         KASSERT(fs->m->flags & PG_BUSY,
1464                 ("vm_fault: page %p not busy!", fs->m));
1465
1466         /*
1467          * Sanity check: page must be completely valid or it is not fit to
1468          * map into user space.  vm_pager_get_pages() ensures this.
1469          */
1470         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1471                 vm_page_zero_invalid(fs->m, TRUE);
1472                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1473         }
1474
1475         return (KERN_SUCCESS);
1476 }
1477
1478 /*
1479  * Wire down a range of virtual addresses in a map.  The entry in question
1480  * should be marked in-transition and the map must be locked.  We must
1481  * release the map temporarily while faulting-in the page to avoid a
1482  * deadlock.  Note that the entry may be clipped while we are blocked but
1483  * will never be freed.
1484  */
1485 int
1486 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1487 {
1488         boolean_t fictitious;
1489         vm_offset_t start;
1490         vm_offset_t end;
1491         vm_offset_t va;
1492         vm_paddr_t pa;
1493         pmap_t pmap;
1494         int rv;
1495
1496         pmap = vm_map_pmap(map);
1497         start = entry->start;
1498         end = entry->end;
1499         fictitious = entry->object.vm_object &&
1500                         (entry->object.vm_object->type == OBJT_DEVICE);
1501
1502         vm_map_unlock(map);
1503         map->timestamp++;
1504
1505         /*
1506          * We simulate a fault to get the page and enter it in the physical
1507          * map.
1508          */
1509         for (va = start; va < end; va += PAGE_SIZE) {
1510                 if (user_wire) {
1511                         rv = vm_fault(map, va, VM_PROT_READ, 
1512                                         VM_FAULT_USER_WIRE);
1513                 } else {
1514                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1515                                         VM_FAULT_CHANGE_WIRING);
1516                 }
1517                 if (rv) {
1518                         while (va > start) {
1519                                 va -= PAGE_SIZE;
1520                                 if ((pa = pmap_extract(pmap, va)) == 0)
1521                                         continue;
1522                                 pmap_change_wiring(pmap, va, FALSE);
1523                                 if (!fictitious)
1524                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1525                         }
1526                         vm_map_lock(map);
1527                         return (rv);
1528                 }
1529         }
1530         vm_map_lock(map);
1531         return (KERN_SUCCESS);
1532 }
1533
1534 /*
1535  * Unwire a range of virtual addresses in a map.  The map should be
1536  * locked.
1537  */
1538 void
1539 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1540 {
1541         boolean_t fictitious;
1542         vm_offset_t start;
1543         vm_offset_t end;
1544         vm_offset_t va;
1545         vm_paddr_t pa;
1546         pmap_t pmap;
1547
1548         pmap = vm_map_pmap(map);
1549         start = entry->start;
1550         end = entry->end;
1551         fictitious = entry->object.vm_object &&
1552                         (entry->object.vm_object->type == OBJT_DEVICE);
1553
1554         /*
1555          * Since the pages are wired down, we must be able to get their
1556          * mappings from the physical map system.
1557          */
1558         for (va = start; va < end; va += PAGE_SIZE) {
1559                 pa = pmap_extract(pmap, va);
1560                 if (pa != 0) {
1561                         pmap_change_wiring(pmap, va, FALSE);
1562                         if (!fictitious)
1563                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1564                 }
1565         }
1566 }
1567
1568 /*
1569  * Reduce the rate at which memory is allocated to a process based
1570  * on the perceived load on the VM system. As the load increases
1571  * the allocation burst rate goes down and the delay increases. 
1572  *
1573  * Rate limiting does not apply when faulting active or inactive
1574  * pages.  When faulting 'cache' pages, rate limiting only applies
1575  * if the system currently has a severe page deficit.
1576  *
1577  * XXX vm_pagesupply should be increased when a page is freed.
1578  *
1579  * We sleep up to 1/10 of a second.
1580  */
1581 static int
1582 vm_fault_ratelimit(struct vmspace *vmspace)
1583 {
1584         if (vm_load_enable == 0)
1585                 return(0);
1586         if (vmspace->vm_pagesupply > 0) {
1587                 --vmspace->vm_pagesupply;
1588                 return(0);
1589         }
1590 #ifdef INVARIANTS
1591         if (vm_load_debug) {
1592                 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1593                         vm_load, 
1594                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1595                         curproc->p_pid, curproc->p_comm);
1596         }
1597 #endif
1598         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1599         return(vm_load * hz / 10000);
1600 }
1601
1602 /*
1603  *      Routine:
1604  *              vm_fault_copy_entry
1605  *      Function:
1606  *              Copy all of the pages from a wired-down map entry to another.
1607  *
1608  *      In/out conditions:
1609  *              The source and destination maps must be locked for write.
1610  *              The source map entry must be wired down (or be a sharing map
1611  *              entry corresponding to a main map entry that is wired down).
1612  */
1613
1614 void
1615 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1616     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1617 {
1618         vm_object_t dst_object;
1619         vm_object_t src_object;
1620         vm_ooffset_t dst_offset;
1621         vm_ooffset_t src_offset;
1622         vm_prot_t prot;
1623         vm_offset_t vaddr;
1624         vm_page_t dst_m;
1625         vm_page_t src_m;
1626
1627 #ifdef  lint
1628         src_map++;
1629 #endif  /* lint */
1630
1631         src_object = src_entry->object.vm_object;
1632         src_offset = src_entry->offset;
1633
1634         /*
1635          * Create the top-level object for the destination entry. (Doesn't
1636          * actually shadow anything - we copy the pages directly.)
1637          */
1638         vm_map_entry_allocate_object(dst_entry);
1639         dst_object = dst_entry->object.vm_object;
1640
1641         prot = dst_entry->max_protection;
1642
1643         /*
1644          * Loop through all of the pages in the entry's range, copying each
1645          * one from the source object (it should be there) to the destination
1646          * object.
1647          */
1648         for (vaddr = dst_entry->start, dst_offset = 0;
1649             vaddr < dst_entry->end;
1650             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1651
1652                 /*
1653                  * Allocate a page in the destination object
1654                  */
1655                 do {
1656                         dst_m = vm_page_alloc(dst_object,
1657                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1658                         if (dst_m == NULL) {
1659                                 vm_wait(0);
1660                         }
1661                 } while (dst_m == NULL);
1662
1663                 /*
1664                  * Find the page in the source object, and copy it in.
1665                  * (Because the source is wired down, the page will be in
1666                  * memory.)
1667                  */
1668                 src_m = vm_page_lookup(src_object,
1669                         OFF_TO_IDX(dst_offset + src_offset));
1670                 if (src_m == NULL)
1671                         panic("vm_fault_copy_wired: page missing");
1672
1673                 vm_page_copy(src_m, dst_m);
1674                 vm_page_event(src_m, VMEVENT_COW);
1675
1676                 /*
1677                  * Enter it in the pmap...
1678                  */
1679
1680                 vm_page_flag_clear(dst_m, PG_ZERO);
1681                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1682
1683                 /*
1684                  * Mark it no longer busy, and put it on the active list.
1685                  */
1686                 vm_page_activate(dst_m);
1687                 vm_page_wakeup(dst_m);
1688         }
1689 }
1690
1691
1692 /*
1693  * This routine checks around the requested page for other pages that
1694  * might be able to be faulted in.  This routine brackets the viable
1695  * pages for the pages to be paged in.
1696  *
1697  * Inputs:
1698  *      m, rbehind, rahead
1699  *
1700  * Outputs:
1701  *  marray (array of vm_page_t), reqpage (index of requested page)
1702  *
1703  * Return value:
1704  *  number of pages in marray
1705  */
1706 static int
1707 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1708                           vm_page_t *marray, int *reqpage)
1709 {
1710         int i,j;
1711         vm_object_t object;
1712         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1713         vm_page_t rtm;
1714         int cbehind, cahead;
1715
1716         object = m->object;
1717         pindex = m->pindex;
1718
1719         /*
1720          * we don't fault-ahead for device pager
1721          */
1722         if (object->type == OBJT_DEVICE) {
1723                 *reqpage = 0;
1724                 marray[0] = m;
1725                 return 1;
1726         }
1727
1728         /*
1729          * if the requested page is not available, then give up now
1730          */
1731         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1732                 *reqpage = 0;   /* not used by caller, fix compiler warn */
1733                 return 0;
1734         }
1735
1736         if ((cbehind == 0) && (cahead == 0)) {
1737                 *reqpage = 0;
1738                 marray[0] = m;
1739                 return 1;
1740         }
1741
1742         if (rahead > cahead) {
1743                 rahead = cahead;
1744         }
1745
1746         if (rbehind > cbehind) {
1747                 rbehind = cbehind;
1748         }
1749
1750         /*
1751          * Do not do any readahead if we have insufficient free memory.
1752          *
1753          * XXX code was broken disabled before and has instability
1754          * with this conditonal fixed, so shortcut for now.
1755          */
1756         if (burst_fault == 0 || vm_page_count_severe()) {
1757                 marray[0] = m;
1758                 *reqpage = 0;
1759                 return 1;
1760         }
1761
1762         /*
1763          * scan backward for the read behind pages -- in memory 
1764          *
1765          * Assume that if the page is not found an interrupt will not
1766          * create it.  Theoretically interrupts can only remove (busy)
1767          * pages, not create new associations.
1768          */
1769         if (pindex > 0) {
1770                 if (rbehind > pindex) {
1771                         rbehind = pindex;
1772                         startpindex = 0;
1773                 } else {
1774                         startpindex = pindex - rbehind;
1775                 }
1776
1777                 crit_enter();
1778                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1779                         if (vm_page_lookup(object, tpindex - 1))
1780                                 break;
1781                 }
1782
1783                 i = 0;
1784                 while (tpindex < pindex) {
1785                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1786                         if (rtm == NULL) {
1787                                 crit_exit();
1788                                 for (j = 0; j < i; j++) {
1789                                         vm_page_free(marray[j]);
1790                                 }
1791                                 marray[0] = m;
1792                                 *reqpage = 0;
1793                                 return 1;
1794                         }
1795                         marray[i] = rtm;
1796                         ++i;
1797                         ++tpindex;
1798                 }
1799                 crit_exit();
1800         } else {
1801                 i = 0;
1802         }
1803
1804         /*
1805          * Assign requested page
1806          */
1807         marray[i] = m;
1808         *reqpage = i;
1809         ++i;
1810
1811         /*
1812          * Scan forwards for read-ahead pages
1813          */
1814         tpindex = pindex + 1;
1815         endpindex = tpindex + rahead;
1816         if (endpindex > object->size)
1817                 endpindex = object->size;
1818
1819         crit_enter();
1820         while (tpindex < endpindex) {
1821                 if (vm_page_lookup(object, tpindex))
1822                         break;
1823                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1824                 if (rtm == NULL)
1825                         break;
1826                 marray[i] = rtm;
1827                 ++i;
1828                 ++tpindex;
1829         }
1830         crit_exit();
1831
1832         return (i);
1833 }