c73456f9057718ff8050390d7d6ecf6d78fb4bfb
[dragonfly.git] / sys / dev / raid / aac / aac.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      $FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *      $DragonFly: src/sys/dev/raid/aac/aac.c,v 1.5 2003/07/19 21:14:16 dillon Exp $
31  */
32
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36
37 #include "opt_aac.h"
38
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52
53 #include <dev/aac/aac_compat.h>
54
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66
67 #include <dev/aac/aacreg.h>
68 #include <dev/aac/aac_ioctl.h>
69 #include <dev/aac/aacvar.h>
70 #include <dev/aac/aac_tables.h>
71 #include <dev/aac/aac_cam.h>
72
73 static void     aac_startup(void *arg);
74 static void     aac_add_container(struct aac_softc *sc,
75                                   struct aac_mntinforesp *mir, int f);
76 static void     aac_get_bus_info(struct aac_softc *sc);
77
78 /* Command Processing */
79 static void     aac_timeout(struct aac_softc *sc);
80 static int      aac_start(struct aac_command *cm);
81 static void     aac_complete(void *context, int pending);
82 static int      aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void     aac_bio_complete(struct aac_command *cm);
84 static int      aac_wait_command(struct aac_command *cm, int timeout);
85 static void     aac_host_command(struct aac_softc *sc);
86 static void     aac_host_response(struct aac_softc *sc);
87
88 /* Command Buffer Management */
89 static void     aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90                                        int nseg, int error);
91 static int      aac_alloc_commands(struct aac_softc *sc);
92 static void     aac_free_commands(struct aac_softc *sc);
93 static void     aac_map_command(struct aac_command *cm);
94 static void     aac_unmap_command(struct aac_command *cm);
95
96 /* Hardware Interface */
97 static void     aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98                                int error);
99 static int      aac_check_firmware(struct aac_softc *sc);
100 static int      aac_init(struct aac_softc *sc);
101 static int      aac_sync_command(struct aac_softc *sc, u_int32_t command,
102                                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103                                  u_int32_t arg3, u_int32_t *sp);
104 static int      aac_enqueue_fib(struct aac_softc *sc, int queue,
105                                 struct aac_command *cm);
106 static int      aac_dequeue_fib(struct aac_softc *sc, int queue,
107                                 u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int      aac_enqueue_response(struct aac_softc *sc, int queue,
109                                      struct aac_fib *fib);
110
111 /* Falcon/PPC interface */
112 static int      aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void     aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int      aac_fa_get_istatus(struct aac_softc *sc);
115 static void     aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void     aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117                                    u_int32_t arg0, u_int32_t arg1,
118                                    u_int32_t arg2, u_int32_t arg3);
119 static int      aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void     aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121
122 struct aac_interface aac_fa_interface = {
123         aac_fa_get_fwstatus,
124         aac_fa_qnotify,
125         aac_fa_get_istatus,
126         aac_fa_clear_istatus,
127         aac_fa_set_mailbox,
128         aac_fa_get_mailbox,
129         aac_fa_set_interrupts
130 };
131
132 /* StrongARM interface */
133 static int      aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void     aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int      aac_sa_get_istatus(struct aac_softc *sc);
136 static void     aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void     aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138                                    u_int32_t arg0, u_int32_t arg1,
139                                    u_int32_t arg2, u_int32_t arg3);
140 static int      aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void     aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142
143 struct aac_interface aac_sa_interface = {
144         aac_sa_get_fwstatus,
145         aac_sa_qnotify,
146         aac_sa_get_istatus,
147         aac_sa_clear_istatus,
148         aac_sa_set_mailbox,
149         aac_sa_get_mailbox,
150         aac_sa_set_interrupts
151 };
152
153 /* i960Rx interface */  
154 static int      aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void     aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int      aac_rx_get_istatus(struct aac_softc *sc);
157 static void     aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void     aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159                                    u_int32_t arg0, u_int32_t arg1,
160                                    u_int32_t arg2, u_int32_t arg3);
161 static int      aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void     aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163
164 struct aac_interface aac_rx_interface = {
165         aac_rx_get_fwstatus,
166         aac_rx_qnotify,
167         aac_rx_get_istatus,
168         aac_rx_clear_istatus,
169         aac_rx_set_mailbox,
170         aac_rx_get_mailbox,
171         aac_rx_set_interrupts
172 };
173
174 /* Debugging and Diagnostics */
175 static void     aac_describe_controller(struct aac_softc *sc);
176 static char     *aac_describe_code(struct aac_code_lookup *table,
177                                    u_int32_t code);
178
179 /* Management Interface */
180 static d_open_t         aac_open;
181 static d_close_t        aac_close;
182 static d_ioctl_t        aac_ioctl;
183 static d_poll_t         aac_poll;
184 static int              aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void             aac_handle_aif(struct aac_softc *sc,
186                                            struct aac_fib *fib);
187 static int              aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int              aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int              aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int              aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191
192 #define AAC_CDEV_MAJOR  150
193
194 static struct cdevsw aac_cdevsw = {
195         aac_open,               /* open */
196         aac_close,              /* close */
197         noread,                 /* read */
198         nowrite,                /* write */
199         aac_ioctl,              /* ioctl */
200         aac_poll,               /* poll */
201         nommap,                 /* mmap */
202         nostrategy,             /* strategy */
203         "aac",                  /* name */
204         AAC_CDEV_MAJOR,         /* major */
205         nodump,                 /* dump */
206         nopsize,                /* psize */
207         0,                      /* flags */
208 #if __FreeBSD_version < 500005
209         -1,                     /* bmaj */
210 #endif
211 };
212
213 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
214
215 /* sysctl node */
216 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
217
218 /*
219  * Device Interface
220  */
221
222 /*
223  * Initialise the controller and softc
224  */
225 int
226 aac_attach(struct aac_softc *sc)
227 {
228         int error, unit;
229
230         debug_called(1);
231
232         /*
233          * Initialise per-controller queues.
234          */
235         aac_initq_free(sc);
236         aac_initq_ready(sc);
237         aac_initq_busy(sc);
238         aac_initq_complete(sc);
239         aac_initq_bio(sc);
240
241 #if __FreeBSD_version >= 500005
242         /*
243          * Initialise command-completion task.
244          */
245         TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
246 #endif
247
248         /* disable interrupts before we enable anything */
249         AAC_MASK_INTERRUPTS(sc);
250
251         /* mark controller as suspended until we get ourselves organised */
252         sc->aac_state |= AAC_STATE_SUSPEND;
253
254         /*
255          * Check that the firmware on the card is supported.
256          */
257         if ((error = aac_check_firmware(sc)) != 0)
258                 return(error);
259
260         /* Init the sync fib lock */
261         AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
262
263         /*
264          * Initialise the adapter.
265          */
266         if ((error = aac_init(sc)) != 0)
267                 return(error);
268
269         /* 
270          * Print a little information about the controller.
271          */
272         aac_describe_controller(sc);
273
274         /*
275          * Register to probe our containers later.
276          */
277         TAILQ_INIT(&sc->aac_container_tqh);
278         AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
279
280         /*
281          * Lock for the AIF queue
282          */
283         AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
284
285         sc->aac_ich.ich_func = aac_startup;
286         sc->aac_ich.ich_arg = sc;
287         if (config_intrhook_establish(&sc->aac_ich) != 0) {
288                 device_printf(sc->aac_dev,
289                               "can't establish configuration hook\n");
290                 return(ENXIO);
291         }
292
293         /*
294          * Make the control device.
295          */
296         unit = device_get_unit(sc->aac_dev);
297         sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
298                                  "aac%d", unit);
299 #if __FreeBSD_version > 500005
300         (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
301         (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
302 #endif
303         sc->aac_dev_t->si_drv1 = sc;
304
305         /* Create the AIF thread */
306 #if __FreeBSD_version > 500005
307         if (kthread_create((void(*)(void *))aac_host_command, sc,
308                            &sc->aifthread, 0, "aac%daif", unit))
309 #else
310         if (kthread_create((void(*)(void *))aac_host_command, sc,
311                            &sc->aifthread, "aac%daif", unit))
312 #endif
313                 panic("Could not create AIF thread\n");
314
315         /* Register the shutdown method to only be called post-dump */
316         if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
317                                    SHUTDOWN_PRI_DEFAULT)) == NULL)
318         device_printf(sc->aac_dev, "shutdown event registration failed\n");
319
320         /* Register with CAM for the non-DASD devices */
321         if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
322                 aac_get_bus_info(sc);
323
324         return(0);
325 }
326
327 /*
328  * Probe for containers, create disks.
329  */
330 static void
331 aac_startup(void *arg)
332 {
333         struct aac_softc *sc;
334         struct aac_fib *fib;
335         struct aac_mntinfo *mi;
336         struct aac_mntinforesp *mir = NULL;
337         int i = 0;
338
339         debug_called(1);
340
341         sc = (struct aac_softc *)arg;
342
343         /* disconnect ourselves from the intrhook chain */
344         config_intrhook_disestablish(&sc->aac_ich);
345
346         aac_alloc_sync_fib(sc, &fib, 0);
347         mi = (struct aac_mntinfo *)&fib->data[0];
348
349         /* loop over possible containers */
350         do {
351                 /* request information on this container */
352                 bzero(mi, sizeof(struct aac_mntinfo));
353                 mi->Command = VM_NameServe;
354                 mi->MntType = FT_FILESYS;
355                 mi->MntCount = i;
356                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
357                                  sizeof(struct aac_mntinfo))) {
358                         debug(2, "error probing container %d", i);
359                         continue;
360                 }
361
362                 mir = (struct aac_mntinforesp *)&fib->data[0];
363                 aac_add_container(sc, mir, 0);
364                 i++;
365         } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
366
367         aac_release_sync_fib(sc);
368
369         /* poke the bus to actually attach the child devices */
370         if (bus_generic_attach(sc->aac_dev))
371                 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
372
373         /* mark the controller up */
374         sc->aac_state &= ~AAC_STATE_SUSPEND;
375
376         /* enable interrupts now */
377         AAC_UNMASK_INTERRUPTS(sc);
378
379         /* enable the timeout watchdog */
380         timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
381 }
382
383 /*
384  * Create a device to respresent a new container
385  */
386 static void
387 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
388 {
389         struct aac_container *co;
390         device_t child;
391
392         /* 
393          * Check container volume type for validity.  Note that many of
394          * the possible types may never show up.
395          */
396         if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
397                 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
398                        M_NOWAIT);
399                 if (co == NULL)
400                         panic("Out of memory?!\n");
401                 debug(1, "id %x  name '%.16s'  size %u  type %d", 
402                       mir->MntTable[0].ObjectId,
403                       mir->MntTable[0].FileSystemName,
404                       mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
405         
406                 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
407                         device_printf(sc->aac_dev, "device_add_child failed\n");
408                 else
409                         device_set_ivars(child, co);
410                 device_set_desc(child, aac_describe_code(aac_container_types,
411                                 mir->MntTable[0].VolType));
412                 co->co_disk = child;
413                 co->co_found = f;
414                 bcopy(&mir->MntTable[0], &co->co_mntobj,
415                       sizeof(struct aac_mntobj));
416                 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
417                 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
418                 AAC_LOCK_RELEASE(&sc->aac_container_lock);
419         }
420 }
421
422 /*
423  * Free all of the resources associated with (sc)
424  *
425  * Should not be called if the controller is active.
426  */
427 void
428 aac_free(struct aac_softc *sc)
429 {
430         debug_called(1);
431
432         /* remove the control device */
433         if (sc->aac_dev_t != NULL)
434                 destroy_dev(sc->aac_dev_t);
435
436         /* throw away any FIB buffers, discard the FIB DMA tag */
437         if (sc->aac_fibs != NULL)
438                 aac_free_commands(sc);
439         if (sc->aac_fib_dmat)
440                 bus_dma_tag_destroy(sc->aac_fib_dmat);
441
442         /* destroy the common area */
443         if (sc->aac_common) {
444                 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
445                 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
446                                 sc->aac_common_dmamap);
447         }
448         if (sc->aac_common_dmat)
449                 bus_dma_tag_destroy(sc->aac_common_dmat);
450
451         /* disconnect the interrupt handler */
452         if (sc->aac_intr)
453                 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
454         if (sc->aac_irq != NULL)
455                 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
456                                      sc->aac_irq);
457
458         /* destroy data-transfer DMA tag */
459         if (sc->aac_buffer_dmat)
460                 bus_dma_tag_destroy(sc->aac_buffer_dmat);
461
462         /* destroy the parent DMA tag */
463         if (sc->aac_parent_dmat)
464                 bus_dma_tag_destroy(sc->aac_parent_dmat);
465
466         /* release the register window mapping */
467         if (sc->aac_regs_resource != NULL)
468                 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
469                                      sc->aac_regs_rid, sc->aac_regs_resource);
470 }
471
472 /*
473  * Disconnect from the controller completely, in preparation for unload.
474  */
475 int
476 aac_detach(device_t dev)
477 {
478         struct aac_softc *sc;
479 #if AAC_BROKEN
480         int error;
481 #endif
482
483         debug_called(1);
484
485         sc = device_get_softc(dev);
486
487         if (sc->aac_state & AAC_STATE_OPEN)
488         return(EBUSY);
489
490 #if AAC_BROKEN
491         if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
492                 sc->aifflags |= AAC_AIFFLAGS_EXIT;
493                 wakeup(sc->aifthread);
494                 tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
495         }
496
497         if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
498                 panic("Cannot shutdown AIF thread\n");
499
500         if ((error = aac_shutdown(dev)))
501                 return(error);
502
503         aac_free(sc);
504
505         return(0);
506 #else
507         return (EBUSY);
508 #endif
509 }
510
511 /*
512  * Bring the controller down to a dormant state and detach all child devices.
513  *
514  * This function is called before detach or system shutdown.
515  *
516  * Note that we can assume that the bioq on the controller is empty, as we won't
517  * allow shutdown if any device is open.
518  */
519 int
520 aac_shutdown(device_t dev)
521 {
522         struct aac_softc *sc;
523         struct aac_fib *fib;
524         struct aac_close_command *cc;
525         int s;
526
527         debug_called(1);
528
529         sc = device_get_softc(dev);
530
531         s = splbio();
532
533         sc->aac_state |= AAC_STATE_SUSPEND;
534
535         /* 
536          * Send a Container shutdown followed by a HostShutdown FIB to the
537          * controller to convince it that we don't want to talk to it anymore.
538          * We've been closed and all I/O completed already
539          */
540         device_printf(sc->aac_dev, "shutting down controller...");
541
542         aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
543         cc = (struct aac_close_command *)&fib->data[0];
544
545         bzero(cc, sizeof(struct aac_close_command));
546         cc->Command = VM_CloseAll;
547         cc->ContainerId = 0xffffffff;
548         if (aac_sync_fib(sc, ContainerCommand, 0, fib,
549             sizeof(struct aac_close_command)))
550                 printf("FAILED.\n");
551         else {
552                 fib->data[0] = 0;
553                 /*
554                  * XXX Issuing this command to the controller makes it shut down
555                  * but also keeps it from coming back up without a reset of the
556                  * PCI bus.  This is not desirable if you are just unloading the
557                  * driver module with the intent to reload it later.
558                  */
559                 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
560                     fib, 1)) {
561                         printf("FAILED.\n");
562                 } else {
563                         printf("done.\n");
564                 }
565         }
566
567         AAC_MASK_INTERRUPTS(sc);
568
569         splx(s);
570         return(0);
571 }
572
573 /*
574  * Bring the controller to a quiescent state, ready for system suspend.
575  */
576 int
577 aac_suspend(device_t dev)
578 {
579         struct aac_softc *sc;
580         int s;
581
582         debug_called(1);
583
584         sc = device_get_softc(dev);
585
586         s = splbio();
587
588         sc->aac_state |= AAC_STATE_SUSPEND;
589         
590         AAC_MASK_INTERRUPTS(sc);
591         splx(s);
592         return(0);
593 }
594
595 /*
596  * Bring the controller back to a state ready for operation.
597  */
598 int
599 aac_resume(device_t dev)
600 {
601         struct aac_softc *sc;
602
603         debug_called(1);
604
605         sc = device_get_softc(dev);
606
607         sc->aac_state &= ~AAC_STATE_SUSPEND;
608         AAC_UNMASK_INTERRUPTS(sc);
609         return(0);
610 }
611
612 /*
613  * Take an interrupt.
614  */
615 void
616 aac_intr(void *arg)
617 {
618         struct aac_softc *sc;
619         u_int16_t reason;
620         u_int32_t *resp_queue;
621
622         debug_called(2);
623
624         sc = (struct aac_softc *)arg;
625
626         /*
627          * Optimize the common case of adapter response interrupts.
628          * We must read from the card prior to processing the responses
629          * to ensure the clear is flushed prior to accessing the queues.
630          * Reading the queues from local memory might save us a PCI read.
631          */
632         resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
633         if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
634                 reason = AAC_DB_RESPONSE_READY;
635         else 
636                 reason = AAC_GET_ISTATUS(sc);
637         AAC_CLEAR_ISTATUS(sc, reason);
638         (void)AAC_GET_ISTATUS(sc);
639
640         /* It's not ok to return here because of races with the previous step */
641         if (reason & AAC_DB_RESPONSE_READY)
642                 aac_host_response(sc);
643
644         /* controller wants to talk to the log */
645         if (reason & AAC_DB_PRINTF)
646                 aac_print_printf(sc);
647
648         /* controller has a message for us? */
649         if (reason & AAC_DB_COMMAND_READY) {
650                 /* XXX What happens if the thread is already awake? */
651                 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
652                         sc->aifflags |= AAC_AIFFLAGS_PENDING;
653                         wakeup(sc->aifthread);
654                 }
655         }
656 }
657
658 /*
659  * Command Processing
660  */
661
662 /*
663  * Start as much queued I/O as possible on the controller
664  */
665 void
666 aac_startio(struct aac_softc *sc)
667 {
668         struct aac_command *cm;
669
670         debug_called(2);
671
672         for (;;) {
673                 /*
674                  * Try to get a command that's been put off for lack of 
675                  * resources
676                  */
677                 cm = aac_dequeue_ready(sc);
678
679                 /*
680                  * Try to build a command off the bio queue (ignore error 
681                  * return)
682                  */
683                 if (cm == NULL)
684                         aac_bio_command(sc, &cm);
685
686                 /* nothing to do? */
687                 if (cm == NULL)
688                         break;
689
690                 /* try to give the command to the controller */
691                 if (aac_start(cm) == EBUSY) {
692                         /* put it on the ready queue for later */
693                         aac_requeue_ready(cm);
694                         break;
695                 }
696         }
697 }
698
699 /*
700  * Deliver a command to the controller; allocate controller resources at the
701  * last moment when possible.
702  */
703 static int
704 aac_start(struct aac_command *cm)
705 {
706         struct aac_softc *sc;
707         int error;
708
709         debug_called(2);
710
711         sc = cm->cm_sc;
712
713         /* get the command mapped */
714         aac_map_command(cm);
715
716         /* fix up the address values in the FIB */
717         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
718         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
719
720         /* save a pointer to the command for speedy reverse-lookup */
721         cm->cm_fib->Header.SenderData = (u_int32_t)cm;  /* XXX 64-bit physical
722                                                          * address issue */
723         /* put the FIB on the outbound queue */
724         error = aac_enqueue_fib(sc, cm->cm_queue, cm);
725         return(error);
726 }
727
728 /*
729  * Handle notification of one or more FIBs coming from the controller.
730  */
731 static void
732 aac_host_command(struct aac_softc *sc)
733 {
734         struct aac_fib *fib;
735         u_int32_t fib_size;
736         int size;
737
738         debug_called(2);
739
740         sc->aifflags |= AAC_AIFFLAGS_RUNNING;
741
742         while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
743                 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
744                         tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
745
746                 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
747                 for (;;) {
748                         if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
749                                             &fib_size, &fib))
750                                 break;  /* nothing to do */
751         
752                         AAC_PRINT_FIB(sc, fib);
753         
754                         switch (fib->Header.Command) {
755                         case AifRequest:
756                                 aac_handle_aif(sc, fib);
757                                 break;
758                         default:
759                                 device_printf(sc->aac_dev, "unknown command "
760                                               "from controller\n");
761                                 break;
762                         }
763
764                         /* Return the AIF to the controller. */
765                         if ((fib->Header.XferState == 0) ||
766                             (fib->Header.StructType != AAC_FIBTYPE_TFIB))
767                                 break;
768
769                         if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
770                                 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
771                                 *(AAC_FSAStatus*)fib->data = ST_OK;
772
773                                 /* XXX Compute the Size field? */
774                                 size = fib->Header.Size;
775                                 if (size > sizeof(struct aac_fib)) {
776                                         size = sizeof(struct aac_fib);
777                                         fib->Header.Size = size;
778                                 }
779                                 /*
780                                  * Since we did not generate this command, it
781                                  * cannot go through the normal
782                                  * enqueue->startio chain.
783                                  */
784                                 aac_enqueue_response(sc,
785                                                      AAC_ADAP_NORM_RESP_QUEUE,
786                                                      fib);
787                         }
788                 }
789         }
790         sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
791         wakeup(sc->aac_dev);
792
793 #if __FreeBSD_version > 500005
794         mtx_lock(&Giant);
795 #endif
796         kthread_exit();
797 }
798
799 /*
800  * Handle notification of one or more FIBs completed by the controller
801  */
802 static void
803 aac_host_response(struct aac_softc *sc)
804 {
805         struct aac_command *cm;
806         struct aac_fib *fib;
807         u_int32_t fib_size;
808
809         debug_called(2);
810
811         for (;;) {
812                 /* look for completed FIBs on our queue */
813                 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
814                                     &fib))
815                         break;  /* nothing to do */
816         
817                 /* get the command, unmap and queue for later processing */
818                 cm = (struct aac_command *)fib->Header.SenderData;
819                 if (cm == NULL) {
820                         AAC_PRINT_FIB(sc, fib);
821                 } else {
822                         aac_remove_busy(cm);
823                         aac_unmap_command(cm);          /* XXX defer? */
824                         aac_enqueue_complete(cm);
825                 }
826         }
827
828         /* handle completion processing */
829 #if __FreeBSD_version >= 500005
830         taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
831 #else
832         aac_complete(sc, 0);
833 #endif
834 }
835
836 /*
837  * Process completed commands.
838  */
839 static void
840 aac_complete(void *context, int pending)
841 {
842         struct aac_softc *sc;
843         struct aac_command *cm;
844         
845         debug_called(2);
846
847         sc = (struct aac_softc *)context;
848
849         /* pull completed commands off the queue */
850         for (;;) {
851                 cm = aac_dequeue_complete(sc);
852                 if (cm == NULL)
853                         break;
854                 cm->cm_flags |= AAC_CMD_COMPLETED;
855
856                 /* is there a completion handler? */
857                 if (cm->cm_complete != NULL) {
858                         cm->cm_complete(cm);
859                 } else {
860                         /* assume that someone is sleeping on this command */
861                         wakeup(cm);
862                 }
863         }
864
865         /* see if we can start some more I/O */
866         aac_startio(sc);
867 }
868
869 /*
870  * Handle a bio submitted from a disk device.
871  */
872 void
873 aac_submit_bio(struct bio *bp)
874 {
875         struct aac_disk *ad;
876         struct aac_softc *sc;
877
878         debug_called(2);
879
880         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
881         sc = ad->ad_controller;
882
883         /* queue the BIO and try to get some work done */
884         aac_enqueue_bio(sc, bp);
885         aac_startio(sc);
886 }
887
888 /*
889  * Get a bio and build a command to go with it.
890  */
891 static int
892 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
893 {
894         struct aac_command *cm;
895         struct aac_fib *fib;
896         struct aac_blockread *br;
897         struct aac_blockwrite *bw;
898         struct aac_disk *ad;
899         struct bio *bp;
900
901         debug_called(2);
902
903         /* get the resources we will need */
904         cm = NULL;
905         if ((bp = aac_dequeue_bio(sc)) == NULL)
906                 goto fail;
907         if (aac_alloc_command(sc, &cm)) /* get a command */
908                 goto fail;
909
910         /* fill out the command */
911         cm->cm_data = (void *)bp->bio_data;
912         cm->cm_datalen = bp->bio_bcount;
913         cm->cm_complete = aac_bio_complete;
914         cm->cm_private = bp;
915         cm->cm_timestamp = time_second;
916         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
917
918         /* build the FIB */
919         fib = cm->cm_fib;
920         fib->Header.XferState =  
921                 AAC_FIBSTATE_HOSTOWNED   | 
922                 AAC_FIBSTATE_INITIALISED | 
923                 AAC_FIBSTATE_EMPTY       | 
924                 AAC_FIBSTATE_FROMHOST    |
925                 AAC_FIBSTATE_REXPECTED   |
926                 AAC_FIBSTATE_NORM        |
927                 AAC_FIBSTATE_ASYNC       |
928                 AAC_FIBSTATE_FAST_RESPONSE;
929         fib->Header.Command = ContainerCommand;
930         fib->Header.Size = sizeof(struct aac_fib_header);
931
932         /* build the read/write request */
933         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
934         if (BIO_IS_READ(bp)) {
935                 br = (struct aac_blockread *)&fib->data[0];
936                 br->Command = VM_CtBlockRead;
937                 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
938                 br->BlockNumber = bp->bio_pblkno;
939                 br->ByteCount = bp->bio_bcount;
940                 fib->Header.Size += sizeof(struct aac_blockread);
941                 cm->cm_sgtable = &br->SgMap;
942                 cm->cm_flags |= AAC_CMD_DATAIN;
943         } else {
944                 bw = (struct aac_blockwrite *)&fib->data[0];
945                 bw->Command = VM_CtBlockWrite;
946                 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
947                 bw->BlockNumber = bp->bio_pblkno;
948                 bw->ByteCount = bp->bio_bcount;
949                 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
950                 fib->Header.Size += sizeof(struct aac_blockwrite);
951                 cm->cm_flags |= AAC_CMD_DATAOUT;
952                 cm->cm_sgtable = &bw->SgMap;
953         }
954
955         *cmp = cm;
956         return(0);
957
958 fail:
959         if (bp != NULL)
960                 aac_enqueue_bio(sc, bp);
961         if (cm != NULL)
962                 aac_release_command(cm);
963         return(ENOMEM);
964 }
965
966 /*
967  * Handle a bio-instigated command that has been completed.
968  */
969 static void
970 aac_bio_complete(struct aac_command *cm)
971 {
972         struct aac_blockread_response *brr;
973         struct aac_blockwrite_response *bwr;
974         struct bio *bp;
975         AAC_FSAStatus status;
976
977         /* fetch relevant status and then release the command */
978         bp = (struct bio *)cm->cm_private;
979         if (BIO_IS_READ(bp)) {
980                 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
981                 status = brr->Status;
982         } else {
983                 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
984                 status = bwr->Status;
985         }
986         aac_release_command(cm);
987
988         /* fix up the bio based on status */
989         if (status == ST_OK) {
990                 bp->bio_resid = 0;
991         } else {
992                 bp->bio_error = EIO;
993                 bp->bio_flags |= BIO_ERROR;
994                 /* pass an error string out to the disk layer */
995                 bp->bio_driver1 = aac_describe_code(aac_command_status_table,
996                                                     status);
997         }
998         aac_biodone(bp);
999 }
1000
1001 /*
1002  * Dump a block of data to the controller.  If the queue is full, tell the
1003  * caller to hold off and wait for the queue to drain.
1004  */
1005 int
1006 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1007 {
1008         struct aac_softc *sc;
1009         struct aac_command *cm;
1010         struct aac_fib *fib;
1011         struct aac_blockwrite *bw;
1012
1013         sc = ad->ad_controller;
1014         cm = NULL;
1015
1016         if (aac_alloc_command(sc, &cm))
1017                 return (EBUSY);
1018
1019         /* fill out the command */
1020         cm->cm_data = data;
1021         cm->cm_datalen = dumppages * PAGE_SIZE;
1022         cm->cm_complete = NULL;
1023         cm->cm_private = NULL;
1024         cm->cm_timestamp = time_second;
1025         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1026
1027         /* build the FIB */
1028         fib = cm->cm_fib;
1029         fib->Header.XferState =  
1030         AAC_FIBSTATE_HOSTOWNED   | 
1031         AAC_FIBSTATE_INITIALISED | 
1032         AAC_FIBSTATE_FROMHOST    |
1033         AAC_FIBSTATE_REXPECTED   |
1034         AAC_FIBSTATE_NORM;
1035         fib->Header.Command = ContainerCommand;
1036         fib->Header.Size = sizeof(struct aac_fib_header);
1037
1038         bw = (struct aac_blockwrite *)&fib->data[0];
1039         bw->Command = VM_CtBlockWrite;
1040         bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1041         bw->BlockNumber = lba;
1042         bw->ByteCount = dumppages * PAGE_SIZE;
1043         bw->Stable = CUNSTABLE;         /* XXX what's appropriate here? */
1044         fib->Header.Size += sizeof(struct aac_blockwrite);
1045         cm->cm_flags |= AAC_CMD_DATAOUT;
1046         cm->cm_sgtable = &bw->SgMap;
1047
1048         return (aac_start(cm));
1049 }
1050
1051 /*
1052  * Wait for the card's queue to drain when dumping.  Also check for monitor
1053  * printf's
1054  */
1055 void
1056 aac_dump_complete(struct aac_softc *sc)
1057 {
1058         struct aac_fib *fib;
1059         struct aac_command *cm;
1060         u_int16_t reason;
1061         u_int32_t pi, ci, fib_size;
1062
1063         do {
1064                 reason = AAC_GET_ISTATUS(sc);
1065                 if (reason & AAC_DB_RESPONSE_READY) {
1066                         AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1067                         for (;;) {
1068                                 if (aac_dequeue_fib(sc,
1069                                                     AAC_HOST_NORM_RESP_QUEUE,
1070                                                     &fib_size, &fib))
1071                                         break;
1072                                 cm = (struct aac_command *)
1073                                         fib->Header.SenderData;
1074                                 if (cm == NULL)
1075                                         AAC_PRINT_FIB(sc, fib);
1076                                 else {
1077                                         aac_remove_busy(cm);
1078                                         aac_unmap_command(cm);
1079                                         aac_enqueue_complete(cm);
1080                                         aac_release_command(cm);
1081                                 }
1082                         }
1083                 }
1084                 if (reason & AAC_DB_PRINTF) {
1085                         AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1086                         aac_print_printf(sc);
1087                 }
1088                 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1089                         AAC_PRODUCER_INDEX];
1090                 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][        
1091                         AAC_CONSUMER_INDEX];
1092         } while (ci != pi);
1093
1094         return;
1095 }
1096
1097 /*
1098  * Submit a command to the controller, return when it completes.
1099  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1100  *     be stuck here forever.  At the same time, signals are not caught
1101  *     because there is a risk that a signal could wakeup the tsleep before
1102  *     the card has a chance to complete the command.  The passed in timeout
1103  *     is ignored for the same reason.  Since there is no way to cancel a
1104  *     command in progress, we should probably create a 'dead' queue where
1105  *     commands go that have been interrupted/timed-out/etc, that keeps them
1106  *     out of the free pool.  That way, if the card is just slow, it won't
1107  *     spam the memory of a command that has been recycled.
1108  */
1109 static int
1110 aac_wait_command(struct aac_command *cm, int timeout)
1111 {
1112         int s, error = 0;
1113
1114         debug_called(2);
1115
1116         /* Put the command on the ready queue and get things going */
1117         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1118         aac_enqueue_ready(cm);
1119         aac_startio(cm->cm_sc);
1120         s = splbio();
1121         while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1122                 error = tsleep(cm, 0, "aacwait", 0);
1123         }
1124         splx(s);
1125         return(error);
1126 }
1127
1128 /*
1129  *Command Buffer Management
1130  */
1131
1132 /*
1133  * Allocate a command.
1134  */
1135 int
1136 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1137 {
1138         struct aac_command *cm;
1139
1140         debug_called(3);
1141
1142         if ((cm = aac_dequeue_free(sc)) == NULL)
1143                 return(ENOMEM);
1144
1145         *cmp = cm;
1146         return(0);
1147 }
1148
1149 /*
1150  * Release a command back to the freelist.
1151  */
1152 void
1153 aac_release_command(struct aac_command *cm)
1154 {
1155         debug_called(3);
1156
1157         /* (re)initialise the command/FIB */
1158         cm->cm_sgtable = NULL;
1159         cm->cm_flags = 0;
1160         cm->cm_complete = NULL;
1161         cm->cm_private = NULL;
1162         cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1163         cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1164         cm->cm_fib->Header.Flags = 0;
1165         cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1166
1167         /* 
1168          * These are duplicated in aac_start to cover the case where an
1169          * intermediate stage may have destroyed them.  They're left
1170          * initialised here for debugging purposes only.
1171          */
1172         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1173         cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1174         cm->cm_fib->Header.SenderData = 0;
1175
1176         aac_enqueue_free(cm);
1177 }
1178
1179 /*
1180  * Map helper for command/FIB allocation.
1181  */
1182 static void
1183 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1184 {
1185         struct aac_softc *sc;
1186
1187         sc = (struct aac_softc *)arg;
1188
1189         debug_called(3);
1190
1191         sc->aac_fibphys = segs[0].ds_addr;
1192 }
1193
1194 /*
1195  * Allocate and initialise commands/FIBs for this adapter.
1196  */
1197 static int
1198 aac_alloc_commands(struct aac_softc *sc)
1199 {
1200         struct aac_command *cm;
1201         int i;
1202  
1203         debug_called(1);
1204
1205         /* allocate the FIBs in DMAable memory and load them */
1206         if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1207                          BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1208                 return(ENOMEM);
1209         }
1210
1211         bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 
1212                         AAC_FIB_COUNT * sizeof(struct aac_fib),
1213                         aac_map_command_helper, sc, 0);
1214
1215         /* initialise constant fields in the command structure */
1216         bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1217         for (i = 0; i < AAC_FIB_COUNT; i++) {
1218                 cm = &sc->aac_command[i];
1219                 cm->cm_sc = sc;
1220                 cm->cm_fib = sc->aac_fibs + i;
1221                 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1222
1223                 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1224                         aac_release_command(cm);
1225         }
1226         return(0);
1227 }
1228
1229 /*
1230  * Free FIBs owned by this adapter.
1231  */
1232 static void
1233 aac_free_commands(struct aac_softc *sc)
1234 {
1235         int i;
1236
1237         debug_called(1);
1238
1239         for (i = 0; i < AAC_FIB_COUNT; i++)
1240                 bus_dmamap_destroy(sc->aac_buffer_dmat,
1241                                    sc->aac_command[i].cm_datamap);
1242
1243         bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1244         bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1245 }
1246
1247 /*
1248  * Command-mapping helper function - populate this command's s/g table.
1249  */
1250 static void
1251 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1252 {
1253         struct aac_command *cm;
1254         struct aac_fib *fib;
1255         struct aac_sg_table *sg;
1256         int i;
1257
1258         debug_called(3);
1259
1260         cm = (struct aac_command *)arg;
1261         fib = cm->cm_fib;
1262
1263         /* find the s/g table */
1264         sg = cm->cm_sgtable;
1265
1266         /* copy into the FIB */
1267         if (sg != NULL) {
1268                 sg->SgCount = nseg;
1269                 for (i = 0; i < nseg; i++) {
1270                         sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1271                         sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1272                 }
1273                 /* update the FIB size for the s/g count */
1274                 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1275         }
1276
1277 }
1278
1279 /*
1280  * Map a command into controller-visible space.
1281  */
1282 static void
1283 aac_map_command(struct aac_command *cm)
1284 {
1285         struct aac_softc *sc;
1286
1287         debug_called(2);
1288
1289         sc = cm->cm_sc;
1290
1291         /* don't map more than once */
1292         if (cm->cm_flags & AAC_CMD_MAPPED)
1293                 return;
1294
1295         if (cm->cm_datalen != 0) {
1296                 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1297                                 cm->cm_data, cm->cm_datalen,
1298                                 aac_map_command_sg, cm, 0);
1299
1300                 if (cm->cm_flags & AAC_CMD_DATAIN)
1301                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1302                                         BUS_DMASYNC_PREREAD);
1303                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1304                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1305                                         BUS_DMASYNC_PREWRITE);
1306         }
1307         cm->cm_flags |= AAC_CMD_MAPPED;
1308 }
1309
1310 /*
1311  * Unmap a command from controller-visible space.
1312  */
1313 static void
1314 aac_unmap_command(struct aac_command *cm)
1315 {
1316         struct aac_softc *sc;
1317
1318         debug_called(2);
1319
1320         sc = cm->cm_sc;
1321
1322         if (!(cm->cm_flags & AAC_CMD_MAPPED))
1323                 return;
1324
1325         if (cm->cm_datalen != 0) {
1326                 if (cm->cm_flags & AAC_CMD_DATAIN)
1327                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1328                                         BUS_DMASYNC_POSTREAD);
1329                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1330                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1331                                         BUS_DMASYNC_POSTWRITE);
1332
1333                 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1334         }
1335         cm->cm_flags &= ~AAC_CMD_MAPPED;
1336 }
1337
1338 /*
1339  * Hardware Interface
1340  */
1341
1342 /*
1343  * Initialise the adapter.
1344  */
1345 static void
1346 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1347 {
1348         struct aac_softc *sc;
1349
1350         debug_called(1);
1351
1352         sc = (struct aac_softc *)arg;
1353
1354         sc->aac_common_busaddr = segs[0].ds_addr;
1355 }
1356
1357 static int
1358 aac_check_firmware(struct aac_softc *sc)
1359 {
1360         u_int32_t major, minor, options;
1361
1362         debug_called(1);
1363
1364         /*
1365          * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1366          * firmware version 1.x are not compatible with this driver.
1367          */
1368         if (sc->flags & AAC_FLAGS_PERC2QC) {
1369                 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1370                                      NULL)) {
1371                         device_printf(sc->aac_dev,
1372                                       "Error reading firmware version\n");
1373                         return (EIO);
1374                 }
1375
1376                 /* These numbers are stored as ASCII! */
1377                 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1378                 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1379                 if (major == 1) {
1380                         device_printf(sc->aac_dev,
1381                             "Firmware version %d.%d is not supported.\n",
1382                             major, minor);
1383                         return (EINVAL);
1384                 }
1385         }
1386
1387         /*
1388          * Retrieve the capabilities/supported options word so we know what
1389          * work-arounds to enable.
1390          */
1391         if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1392                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1393                 return (EIO);
1394         }
1395         options = AAC_GET_MAILBOX(sc, 1);
1396         sc->supported_options = options;
1397
1398         if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1399             (sc->flags & AAC_FLAGS_NO4GB) == 0)
1400                 sc->flags |= AAC_FLAGS_4GB_WINDOW;
1401         if (options & AAC_SUPPORTED_NONDASD)
1402                 sc->flags |= AAC_FLAGS_ENABLE_CAM;
1403
1404         return (0);
1405 }
1406
1407 static int
1408 aac_init(struct aac_softc *sc)
1409 {
1410         struct aac_adapter_init *ip;
1411         time_t then;
1412         u_int32_t code;
1413         u_int8_t *qaddr;
1414         int error;
1415
1416         debug_called(1);
1417
1418         /*
1419          * First wait for the adapter to come ready.
1420          */
1421         then = time_second;
1422         do {
1423                 code = AAC_GET_FWSTATUS(sc);
1424                 if (code & AAC_SELF_TEST_FAILED) {
1425                         device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1426                         return(ENXIO);
1427                 }
1428                 if (code & AAC_KERNEL_PANIC) {
1429                         device_printf(sc->aac_dev,
1430                                       "FATAL: controller kernel panic\n");
1431                         return(ENXIO);
1432                 }
1433                 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1434                         device_printf(sc->aac_dev,
1435                                       "FATAL: controller not coming ready, "
1436                                            "status %x\n", code);
1437                         return(ENXIO);
1438                 }
1439         } while (!(code & AAC_UP_AND_RUNNING));
1440
1441         error = ENOMEM;
1442         /*
1443          * Create DMA tag for mapping buffers into controller-addressable space.
1444          */
1445         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1446                                1, 0,                    /* algnmnt, boundary */
1447                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1448                                BUS_SPACE_MAXADDR,       /* highaddr */
1449                                NULL, NULL,              /* filter, filterarg */
1450                                MAXBSIZE,                /* maxsize */
1451                                AAC_MAXSGENTRIES,        /* nsegments */
1452                                MAXBSIZE,                /* maxsegsize */
1453                                BUS_DMA_ALLOCNOW,        /* flags */
1454                                &sc->aac_buffer_dmat)) {
1455                 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1456                 goto out;
1457         }
1458  
1459         /*
1460          * Create DMA tag for mapping FIBs into controller-addressable space..
1461          */
1462         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1463                                1, 0,                    /* algnmnt, boundary */
1464                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1465                                BUS_SPACE_MAXADDR_32BIT :
1466                                0x7fffffff,              /* lowaddr */
1467                                BUS_SPACE_MAXADDR,       /* highaddr */
1468                                NULL, NULL,              /* filter, filterarg */
1469                                AAC_FIB_COUNT *
1470                                sizeof(struct aac_fib),  /* maxsize */
1471                                1,                       /* nsegments */
1472                                AAC_FIB_COUNT *
1473                                sizeof(struct aac_fib),  /* maxsegsize */
1474                                BUS_DMA_ALLOCNOW,        /* flags */
1475                                &sc->aac_fib_dmat)) {
1476                 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1477                 goto out;
1478         }
1479  
1480         /*
1481          * Create DMA tag for the common structure and allocate it.
1482          */
1483         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1484                                1, 0,                    /* algnmnt, boundary */
1485                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1486                                BUS_SPACE_MAXADDR_32BIT :
1487                                0x7fffffff,              /* lowaddr */
1488                                BUS_SPACE_MAXADDR,       /* highaddr */
1489                                NULL, NULL,              /* filter, filterarg */
1490                                8192 + sizeof(struct aac_common), /* maxsize */
1491                                1,                       /* nsegments */
1492                                BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1493                                BUS_DMA_ALLOCNOW,        /* flags */
1494                                &sc->aac_common_dmat)) {
1495                 device_printf(sc->aac_dev,
1496                               "can't allocate common structure DMA tag\n");
1497                 goto out;
1498         }
1499         if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1500                              BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1501                 device_printf(sc->aac_dev, "can't allocate common structure\n");
1502                 goto out;
1503         }
1504         /*
1505          * Work around a bug in the 2120 and 2200 that cannot DMA commands
1506          * below address 8192 in physical memory.
1507          * XXX If the padding is not needed, can it be put to use instead
1508          * of ignored?
1509          */
1510         bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1511                         sc->aac_common, 8192 + sizeof(*sc->aac_common),
1512                         aac_common_map, sc, 0);
1513
1514         if (sc->aac_common_busaddr < 8192) {
1515                 (uint8_t *)sc->aac_common += 8192;
1516                 sc->aac_common_busaddr += 8192;
1517         }
1518         bzero(sc->aac_common, sizeof(*sc->aac_common));
1519
1520         /* Allocate some FIBs and associated command structs */
1521         if (aac_alloc_commands(sc) != 0)
1522                 goto out;
1523
1524         /*
1525          * Fill in the init structure.  This tells the adapter about the
1526          * physical location of various important shared data structures.
1527          */
1528         ip = &sc->aac_common->ac_init;
1529         ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1530         ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1531
1532         ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1533                                          offsetof(struct aac_common, ac_fibs);
1534         ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1535         ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1536         ip->AdapterFibAlign = sizeof(struct aac_fib);
1537
1538         ip->PrintfBufferAddress = sc->aac_common_busaddr +
1539                                   offsetof(struct aac_common, ac_printf);
1540         ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1541
1542         /* The adapter assumes that pages are 4K in size */
1543         ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1544         ip->HostElapsedSeconds = time_second;   /* reset later if invalid */
1545
1546         /*
1547          * Initialise FIB queues.  Note that it appears that the layout of the
1548          * indexes and the segmentation of the entries may be mandated by the
1549          * adapter, which is only told about the base of the queue index fields.
1550          *
1551          * The initial values of the indices are assumed to inform the adapter
1552          * of the sizes of the respective queues, and theoretically it could 
1553          * work out the entire layout of the queue structures from this.  We
1554          * take the easy route and just lay this area out like everyone else
1555          * does.
1556          *
1557          * The Linux driver uses a much more complex scheme whereby several 
1558          * header records are kept for each queue.  We use a couple of generic 
1559          * list manipulation functions which 'know' the size of each list by
1560          * virtue of a table.
1561          */
1562         qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1563         qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1564         sc->aac_queues = (struct aac_queue_table *)qaddr;
1565         ip->CommHeaderAddress = sc->aac_common_busaddr +
1566                                 ((u_int32_t)sc->aac_queues -
1567                                 (u_int32_t)sc->aac_common);
1568         bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1569
1570         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1571                 AAC_HOST_NORM_CMD_ENTRIES;
1572         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1573                 AAC_HOST_NORM_CMD_ENTRIES;
1574         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1575                 AAC_HOST_HIGH_CMD_ENTRIES;
1576         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1577                 AAC_HOST_HIGH_CMD_ENTRIES;
1578         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1579                 AAC_ADAP_NORM_CMD_ENTRIES;
1580         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1581                 AAC_ADAP_NORM_CMD_ENTRIES;
1582         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1583                 AAC_ADAP_HIGH_CMD_ENTRIES;
1584         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1585                 AAC_ADAP_HIGH_CMD_ENTRIES;
1586         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1587                 AAC_HOST_NORM_RESP_ENTRIES;
1588         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1589                 AAC_HOST_NORM_RESP_ENTRIES;
1590         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1591                 AAC_HOST_HIGH_RESP_ENTRIES;
1592         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1593                 AAC_HOST_HIGH_RESP_ENTRIES;
1594         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1595                 AAC_ADAP_NORM_RESP_ENTRIES;
1596         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1597                 AAC_ADAP_NORM_RESP_ENTRIES;
1598         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1599                 AAC_ADAP_HIGH_RESP_ENTRIES;
1600         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1601                 AAC_ADAP_HIGH_RESP_ENTRIES;
1602         sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1603                 &sc->aac_queues->qt_HostNormCmdQueue[0];
1604         sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1605                 &sc->aac_queues->qt_HostHighCmdQueue[0];
1606         sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1607                 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1608         sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1609                 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1610         sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1611                 &sc->aac_queues->qt_HostNormRespQueue[0];
1612         sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1613                 &sc->aac_queues->qt_HostHighRespQueue[0];
1614         sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1615                 &sc->aac_queues->qt_AdapNormRespQueue[0];
1616         sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1617                 &sc->aac_queues->qt_AdapHighRespQueue[0];
1618
1619         /*
1620          * Do controller-type-specific initialisation
1621          */
1622         switch (sc->aac_hwif) {
1623         case AAC_HWIF_I960RX:
1624                 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1625                 break;
1626         }
1627
1628         /*
1629          * Give the init structure to the controller.
1630          */
1631         if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 
1632                              sc->aac_common_busaddr +
1633                              offsetof(struct aac_common, ac_init), 0, 0, 0,
1634                              NULL)) {
1635                 device_printf(sc->aac_dev,
1636                               "error establishing init structure\n");
1637                 error = EIO;
1638                 goto out;
1639         }
1640
1641         error = 0;
1642 out:
1643         return(error);
1644 }
1645
1646 /*
1647  * Send a synchronous command to the controller and wait for a result.
1648  */
1649 static int
1650 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1651                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1652                  u_int32_t *sp)
1653 {
1654         time_t then;
1655         u_int32_t status;
1656
1657         debug_called(3);
1658
1659         /* populate the mailbox */
1660         AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1661
1662         /* ensure the sync command doorbell flag is cleared */
1663         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1664
1665         /* then set it to signal the adapter */
1666         AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1667
1668         /* spin waiting for the command to complete */
1669         then = time_second;
1670         do {
1671                 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1672                         debug(1, "timed out");
1673                         return(EIO);
1674                 }
1675         } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1676
1677         /* clear the completion flag */
1678         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1679
1680         /* get the command status */
1681         status = AAC_GET_MAILBOX(sc, 0);
1682         if (sp != NULL)
1683                 *sp = status;
1684         return(0);
1685 }
1686
1687 /*
1688  * Grab the sync fib area.
1689  */
1690 int
1691 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1692 {
1693
1694         /*
1695          * If the force flag is set, the system is shutting down, or in
1696          * trouble.  Ignore the mutex.
1697          */
1698         if (!(flags & AAC_SYNC_LOCK_FORCE))
1699                 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1700
1701         *fib = &sc->aac_common->ac_sync_fib;
1702
1703         return (1);
1704 }
1705
1706 /*
1707  * Release the sync fib area.
1708  */
1709 void
1710 aac_release_sync_fib(struct aac_softc *sc)
1711 {
1712
1713         AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1714 }
1715
1716 /*
1717  * Send a synchronous FIB to the controller and wait for a result.
1718  */
1719 int
1720 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 
1721                  struct aac_fib *fib, u_int16_t datasize)
1722 {
1723         debug_called(3);
1724
1725         if (datasize > AAC_FIB_DATASIZE)
1726                 return(EINVAL);
1727
1728         /*
1729          * Set up the sync FIB
1730          */
1731         fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1732                                 AAC_FIBSTATE_INITIALISED |
1733                                 AAC_FIBSTATE_EMPTY;
1734         fib->Header.XferState |= xferstate;
1735         fib->Header.Command = command;
1736         fib->Header.StructType = AAC_FIBTYPE_TFIB;
1737         fib->Header.Size = sizeof(struct aac_fib) + datasize;
1738         fib->Header.SenderSize = sizeof(struct aac_fib);
1739         fib->Header.SenderFibAddress = (u_int32_t)fib;
1740         fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1741                                          offsetof(struct aac_common,
1742                                                   ac_sync_fib);
1743
1744         /*
1745          * Give the FIB to the controller, wait for a response.
1746          */
1747         if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1748                              fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1749                 debug(2, "IO error");
1750                 return(EIO);
1751         }
1752
1753         return (0);
1754 }
1755
1756 /*
1757  * Adapter-space FIB queue manipulation
1758  *
1759  * Note that the queue implementation here is a little funky; neither the PI or
1760  * CI will ever be zero.  This behaviour is a controller feature.
1761  */
1762 static struct {
1763         int             size;
1764         int             notify;
1765 } aac_qinfo[] = {
1766         {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1767         {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1768         {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1769         {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1770         {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1771         {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1772         {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1773         {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1774 };
1775
1776 /*
1777  * Atomically insert an entry into the nominated queue, returns 0 on success or
1778  * EBUSY if the queue is full.
1779  *
1780  * Note: it would be more efficient to defer notifying the controller in
1781  *       the case where we may be inserting several entries in rapid succession,
1782  *       but implementing this usefully may be difficult (it would involve a
1783  *       separate queue/notify interface).
1784  */
1785 static int
1786 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1787 {
1788         u_int32_t pi, ci;
1789         int s, error;
1790         u_int32_t fib_size;
1791         u_int32_t fib_addr;
1792
1793         debug_called(3);
1794
1795         fib_size = cm->cm_fib->Header.Size; 
1796         fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1797
1798         s = splbio();
1799
1800         /* get the producer/consumer indices */
1801         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1802         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1803
1804         /* wrap the queue? */
1805         if (pi >= aac_qinfo[queue].size)
1806                 pi = 0;
1807
1808         /* check for queue full */
1809         if ((pi + 1) == ci) {
1810                 error = EBUSY;
1811                 goto out;
1812         }
1813
1814         /* populate queue entry */
1815         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1816         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1817
1818         /* update producer index */
1819         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1820
1821         /*
1822          * To avoid a race with its completion interrupt, place this command on
1823          * the busy queue prior to advertising it to the controller.
1824          */
1825         aac_enqueue_busy(cm);
1826
1827         /* notify the adapter if we know how */
1828         if (aac_qinfo[queue].notify != 0)
1829                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1830
1831         error = 0;
1832
1833 out:
1834         splx(s);
1835         return(error);
1836 }
1837
1838 /*
1839  * Atomically remove one entry from the nominated queue, returns 0 on
1840  * success or ENOENT if the queue is empty.
1841  */
1842 static int
1843 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1844                 struct aac_fib **fib_addr)
1845 {
1846         u_int32_t pi, ci;
1847         int s, error;
1848         int notify;
1849
1850         debug_called(3);
1851
1852         s = splbio();
1853
1854         /* get the producer/consumer indices */
1855         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1856         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1857
1858         /* check for queue empty */
1859         if (ci == pi) {
1860                 error = ENOENT;
1861                 goto out;
1862         }
1863         
1864         notify = 0;
1865         if (ci == pi + 1)
1866                 notify++;
1867
1868         /* wrap the queue? */
1869         if (ci >= aac_qinfo[queue].size)
1870                 ci = 0;
1871
1872         /* fetch the entry */
1873         *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1874         *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1875                                        ci)->aq_fib_addr;
1876
1877         /*
1878          * Is this a fast response? If it is, update the fib fields in
1879          * local memory so the whole fib doesn't have to be DMA'd back up.
1880          */
1881         if (*(uintptr_t *)fib_addr & 0x01) {
1882                 *(uintptr_t *)fib_addr &= ~0x01;
1883                 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1884                 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1885         }
1886         /* update consumer index */
1887         sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1888
1889         /* if we have made the queue un-full, notify the adapter */
1890         if (notify && (aac_qinfo[queue].notify != 0))
1891                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1892         error = 0;
1893
1894 out:
1895         splx(s);
1896         return(error);
1897 }
1898
1899 /*
1900  * Put our response to an Adapter Initialed Fib on the response queue
1901  */
1902 static int
1903 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1904 {
1905         u_int32_t pi, ci;
1906         int s, error;
1907         u_int32_t fib_size;
1908         u_int32_t fib_addr;
1909
1910         debug_called(1);
1911
1912         /* Tell the adapter where the FIB is */
1913         fib_size = fib->Header.Size; 
1914         fib_addr = fib->Header.SenderFibAddress;
1915         fib->Header.ReceiverFibAddress = fib_addr;
1916
1917         s = splbio();
1918
1919         /* get the producer/consumer indices */
1920         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1921         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1922
1923         /* wrap the queue? */
1924         if (pi >= aac_qinfo[queue].size)
1925                 pi = 0;
1926
1927         /* check for queue full */
1928         if ((pi + 1) == ci) {
1929                 error = EBUSY;
1930                 goto out;
1931         }
1932
1933         /* populate queue entry */
1934         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1935         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1936
1937         /* update producer index */
1938         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1939
1940         /* notify the adapter if we know how */
1941         if (aac_qinfo[queue].notify != 0)
1942                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1943
1944         error = 0;
1945
1946 out:
1947         splx(s);
1948         return(error);
1949 }
1950
1951 /*
1952  * Check for commands that have been outstanding for a suspiciously long time,
1953  * and complain about them.
1954  */
1955 static void
1956 aac_timeout(struct aac_softc *sc)
1957 {
1958         int s;
1959         struct aac_command *cm;
1960         time_t deadline;
1961
1962 #if 0
1963         /* simulate an interrupt to handle possibly-missed interrupts */
1964         /*
1965          * XXX This was done to work around another bug which has since been
1966          * fixed.  It is dangerous anyways because you don't want multiple
1967          * threads in the interrupt handler at the same time!  If calling
1968          * is deamed neccesary in the future, proper mutexes must be used.
1969          */
1970         s = splbio();
1971         aac_intr(sc);
1972         splx(s);
1973
1974         /* kick the I/O queue to restart it in the case of deadlock */
1975         aac_startio(sc);
1976 #endif
1977
1978         /*
1979          * traverse the busy command list, bitch about late commands once
1980          * only.
1981          */
1982         deadline = time_second - AAC_CMD_TIMEOUT;
1983         s = splbio();
1984         TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1985                 if ((cm->cm_timestamp  < deadline)
1986                         /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1987                         cm->cm_flags |= AAC_CMD_TIMEDOUT;
1988                         device_printf(sc->aac_dev,
1989                                       "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1990                                       cm, (int)(time_second-cm->cm_timestamp));
1991                         AAC_PRINT_FIB(sc, cm->cm_fib);
1992                 }
1993         }
1994         splx(s);
1995
1996         /* reset the timer for next time */
1997         timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1998         return;
1999 }
2000
2001 /*
2002  * Interface Function Vectors
2003  */
2004
2005 /*
2006  * Read the current firmware status word.
2007  */
2008 static int
2009 aac_sa_get_fwstatus(struct aac_softc *sc)
2010 {
2011         debug_called(3);
2012
2013         return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2014 }
2015
2016 static int
2017 aac_rx_get_fwstatus(struct aac_softc *sc)
2018 {
2019         debug_called(3);
2020
2021         return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2022 }
2023
2024 static int
2025 aac_fa_get_fwstatus(struct aac_softc *sc)
2026 {
2027         int val;
2028
2029         debug_called(3);
2030
2031         val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2032         return (val);
2033 }
2034
2035 /*
2036  * Notify the controller of a change in a given queue
2037  */
2038
2039 static void
2040 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2041 {
2042         debug_called(3);
2043
2044         AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2045 }
2046
2047 static void
2048 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2049 {
2050         debug_called(3);
2051
2052         AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2053 }
2054
2055 static void
2056 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2057 {
2058         debug_called(3);
2059
2060         AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2061         AAC_FA_HACK(sc);
2062 }
2063
2064 /*
2065  * Get the interrupt reason bits
2066  */
2067 static int
2068 aac_sa_get_istatus(struct aac_softc *sc)
2069 {
2070         debug_called(3);
2071
2072         return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2073 }
2074
2075 static int
2076 aac_rx_get_istatus(struct aac_softc *sc)
2077 {
2078         debug_called(3);
2079
2080         return(AAC_GETREG4(sc, AAC_RX_ODBR));
2081 }
2082
2083 static int
2084 aac_fa_get_istatus(struct aac_softc *sc)
2085 {
2086         int val;
2087
2088         debug_called(3);
2089
2090         val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2091         return (val);
2092 }
2093
2094 /*
2095  * Clear some interrupt reason bits
2096  */
2097 static void
2098 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2099 {
2100         debug_called(3);
2101
2102         AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2103 }
2104
2105 static void
2106 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2107 {
2108         debug_called(3);
2109
2110         AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2111 }
2112
2113 static void
2114 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2115 {
2116         debug_called(3);
2117
2118         AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2119         AAC_FA_HACK(sc);
2120 }
2121
2122 /*
2123  * Populate the mailbox and set the command word
2124  */
2125 static void
2126 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2127                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2128 {
2129         debug_called(4);
2130
2131         AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2132         AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2133         AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2134         AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2135         AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2136 }
2137
2138 static void
2139 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2140                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2141 {
2142         debug_called(4);
2143
2144         AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2145         AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2146         AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2147         AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2148         AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2149 }
2150
2151 static void
2152 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2153                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2154 {
2155         debug_called(4);
2156
2157         AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2158         AAC_FA_HACK(sc);
2159         AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2160         AAC_FA_HACK(sc);
2161         AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2162         AAC_FA_HACK(sc);
2163         AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2164         AAC_FA_HACK(sc);
2165         AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2166         AAC_FA_HACK(sc);
2167 }
2168
2169 /*
2170  * Fetch the immediate command status word
2171  */
2172 static int
2173 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2174 {
2175         debug_called(4);
2176
2177         return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2178 }
2179
2180 static int
2181 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2182 {
2183         debug_called(4);
2184
2185         return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2186 }
2187
2188 static int
2189 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2190 {
2191         int val;
2192
2193         debug_called(4);
2194
2195         val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2196         return (val);
2197 }
2198
2199 /*
2200  * Set/clear interrupt masks
2201  */
2202 static void
2203 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2204 {
2205         debug(2, "%sable interrupts", enable ? "en" : "dis");
2206
2207         if (enable) {
2208                 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2209         } else {
2210                 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2211         }
2212 }
2213
2214 static void
2215 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2216 {
2217         debug(2, "%sable interrupts", enable ? "en" : "dis");
2218
2219         if (enable) {
2220                 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2221         } else {
2222                 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2223         }
2224 }
2225
2226 static void
2227 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2228 {
2229         debug(2, "%sable interrupts", enable ? "en" : "dis");
2230
2231         if (enable) {
2232                 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2233                 AAC_FA_HACK(sc);
2234         } else {
2235                 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2236                 AAC_FA_HACK(sc);
2237         }
2238 }
2239
2240 /*
2241  * Debugging and Diagnostics
2242  */
2243
2244 /*
2245  * Print some information about the controller.
2246  */
2247 static void
2248 aac_describe_controller(struct aac_softc *sc)
2249 {
2250         struct aac_fib *fib;
2251         struct aac_adapter_info *info;
2252
2253         debug_called(2);
2254
2255         aac_alloc_sync_fib(sc, &fib, 0);
2256
2257         fib->data[0] = 0;
2258         if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2259                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2260                 aac_release_sync_fib(sc);
2261                 return;
2262         }
2263         info = (struct aac_adapter_info *)&fib->data[0];   
2264
2265         device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 
2266                       aac_describe_code(aac_cpu_variant, info->CpuVariant),
2267                       info->ClockSpeed, info->BufferMem / (1024 * 1024), 
2268                       aac_describe_code(aac_battery_platform,
2269                                         info->batteryPlatform));
2270
2271         /* save the kernel revision structure for later use */
2272         sc->aac_revision = info->KernelRevision;
2273         device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2274                       info->KernelRevision.external.comp.major,
2275                       info->KernelRevision.external.comp.minor,
2276                       info->KernelRevision.external.comp.dash,
2277                       info->KernelRevision.buildNumber,
2278                       (u_int32_t)(info->SerialNumber & 0xffffff));
2279
2280         aac_release_sync_fib(sc);
2281
2282         if (1 || bootverbose) {
2283                 device_printf(sc->aac_dev, "Supported Options=%b\n",
2284                               sc->supported_options,
2285                               "\20"
2286                               "\1SNAPSHOT"
2287                               "\2CLUSTERS"
2288                               "\3WCACHE"
2289                               "\4DATA64"
2290                               "\5HOSTTIME"
2291                               "\6RAID50"
2292                               "\7WINDOW4GB"
2293                               "\10SCSIUPGD"
2294                               "\11SOFTERR"
2295                               "\12NORECOND"
2296                               "\13SGMAP64"
2297                               "\14ALARM"
2298                               "\15NONDASD");
2299         }
2300 }
2301
2302 /*
2303  * Look up a text description of a numeric error code and return a pointer to
2304  * same.
2305  */
2306 static char *
2307 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2308 {
2309         int i;
2310
2311         for (i = 0; table[i].string != NULL; i++)
2312                 if (table[i].code == code)
2313                         return(table[i].string);
2314         return(table[i + 1].string);
2315 }
2316
2317 /*
2318  * Management Interface
2319  */
2320
2321 static int
2322 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2323 {
2324         struct aac_softc *sc;
2325
2326         debug_called(2);
2327
2328         sc = dev->si_drv1;
2329
2330         /* Check to make sure the device isn't already open */
2331         if (sc->aac_state & AAC_STATE_OPEN) {
2332                 return EBUSY;
2333         }
2334         sc->aac_state |= AAC_STATE_OPEN;
2335
2336         return 0;
2337 }
2338
2339 static int
2340 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2341 {
2342         struct aac_softc *sc;
2343
2344         debug_called(2);
2345
2346         sc = dev->si_drv1;
2347
2348         /* Mark this unit as no longer open  */
2349         sc->aac_state &= ~AAC_STATE_OPEN;
2350
2351         return 0;
2352 }
2353
2354 static int
2355 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2356 {
2357         union aac_statrequest *as;
2358         struct aac_softc *sc;
2359         int error = 0;
2360         int i;
2361
2362         debug_called(2);
2363
2364         as = (union aac_statrequest *)arg;
2365         sc = dev->si_drv1;
2366
2367         switch (cmd) {
2368         case AACIO_STATS:
2369                 switch (as->as_item) {
2370                 case AACQ_FREE:
2371                 case AACQ_BIO:
2372                 case AACQ_READY:
2373                 case AACQ_BUSY:
2374                 case AACQ_COMPLETE:
2375                         bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2376                               sizeof(struct aac_qstat));
2377                         break;
2378                 default:
2379                         error = ENOENT;
2380                         break;
2381                 }
2382         break;
2383         
2384         case FSACTL_SENDFIB:
2385                 arg = *(caddr_t*)arg;
2386         case FSACTL_LNX_SENDFIB:
2387                 debug(1, "FSACTL_SENDFIB");
2388                 error = aac_ioctl_sendfib(sc, arg);
2389                 break;
2390         case FSACTL_AIF_THREAD:
2391         case FSACTL_LNX_AIF_THREAD:
2392                 debug(1, "FSACTL_AIF_THREAD");
2393                 error = EINVAL;
2394                 break;
2395         case FSACTL_OPEN_GET_ADAPTER_FIB:
2396                 arg = *(caddr_t*)arg;
2397         case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2398                 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2399                 /*
2400                  * Pass the caller out an AdapterFibContext.
2401                  *
2402                  * Note that because we only support one opener, we
2403                  * basically ignore this.  Set the caller's context to a magic
2404                  * number just in case.
2405                  *
2406                  * The Linux code hands the driver a pointer into kernel space,
2407                  * and then trusts it when the caller hands it back.  Aiee!
2408                  * Here, we give it the proc pointer of the per-adapter aif 
2409                  * thread. It's only used as a sanity check in other calls.
2410                  */
2411                 i = (int)sc->aifthread;
2412                 error = copyout(&i, arg, sizeof(i));
2413                 break;
2414         case FSACTL_GET_NEXT_ADAPTER_FIB:
2415                 arg = *(caddr_t*)arg;
2416         case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2417                 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2418                 error = aac_getnext_aif(sc, arg);
2419                 break;
2420         case FSACTL_CLOSE_GET_ADAPTER_FIB:
2421         case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2422                 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2423                 /* don't do anything here */
2424                 break;
2425         case FSACTL_MINIPORT_REV_CHECK:
2426                 arg = *(caddr_t*)arg;
2427         case FSACTL_LNX_MINIPORT_REV_CHECK:
2428                 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2429                 error = aac_rev_check(sc, arg);
2430                 break;
2431         case FSACTL_QUERY_DISK:
2432                 arg = *(caddr_t*)arg;
2433         case FSACTL_LNX_QUERY_DISK:
2434                 debug(1, "FSACTL_QUERY_DISK");
2435                 error = aac_query_disk(sc, arg);
2436                         break;
2437         case FSACTL_DELETE_DISK:
2438         case FSACTL_LNX_DELETE_DISK:
2439                 /*
2440                  * We don't trust the underland to tell us when to delete a
2441                  * container, rather we rely on an AIF coming from the 
2442                  * controller
2443                  */
2444                 error = 0;
2445                 break;
2446         default:
2447                 debug(1, "unsupported cmd 0x%lx\n", cmd);
2448                 error = EINVAL;
2449                 break;
2450         }
2451         return(error);
2452 }
2453
2454 static int
2455 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2456 {
2457         struct aac_softc *sc;
2458         int revents;
2459
2460         sc = dev->si_drv1;
2461         revents = 0;
2462
2463         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2464         if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2465                 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2466                         revents |= poll_events & (POLLIN | POLLRDNORM);
2467         }
2468         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2469
2470         if (revents == 0) {
2471                 if (poll_events & (POLLIN | POLLRDNORM))
2472                         selrecord(td, &sc->rcv_select);
2473         }
2474
2475         return (revents);
2476 }
2477
2478 /*
2479  * Send a FIB supplied from userspace
2480  */
2481 static int
2482 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2483 {
2484         struct aac_command *cm;
2485         int size, error;
2486
2487         debug_called(2);
2488
2489         cm = NULL;
2490
2491         /*
2492          * Get a command
2493          */
2494         if (aac_alloc_command(sc, &cm)) {
2495                 error = EBUSY;
2496                 goto out;
2497         }
2498
2499         /*
2500          * Fetch the FIB header, then re-copy to get data as well.
2501          */
2502         if ((error = copyin(ufib, cm->cm_fib,
2503                             sizeof(struct aac_fib_header))) != 0)
2504                 goto out;
2505         size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2506         if (size > sizeof(struct aac_fib)) {
2507                 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2508                               size, sizeof(struct aac_fib));
2509                 size = sizeof(struct aac_fib);
2510         }
2511         if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2512                 goto out;
2513         cm->cm_fib->Header.Size = size;
2514         cm->cm_timestamp = time_second;
2515
2516         /*
2517          * Pass the FIB to the controller, wait for it to complete.
2518          */
2519         if ((error = aac_wait_command(cm, 30)) != 0) {  /* XXX user timeout? */
2520                 printf("aac_wait_command return %d\n", error);
2521                 goto out;
2522         }
2523
2524         /*
2525          * Copy the FIB and data back out to the caller.
2526          */
2527         size = cm->cm_fib->Header.Size;
2528         if (size > sizeof(struct aac_fib)) {
2529                 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2530                               size, sizeof(struct aac_fib));
2531                 size = sizeof(struct aac_fib);
2532         }
2533         error = copyout(cm->cm_fib, ufib, size);
2534
2535 out:
2536         if (cm != NULL) {
2537                 aac_release_command(cm);
2538         }
2539         return(error);
2540 }
2541
2542 /*
2543  * Handle an AIF sent to us by the controller; queue it for later reference.
2544  * If the queue fills up, then drop the older entries.
2545  */
2546 static void
2547 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2548 {
2549         struct aac_aif_command *aif;
2550         struct aac_container *co, *co_next;
2551         struct aac_mntinfo *mi;
2552         struct aac_mntinforesp *mir = NULL;
2553         u_int16_t rsize;
2554         int next, found;
2555         int added = 0, i = 0;
2556
2557         debug_called(2);
2558
2559         aif = (struct aac_aif_command*)&fib->data[0];
2560         aac_print_aif(sc, aif);
2561
2562         /* Is it an event that we should care about? */
2563         switch (aif->command) {
2564         case AifCmdEventNotify:
2565                 switch (aif->data.EN.type) {
2566                 case AifEnAddContainer:
2567                 case AifEnDeleteContainer:
2568                         /*
2569                          * A container was added or deleted, but the message 
2570                          * doesn't tell us anything else!  Re-enumerate the
2571                          * containers and sort things out.
2572                          */
2573                         aac_alloc_sync_fib(sc, &fib, 0);
2574                         mi = (struct aac_mntinfo *)&fib->data[0];
2575                         do {
2576                                 /*
2577                                  * Ask the controller for its containers one at
2578                                  * a time.
2579                                  * XXX What if the controller's list changes
2580                                  * midway through this enumaration?
2581                                  * XXX This should be done async.
2582                                  */
2583                                 bzero(mi, sizeof(struct aac_mntinfo));
2584                                 mi->Command = VM_NameServe;
2585                                 mi->MntType = FT_FILESYS;
2586                                 mi->MntCount = i;
2587                                 rsize = sizeof(mir);
2588                                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2589                                                  sizeof(struct aac_mntinfo))) {
2590                                         debug(2, "Error probing container %d\n",
2591                                               i);
2592                                         continue;
2593                                 }
2594                                 mir = (struct aac_mntinforesp *)&fib->data[0];
2595                                 /*
2596                                  * Check the container against our list.
2597                                  * co->co_found was already set to 0 in a
2598                                  * previous run.
2599                                  */
2600                                 if ((mir->Status == ST_OK) &&
2601                                     (mir->MntTable[0].VolType != CT_NONE)) {
2602                                         found = 0;
2603                                         TAILQ_FOREACH(co,
2604                                                       &sc->aac_container_tqh, 
2605                                                       co_link) {
2606                                                 if (co->co_mntobj.ObjectId ==
2607                                                     mir->MntTable[0].ObjectId) {
2608                                                         co->co_found = 1;
2609                                                         found = 1;
2610                                                         break;
2611                                                 }
2612                                         }
2613                                         /*
2614                                          * If the container matched, continue
2615                                          * in the list.
2616                                          */
2617                                         if (found) {
2618                                                 i++;
2619                                                 continue;
2620                                         }
2621
2622                                         /*
2623                                          * This is a new container.  Do all the
2624                                          * appropriate things to set it up.                                              */
2625                                         aac_add_container(sc, mir, 1);
2626                                         added = 1;
2627                                 }
2628                                 i++;
2629                         } while ((i < mir->MntRespCount) &&
2630                                  (i < AAC_MAX_CONTAINERS));
2631                         aac_release_sync_fib(sc);
2632
2633                         /*
2634                          * Go through our list of containers and see which ones
2635                          * were not marked 'found'.  Since the controller didn't
2636                          * list them they must have been deleted.  Do the
2637                          * appropriate steps to destroy the device.  Also reset
2638                          * the co->co_found field.
2639                          */
2640                         co = TAILQ_FIRST(&sc->aac_container_tqh);
2641                         while (co != NULL) {
2642                                 if (co->co_found == 0) {
2643                                         device_delete_child(sc->aac_dev,
2644                                                             co->co_disk);
2645                                         co_next = TAILQ_NEXT(co, co_link);
2646                                         AAC_LOCK_ACQUIRE(&sc->
2647                                                         aac_container_lock);
2648                                         TAILQ_REMOVE(&sc->aac_container_tqh, co,
2649                                                      co_link);
2650                                         AAC_LOCK_RELEASE(&sc->
2651                                                          aac_container_lock);
2652                                         FREE(co, M_AACBUF);
2653                                         co = co_next;
2654                                 } else {
2655                                         co->co_found = 0;
2656                                         co = TAILQ_NEXT(co, co_link);
2657                                 }
2658                         }
2659
2660                         /* Attach the newly created containers */
2661                         if (added)
2662                                 bus_generic_attach(sc->aac_dev);
2663         
2664                                 break;
2665
2666                 default:
2667                         break;
2668                 }
2669
2670         default:
2671                 break;
2672         }
2673
2674         /* Copy the AIF data to the AIF queue for ioctl retrieval */
2675         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2676         next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2677         if (next != sc->aac_aifq_tail) {
2678                 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2679                 sc->aac_aifq_head = next;
2680
2681                 /* On the off chance that someone is sleeping for an aif... */
2682                 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2683                         wakeup(sc->aac_aifq);
2684                 /* token may have been lost */
2685                 /* Wakeup any poll()ers */
2686                 selwakeup(&sc->rcv_select);
2687                 /* token may have been lost */
2688         }
2689         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2690
2691         return;
2692 }
2693
2694 /*
2695  * Return the Revision of the driver to userspace and check to see if the
2696  * userspace app is possibly compatible.  This is extremely bogus since
2697  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2698  * returning what the card reported.
2699  */
2700 static int
2701 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2702 {
2703         struct aac_rev_check rev_check;
2704         struct aac_rev_check_resp rev_check_resp;
2705         int error = 0;
2706
2707         debug_called(2);
2708
2709         /*
2710          * Copyin the revision struct from userspace
2711          */
2712         if ((error = copyin(udata, (caddr_t)&rev_check,
2713                         sizeof(struct aac_rev_check))) != 0) {
2714                 return error;
2715         }
2716
2717         debug(2, "Userland revision= %d\n",
2718               rev_check.callingRevision.buildNumber);
2719
2720         /*
2721          * Doctor up the response struct.
2722          */
2723         rev_check_resp.possiblyCompatible = 1;
2724         rev_check_resp.adapterSWRevision.external.ul =
2725             sc->aac_revision.external.ul;
2726         rev_check_resp.adapterSWRevision.buildNumber =
2727             sc->aac_revision.buildNumber;
2728
2729         return(copyout((caddr_t)&rev_check_resp, udata,
2730                         sizeof(struct aac_rev_check_resp)));
2731 }
2732
2733 /*
2734  * Pass the caller the next AIF in their queue
2735  */
2736 static int
2737 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2738 {
2739         struct get_adapter_fib_ioctl agf;
2740         int error, s;
2741
2742         debug_called(2);
2743
2744         if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2745
2746                 /*
2747                  * Check the magic number that we gave the caller.
2748                  */
2749                 if (agf.AdapterFibContext != (int)sc->aifthread) {
2750                         error = EFAULT;
2751                 } else {
2752         
2753                         s = splbio();
2754                         error = aac_return_aif(sc, agf.AifFib);
2755         
2756                         if ((error == EAGAIN) && (agf.Wait)) {
2757                                 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2758                                 while (error == EAGAIN) {
2759                                         error = tsleep(sc->aac_aifq,
2760                                                        PCATCH, "aacaif", 0);
2761                                         if (error == 0)
2762                                                 error = aac_return_aif(sc,
2763                                                     agf.AifFib);
2764                                 }
2765                                 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2766                         }
2767                 splx(s);
2768                 }
2769         }
2770         return(error);
2771 }
2772
2773 /*
2774  * Hand the next AIF off the top of the queue out to userspace.
2775  *
2776  * YYY token could be lost during copyout
2777  */
2778 static int
2779 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2780 {
2781         int error;
2782
2783         debug_called(2);
2784
2785         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2786         if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2787                 error = EAGAIN;
2788         } else {
2789                 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2790                                 sizeof(struct aac_aif_command));
2791                 if (error)
2792                         printf("aac_return_aif: copyout returned %d\n", error);
2793                 if (!error)
2794                         sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2795                                             AAC_AIFQ_LENGTH;
2796         }
2797         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2798         return(error);
2799 }
2800
2801 /*
2802  * Give the userland some information about the container.  The AAC arch
2803  * expects the driver to be a SCSI passthrough type driver, so it expects
2804  * the containers to have b:t:l numbers.  Fake it.
2805  */
2806 static int
2807 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2808 {
2809         struct aac_query_disk query_disk;
2810         struct aac_container *co;
2811         struct aac_disk *disk;
2812         int error, id;
2813
2814         debug_called(2);
2815
2816         disk = NULL;
2817
2818         error = copyin(uptr, (caddr_t)&query_disk,
2819                        sizeof(struct aac_query_disk));
2820         if (error)
2821                 return (error);
2822
2823         id = query_disk.ContainerNumber;
2824         if (id == -1)
2825                 return (EINVAL);
2826
2827         AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2828         TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2829                 if (co->co_mntobj.ObjectId == id)
2830                         break;
2831                 }
2832
2833                 if (co == NULL) {
2834                         query_disk.Valid = 0;
2835                         query_disk.Locked = 0;
2836                         query_disk.Deleted = 1;         /* XXX is this right? */
2837                 } else {
2838                         disk = device_get_softc(co->co_disk);
2839                         query_disk.Valid = 1;
2840                         query_disk.Locked =
2841                             (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2842                         query_disk.Deleted = 0;
2843                         query_disk.Bus = device_get_unit(sc->aac_dev);
2844                         query_disk.Target = disk->unit;
2845                         query_disk.Lun = 0;
2846                         query_disk.UnMapped = 0;
2847                         bcopy(disk->ad_dev_t->si_name,
2848                               &query_disk.diskDeviceName[0], 10);
2849                 }
2850         AAC_LOCK_RELEASE(&sc->aac_container_lock);
2851
2852         error = copyout((caddr_t)&query_disk, uptr,
2853                         sizeof(struct aac_query_disk));
2854
2855         return (error);
2856 }
2857
2858 static void
2859 aac_get_bus_info(struct aac_softc *sc)
2860 {
2861         struct aac_fib *fib;
2862         struct aac_ctcfg *c_cmd;
2863         struct aac_ctcfg_resp *c_resp;
2864         struct aac_vmioctl *vmi;
2865         struct aac_vmi_businf_resp *vmi_resp;
2866         struct aac_getbusinf businfo;
2867         struct aac_cam_inf *caminf;
2868         device_t child;
2869         int i, found, error;
2870
2871         aac_alloc_sync_fib(sc, &fib, 0);
2872         c_cmd = (struct aac_ctcfg *)&fib->data[0];
2873         bzero(c_cmd, sizeof(struct aac_ctcfg));
2874
2875         c_cmd->Command = VM_ContainerConfig;
2876         c_cmd->cmd = CT_GET_SCSI_METHOD;
2877         c_cmd->param = 0;
2878
2879         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2880             sizeof(struct aac_ctcfg));
2881         if (error) {
2882                 device_printf(sc->aac_dev, "Error %d sending "
2883                     "VM_ContainerConfig command\n", error);
2884                 aac_release_sync_fib(sc);
2885                 return;
2886         }
2887
2888         c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2889         if (c_resp->Status != ST_OK) {
2890                 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2891                     c_resp->Status);
2892                 aac_release_sync_fib(sc);
2893                 return;
2894         }
2895
2896         sc->scsi_method_id = c_resp->param;
2897
2898         vmi = (struct aac_vmioctl *)&fib->data[0];
2899         bzero(vmi, sizeof(struct aac_vmioctl));
2900
2901         vmi->Command = VM_Ioctl;
2902         vmi->ObjType = FT_DRIVE;
2903         vmi->MethId = sc->scsi_method_id;
2904         vmi->ObjId = 0;
2905         vmi->IoctlCmd = GetBusInfo;
2906
2907         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2908             sizeof(struct aac_vmioctl));
2909         if (error) {
2910                 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2911                     error);
2912                 aac_release_sync_fib(sc);
2913                 return;
2914         }
2915
2916         vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2917         if (vmi_resp->Status != ST_OK) {
2918                 debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2919                 aac_release_sync_fib(sc);
2920                 return;
2921         }
2922
2923         bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2924         aac_release_sync_fib(sc);
2925
2926         found = 0;
2927         for (i = 0; i < businfo.BusCount; i++) {
2928                 if (businfo.BusValid[i] != AAC_BUS_VALID)
2929                         continue;
2930
2931                 MALLOC(caminf, struct aac_cam_inf *,
2932                     sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO);
2933                 if (caminf == NULL)
2934                         continue;
2935
2936                 child = device_add_child(sc->aac_dev, "aacp", -1);
2937                 if (child == NULL) {
2938                         device_printf(sc->aac_dev, "device_add_child failed\n");
2939                         continue;
2940                 }
2941
2942                 caminf->TargetsPerBus = businfo.TargetsPerBus;
2943                 caminf->BusNumber = i;
2944                 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2945                 caminf->aac_sc = sc;
2946
2947                 device_set_ivars(child, caminf);
2948                 device_set_desc(child, "SCSI Passthrough Bus");
2949
2950                 found = 1;
2951         }
2952
2953         if (found)
2954                 bus_generic_attach(sc->aac_dev);
2955
2956         return;
2957 }