c8004a007c40fb4770fc7a938b7bfe8310b7145b
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003-2010 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 /*
36  * Each cpu in a system has its own self-contained light weight kernel
37  * thread scheduler, which means that generally speaking we only need
38  * to use a critical section to avoid problems.  Foreign thread 
39  * scheduling is queued via (async) IPIs.
40  */
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/kinfo.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 #include <machine/cpu.h>
52 #include <sys/lock.h>
53 #include <sys/caps.h>
54 #include <sys/spinlock.h>
55 #include <sys/ktr.h>
56
57 #include <sys/thread2.h>
58 #include <sys/spinlock2.h>
59 #include <sys/mplock2.h>
60
61 #include <sys/dsched.h>
62
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vm_extern.h>
71
72 #include <machine/stdarg.h>
73 #include <machine/smp.h>
74
75 #if !defined(KTR_CTXSW)
76 #define KTR_CTXSW KTR_ALL
77 #endif
78 KTR_INFO_MASTER(ctxsw);
79 KTR_INFO(KTR_CTXSW, ctxsw, sw, 0, "#cpu[%d].td = %p",
80          sizeof(int) + sizeof(struct thread *));
81 KTR_INFO(KTR_CTXSW, ctxsw, pre, 1, "#cpu[%d].td = %p",
82          sizeof(int) + sizeof(struct thread *));
83 KTR_INFO(KTR_CTXSW, ctxsw, newtd, 2, "#threads[%p].name = %s",
84          sizeof (struct thread *) + sizeof(char *));
85 KTR_INFO(KTR_CTXSW, ctxsw, deadtd, 3, "#threads[%p].name = <dead>", sizeof (struct thread *));
86
87 static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
88
89 #ifdef  INVARIANTS
90 static int panic_on_cscount = 0;
91 #endif
92 static __int64_t switch_count = 0;
93 static __int64_t preempt_hit = 0;
94 static __int64_t preempt_miss = 0;
95 static __int64_t preempt_weird = 0;
96 static __int64_t token_contention_count __debugvar = 0;
97 static int lwkt_use_spin_port;
98 static struct objcache *thread_cache;
99
100 #ifdef SMP
101 static void lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame);
102 #endif
103 static void lwkt_fairq_accumulate(globaldata_t gd, thread_t td);
104
105 extern void cpu_heavy_restore(void);
106 extern void cpu_lwkt_restore(void);
107 extern void cpu_kthread_restore(void);
108 extern void cpu_idle_restore(void);
109
110 #ifdef __x86_64__
111
112 static int
113 jg_tos_ok(struct thread *td)
114 {
115         void *tos;
116         int tos_ok;
117
118         if (td == NULL) {
119                 return 1;
120         }
121         KKASSERT(td->td_sp != NULL);
122         tos = ((void **)td->td_sp)[0];
123         tos_ok = 0;
124         if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore) ||
125             (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
126                 tos_ok = 1;
127         }
128         return tos_ok;
129 }
130
131 #endif
132
133 /*
134  * We can make all thread ports use the spin backend instead of the thread
135  * backend.  This should only be set to debug the spin backend.
136  */
137 TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
138
139 #ifdef  INVARIANTS
140 SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
141 #endif
142 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
143 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, 
144             "Successful preemption events");
145 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, 
146             "Failed preemption events");
147 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
148 #ifdef  INVARIANTS
149 SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
150         &token_contention_count, 0, "spinning due to token contention");
151 #endif
152 static int fairq_enable = 1;
153 SYSCTL_INT(_lwkt, OID_AUTO, fairq_enable, CTLFLAG_RW, &fairq_enable, 0, "");
154 static int user_pri_sched = 0;
155 SYSCTL_INT(_lwkt, OID_AUTO, user_pri_sched, CTLFLAG_RW, &user_pri_sched, 0, "");
156
157 /*
158  * These helper procedures handle the runq, they can only be called from
159  * within a critical section.
160  *
161  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
162  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
163  * instead of 'mycpu' when referencing the globaldata structure.   Once
164  * SMP live enqueuing and dequeueing only occurs on the current cpu.
165  */
166 static __inline
167 void
168 _lwkt_dequeue(thread_t td)
169 {
170     if (td->td_flags & TDF_RUNQ) {
171         struct globaldata *gd = td->td_gd;
172
173         td->td_flags &= ~TDF_RUNQ;
174         TAILQ_REMOVE(&gd->gd_tdrunq, td, td_threadq);
175         gd->gd_fairq_total_pri -= td->td_pri;
176         if (TAILQ_FIRST(&gd->gd_tdrunq) == NULL)
177                 atomic_clear_int_nonlocked(&gd->gd_reqflags, RQF_RUNNING);
178     }
179 }
180
181 /*
182  * Priority enqueue.
183  *
184  * NOTE: There are a limited number of lwkt threads runnable since user
185  *       processes only schedule one at a time per cpu.
186  */
187 static __inline
188 void
189 _lwkt_enqueue(thread_t td)
190 {
191     thread_t xtd;
192
193     if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_BLOCKQ)) == 0) {
194         struct globaldata *gd = td->td_gd;
195
196         td->td_flags |= TDF_RUNQ;
197         xtd = TAILQ_FIRST(&gd->gd_tdrunq);
198         if (xtd == NULL) {
199                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
200                 atomic_set_int_nonlocked(&gd->gd_reqflags, RQF_RUNNING);
201         } else {
202                 while (xtd && xtd->td_pri > td->td_pri)
203                         xtd = TAILQ_NEXT(xtd, td_threadq);
204                 if (xtd)
205                         TAILQ_INSERT_BEFORE(xtd, td, td_threadq);
206                 else
207                         TAILQ_INSERT_TAIL(&gd->gd_tdrunq, td, td_threadq);
208         }
209         gd->gd_fairq_total_pri += td->td_pri;
210     }
211 }
212
213 static __boolean_t
214 _lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
215 {
216         struct thread *td = (struct thread *)obj;
217
218         td->td_kstack = NULL;
219         td->td_kstack_size = 0;
220         td->td_flags = TDF_ALLOCATED_THREAD;
221         return (1);
222 }
223
224 static void
225 _lwkt_thread_dtor(void *obj, void *privdata)
226 {
227         struct thread *td = (struct thread *)obj;
228
229         KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
230             ("_lwkt_thread_dtor: not allocated from objcache"));
231         KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
232                 td->td_kstack_size > 0,
233             ("_lwkt_thread_dtor: corrupted stack"));
234         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
235 }
236
237 /*
238  * Initialize the lwkt s/system.
239  */
240 void
241 lwkt_init(void)
242 {
243     /* An objcache has 2 magazines per CPU so divide cache size by 2. */
244     thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
245                         NULL, CACHE_NTHREADS/2,
246                         _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
247 }
248
249 /*
250  * Schedule a thread to run.  As the current thread we can always safely
251  * schedule ourselves, and a shortcut procedure is provided for that
252  * function.
253  *
254  * (non-blocking, self contained on a per cpu basis)
255  */
256 void
257 lwkt_schedule_self(thread_t td)
258 {
259     crit_enter_quick(td);
260     KASSERT(td != &td->td_gd->gd_idlethread,
261             ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
262     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
263     _lwkt_enqueue(td);
264     crit_exit_quick(td);
265 }
266
267 /*
268  * Deschedule a thread.
269  *
270  * (non-blocking, self contained on a per cpu basis)
271  */
272 void
273 lwkt_deschedule_self(thread_t td)
274 {
275     crit_enter_quick(td);
276     _lwkt_dequeue(td);
277     crit_exit_quick(td);
278 }
279
280 /*
281  * LWKTs operate on a per-cpu basis
282  *
283  * WARNING!  Called from early boot, 'mycpu' may not work yet.
284  */
285 void
286 lwkt_gdinit(struct globaldata *gd)
287 {
288     TAILQ_INIT(&gd->gd_tdrunq);
289     TAILQ_INIT(&gd->gd_tdallq);
290 }
291
292 /*
293  * Create a new thread.  The thread must be associated with a process context
294  * or LWKT start address before it can be scheduled.  If the target cpu is
295  * -1 the thread will be created on the current cpu.
296  *
297  * If you intend to create a thread without a process context this function
298  * does everything except load the startup and switcher function.
299  */
300 thread_t
301 lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
302 {
303     globaldata_t gd = mycpu;
304     void *stack;
305
306     /*
307      * If static thread storage is not supplied allocate a thread.  Reuse
308      * a cached free thread if possible.  gd_freetd is used to keep an exiting
309      * thread intact through the exit.
310      */
311     if (td == NULL) {
312         if ((td = gd->gd_freetd) != NULL)
313             gd->gd_freetd = NULL;
314         else
315             td = objcache_get(thread_cache, M_WAITOK);
316         KASSERT((td->td_flags &
317                  (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
318                 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
319         flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
320     }
321
322     /*
323      * Try to reuse cached stack.
324      */
325     if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
326         if (flags & TDF_ALLOCATED_STACK) {
327             kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
328             stack = NULL;
329         }
330     }
331     if (stack == NULL) {
332         stack = (void *)kmem_alloc(&kernel_map, stksize);
333         flags |= TDF_ALLOCATED_STACK;
334     }
335     if (cpu < 0)
336         lwkt_init_thread(td, stack, stksize, flags, gd);
337     else
338         lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
339     return(td);
340 }
341
342 /*
343  * Initialize a preexisting thread structure.  This function is used by
344  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
345  *
346  * All threads start out in a critical section at a priority of
347  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
348  * appropriate.  This function may send an IPI message when the 
349  * requested cpu is not the current cpu and consequently gd_tdallq may
350  * not be initialized synchronously from the point of view of the originating
351  * cpu.
352  *
353  * NOTE! we have to be careful in regards to creating threads for other cpus
354  * if SMP has not yet been activated.
355  */
356 #ifdef SMP
357
358 static void
359 lwkt_init_thread_remote(void *arg)
360 {
361     thread_t td = arg;
362
363     /*
364      * Protected by critical section held by IPI dispatch
365      */
366     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
367 }
368
369 #endif
370
371 /*
372  * lwkt core thread structural initialization.
373  *
374  * NOTE: All threads are initialized as mpsafe threads.
375  */
376 void
377 lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
378                 struct globaldata *gd)
379 {
380     globaldata_t mygd = mycpu;
381
382     bzero(td, sizeof(struct thread));
383     td->td_kstack = stack;
384     td->td_kstack_size = stksize;
385     td->td_flags = flags;
386     td->td_gd = gd;
387     td->td_pri = TDPRI_KERN_DAEMON;
388     td->td_critcount = 1;
389     td->td_toks_stop = &td->td_toks_base;
390     if (lwkt_use_spin_port)
391         lwkt_initport_spin(&td->td_msgport);
392     else
393         lwkt_initport_thread(&td->td_msgport, td);
394     pmap_init_thread(td);
395 #ifdef SMP
396     /*
397      * Normally initializing a thread for a remote cpu requires sending an
398      * IPI.  However, the idlethread is setup before the other cpus are
399      * activated so we have to treat it as a special case.  XXX manipulation
400      * of gd_tdallq requires the BGL.
401      */
402     if (gd == mygd || td == &gd->gd_idlethread) {
403         crit_enter_gd(mygd);
404         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
405         crit_exit_gd(mygd);
406     } else {
407         lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
408     }
409 #else
410     crit_enter_gd(mygd);
411     TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
412     crit_exit_gd(mygd);
413 #endif
414
415     dsched_new_thread(td);
416 }
417
418 void
419 lwkt_set_comm(thread_t td, const char *ctl, ...)
420 {
421     __va_list va;
422
423     __va_start(va, ctl);
424     kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
425     __va_end(va);
426     KTR_LOG(ctxsw_newtd, td, &td->td_comm[0]);
427 }
428
429 void
430 lwkt_hold(thread_t td)
431 {
432     ++td->td_refs;
433 }
434
435 void
436 lwkt_rele(thread_t td)
437 {
438     KKASSERT(td->td_refs > 0);
439     --td->td_refs;
440 }
441
442 void
443 lwkt_wait_free(thread_t td)
444 {
445     while (td->td_refs)
446         tsleep(td, 0, "tdreap", hz);
447 }
448
449 void
450 lwkt_free_thread(thread_t td)
451 {
452     KASSERT((td->td_flags & TDF_RUNNING) == 0,
453         ("lwkt_free_thread: did not exit! %p", td));
454
455     if (td->td_flags & TDF_ALLOCATED_THREAD) {
456         objcache_put(thread_cache, td);
457     } else if (td->td_flags & TDF_ALLOCATED_STACK) {
458         /* client-allocated struct with internally allocated stack */
459         KASSERT(td->td_kstack && td->td_kstack_size > 0,
460             ("lwkt_free_thread: corrupted stack"));
461         kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
462         td->td_kstack = NULL;
463         td->td_kstack_size = 0;
464     }
465     KTR_LOG(ctxsw_deadtd, td);
466 }
467
468
469 /*
470  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
471  * switch to the idlethread.  Switching must occur within a critical
472  * section to avoid races with the scheduling queue.
473  *
474  * We always have full control over our cpu's run queue.  Other cpus
475  * that wish to manipulate our queue must use the cpu_*msg() calls to
476  * talk to our cpu, so a critical section is all that is needed and
477  * the result is very, very fast thread switching.
478  *
479  * The LWKT scheduler uses a fixed priority model and round-robins at
480  * each priority level.  User process scheduling is a totally
481  * different beast and LWKT priorities should not be confused with
482  * user process priorities.
483  *
484  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
485  * cleans it up.  Note that the td_switch() function cannot do anything that
486  * requires the MP lock since the MP lock will have already been setup for
487  * the target thread (not the current thread).  It's nice to have a scheduler
488  * that does not need the MP lock to work because it allows us to do some
489  * really cool high-performance MP lock optimizations.
490  *
491  * PREEMPTION NOTE: Preemption occurs via lwkt_preempt().  lwkt_switch()
492  * is not called by the current thread in the preemption case, only when
493  * the preempting thread blocks (in order to return to the original thread).
494  */
495 void
496 lwkt_switch(void)
497 {
498     globaldata_t gd = mycpu;
499     thread_t td = gd->gd_curthread;
500     thread_t ntd;
501     thread_t xtd;
502     thread_t nlast;
503     int nquserok;
504 #ifdef SMP
505     int mpheld;
506 #endif
507     int didaccumulate;
508     const char *lmsg;   /* diagnostic - 'systat -pv 1' */
509     const void *laddr;
510
511     /*
512      * Switching from within a 'fast' (non thread switched) interrupt or IPI
513      * is illegal.  However, we may have to do it anyway if we hit a fatal
514      * kernel trap or we have paniced.
515      *
516      * If this case occurs save and restore the interrupt nesting level.
517      */
518     if (gd->gd_intr_nesting_level) {
519         int savegdnest;
520         int savegdtrap;
521
522         if (gd->gd_trap_nesting_level == 0 && panic_cpu_gd != mycpu) {
523             panic("lwkt_switch: Attempt to switch from a "
524                   "a fast interrupt, ipi, or hard code section, "
525                   "td %p\n",
526                   td);
527         } else {
528             savegdnest = gd->gd_intr_nesting_level;
529             savegdtrap = gd->gd_trap_nesting_level;
530             gd->gd_intr_nesting_level = 0;
531             gd->gd_trap_nesting_level = 0;
532             if ((td->td_flags & TDF_PANICWARN) == 0) {
533                 td->td_flags |= TDF_PANICWARN;
534                 kprintf("Warning: thread switch from interrupt, IPI, "
535                         "or hard code section.\n"
536                         "thread %p (%s)\n", td, td->td_comm);
537                 print_backtrace(-1);
538             }
539             lwkt_switch();
540             gd->gd_intr_nesting_level = savegdnest;
541             gd->gd_trap_nesting_level = savegdtrap;
542             return;
543         }
544     }
545
546     /*
547      * Passive release (used to transition from user to kernel mode
548      * when we block or switch rather then when we enter the kernel).
549      * This function is NOT called if we are switching into a preemption
550      * or returning from a preemption.  Typically this causes us to lose
551      * our current process designation (if we have one) and become a true
552      * LWKT thread, and may also hand the current process designation to
553      * another process and schedule thread.
554      */
555     if (td->td_release)
556             td->td_release(td);
557
558     crit_enter_gd(gd);
559     if (TD_TOKS_HELD(td))
560             lwkt_relalltokens(td);
561
562     /*
563      * We had better not be holding any spin locks, but don't get into an
564      * endless panic loop.
565      */
566     KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL, 
567             ("lwkt_switch: still holding a shared spinlock %p!", 
568              gd->gd_spinlock_rd));
569     KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL, 
570             ("lwkt_switch: still holding %d exclusive spinlocks!",
571              gd->gd_spinlocks_wr));
572
573
574 #ifdef SMP
575     /*
576      * td_mpcount cannot be used to determine if we currently hold the
577      * MP lock because get_mplock() will increment it prior to attempting
578      * to get the lock, and switch out if it can't.  Our ownership of 
579      * the actual lock will remain stable while we are in a critical section
580      * (but, of course, another cpu may own or release the lock so the
581      * actual value of mp_lock is not stable).
582      */
583     mpheld = MP_LOCK_HELD(gd);
584 #ifdef  INVARIANTS
585     if (td->td_cscount) {
586         kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
587                 td);
588         if (panic_on_cscount)
589             panic("switching while mastering cpusync");
590     }
591 #endif
592 #endif
593
594     /*
595      * If we had preempted another thread on this cpu, resume the preempted
596      * thread.  This occurs transparently, whether the preempted thread
597      * was scheduled or not (it may have been preempted after descheduling
598      * itself).
599      *
600      * We have to setup the MP lock for the original thread after backing
601      * out the adjustment that was made to curthread when the original
602      * was preempted.
603      */
604     if ((ntd = td->td_preempted) != NULL) {
605         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
606 #ifdef SMP
607         if (ntd->td_mpcount && mpheld == 0) {
608             panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
609                td, ntd, td->td_mpcount, ntd->td_mpcount);
610         }
611         if (ntd->td_mpcount) {
612             td->td_mpcount -= ntd->td_mpcount;
613             KKASSERT(td->td_mpcount >= 0);
614         }
615 #endif
616         ntd->td_flags |= TDF_PREEMPT_DONE;
617
618         /*
619          * The interrupt may have woken a thread up, we need to properly
620          * set the reschedule flag if the originally interrupted thread is
621          * at a lower priority.
622          */
623         if (TAILQ_FIRST(&gd->gd_tdrunq) &&
624             TAILQ_FIRST(&gd->gd_tdrunq)->td_pri > ntd->td_pri) {
625             need_lwkt_resched();
626         }
627         /* YYY release mp lock on switchback if original doesn't need it */
628         goto havethread_preempted;
629     }
630
631     /*
632      * Implement round-robin fairq with priority insertion.  The priority
633      * insertion is handled by _lwkt_enqueue()
634      *
635      * We have to adjust the MP lock for the target thread.  If we
636      * need the MP lock and cannot obtain it we try to locate a
637      * thread that does not need the MP lock.  If we cannot, we spin
638      * instead of HLT.
639      *
640      * A similar issue exists for the tokens held by the target thread.
641      * If we cannot obtain ownership of the tokens we cannot immediately
642      * schedule the thread.
643      */
644     for (;;) {
645         clear_lwkt_resched();
646         didaccumulate = 0;
647         ntd = TAILQ_FIRST(&gd->gd_tdrunq);
648
649         /*
650          * Hotpath if we can get all necessary resources.
651          *
652          * If nothing is runnable switch to the idle thread
653          */
654         if (ntd == NULL) {
655             ntd = &gd->gd_idlethread;
656             if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
657                     ntd->td_flags |= TDF_IDLE_NOHLT;
658 #ifdef SMP
659             if (ntd->td_mpcount) {
660                 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
661                     panic("Idle thread %p was holding the BGL!", ntd);
662                 if (mpheld == 0) {
663                     set_cpu_contention_mask(gd);
664                     handle_cpu_contention_mask();
665                     cpu_try_mplock();
666                     mpheld = MP_LOCK_HELD(gd);
667                     cpu_pause();
668                     continue;
669                 }
670             }
671             clr_cpu_contention_mask(gd);
672 #endif
673             cpu_time.cp_msg[0] = 0;
674             cpu_time.cp_stallpc = 0;
675             goto haveidle;
676         }
677
678         /*
679          * Hotpath schedule
680          *
681          * NOTE: For UP there is no mplock and lwkt_getalltokens()
682          *           always succeeds.
683          */
684         if (ntd->td_fairq_accum >= 0 &&
685 #ifdef SMP
686             (ntd->td_mpcount == 0 || mpheld || cpu_try_mplock()) &&
687 #endif
688             (!TD_TOKS_HELD(ntd) || lwkt_getalltokens(ntd, &lmsg, &laddr))
689         ) {
690 #ifdef SMP
691             clr_cpu_contention_mask(gd);
692 #endif
693             goto havethread;
694         }
695
696         lmsg = NULL;
697         laddr = NULL;
698
699 #ifdef SMP
700         if (ntd->td_fairq_accum >= 0)
701                 set_cpu_contention_mask(gd);
702         /* Reload mpheld (it become stale after mplock/token ops) */
703         mpheld = MP_LOCK_HELD(gd);
704         if (ntd->td_mpcount && mpheld == 0) {
705             lmsg = "mplock";
706             laddr = ntd->td_mplock_stallpc;
707         }
708 #endif
709
710         /*
711          * Coldpath - unable to schedule ntd, continue looking for threads
712          * to schedule.  This is only allowed of the (presumably) kernel
713          * thread exhausted its fair share.  A kernel thread stuck on
714          * resources does not currently allow a user thread to get in
715          * front of it.
716          */
717 #ifdef SMP
718         nquserok = ((ntd->td_pri < TDPRI_KERN_LPSCHED) ||
719                     (ntd->td_fairq_accum < 0));
720 #else
721         nquserok = 1;
722 #endif
723         nlast = NULL;
724
725         for (;;) {
726             /*
727              * If the fair-share scheduler ran out ntd gets moved to the
728              * end and its accumulator will be bumped, if it didn't we
729              * maintain the same queue position.
730              *
731              * nlast keeps track of the last element prior to any moves.
732              */
733             if (ntd->td_fairq_accum < 0) {
734                 lwkt_fairq_accumulate(gd, ntd);
735                 didaccumulate = 1;
736
737                 /*
738                  * Move to end
739                  */
740                 xtd = TAILQ_NEXT(ntd, td_threadq);
741                 TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
742                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq, ntd, td_threadq);
743
744                 /*
745                  * Set terminal element (nlast)
746                  */
747                 if (nlast == NULL) {
748                     nlast = ntd;
749                     if (xtd == NULL)
750                         xtd = ntd;
751                 }
752                 ntd = xtd;
753             } else {
754                 ntd = TAILQ_NEXT(ntd, td_threadq);
755             }
756
757             /*
758              * If we exhausted the run list switch to the idle thread.
759              * Since one or more threads had resource acquisition issues
760              * we do not allow the idle thread to halt.
761              *
762              * NOTE: nlast can be NULL.
763              */
764             if (ntd == nlast) {
765                 cpu_pause();
766                 ntd = &gd->gd_idlethread;
767                 ntd->td_flags |= TDF_IDLE_NOHLT;
768 #ifdef SMP
769                 if (ntd->td_mpcount) {
770                     mpheld = MP_LOCK_HELD(gd);
771                     if (gd->gd_trap_nesting_level == 0 && panicstr == NULL)
772                         panic("Idle thread %p was holding the BGL!", ntd);
773                     if (mpheld == 0) {
774                         set_cpu_contention_mask(gd);
775                         handle_cpu_contention_mask();
776                         cpu_try_mplock();
777                         mpheld = MP_LOCK_HELD(gd);
778                         cpu_pause();
779                         break;          /* try again from the top, almost */
780                     }
781                 }
782 #endif
783
784                 /*
785                  * If fairq accumulations occured we do not schedule the
786                  * idle thread.  This will cause us to try again from
787                  * the (almost) top.
788                  */
789                 if (didaccumulate)
790                         break;          /* try again from the top, almost */
791                 if (lmsg)
792                     strlcpy(cpu_time.cp_msg, lmsg, sizeof(cpu_time.cp_msg));
793                 cpu_time.cp_stallpc = (uintptr_t)laddr;
794                 goto haveidle;
795             }
796
797             /*
798              * Try to switch to this thread.
799              *
800              * NOTE: For UP there is no mplock and lwkt_getalltokens()
801              *       always succeeds.
802              */
803             if ((ntd->td_pri >= TDPRI_KERN_LPSCHED || nquserok ||
804                 user_pri_sched) && ntd->td_fairq_accum >= 0 &&
805 #ifdef SMP
806                 (ntd->td_mpcount == 0 || mpheld || cpu_try_mplock()) &&
807 #endif
808                 (!TD_TOKS_HELD(ntd) || lwkt_getalltokens(ntd, &lmsg, &laddr))
809             ) {
810 #ifdef SMP
811                     clr_cpu_contention_mask(gd);
812 #endif
813                     goto havethread;
814             }
815 #ifdef SMP
816             if (ntd->td_fairq_accum >= 0)
817                     set_cpu_contention_mask(gd);
818             /*
819              * Reload mpheld (it become stale after mplock/token ops).
820              */
821             mpheld = MP_LOCK_HELD(gd);
822             if (ntd->td_mpcount && mpheld == 0) {
823                 lmsg = "mplock";
824                 laddr = ntd->td_mplock_stallpc;
825             }
826             if (ntd->td_pri >= TDPRI_KERN_LPSCHED && ntd->td_fairq_accum >= 0)
827                 nquserok = 0;
828 #endif
829         }
830
831         /*
832          * All threads exhausted but we can loop due to a negative
833          * accumulator.
834          *
835          * While we are looping in the scheduler be sure to service
836          * any interrupts which were made pending due to our critical
837          * section, otherwise we could livelock (e.g.) IPIs.
838          *
839          * NOTE: splz can enter and exit the mplock so mpheld is
840          * stale after this call.
841          */
842         splz_check();
843
844 #ifdef SMP
845         /*
846          * Our mplock can be cached and cause other cpus to livelock
847          * if we loop due to e.g. not being able to acquire tokens.
848          */
849         if (MP_LOCK_HELD(gd))
850             cpu_rel_mplock(gd->gd_cpuid);
851         mpheld = 0;
852 #endif
853     }
854
855     /*
856      * Do the actual switch.  WARNING: mpheld is stale here.
857      *
858      * We must always decrement td_fairq_accum on non-idle threads just
859      * in case a thread never gets a tick due to being in a continuous
860      * critical section.  The page-zeroing code does that.
861      *
862      * If the thread we came up with is a higher or equal priority verses
863      * the thread at the head of the queue we move our thread to the
864      * front.  This way we can always check the front of the queue.
865      */
866 havethread:
867     ++gd->gd_cnt.v_swtch;
868     --ntd->td_fairq_accum;
869     xtd = TAILQ_FIRST(&gd->gd_tdrunq);
870     if (ntd != xtd && ntd->td_pri >= xtd->td_pri) {
871         TAILQ_REMOVE(&gd->gd_tdrunq, ntd, td_threadq);
872         TAILQ_INSERT_HEAD(&gd->gd_tdrunq, ntd, td_threadq);
873     }
874 havethread_preempted:
875     ;
876     /*
877      * If the new target does not need the MP lock and we are holding it,
878      * release the MP lock.  If the new target requires the MP lock we have
879      * already acquired it for the target.
880      *
881      * WARNING: mpheld is stale here.
882      */
883 haveidle:
884     KASSERT(ntd->td_critcount,
885             ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
886 #ifdef SMP
887     if (ntd->td_mpcount == 0 ) {
888         if (MP_LOCK_HELD(gd))
889             cpu_rel_mplock(gd->gd_cpuid);
890     } else {
891         ASSERT_MP_LOCK_HELD(ntd);
892     }
893 #endif
894     if (td != ntd) {
895         ++switch_count;
896 #ifdef __x86_64__
897         {
898             int tos_ok __debugvar = jg_tos_ok(ntd);
899             KKASSERT(tos_ok);
900         }
901 #endif
902         KTR_LOG(ctxsw_sw, gd->gd_cpuid, ntd);
903         td->td_switch(ntd);
904     }
905     /* NOTE: current cpu may have changed after switch */
906     crit_exit_quick(td);
907 }
908
909 /*
910  * Request that the target thread preempt the current thread.  Preemption
911  * only works under a specific set of conditions:
912  *
913  *      - We are not preempting ourselves
914  *      - The target thread is owned by the current cpu
915  *      - We are not currently being preempted
916  *      - The target is not currently being preempted
917  *      - We are not holding any spin locks
918  *      - The target thread is not holding any tokens
919  *      - We are able to satisfy the target's MP lock requirements (if any).
920  *
921  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
922  * this is called via lwkt_schedule() through the td_preemptable callback.
923  * critcount is the managed critical priority that we should ignore in order
924  * to determine whether preemption is possible (aka usually just the crit
925  * priority of lwkt_schedule() itself).
926  *
927  * XXX at the moment we run the target thread in a critical section during
928  * the preemption in order to prevent the target from taking interrupts
929  * that *WE* can't.  Preemption is strictly limited to interrupt threads
930  * and interrupt-like threads, outside of a critical section, and the
931  * preempted source thread will be resumed the instant the target blocks
932  * whether or not the source is scheduled (i.e. preemption is supposed to
933  * be as transparent as possible).
934  *
935  * The target thread inherits our MP count (added to its own) for the
936  * duration of the preemption in order to preserve the atomicy of the
937  * MP lock during the preemption.  Therefore, any preempting targets must be
938  * careful in regards to MP assertions.  Note that the MP count may be
939  * out of sync with the physical mp_lock, but we do not have to preserve
940  * the original ownership of the lock if it was out of synch (that is, we
941  * can leave it synchronized on return).
942  */
943 void
944 lwkt_preempt(thread_t ntd, int critcount)
945 {
946     struct globaldata *gd = mycpu;
947     thread_t td;
948 #ifdef SMP
949     int mpheld;
950     int savecnt;
951 #endif
952
953     /*
954      * The caller has put us in a critical section.  We can only preempt
955      * if the caller of the caller was not in a critical section (basically
956      * a local interrupt), as determined by the 'critcount' parameter.  We
957      * also can't preempt if the caller is holding any spinlocks (even if
958      * he isn't in a critical section).  This also handles the tokens test.
959      *
960      * YYY The target thread must be in a critical section (else it must
961      * inherit our critical section?  I dunno yet).
962      *
963      * Set need_lwkt_resched() unconditionally for now YYY.
964      */
965     KASSERT(ntd->td_critcount, ("BADCRIT0 %d", ntd->td_pri));
966
967     td = gd->gd_curthread;
968     if (ntd->td_pri <= td->td_pri) {
969         ++preempt_miss;
970         return;
971     }
972     if (td->td_critcount > critcount) {
973         ++preempt_miss;
974         need_lwkt_resched();
975         return;
976     }
977 #ifdef SMP
978     if (ntd->td_gd != gd) {
979         ++preempt_miss;
980         need_lwkt_resched();
981         return;
982     }
983 #endif
984     /*
985      * We don't have to check spinlocks here as they will also bump
986      * td_critcount.
987      *
988      * Do not try to preempt if the target thread is holding any tokens.
989      * We could try to acquire the tokens but this case is so rare there
990      * is no need to support it.
991      */
992     KKASSERT(gd->gd_spinlock_rd == NULL);
993     KKASSERT(gd->gd_spinlocks_wr == 0);
994
995     if (TD_TOKS_HELD(ntd)) {
996         ++preempt_miss;
997         need_lwkt_resched();
998         return;
999     }
1000     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
1001         ++preempt_weird;
1002         need_lwkt_resched();
1003         return;
1004     }
1005     if (ntd->td_preempted) {
1006         ++preempt_hit;
1007         need_lwkt_resched();
1008         return;
1009     }
1010 #ifdef SMP
1011     /*
1012      * note: an interrupt might have occured just as we were transitioning
1013      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
1014      * (non-zero) but not actually synchronized with the actual state of the
1015      * lock.  We can use it to imply an MP lock requirement for the
1016      * preemption but we cannot use it to test whether we hold the MP lock
1017      * or not.
1018      */
1019     savecnt = td->td_mpcount;
1020     mpheld = MP_LOCK_HELD(gd);
1021     ntd->td_mpcount += td->td_mpcount;
1022     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
1023         ntd->td_mpcount -= td->td_mpcount;
1024         ++preempt_miss;
1025         need_lwkt_resched();
1026         return;
1027     }
1028 #endif
1029
1030     /*
1031      * Since we are able to preempt the current thread, there is no need to
1032      * call need_lwkt_resched().
1033      */
1034     ++preempt_hit;
1035     ntd->td_preempted = td;
1036     td->td_flags |= TDF_PREEMPT_LOCK;
1037     KTR_LOG(ctxsw_pre, gd->gd_cpuid, ntd);
1038     td->td_switch(ntd);
1039
1040     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
1041 #ifdef SMP
1042     KKASSERT(savecnt == td->td_mpcount);
1043     mpheld = MP_LOCK_HELD(gd);
1044     if (mpheld && td->td_mpcount == 0)
1045         cpu_rel_mplock(gd->gd_cpuid);
1046     else if (mpheld == 0 && td->td_mpcount)
1047         panic("lwkt_preempt(): MP lock was not held through");
1048 #endif
1049     ntd->td_preempted = NULL;
1050     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
1051 }
1052
1053 /*
1054  * Conditionally call splz() if gd_reqflags indicates work is pending.
1055  * This will work inside a critical section but not inside a hard code
1056  * section.
1057  *
1058  * (self contained on a per cpu basis)
1059  */
1060 void
1061 splz_check(void)
1062 {
1063     globaldata_t gd = mycpu;
1064     thread_t td = gd->gd_curthread;
1065
1066     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) &&
1067         gd->gd_intr_nesting_level == 0 &&
1068         td->td_nest_count < 2)
1069     {
1070         splz();
1071     }
1072 }
1073
1074 /*
1075  * This version is integrated into crit_exit, reqflags has already
1076  * been tested but td_critcount has not.
1077  *
1078  * We only want to execute the splz() on the 1->0 transition of
1079  * critcount and not in a hard code section or if too deeply nested.
1080  */
1081 void
1082 lwkt_maybe_splz(thread_t td)
1083 {
1084     globaldata_t gd = td->td_gd;
1085
1086     if (td->td_critcount == 0 &&
1087         gd->gd_intr_nesting_level == 0 &&
1088         td->td_nest_count < 2)
1089     {
1090         splz();
1091     }
1092 }
1093
1094 /*
1095  * This function is used to negotiate a passive release of the current
1096  * process/lwp designation with the user scheduler, allowing the user
1097  * scheduler to schedule another user thread.  The related kernel thread
1098  * (curthread) continues running in the released state.
1099  */
1100 void
1101 lwkt_passive_release(struct thread *td)
1102 {
1103     struct lwp *lp = td->td_lwp;
1104
1105     td->td_release = NULL;
1106     lwkt_setpri_self(TDPRI_KERN_USER);
1107     lp->lwp_proc->p_usched->release_curproc(lp);
1108 }
1109
1110
1111 /*
1112  * This implements a normal yield.  This routine is virtually a nop if
1113  * there is nothing to yield to but it will always run any pending interrupts
1114  * if called from a critical section.
1115  *
1116  * This yield is designed for kernel threads without a user context.
1117  *
1118  * (self contained on a per cpu basis)
1119  */
1120 void
1121 lwkt_yield(void)
1122 {
1123     globaldata_t gd = mycpu;
1124     thread_t td = gd->gd_curthread;
1125     thread_t xtd;
1126
1127     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1128         splz();
1129     if (td->td_fairq_accum < 0) {
1130         lwkt_schedule_self(curthread);
1131         lwkt_switch();
1132     } else {
1133         xtd = TAILQ_FIRST(&gd->gd_tdrunq);
1134         if (xtd && xtd->td_pri > td->td_pri) {
1135             lwkt_schedule_self(curthread);
1136             lwkt_switch();
1137         }
1138     }
1139 }
1140
1141 /*
1142  * This yield is designed for kernel threads with a user context.
1143  *
1144  * The kernel acting on behalf of the user is potentially cpu-bound,
1145  * this function will efficiently allow other threads to run and also
1146  * switch to other processes by releasing.
1147  *
1148  * The lwkt_user_yield() function is designed to have very low overhead
1149  * if no yield is determined to be needed.
1150  */
1151 void
1152 lwkt_user_yield(void)
1153 {
1154     globaldata_t gd = mycpu;
1155     thread_t td = gd->gd_curthread;
1156
1157     /*
1158      * Always run any pending interrupts in case we are in a critical
1159      * section.
1160      */
1161     if ((gd->gd_reqflags & RQF_IDLECHECK_MASK) && td->td_nest_count < 2)
1162         splz();
1163
1164 #ifdef SMP
1165     /*
1166      * XXX SEVERE TEMPORARY HACK.  A cpu-bound operation running in the
1167      * kernel can prevent other cpus from servicing interrupt threads
1168      * which still require the MP lock (which is a lot of them).  This
1169      * has a chaining effect since if the interrupt is blocked, so is
1170      * the event, so normal scheduling will not pick up on the problem.
1171      */
1172     if (cpu_contention_mask && td->td_mpcount) {
1173         yield_mplock(td);
1174     }
1175 #endif
1176
1177     /*
1178      * Switch (which forces a release) if another kernel thread needs
1179      * the cpu, if userland wants us to resched, or if our kernel
1180      * quantum has run out.
1181      */
1182     if (lwkt_resched_wanted() ||
1183         user_resched_wanted() ||
1184         td->td_fairq_accum < 0)
1185     {
1186         lwkt_switch();
1187     }
1188
1189 #if 0
1190     /*
1191      * Reacquire the current process if we are released.
1192      *
1193      * XXX not implemented atm.  The kernel may be holding locks and such,
1194      *     so we want the thread to continue to receive cpu.
1195      */
1196     if (td->td_release == NULL && lp) {
1197         lp->lwp_proc->p_usched->acquire_curproc(lp);
1198         td->td_release = lwkt_passive_release;
1199         lwkt_setpri_self(TDPRI_USER_NORM);
1200     }
1201 #endif
1202 }
1203
1204 /*
1205  * Generic schedule.  Possibly schedule threads belonging to other cpus and
1206  * deal with threads that might be blocked on a wait queue.
1207  *
1208  * We have a little helper inline function which does additional work after
1209  * the thread has been enqueued, including dealing with preemption and
1210  * setting need_lwkt_resched() (which prevents the kernel from returning
1211  * to userland until it has processed higher priority threads).
1212  *
1213  * It is possible for this routine to be called after a failed _enqueue
1214  * (due to the target thread migrating, sleeping, or otherwise blocked).
1215  * We have to check that the thread is actually on the run queue!
1216  *
1217  * reschedok is an optimized constant propagated from lwkt_schedule() or
1218  * lwkt_schedule_noresched().  By default it is non-zero, causing a
1219  * reschedule to be requested if the target thread has a higher priority.
1220  * The port messaging code will set MSG_NORESCHED and cause reschedok to
1221  * be 0, prevented undesired reschedules.
1222  */
1223 static __inline
1224 void
1225 _lwkt_schedule_post(globaldata_t gd, thread_t ntd, int ccount, int reschedok)
1226 {
1227     thread_t otd;
1228
1229     if (ntd->td_flags & TDF_RUNQ) {
1230         if (ntd->td_preemptable && reschedok) {
1231             ntd->td_preemptable(ntd, ccount);   /* YYY +token */
1232         } else if (reschedok) {
1233             otd = curthread;
1234             if (ntd->td_pri > otd->td_pri)
1235                 need_lwkt_resched();
1236         }
1237
1238         /*
1239          * Give the thread a little fair share scheduler bump if it
1240          * has been asleep for a while.  This is primarily to avoid
1241          * a degenerate case for interrupt threads where accumulator
1242          * crosses into negative territory unnecessarily.
1243          */
1244         if (ntd->td_fairq_lticks != ticks) {
1245             ntd->td_fairq_lticks = ticks;
1246             ntd->td_fairq_accum += gd->gd_fairq_total_pri;
1247             if (ntd->td_fairq_accum > TDFAIRQ_MAX(gd))
1248                     ntd->td_fairq_accum = TDFAIRQ_MAX(gd);
1249         }
1250     }
1251 }
1252
1253 static __inline
1254 void
1255 _lwkt_schedule(thread_t td, int reschedok)
1256 {
1257     globaldata_t mygd = mycpu;
1258
1259     KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1260     crit_enter_gd(mygd);
1261     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1262     if (td == mygd->gd_curthread) {
1263         _lwkt_enqueue(td);
1264     } else {
1265         /*
1266          * If we own the thread, there is no race (since we are in a
1267          * critical section).  If we do not own the thread there might
1268          * be a race but the target cpu will deal with it.
1269          */
1270 #ifdef SMP
1271         if (td->td_gd == mygd) {
1272             _lwkt_enqueue(td);
1273             _lwkt_schedule_post(mygd, td, 1, reschedok);
1274         } else {
1275             lwkt_send_ipiq3(td->td_gd, lwkt_schedule_remote, td, 0);
1276         }
1277 #else
1278         _lwkt_enqueue(td);
1279         _lwkt_schedule_post(mygd, td, 1, reschedok);
1280 #endif
1281     }
1282     crit_exit_gd(mygd);
1283 }
1284
1285 void
1286 lwkt_schedule(thread_t td)
1287 {
1288     _lwkt_schedule(td, 1);
1289 }
1290
1291 void
1292 lwkt_schedule_noresched(thread_t td)
1293 {
1294     _lwkt_schedule(td, 0);
1295 }
1296
1297 #ifdef SMP
1298
1299 /*
1300  * When scheduled remotely if frame != NULL the IPIQ is being
1301  * run via doreti or an interrupt then preemption can be allowed.
1302  *
1303  * To allow preemption we have to drop the critical section so only
1304  * one is present in _lwkt_schedule_post.
1305  */
1306 static void
1307 lwkt_schedule_remote(void *arg, int arg2, struct intrframe *frame)
1308 {
1309     thread_t td = curthread;
1310     thread_t ntd = arg;
1311
1312     if (frame && ntd->td_preemptable) {
1313         crit_exit_noyield(td);
1314         _lwkt_schedule(ntd, 1);
1315         crit_enter_quick(td);
1316     } else {
1317         _lwkt_schedule(ntd, 1);
1318     }
1319 }
1320
1321 /*
1322  * Thread migration using a 'Pull' method.  The thread may or may not be
1323  * the current thread.  It MUST be descheduled and in a stable state.
1324  * lwkt_giveaway() must be called on the cpu owning the thread.
1325  *
1326  * At any point after lwkt_giveaway() is called, the target cpu may
1327  * 'pull' the thread by calling lwkt_acquire().
1328  *
1329  * We have to make sure the thread is not sitting on a per-cpu tsleep
1330  * queue or it will blow up when it moves to another cpu.
1331  *
1332  * MPSAFE - must be called under very specific conditions.
1333  */
1334 void
1335 lwkt_giveaway(thread_t td)
1336 {
1337     globaldata_t gd = mycpu;
1338
1339     crit_enter_gd(gd);
1340     if (td->td_flags & TDF_TSLEEPQ)
1341         tsleep_remove(td);
1342     KKASSERT(td->td_gd == gd);
1343     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1344     td->td_flags |= TDF_MIGRATING;
1345     crit_exit_gd(gd);
1346 }
1347
1348 void
1349 lwkt_acquire(thread_t td)
1350 {
1351     globaldata_t gd;
1352     globaldata_t mygd;
1353
1354     KKASSERT(td->td_flags & TDF_MIGRATING);
1355     gd = td->td_gd;
1356     mygd = mycpu;
1357     if (gd != mycpu) {
1358         cpu_lfence();
1359         KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1360         crit_enter_gd(mygd);
1361         while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1362 #ifdef SMP
1363             lwkt_process_ipiq();
1364 #endif
1365             cpu_lfence();
1366         }
1367         td->td_gd = mygd;
1368         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1369         td->td_flags &= ~TDF_MIGRATING;
1370         crit_exit_gd(mygd);
1371     } else {
1372         crit_enter_gd(mygd);
1373         TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1374         td->td_flags &= ~TDF_MIGRATING;
1375         crit_exit_gd(mygd);
1376     }
1377 }
1378
1379 #endif
1380
1381 /*
1382  * Generic deschedule.  Descheduling threads other then your own should be
1383  * done only in carefully controlled circumstances.  Descheduling is 
1384  * asynchronous.  
1385  *
1386  * This function may block if the cpu has run out of messages.
1387  */
1388 void
1389 lwkt_deschedule(thread_t td)
1390 {
1391     crit_enter();
1392 #ifdef SMP
1393     if (td == curthread) {
1394         _lwkt_dequeue(td);
1395     } else {
1396         if (td->td_gd == mycpu) {
1397             _lwkt_dequeue(td);
1398         } else {
1399             lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1400         }
1401     }
1402 #else
1403     _lwkt_dequeue(td);
1404 #endif
1405     crit_exit();
1406 }
1407
1408 /*
1409  * Set the target thread's priority.  This routine does not automatically
1410  * switch to a higher priority thread, LWKT threads are not designed for
1411  * continuous priority changes.  Yield if you want to switch.
1412  */
1413 void
1414 lwkt_setpri(thread_t td, int pri)
1415 {
1416     KKASSERT(td->td_gd == mycpu);
1417     if (td->td_pri != pri) {
1418         KKASSERT(pri >= 0);
1419         crit_enter();
1420         if (td->td_flags & TDF_RUNQ) {
1421             _lwkt_dequeue(td);
1422             td->td_pri = pri;
1423             _lwkt_enqueue(td);
1424         } else {
1425             td->td_pri = pri;
1426         }
1427         crit_exit();
1428     }
1429 }
1430
1431 /*
1432  * Set the initial priority for a thread prior to it being scheduled for
1433  * the first time.  The thread MUST NOT be scheduled before or during
1434  * this call.  The thread may be assigned to a cpu other then the current
1435  * cpu.
1436  *
1437  * Typically used after a thread has been created with TDF_STOPPREQ,
1438  * and before the thread is initially scheduled.
1439  */
1440 void
1441 lwkt_setpri_initial(thread_t td, int pri)
1442 {
1443     KKASSERT(pri >= 0);
1444     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1445     td->td_pri = pri;
1446 }
1447
1448 void
1449 lwkt_setpri_self(int pri)
1450 {
1451     thread_t td = curthread;
1452
1453     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1454     crit_enter();
1455     if (td->td_flags & TDF_RUNQ) {
1456         _lwkt_dequeue(td);
1457         td->td_pri = pri;
1458         _lwkt_enqueue(td);
1459     } else {
1460         td->td_pri = pri;
1461     }
1462     crit_exit();
1463 }
1464
1465 /*
1466  * 1/hz tick (typically 10ms) x TDFAIRQ_SCALE (typ 8) = 80ms full cycle.
1467  *
1468  * Example: two competing threads, same priority N.  decrement by (2*N)
1469  * increment by N*8, each thread will get 4 ticks.
1470  */
1471 void
1472 lwkt_fairq_schedulerclock(thread_t td)
1473 {
1474     if (fairq_enable) {
1475         while (td) {
1476             if (td != &td->td_gd->gd_idlethread) {
1477                 td->td_fairq_accum -= td->td_gd->gd_fairq_total_pri;
1478                 if (td->td_fairq_accum < -TDFAIRQ_MAX(td->td_gd))
1479                         td->td_fairq_accum = -TDFAIRQ_MAX(td->td_gd);
1480                 if (td->td_fairq_accum < 0)
1481                         need_lwkt_resched();
1482                 td->td_fairq_lticks = ticks;
1483             }
1484             td = td->td_preempted;
1485         }
1486     }
1487 }
1488
1489 static void
1490 lwkt_fairq_accumulate(globaldata_t gd, thread_t td)
1491 {
1492         td->td_fairq_accum += td->td_pri * TDFAIRQ_SCALE;
1493         if (td->td_fairq_accum > TDFAIRQ_MAX(td->td_gd))
1494                 td->td_fairq_accum = TDFAIRQ_MAX(td->td_gd);
1495 }
1496
1497 /*
1498  * Migrate the current thread to the specified cpu. 
1499  *
1500  * This is accomplished by descheduling ourselves from the current cpu,
1501  * moving our thread to the tdallq of the target cpu, IPI messaging the
1502  * target cpu, and switching out.  TDF_MIGRATING prevents scheduling
1503  * races while the thread is being migrated.
1504  *
1505  * We must be sure to remove ourselves from the current cpu's tsleepq
1506  * before potentially moving to another queue.  The thread can be on
1507  * a tsleepq due to a left-over tsleep_interlock().
1508  */
1509 #ifdef SMP
1510 static void lwkt_setcpu_remote(void *arg);
1511 #endif
1512
1513 void
1514 lwkt_setcpu_self(globaldata_t rgd)
1515 {
1516 #ifdef SMP
1517     thread_t td = curthread;
1518
1519     if (td->td_gd != rgd) {
1520         crit_enter_quick(td);
1521         if (td->td_flags & TDF_TSLEEPQ)
1522             tsleep_remove(td);
1523         td->td_flags |= TDF_MIGRATING;
1524         lwkt_deschedule_self(td);
1525         TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1526         lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1527         lwkt_switch();
1528         /* we are now on the target cpu */
1529         TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1530         crit_exit_quick(td);
1531     }
1532 #endif
1533 }
1534
1535 void
1536 lwkt_migratecpu(int cpuid)
1537 {
1538 #ifdef SMP
1539         globaldata_t rgd;
1540
1541         rgd = globaldata_find(cpuid);
1542         lwkt_setcpu_self(rgd);
1543 #endif
1544 }
1545
1546 /*
1547  * Remote IPI for cpu migration (called while in a critical section so we
1548  * do not have to enter another one).  The thread has already been moved to
1549  * our cpu's allq, but we must wait for the thread to be completely switched
1550  * out on the originating cpu before we schedule it on ours or the stack
1551  * state may be corrupt.  We clear TDF_MIGRATING after flushing the GD
1552  * change to main memory.
1553  *
1554  * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1555  * against wakeups.  It is best if this interface is used only when there
1556  * are no pending events that might try to schedule the thread.
1557  */
1558 #ifdef SMP
1559 static void
1560 lwkt_setcpu_remote(void *arg)
1561 {
1562     thread_t td = arg;
1563     globaldata_t gd = mycpu;
1564
1565     while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1566 #ifdef SMP
1567         lwkt_process_ipiq();
1568 #endif
1569         cpu_lfence();
1570     }
1571     td->td_gd = gd;
1572     cpu_sfence();
1573     td->td_flags &= ~TDF_MIGRATING;
1574     KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1575     _lwkt_enqueue(td);
1576 }
1577 #endif
1578
1579 struct lwp *
1580 lwkt_preempted_proc(void)
1581 {
1582     thread_t td = curthread;
1583     while (td->td_preempted)
1584         td = td->td_preempted;
1585     return(td->td_lwp);
1586 }
1587
1588 /*
1589  * Create a kernel process/thread/whatever.  It shares it's address space
1590  * with proc0 - ie: kernel only.
1591  *
1592  * NOTE!  By default new threads are created with the MP lock held.  A 
1593  * thread which does not require the MP lock should release it by calling
1594  * rel_mplock() at the start of the new thread.
1595  */
1596 int
1597 lwkt_create(void (*func)(void *), void *arg, struct thread **tdp,
1598             thread_t template, int tdflags, int cpu, const char *fmt, ...)
1599 {
1600     thread_t td;
1601     __va_list ap;
1602
1603     td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1604                            tdflags);
1605     if (tdp)
1606         *tdp = td;
1607     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1608
1609     /*
1610      * Set up arg0 for 'ps' etc
1611      */
1612     __va_start(ap, fmt);
1613     kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1614     __va_end(ap);
1615
1616     /*
1617      * Schedule the thread to run
1618      */
1619     if ((td->td_flags & TDF_STOPREQ) == 0)
1620         lwkt_schedule(td);
1621     else
1622         td->td_flags &= ~TDF_STOPREQ;
1623     return 0;
1624 }
1625
1626 /*
1627  * Destroy an LWKT thread.   Warning!  This function is not called when
1628  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1629  * uses a different reaping mechanism.
1630  */
1631 void
1632 lwkt_exit(void)
1633 {
1634     thread_t td = curthread;
1635     thread_t std;
1636     globaldata_t gd;
1637
1638     if (td->td_flags & TDF_VERBOSE)
1639         kprintf("kthread %p %s has exited\n", td, td->td_comm);
1640     caps_exit(td);
1641
1642     /*
1643      * Get us into a critical section to interlock gd_freetd and loop
1644      * until we can get it freed.
1645      *
1646      * We have to cache the current td in gd_freetd because objcache_put()ing
1647      * it would rip it out from under us while our thread is still active.
1648      */
1649     gd = mycpu;
1650     crit_enter_quick(td);
1651     while ((std = gd->gd_freetd) != NULL) {
1652         gd->gd_freetd = NULL;
1653         objcache_put(thread_cache, std);
1654     }
1655
1656     /*
1657      * Remove thread resources from kernel lists and deschedule us for
1658      * the last time.
1659      */
1660     if (td->td_flags & TDF_TSLEEPQ)
1661         tsleep_remove(td);
1662     biosched_done(td);
1663     dsched_exit_thread(td);
1664     lwkt_deschedule_self(td);
1665     lwkt_remove_tdallq(td);
1666     if (td->td_flags & TDF_ALLOCATED_THREAD)
1667         gd->gd_freetd = td;
1668     cpu_thread_exit();
1669 }
1670
1671 void
1672 lwkt_remove_tdallq(thread_t td)
1673 {
1674     KKASSERT(td->td_gd == mycpu);
1675     TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1676 }
1677
1678 /*
1679  * Code reduction and branch prediction improvements.  Call/return
1680  * overhead on modern cpus often degenerates into 0 cycles due to
1681  * the cpu's branch prediction hardware and return pc cache.  We
1682  * can take advantage of this by not inlining medium-complexity
1683  * functions and we can also reduce the branch prediction impact
1684  * by collapsing perfectly predictable branches into a single
1685  * procedure instead of duplicating it.
1686  *
1687  * Is any of this noticeable?  Probably not, so I'll take the
1688  * smaller code size.
1689  */
1690 void
1691 crit_exit_wrapper(__DEBUG_CRIT_ARG__)
1692 {
1693     _crit_exit(mycpu __DEBUG_CRIT_PASS_ARG__);
1694 }
1695
1696 void
1697 crit_panic(void)
1698 {
1699     thread_t td = curthread;
1700     int lcrit = td->td_critcount;
1701
1702     td->td_critcount = 0;
1703     panic("td_critcount is/would-go negative! %p %d", td, lcrit);
1704     /* NOT REACHED */
1705 }
1706
1707 #ifdef SMP
1708
1709 /*
1710  * Called from debugger/panic on cpus which have been stopped.  We must still
1711  * process the IPIQ while stopped, even if we were stopped while in a critical
1712  * section (XXX).
1713  *
1714  * If we are dumping also try to process any pending interrupts.  This may
1715  * or may not work depending on the state of the cpu at the point it was
1716  * stopped.
1717  */
1718 void
1719 lwkt_smp_stopped(void)
1720 {
1721     globaldata_t gd = mycpu;
1722
1723     crit_enter_gd(gd);
1724     if (dumping) {
1725         lwkt_process_ipiq();
1726         splz();
1727     } else {
1728         lwkt_process_ipiq();
1729     }
1730     crit_exit_gd(gd);
1731 }
1732
1733 #endif