HAMMER 59A/Many: Mirroring related work (and one bug fix).
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.85 2008/06/26 04:06:23 dillon Exp $
35  */
36
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
41
42 static int      hammer_unload_inode(struct hammer_inode *ip);
43 static void     hammer_flush_inode_core(hammer_inode_t ip, int flags);
44 static int      hammer_setup_child_callback(hammer_record_t rec, void *data);
45 static int      hammer_setup_parent_inodes(hammer_inode_t ip);
46 static int      hammer_setup_parent_inodes_helper(hammer_record_t record);
47 static void     hammer_inode_wakereclaims(hammer_inode_t ip);
48
49 #ifdef DEBUG_TRUNCATE
50 extern struct hammer_inode *HammerTruncIp;
51 #endif
52
53 /*
54  * Red-Black tree support for inode structures.
55  *
56  * Insertions
57  */
58 int
59 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
60 {
61         if (ip1->obj_localization < ip2->obj_localization)
62                 return(-1);
63         if (ip1->obj_localization > ip2->obj_localization)
64                 return(1);
65         if (ip1->obj_id < ip2->obj_id)
66                 return(-1);
67         if (ip1->obj_id > ip2->obj_id)
68                 return(1);
69         if (ip1->obj_asof < ip2->obj_asof)
70                 return(-1);
71         if (ip1->obj_asof > ip2->obj_asof)
72                 return(1);
73         return(0);
74 }
75
76 /*
77  * LOOKUP_INFO
78  */
79 static int
80 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
81 {
82         if (info->obj_localization < ip->obj_localization)
83                 return(-1);
84         if (info->obj_localization > ip->obj_localization)
85                 return(1);
86         if (info->obj_id < ip->obj_id)
87                 return(-1);
88         if (info->obj_id > ip->obj_id)
89                 return(1);
90         if (info->obj_asof < ip->obj_asof)
91                 return(-1);
92         if (info->obj_asof > ip->obj_asof)
93                 return(1);
94         return(0);
95 }
96
97 /*
98  * Used by hammer_scan_inode_snapshots() to locate all of an object's
99  * snapshots.  Note that the asof field is not tested, which we can get
100  * away with because it is the lowest-priority field.
101  */
102 static int
103 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
104 {
105         hammer_inode_info_t info = data;
106
107         if (ip->obj_localization > info->obj_localization)
108                 return(1);
109         if (ip->obj_localization < info->obj_localization)
110                 return(-1);
111         if (ip->obj_id > info->obj_id)
112                 return(1);
113         if (ip->obj_id < info->obj_id)
114                 return(-1);
115         return(0);
116 }
117
118 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
119 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
120                 hammer_inode_info_cmp, hammer_inode_info_t);
121
122 /*
123  * The kernel is not actively referencing this vnode but is still holding
124  * it cached.
125  *
126  * This is called from the frontend.
127  */
128 int
129 hammer_vop_inactive(struct vop_inactive_args *ap)
130 {
131         struct hammer_inode *ip = VTOI(ap->a_vp);
132
133         /*
134          * Degenerate case
135          */
136         if (ip == NULL) {
137                 vrecycle(ap->a_vp);
138                 return(0);
139         }
140
141         /*
142          * If the inode no longer has visibility in the filesystem try to
143          * recycle it immediately, even if the inode is dirty.  Recycling
144          * it quickly allows the system to reclaim buffer cache and VM
145          * resources which can matter a lot in a heavily loaded system.
146          *
147          * This can deadlock in vfsync() if we aren't careful.
148          * 
149          * Do not queue the inode to the flusher if we still have visibility,
150          * otherwise namespace calls such as chmod will unnecessarily generate
151          * multiple inode updates.
152          */
153         hammer_inode_unloadable_check(ip, 0);
154         if (ip->ino_data.nlinks == 0) {
155                 if (ip->flags & HAMMER_INODE_MODMASK)
156                         hammer_flush_inode(ip, 0);
157                 vrecycle(ap->a_vp);
158         }
159         return(0);
160 }
161
162 /*
163  * Release the vnode association.  This is typically (but not always)
164  * the last reference on the inode.
165  *
166  * Once the association is lost we are on our own with regards to
167  * flushing the inode.
168  */
169 int
170 hammer_vop_reclaim(struct vop_reclaim_args *ap)
171 {
172         struct hammer_inode *ip;
173         hammer_mount_t hmp;
174         struct vnode *vp;
175
176         vp = ap->a_vp;
177
178         if ((ip = vp->v_data) != NULL) {
179                 hmp = ip->hmp;
180                 vp->v_data = NULL;
181                 ip->vp = NULL;
182
183                 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
184                         ++hammer_count_reclaiming;
185                         ++hmp->inode_reclaims;
186                         ip->flags |= HAMMER_INODE_RECLAIM;
187                         if (hmp->inode_reclaims > HAMMER_RECLAIM_FLUSH &&
188                             (hmp->inode_reclaims & 255) == 0) {
189                                 hammer_flusher_async(hmp);
190                         }
191                 }
192                 hammer_rel_inode(ip, 1);
193         }
194         return(0);
195 }
196
197 /*
198  * Return a locked vnode for the specified inode.  The inode must be
199  * referenced but NOT LOCKED on entry and will remain referenced on
200  * return.
201  *
202  * Called from the frontend.
203  */
204 int
205 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
206 {
207         hammer_mount_t hmp;
208         struct vnode *vp;
209         int error = 0;
210
211         hmp = ip->hmp;
212
213         for (;;) {
214                 if ((vp = ip->vp) == NULL) {
215                         error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
216                         if (error)
217                                 break;
218                         hammer_lock_ex(&ip->lock);
219                         if (ip->vp != NULL) {
220                                 hammer_unlock(&ip->lock);
221                                 vp->v_type = VBAD;
222                                 vx_put(vp);
223                                 continue;
224                         }
225                         hammer_ref(&ip->lock);
226                         vp = *vpp;
227                         ip->vp = vp;
228                         vp->v_type =
229                                 hammer_get_vnode_type(ip->ino_data.obj_type);
230
231                         hammer_inode_wakereclaims(ip);
232
233                         switch(ip->ino_data.obj_type) {
234                         case HAMMER_OBJTYPE_CDEV:
235                         case HAMMER_OBJTYPE_BDEV:
236                                 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
237                                 addaliasu(vp, ip->ino_data.rmajor,
238                                           ip->ino_data.rminor);
239                                 break;
240                         case HAMMER_OBJTYPE_FIFO:
241                                 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
242                                 break;
243                         default:
244                                 break;
245                         }
246
247                         /*
248                          * Only mark as the root vnode if the ip is not
249                          * historical, otherwise the VFS cache will get
250                          * confused.  The other half of the special handling
251                          * is in hammer_vop_nlookupdotdot().
252                          *
253                          * Pseudo-filesystem roots also do not count.
254                          */
255                         if (ip->obj_id == HAMMER_OBJID_ROOT &&
256                             ip->obj_asof == hmp->asof &&
257                             ip->obj_localization == 0) {
258                                 vp->v_flag |= VROOT;
259                         }
260
261                         vp->v_data = (void *)ip;
262                         /* vnode locked by getnewvnode() */
263                         /* make related vnode dirty if inode dirty? */
264                         hammer_unlock(&ip->lock);
265                         if (vp->v_type == VREG)
266                                 vinitvmio(vp, ip->ino_data.size);
267                         break;
268                 }
269
270                 /*
271                  * loop if the vget fails (aka races), or if the vp
272                  * no longer matches ip->vp.
273                  */
274                 if (vget(vp, LK_EXCLUSIVE) == 0) {
275                         if (vp == ip->vp)
276                                 break;
277                         vput(vp);
278                 }
279         }
280         *vpp = vp;
281         return(error);
282 }
283
284 /*
285  * Locate all copies of the inode for obj_id compatible with the specified
286  * asof, reference, and issue the related call-back.  This routine is used
287  * for direct-io invalidation and does not create any new inodes.
288  */
289 void
290 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
291                             int (*callback)(hammer_inode_t ip, void *data),
292                             void *data)
293 {
294         hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
295                                    hammer_inode_info_cmp_all_history,
296                                    callback, iinfo);
297 }
298
299 /*
300  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
301  * do not attach or detach the related vnode (use hammer_get_vnode() for
302  * that).
303  *
304  * The flags argument is only applied for newly created inodes, and only
305  * certain flags are inherited.
306  *
307  * Called from the frontend.
308  */
309 struct hammer_inode *
310 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
311                  u_int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
312                  int flags, int *errorp)
313 {
314         hammer_mount_t hmp = trans->hmp;
315         struct hammer_inode_info iinfo;
316         struct hammer_cursor cursor;
317         struct hammer_inode *ip;
318
319         /*
320          * Determine if we already have an inode cached.  If we do then
321          * we are golden.
322          */
323         iinfo.obj_id = obj_id;
324         iinfo.obj_asof = asof;
325         iinfo.obj_localization = localization;
326 loop:
327         ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
328         if (ip) {
329                 hammer_ref(&ip->lock);
330                 *errorp = 0;
331                 return(ip);
332         }
333
334         /*
335          * Allocate a new inode structure and deal with races later.
336          */
337         ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
338         ++hammer_count_inodes;
339         ++hmp->count_inodes;
340         ip->obj_id = obj_id;
341         ip->obj_asof = iinfo.obj_asof;
342         ip->obj_localization = localization;
343         ip->hmp = hmp;
344         ip->flags = flags & HAMMER_INODE_RO;
345         ip->cache[0].ip = ip;
346         ip->cache[1].ip = ip;
347         if (hmp->ronly || (hmp->hflags & HMNT_SLAVE))
348                 ip->flags |= HAMMER_INODE_RO;
349         ip->sync_trunc_off = ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
350         RB_INIT(&ip->rec_tree);
351         TAILQ_INIT(&ip->target_list);
352
353         /*
354          * Locate the on-disk inode.
355          */
356 retry:
357         hammer_init_cursor(trans, &cursor, (dip ? &dip->cache[0] : NULL), NULL);
358         cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
359         cursor.key_beg.obj_id = ip->obj_id;
360         cursor.key_beg.key = 0;
361         cursor.key_beg.create_tid = 0;
362         cursor.key_beg.delete_tid = 0;
363         cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
364         cursor.key_beg.obj_type = 0;
365         cursor.asof = iinfo.obj_asof;
366         cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
367                        HAMMER_CURSOR_ASOF;
368
369         *errorp = hammer_btree_lookup(&cursor);
370         if (*errorp == EDEADLK) {
371                 hammer_done_cursor(&cursor);
372                 goto retry;
373         }
374
375         /*
376          * On success the B-Tree lookup will hold the appropriate
377          * buffer cache buffers and provide a pointer to the requested
378          * information.  Copy the information to the in-memory inode
379          * and cache the B-Tree node to improve future operations.
380          */
381         if (*errorp == 0) {
382                 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
383                 ip->ino_data = cursor.data->inode;
384
385                 /*
386                  * cache[0] tries to cache the location of the object inode.
387                  * The assumption is that it is near the directory inode.
388                  *
389                  * cache[1] tries to cache the location of the object data.
390                  * The assumption is that it is near the directory data.
391                  */
392                 hammer_cache_node(&ip->cache[0], cursor.node);
393                 if (dip && dip->cache[1].node)
394                         hammer_cache_node(&ip->cache[1], dip->cache[1].node);
395
396                 /*
397                  * The file should not contain any data past the file size
398                  * stored in the inode.  Setting sync_trunc_off to the
399                  * file size instead of max reduces B-Tree lookup overheads
400                  * on append by allowing the flusher to avoid checking for
401                  * record overwrites.
402                  */
403                 ip->sync_trunc_off = ip->ino_data.size;
404         }
405
406         /*
407          * The inode is placed on the red-black tree and will be synced to
408          * the media when flushed or by the filesystem sync.  If this races
409          * another instantiation/lookup the insertion will fail.
410          */
411         if (*errorp == 0) {
412                 hammer_ref(&ip->lock);
413                 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
414                         hammer_uncache_node(&ip->cache[0]);
415                         hammer_uncache_node(&ip->cache[1]);
416                         KKASSERT(ip->lock.refs == 1);
417                         --hammer_count_inodes;
418                         --hmp->count_inodes;
419                         kfree(ip, M_HAMMER);
420                         hammer_done_cursor(&cursor);
421                         goto loop;
422                 }
423                 ip->flags |= HAMMER_INODE_ONDISK;
424         } else {
425                 if (ip->flags & HAMMER_INODE_RSV_INODES) {
426                         ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
427                         --hmp->rsv_inodes;
428                 }
429                 hmp->rsv_databufs -= ip->rsv_databufs;
430                 ip->rsv_databufs = 0;                          /* sanity */
431
432                 --hammer_count_inodes;
433                 --hmp->count_inodes;
434                 kfree(ip, M_HAMMER);
435                 ip = NULL;
436         }
437         hammer_done_cursor(&cursor);
438         return (ip);
439 }
440
441 /*
442  * Create a new filesystem object, returning the inode in *ipp.  The
443  * returned inode will be referenced.
444  *
445  * The inode is created in-memory.
446  */
447 int
448 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
449                     struct ucred *cred, hammer_inode_t dip,
450                     int pseudofs, struct hammer_inode **ipp)
451 {
452         hammer_mount_t hmp;
453         hammer_inode_t ip;
454         uid_t xuid;
455         u_int32_t localization;
456         int error;
457
458         hmp = trans->hmp;
459
460         /*
461          * Assign the localization domain.  If if dip is NULL we are creating
462          * a pseudo-fs and must locate an unused localization domain.
463          */
464         if (pseudofs) {
465                 for (localization = HAMMER_DEF_LOCALIZATION;
466                      localization < HAMMER_LOCALIZE_PSEUDOFS_MASK;
467                      localization += HAMMER_LOCALIZE_PSEUDOFS_INC) {
468                         ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
469                                               hmp->asof, localization,
470                                               0, &error);
471                         if (ip == NULL) {
472                                 if (error != ENOENT)
473                                         return(error);
474                                 break;
475                         }
476                         if (ip)
477                                 hammer_rel_inode(ip, 0);
478                 }
479         } else {
480                 localization = dip->obj_localization;
481         }
482
483         ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
484         ++hammer_count_inodes;
485         ++hmp->count_inodes;
486
487         /*
488          * Allocate a new object id.  If creating a new pseudo-fs the
489          * obj_id is 1.
490          */
491         if (pseudofs)
492                 ip->obj_id = HAMMER_OBJID_ROOT;
493         else
494                 ip->obj_id = hammer_alloc_objid(hmp, dip);
495         ip->obj_localization = localization;
496
497         KKASSERT(ip->obj_id != 0);
498         ip->obj_asof = hmp->asof;
499         ip->hmp = hmp;
500         ip->flush_state = HAMMER_FST_IDLE;
501         ip->flags = HAMMER_INODE_DDIRTY |
502                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
503         ip->cache[0].ip = ip;
504         ip->cache[1].ip = ip;
505
506         ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
507         RB_INIT(&ip->rec_tree);
508         TAILQ_INIT(&ip->target_list);
509
510         ip->ino_data.atime = trans->time;
511         ip->ino_data.mtime = trans->time;
512         ip->ino_data.size = 0;
513         ip->ino_data.nlinks = 0;
514
515         /*
516          * A nohistory designator on the parent directory is inherited by
517          * the child.  We will do this even for pseudo-fs creation... the
518          * sysad can turn it off.
519          */
520         ip->ino_data.uflags = dip->ino_data.uflags &
521                               (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
522
523         ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
524         ip->ino_leaf.base.localization = ip->obj_localization +
525                                          HAMMER_LOCALIZE_INODE;
526         ip->ino_leaf.base.obj_id = ip->obj_id;
527         ip->ino_leaf.base.key = 0;
528         ip->ino_leaf.base.create_tid = 0;
529         ip->ino_leaf.base.delete_tid = 0;
530         ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
531         ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
532
533         ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
534         ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
535         ip->ino_data.mode = vap->va_mode;
536         ip->ino_data.ctime = trans->time;
537
538         /*
539          * Setup the ".." pointer.  This only needs to be done for directories
540          * but we do it for all objects as a recovery aid.
541          *
542          * The parent_obj_localization field only applies to pseudo-fs roots.
543          */
544         ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
545         if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
546             ip->obj_id == HAMMER_OBJID_ROOT) {
547                 ip->ino_data.ext.obj.parent_obj_localization = 
548                                                 dip->obj_localization;
549         }
550
551         switch(ip->ino_leaf.base.obj_type) {
552         case HAMMER_OBJTYPE_CDEV:
553         case HAMMER_OBJTYPE_BDEV:
554                 ip->ino_data.rmajor = vap->va_rmajor;
555                 ip->ino_data.rminor = vap->va_rminor;
556                 break;
557         default:
558                 break;
559         }
560
561         /*
562          * Calculate default uid/gid and overwrite with information from
563          * the vap.
564          */
565         xuid = hammer_to_unix_xid(&dip->ino_data.uid);
566         xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
567                                      &vap->va_mode);
568         ip->ino_data.mode = vap->va_mode;
569
570         if (vap->va_vaflags & VA_UID_UUID_VALID)
571                 ip->ino_data.uid = vap->va_uid_uuid;
572         else if (vap->va_uid != (uid_t)VNOVAL)
573                 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
574         else
575                 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
576
577         if (vap->va_vaflags & VA_GID_UUID_VALID)
578                 ip->ino_data.gid = vap->va_gid_uuid;
579         else if (vap->va_gid != (gid_t)VNOVAL)
580                 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
581         else
582                 ip->ino_data.gid = dip->ino_data.gid;
583
584         hammer_ref(&ip->lock);
585         if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
586                 hammer_unref(&ip->lock);
587                 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
588         }
589         *ipp = ip;
590         return(0);
591 }
592
593 /*
594  * Called by hammer_sync_inode().
595  */
596 static int
597 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
598 {
599         hammer_transaction_t trans = cursor->trans;
600         hammer_record_t record;
601         int error;
602
603 retry:
604         error = 0;
605
606         /*
607          * If the inode has a presence on-disk then locate it and mark
608          * it deleted, setting DELONDISK.
609          *
610          * The record may or may not be physically deleted, depending on
611          * the retention policy.
612          */
613         if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
614             HAMMER_INODE_ONDISK) {
615                 hammer_normalize_cursor(cursor);
616                 cursor->key_beg.localization = ip->obj_localization + 
617                                                HAMMER_LOCALIZE_INODE;
618                 cursor->key_beg.obj_id = ip->obj_id;
619                 cursor->key_beg.key = 0;
620                 cursor->key_beg.create_tid = 0;
621                 cursor->key_beg.delete_tid = 0;
622                 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
623                 cursor->key_beg.obj_type = 0;
624                 cursor->asof = ip->obj_asof;
625                 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
626                 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
627                 cursor->flags |= HAMMER_CURSOR_BACKEND;
628
629                 error = hammer_btree_lookup(cursor);
630                 if (hammer_debug_inode)
631                         kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
632                 if (error) {
633                         kprintf("error %d\n", error);
634                         Debugger("hammer_update_inode");
635                 }
636
637                 if (error == 0) {
638                         error = hammer_ip_delete_record(cursor, ip, trans->tid);
639                         if (hammer_debug_inode)
640                                 kprintf(" error %d\n", error);
641                         if (error && error != EDEADLK) {
642                                 kprintf("error %d\n", error);
643                                 Debugger("hammer_update_inode2");
644                         }
645                         if (error == 0) {
646                                 ip->flags |= HAMMER_INODE_DELONDISK;
647                         }
648                         if (cursor->node)
649                                 hammer_cache_node(&ip->cache[0], cursor->node);
650                 }
651                 if (error == EDEADLK) {
652                         hammer_done_cursor(cursor);
653                         error = hammer_init_cursor(trans, cursor,
654                                                    &ip->cache[0], ip);
655                         if (hammer_debug_inode)
656                                 kprintf("IPDED %p %d\n", ip, error);
657                         if (error == 0)
658                                 goto retry;
659                 }
660         }
661
662         /*
663          * Ok, write out the initial record or a new record (after deleting
664          * the old one), unless the DELETED flag is set.  This routine will
665          * clear DELONDISK if it writes out a record.
666          *
667          * Update our inode statistics if this is the first application of
668          * the inode on-disk.
669          */
670         if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
671                 /*
672                  * Generate a record and write it to the media
673                  */
674                 record = hammer_alloc_mem_record(ip, 0);
675                 record->type = HAMMER_MEM_RECORD_INODE;
676                 record->flush_state = HAMMER_FST_FLUSH;
677                 record->leaf = ip->sync_ino_leaf;
678                 record->leaf.base.create_tid = trans->tid;
679                 record->leaf.data_len = sizeof(ip->sync_ino_data);
680                 record->leaf.create_ts = trans->time32;
681                 record->data = (void *)&ip->sync_ino_data;
682                 record->flags |= HAMMER_RECF_INTERLOCK_BE;
683                 for (;;) {
684                         error = hammer_ip_sync_record_cursor(cursor, record);
685                         if (hammer_debug_inode)
686                                 kprintf("GENREC %p rec %08x %d\n",      
687                                         ip, record->flags, error);
688                         if (error != EDEADLK)
689                                 break;
690                         hammer_done_cursor(cursor);
691                         error = hammer_init_cursor(trans, cursor,
692                                                    &ip->cache[0], ip);
693                         if (hammer_debug_inode)
694                                 kprintf("GENREC reinit %d\n", error);
695                         if (error)
696                                 break;
697                 }
698                 if (error) {
699                         kprintf("error %d\n", error);
700                         Debugger("hammer_update_inode3");
701                 }
702
703                 /*
704                  * The record isn't managed by the inode's record tree,
705                  * destroy it whether we succeed or fail.
706                  */
707                 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
708                 record->flags |= HAMMER_RECF_DELETED_FE;
709                 record->flush_state = HAMMER_FST_IDLE;
710                 hammer_rel_mem_record(record);
711
712                 /*
713                  * Finish up.
714                  */
715                 if (error == 0) {
716                         if (hammer_debug_inode)
717                                 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
718                         ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
719                                             HAMMER_INODE_ATIME |
720                                             HAMMER_INODE_MTIME);
721                         ip->flags &= ~HAMMER_INODE_DELONDISK;
722
723                         /*
724                          * Root volume count of inodes
725                          */
726                         if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
727                                 hammer_modify_volume_field(trans,
728                                                            trans->rootvol,
729                                                            vol0_stat_inodes);
730                                 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
731                                 hammer_modify_volume_done(trans->rootvol);
732                                 ip->flags |= HAMMER_INODE_ONDISK;
733                                 if (hammer_debug_inode)
734                                         kprintf("NOWONDISK %p\n", ip);
735                         }
736                 }
737         }
738
739         /*
740          * If the inode has been destroyed, clean out any left-over flags
741          * that may have been set by the frontend.
742          */
743         if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) { 
744                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
745                                     HAMMER_INODE_ATIME |
746                                     HAMMER_INODE_MTIME);
747         }
748         return(error);
749 }
750
751 /*
752  * Update only the itimes fields.
753  *
754  * ATIME can be updated without generating any UNDO.  MTIME is updated
755  * with UNDO so it is guaranteed to be synchronized properly in case of
756  * a crash.
757  *
758  * Neither field is included in the B-Tree leaf element's CRC, which is how
759  * we can get away with updating ATIME the way we do.
760  */
761 static int
762 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
763 {
764         hammer_transaction_t trans = cursor->trans;
765         int error;
766
767 retry:
768         if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
769             HAMMER_INODE_ONDISK) {
770                 return(0);
771         }
772
773         hammer_normalize_cursor(cursor);
774         cursor->key_beg.localization = ip->obj_localization + 
775                                        HAMMER_LOCALIZE_INODE;
776         cursor->key_beg.obj_id = ip->obj_id;
777         cursor->key_beg.key = 0;
778         cursor->key_beg.create_tid = 0;
779         cursor->key_beg.delete_tid = 0;
780         cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
781         cursor->key_beg.obj_type = 0;
782         cursor->asof = ip->obj_asof;
783         cursor->flags &= ~HAMMER_CURSOR_INITMASK;
784         cursor->flags |= HAMMER_CURSOR_ASOF;
785         cursor->flags |= HAMMER_CURSOR_GET_LEAF;
786         cursor->flags |= HAMMER_CURSOR_GET_DATA;
787         cursor->flags |= HAMMER_CURSOR_BACKEND;
788
789         error = hammer_btree_lookup(cursor);
790         if (error) {
791                 kprintf("error %d\n", error);
792                 Debugger("hammer_update_itimes1");
793         }
794         if (error == 0) {
795                 hammer_cache_node(&ip->cache[0], cursor->node);
796                 if (ip->sync_flags & HAMMER_INODE_MTIME) {
797                         /*
798                          * Updating MTIME requires an UNDO.  Just cover
799                          * both atime and mtime.
800                          */
801                         hammer_modify_buffer(trans, cursor->data_buffer,
802                                      HAMMER_ITIMES_BASE(&cursor->data->inode),
803                                      HAMMER_ITIMES_BYTES);
804                         cursor->data->inode.atime = ip->sync_ino_data.atime;
805                         cursor->data->inode.mtime = ip->sync_ino_data.mtime;
806                         hammer_modify_buffer_done(cursor->data_buffer);
807                 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
808                         /*
809                          * Updating atime only can be done in-place with
810                          * no UNDO.
811                          */
812                         hammer_modify_buffer(trans, cursor->data_buffer,
813                                              NULL, 0);
814                         cursor->data->inode.atime = ip->sync_ino_data.atime;
815                         hammer_modify_buffer_done(cursor->data_buffer);
816                 }
817                 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
818         }
819         if (error == EDEADLK) {
820                 hammer_done_cursor(cursor);
821                 error = hammer_init_cursor(trans, cursor,
822                                            &ip->cache[0], ip);
823                 if (error == 0)
824                         goto retry;
825         }
826         return(error);
827 }
828
829 /*
830  * Release a reference on an inode, flush as requested.
831  *
832  * On the last reference we queue the inode to the flusher for its final
833  * disposition.
834  */
835 void
836 hammer_rel_inode(struct hammer_inode *ip, int flush)
837 {
838         hammer_mount_t hmp = ip->hmp;
839
840         /*
841          * Handle disposition when dropping the last ref.
842          */
843         for (;;) {
844                 if (ip->lock.refs == 1) {
845                         /*
846                          * Determine whether on-disk action is needed for
847                          * the inode's final disposition.
848                          */
849                         KKASSERT(ip->vp == NULL);
850                         hammer_inode_unloadable_check(ip, 0);
851                         if (ip->flags & HAMMER_INODE_MODMASK) {
852                                 if (hmp->rsv_inodes > desiredvnodes) {
853                                         hammer_flush_inode(ip,
854                                                            HAMMER_FLUSH_SIGNAL);
855                                 } else {
856                                         hammer_flush_inode(ip, 0);
857                                 }
858                         } else if (ip->lock.refs == 1) {
859                                 hammer_unload_inode(ip);
860                                 break;
861                         }
862                 } else {
863                         if (flush)
864                                 hammer_flush_inode(ip, 0);
865
866                         /*
867                          * The inode still has multiple refs, try to drop
868                          * one ref.
869                          */
870                         KKASSERT(ip->lock.refs >= 1);
871                         if (ip->lock.refs > 1) {
872                                 hammer_unref(&ip->lock);
873                                 break;
874                         }
875                 }
876         }
877 }
878
879 /*
880  * Unload and destroy the specified inode.  Must be called with one remaining
881  * reference.  The reference is disposed of.
882  *
883  * This can only be called in the context of the flusher.
884  */
885 static int
886 hammer_unload_inode(struct hammer_inode *ip)
887 {
888         hammer_mount_t hmp = ip->hmp;
889
890         KASSERT(ip->lock.refs == 1,
891                 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
892         KKASSERT(ip->vp == NULL);
893         KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
894         KKASSERT(ip->cursor_ip_refs == 0);
895         KKASSERT(ip->lock.lockcount == 0);
896         KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
897
898         KKASSERT(RB_EMPTY(&ip->rec_tree));
899         KKASSERT(TAILQ_EMPTY(&ip->target_list));
900
901         RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
902
903         hammer_uncache_node(&ip->cache[0]);
904         hammer_uncache_node(&ip->cache[1]);
905         if (ip->objid_cache)
906                 hammer_clear_objid(ip);
907         --hammer_count_inodes;
908         --hmp->count_inodes;
909
910         hammer_inode_wakereclaims(ip);
911         kfree(ip, M_HAMMER);
912
913         return(0);
914 }
915
916 /*
917  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
918  * the read-only flag for cached inodes.
919  *
920  * This routine is called from a RB_SCAN().
921  */
922 int
923 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
924 {
925         hammer_mount_t hmp = ip->hmp;
926
927         if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
928                 ip->flags |= HAMMER_INODE_RO;
929         else
930                 ip->flags &= ~HAMMER_INODE_RO;
931         return(0);
932 }
933
934 /*
935  * A transaction has modified an inode, requiring updates as specified by
936  * the passed flags.
937  *
938  * HAMMER_INODE_DDIRTY: Inode data has been updated
939  * HAMMER_INODE_XDIRTY: Dirty in-memory records
940  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
941  * HAMMER_INODE_DELETED: Inode record/data must be deleted
942  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
943  */
944 void
945 hammer_modify_inode(hammer_inode_t ip, int flags)
946 {
947         KKASSERT ((ip->flags & HAMMER_INODE_RO) == 0 ||
948                   (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY | 
949                             HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
950                             HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
951         if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
952                 ip->flags |= HAMMER_INODE_RSV_INODES;
953                 ++ip->hmp->rsv_inodes;
954         }
955
956         ip->flags |= flags;
957 }
958
959 /*
960  * Request that an inode be flushed.  This whole mess cannot block and may
961  * recurse (if not synchronous).  Once requested HAMMER will attempt to
962  * actively flush the inode until the flush can be done.
963  *
964  * The inode may already be flushing, or may be in a setup state.  We can
965  * place the inode in a flushing state if it is currently idle and flag it
966  * to reflush if it is currently flushing.
967  *
968  * If the HAMMER_FLUSH_SYNCHRONOUS flag is specified we will attempt to
969  * flush the indoe synchronously using the caller's context.
970  */
971 void
972 hammer_flush_inode(hammer_inode_t ip, int flags)
973 {
974         int good;
975
976         /*
977          * Trivial 'nothing to flush' case.  If the inode is ina SETUP
978          * state we have to put it back into an IDLE state so we can
979          * drop the extra ref.
980          */
981         if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
982                 if (ip->flush_state == HAMMER_FST_SETUP) {
983                         ip->flush_state = HAMMER_FST_IDLE;
984                         hammer_rel_inode(ip, 0);
985                 }
986                 return;
987         }
988
989         /*
990          * Our flush action will depend on the current state.
991          */
992         switch(ip->flush_state) {
993         case HAMMER_FST_IDLE:
994                 /*
995                  * We have no dependancies and can flush immediately.  Some
996                  * our children may not be flushable so we have to re-test
997                  * with that additional knowledge.
998                  */
999                 hammer_flush_inode_core(ip, flags);
1000                 break;
1001         case HAMMER_FST_SETUP:
1002                 /*
1003                  * Recurse upwards through dependancies via target_list
1004                  * and start their flusher actions going if possible.
1005                  *
1006                  * 'good' is our connectivity.  -1 means we have none and
1007                  * can't flush, 0 means there weren't any dependancies, and
1008                  * 1 means we have good connectivity.
1009                  */
1010                 good = hammer_setup_parent_inodes(ip);
1011
1012                 /*
1013                  * We can continue if good >= 0.  Determine how many records
1014                  * under our inode can be flushed (and mark them).
1015                  */
1016                 if (good >= 0) {
1017                         hammer_flush_inode_core(ip, flags);
1018                 } else {
1019                         ip->flags |= HAMMER_INODE_REFLUSH;
1020                         if (flags & HAMMER_FLUSH_SIGNAL) {
1021                                 ip->flags |= HAMMER_INODE_RESIGNAL;
1022                                 hammer_flusher_async(ip->hmp);
1023                         }
1024                 }
1025                 break;
1026         default:
1027                 /*
1028                  * We are already flushing, flag the inode to reflush
1029                  * if needed after it completes its current flush.
1030                  */
1031                 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1032                         ip->flags |= HAMMER_INODE_REFLUSH;
1033                 if (flags & HAMMER_FLUSH_SIGNAL) {
1034                         ip->flags |= HAMMER_INODE_RESIGNAL;
1035                         hammer_flusher_async(ip->hmp);
1036                 }
1037                 break;
1038         }
1039 }
1040
1041 /*
1042  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1043  * ip which reference our ip.
1044  *
1045  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1046  *     so for now do not ref/deref the structures.  Note that if we use the
1047  *     ref/rel code later, the rel CAN block.
1048  */
1049 static int
1050 hammer_setup_parent_inodes(hammer_inode_t ip)
1051 {
1052         hammer_record_t depend;
1053 #if 0
1054         hammer_record_t next;
1055         hammer_inode_t  pip;
1056 #endif
1057         int good;
1058         int r;
1059
1060         good = 0;
1061         TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1062                 r = hammer_setup_parent_inodes_helper(depend);
1063                 KKASSERT(depend->target_ip == ip);
1064                 if (r < 0 && good == 0)
1065                         good = -1;
1066                 if (r > 0)
1067                         good = 1;
1068         }
1069         return(good);
1070
1071 #if 0
1072 retry:
1073         good = 0;
1074         next = TAILQ_FIRST(&ip->target_list);
1075         if (next) {
1076                 hammer_ref(&next->lock);
1077                 hammer_ref(&next->ip->lock);
1078         }
1079         while ((depend = next) != NULL) {
1080                 if (depend->target_ip == NULL) {
1081                         pip = depend->ip;
1082                         hammer_rel_mem_record(depend);
1083                         hammer_rel_inode(pip, 0);
1084                         goto retry;
1085                 }
1086                 KKASSERT(depend->target_ip == ip);
1087                 next = TAILQ_NEXT(depend, target_entry);
1088                 if (next) {
1089                         hammer_ref(&next->lock);
1090                         hammer_ref(&next->ip->lock);
1091                 }
1092                 r = hammer_setup_parent_inodes_helper(depend);
1093                 if (r < 0 && good == 0)
1094                         good = -1;
1095                 if (r > 0)
1096                         good = 1;
1097                 pip = depend->ip;
1098                 hammer_rel_mem_record(depend);
1099                 hammer_rel_inode(pip, 0);
1100         }
1101         return(good);
1102 #endif
1103 }
1104
1105 /*
1106  * This helper function takes a record representing the dependancy between
1107  * the parent inode and child inode.
1108  *
1109  * record->ip           = parent inode
1110  * record->target_ip    = child inode
1111  * 
1112  * We are asked to recurse upwards and convert the record from SETUP
1113  * to FLUSH if possible.
1114  *
1115  * Return 1 if the record gives us connectivity
1116  *
1117  * Return 0 if the record is not relevant 
1118  *
1119  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1120  */
1121 static int
1122 hammer_setup_parent_inodes_helper(hammer_record_t record)
1123 {
1124         hammer_mount_t hmp;
1125         hammer_inode_t pip;
1126         int good;
1127
1128         KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1129         pip = record->ip;
1130         hmp = pip->hmp;
1131
1132         /*
1133          * If the record is already flushing, is it in our flush group?
1134          *
1135          * If it is in our flush group but it is a general record or a 
1136          * delete-on-disk, it does not improve our connectivity (return 0),
1137          * and if the target inode is not trying to destroy itself we can't
1138          * allow the operation yet anyway (the second return -1).
1139          */
1140         if (record->flush_state == HAMMER_FST_FLUSH) {
1141                 if (record->flush_group != hmp->flusher.next) {
1142                         pip->flags |= HAMMER_INODE_REFLUSH;
1143                         return(-1);
1144                 }
1145                 if (record->type == HAMMER_MEM_RECORD_ADD)
1146                         return(1);
1147                 /* GENERAL or DEL */
1148                 return(0);
1149         }
1150
1151         /*
1152          * It must be a setup record.  Try to resolve the setup dependancies
1153          * by recursing upwards so we can place ip on the flush list.
1154          */
1155         KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1156
1157         good = hammer_setup_parent_inodes(pip);
1158
1159         /*
1160          * We can't flush ip because it has no connectivity (XXX also check
1161          * nlinks for pre-existing connectivity!).  Flag it so any resolution
1162          * recurses back down.
1163          */
1164         if (good < 0) {
1165                 pip->flags |= HAMMER_INODE_REFLUSH;
1166                 return(good);
1167         }
1168
1169         /*
1170          * We are go, place the parent inode in a flushing state so we can
1171          * place its record in a flushing state.  Note that the parent
1172          * may already be flushing.  The record must be in the same flush
1173          * group as the parent.
1174          */
1175         if (pip->flush_state != HAMMER_FST_FLUSH)
1176                 hammer_flush_inode_core(pip, HAMMER_FLUSH_RECURSION);
1177         KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1178         KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1179
1180 #if 0
1181         if (record->type == HAMMER_MEM_RECORD_DEL &&
1182             (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1183                 /*
1184                  * Regardless of flushing state we cannot sync this path if the
1185                  * record represents a delete-on-disk but the target inode
1186                  * is not ready to sync its own deletion.
1187                  *
1188                  * XXX need to count effective nlinks to determine whether
1189                  * the flush is ok, otherwise removing a hardlink will
1190                  * just leave the DEL record to rot.
1191                  */
1192                 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1193                 return(-1);
1194         } else
1195 #endif
1196         if (pip->flush_group == pip->hmp->flusher.next) {
1197                 /*
1198                  * This is the record we wanted to synchronize.  If the
1199                  * record went into a flush state while we blocked it 
1200                  * had better be in the correct flush group.
1201                  */
1202                 if (record->flush_state != HAMMER_FST_FLUSH) {
1203                         record->flush_state = HAMMER_FST_FLUSH;
1204                         record->flush_group = pip->flush_group;
1205                         hammer_ref(&record->lock);
1206                 } else {
1207                         KKASSERT(record->flush_group == pip->flush_group);
1208                 }
1209                 if (record->type == HAMMER_MEM_RECORD_ADD)
1210                         return(1);
1211
1212                 /*
1213                  * A general or delete-on-disk record does not contribute
1214                  * to our visibility.  We can still flush it, however.
1215                  */
1216                 return(0);
1217         } else {
1218                 /*
1219                  * We couldn't resolve the dependancies, request that the
1220                  * inode be flushed when the dependancies can be resolved.
1221                  */
1222                 pip->flags |= HAMMER_INODE_REFLUSH;
1223                 return(-1);
1224         }
1225 }
1226
1227 /*
1228  * This is the core routine placing an inode into the FST_FLUSH state.
1229  */
1230 static void
1231 hammer_flush_inode_core(hammer_inode_t ip, int flags)
1232 {
1233         int go_count;
1234
1235         /*
1236          * Set flush state and prevent the flusher from cycling into
1237          * the next flush group.  Do not place the ip on the list yet.
1238          * Inodes not in the idle state get an extra reference.
1239          */
1240         KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1241         if (ip->flush_state == HAMMER_FST_IDLE)
1242                 hammer_ref(&ip->lock);
1243         ip->flush_state = HAMMER_FST_FLUSH;
1244         ip->flush_group = ip->hmp->flusher.next;
1245         ++ip->hmp->flusher.group_lock;
1246         ++ip->hmp->count_iqueued;
1247         ++hammer_count_iqueued;
1248
1249         /*
1250          * We need to be able to vfsync/truncate from the backend.
1251          */
1252         KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1253         if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1254                 ip->flags |= HAMMER_INODE_VHELD;
1255                 vref(ip->vp);
1256         }
1257
1258         /*
1259          * Figure out how many in-memory records we can actually flush
1260          * (not including inode meta-data, buffers, etc).
1261          */
1262         if (flags & HAMMER_FLUSH_RECURSION) {
1263                 go_count = 1;
1264         } else {
1265                 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1266                                    hammer_setup_child_callback, NULL);
1267         }
1268
1269         /*
1270          * This is a more involved test that includes go_count.  If we
1271          * can't flush, flag the inode and return.  If go_count is 0 we
1272          * were are unable to flush any records in our rec_tree and
1273          * must ignore the XDIRTY flag.
1274          */
1275         if (go_count == 0) {
1276                 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1277                         ip->flags |= HAMMER_INODE_REFLUSH;
1278
1279                         --ip->hmp->count_iqueued;
1280                         --hammer_count_iqueued;
1281
1282                         ip->flush_state = HAMMER_FST_SETUP;
1283                         if (ip->flags & HAMMER_INODE_VHELD) {
1284                                 ip->flags &= ~HAMMER_INODE_VHELD;
1285                                 vrele(ip->vp);
1286                         }
1287                         if (flags & HAMMER_FLUSH_SIGNAL) {
1288                                 ip->flags |= HAMMER_INODE_RESIGNAL;
1289                                 hammer_flusher_async(ip->hmp);
1290                         }
1291                         if (--ip->hmp->flusher.group_lock == 0)
1292                                 wakeup(&ip->hmp->flusher.group_lock);
1293                         return;
1294                 }
1295         }
1296
1297         /*
1298          * Snapshot the state of the inode for the backend flusher.
1299          *
1300          * The truncation must be retained in the frontend until after
1301          * we've actually performed the record deletion.
1302          *
1303          * We continue to retain sync_trunc_off even when all truncations
1304          * have been resolved as an optimization to determine if we can
1305          * skip the B-Tree lookup for overwrite deletions.
1306          *
1307          * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1308          * and stays in ip->flags.  Once set, it stays set until the
1309          * inode is destroyed.
1310          */
1311         ip->sync_flags = (ip->flags & HAMMER_INODE_MODMASK);
1312         if (ip->sync_flags & HAMMER_INODE_TRUNCATED)
1313                 ip->sync_trunc_off = ip->trunc_off;
1314         ip->sync_ino_leaf = ip->ino_leaf;
1315         ip->sync_ino_data = ip->ino_data;
1316         ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1317         ip->flags &= ~HAMMER_INODE_MODMASK;
1318 #ifdef DEBUG_TRUNCATE
1319         if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1320                 kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1321 #endif
1322
1323         /*
1324          * The flusher list inherits our inode and reference.
1325          */
1326         TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
1327         if (--ip->hmp->flusher.group_lock == 0)
1328                 wakeup(&ip->hmp->flusher.group_lock);
1329
1330         if (flags & HAMMER_FLUSH_SIGNAL) {
1331                 hammer_flusher_async(ip->hmp);
1332         }
1333 }
1334
1335 /*
1336  * Callback for scan of ip->rec_tree.  Try to include each record in our
1337  * flush.  ip->flush_group has been set but the inode has not yet been
1338  * moved into a flushing state.
1339  *
1340  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1341  * both inodes.
1342  *
1343  * We return 1 for any record placed or found in FST_FLUSH, which prevents
1344  * the caller from shortcutting the flush.
1345  */
1346 static int
1347 hammer_setup_child_callback(hammer_record_t rec, void *data)
1348 {
1349         hammer_inode_t target_ip;
1350         hammer_inode_t ip;
1351         int r;
1352
1353         /*
1354          * Deleted records are ignored.  Note that the flush detects deleted
1355          * front-end records at multiple points to deal with races.  This is
1356          * just the first line of defense.  The only time DELETED_FE cannot
1357          * be set is when HAMMER_RECF_INTERLOCK_BE is set. 
1358          *
1359          * Don't get confused between record deletion and, say, directory
1360          * entry deletion.  The deletion of a directory entry that is on
1361          * the media has nothing to do with the record deletion flags.
1362          */
1363         if (rec->flags & (HAMMER_RECF_DELETED_FE|HAMMER_RECF_DELETED_BE))
1364                 return(0);
1365
1366         /*
1367          * If the record is in an idle state it has no dependancies and
1368          * can be flushed.
1369          */
1370         ip = rec->ip;
1371         r = 0;
1372
1373         switch(rec->flush_state) {
1374         case HAMMER_FST_IDLE:
1375                 /*
1376                  * Record has no setup dependancy, we can flush it.
1377                  */
1378                 KKASSERT(rec->target_ip == NULL);
1379                 rec->flush_state = HAMMER_FST_FLUSH;
1380                 rec->flush_group = ip->flush_group;
1381                 hammer_ref(&rec->lock);
1382                 r = 1;
1383                 break;
1384         case HAMMER_FST_SETUP:
1385                 /*
1386                  * Record has a setup dependancy.  Try to include the
1387                  * target ip in the flush. 
1388                  *
1389                  * We have to be careful here, if we do not do the right
1390                  * thing we can lose track of dirty inodes and the system
1391                  * will lockup trying to allocate buffers.
1392                  */
1393                 target_ip = rec->target_ip;
1394                 KKASSERT(target_ip != NULL);
1395                 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1396                 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1397                         /*
1398                          * If the target IP is already flushing in our group
1399                          * we are golden, otherwise make sure the target
1400                          * reflushes.
1401                          */
1402                         if (target_ip->flush_group == ip->flush_group) {
1403                                 rec->flush_state = HAMMER_FST_FLUSH;
1404                                 rec->flush_group = ip->flush_group;
1405                                 hammer_ref(&rec->lock);
1406                                 r = 1;
1407                         } else {
1408                                 target_ip->flags |= HAMMER_INODE_REFLUSH;
1409                         }
1410                 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1411                         /*
1412                          * If the target IP is not flushing we can force
1413                          * it to flush, even if it is unable to write out
1414                          * any of its own records we have at least one in
1415                          * hand that we CAN deal with.
1416                          */
1417                         rec->flush_state = HAMMER_FST_FLUSH;
1418                         rec->flush_group = ip->flush_group;
1419                         hammer_ref(&rec->lock);
1420                         hammer_flush_inode_core(target_ip,
1421                                                 HAMMER_FLUSH_RECURSION);
1422                         r = 1;
1423                 } else {
1424                         /*
1425                          * General or delete-on-disk record.
1426                          *
1427                          * XXX this needs help.  If a delete-on-disk we could
1428                          * disconnect the target.  If the target has its own
1429                          * dependancies they really need to be flushed.
1430                          *
1431                          * XXX
1432                          */
1433                         rec->flush_state = HAMMER_FST_FLUSH;
1434                         rec->flush_group = ip->flush_group;
1435                         hammer_ref(&rec->lock);
1436                         hammer_flush_inode_core(target_ip,
1437                                                 HAMMER_FLUSH_RECURSION);
1438                         r = 1;
1439                 }
1440                 break;
1441         case HAMMER_FST_FLUSH:
1442                 /* 
1443                  * Record already associated with a flush group.  It had
1444                  * better be ours.
1445                  */
1446                 KKASSERT(rec->flush_group == ip->flush_group);
1447                 r = 1;
1448                 break;
1449         }
1450         return(r);
1451 }
1452
1453 /*
1454  * Wait for a previously queued flush to complete.  Not only do we need to
1455  * wait for the inode to sync out, we also may have to run the flusher again
1456  * to get it past the UNDO position pertaining to the flush so a crash does
1457  * not 'undo' our flush.
1458  */
1459 void
1460 hammer_wait_inode(hammer_inode_t ip)
1461 {
1462         hammer_mount_t hmp = ip->hmp;
1463         int sync_group;
1464         int waitcount;
1465
1466         sync_group = ip->flush_group;
1467         waitcount = (ip->flags & HAMMER_INODE_REFLUSH) ? 2 : 1;
1468
1469         if (ip->flush_state == HAMMER_FST_SETUP) {
1470                 kprintf("X");
1471                 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1472         }
1473         /* XXX can we make this != FST_IDLE ? check SETUP depends */
1474         while (ip->flush_state == HAMMER_FST_FLUSH &&
1475                (ip->flush_group - sync_group) < waitcount) {
1476                 ip->flags |= HAMMER_INODE_FLUSHW;
1477                 tsleep(&ip->flags, 0, "hmrwin", 0);
1478         }
1479         while (hmp->flusher.done - sync_group < waitcount) {
1480                 kprintf("Y");
1481                 hammer_flusher_sync(hmp);
1482         }
1483 }
1484
1485 /*
1486  * Called by the backend code when a flush has been completed.
1487  * The inode has already been removed from the flush list.
1488  *
1489  * A pipelined flush can occur, in which case we must re-enter the
1490  * inode on the list and re-copy its fields.
1491  */
1492 void
1493 hammer_flush_inode_done(hammer_inode_t ip)
1494 {
1495         hammer_mount_t hmp;
1496         int dorel;
1497
1498         KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1499
1500         hmp = ip->hmp;
1501
1502         /*
1503          * Merge left-over flags back into the frontend and fix the state.
1504          */
1505         ip->flags |= ip->sync_flags;
1506
1507         /*
1508          * The backend may have adjusted nlinks, so if the adjusted nlinks
1509          * does not match the fronttend set the frontend's RDIRTY flag again.
1510          */
1511         if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1512                 ip->flags |= HAMMER_INODE_DDIRTY;
1513
1514         /*
1515          * Fix up the dirty buffer status.  IO completions will also
1516          * try to clean up rsv_databufs.
1517          */
1518         if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
1519                 ip->flags |= HAMMER_INODE_BUFS;
1520         } else {
1521                 hmp->rsv_databufs -= ip->rsv_databufs;
1522                 ip->rsv_databufs = 0;
1523         }
1524
1525         /*
1526          * Re-set the XDIRTY flag if some of the inode's in-memory records
1527          * could not be flushed.
1528          */
1529         KKASSERT((RB_EMPTY(&ip->rec_tree) &&
1530                   (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
1531                  (!RB_EMPTY(&ip->rec_tree) &&
1532                   (ip->flags & HAMMER_INODE_XDIRTY) != 0));
1533
1534         /*
1535          * Do not lose track of inodes which no longer have vnode
1536          * assocations, otherwise they may never get flushed again.
1537          */
1538         if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1539                 ip->flags |= HAMMER_INODE_REFLUSH;
1540
1541         /*
1542          * Adjust flush_state.  The target state (idle or setup) shouldn't
1543          * be terribly important since we will reflush if we really need
1544          * to do anything. XXX
1545          */
1546         if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1547                 ip->flush_state = HAMMER_FST_IDLE;
1548                 dorel = 1;
1549         } else {
1550                 ip->flush_state = HAMMER_FST_SETUP;
1551                 dorel = 0;
1552         }
1553
1554         --hmp->count_iqueued;
1555         --hammer_count_iqueued;
1556
1557         /*
1558          * Clean up the vnode ref
1559          */
1560         if (ip->flags & HAMMER_INODE_VHELD) {
1561                 ip->flags &= ~HAMMER_INODE_VHELD;
1562                 vrele(ip->vp);
1563         }
1564
1565         /*
1566          * If the frontend made more changes and requested another flush,
1567          * then try to get it running.
1568          */
1569         if (ip->flags & HAMMER_INODE_REFLUSH) {
1570                 ip->flags &= ~HAMMER_INODE_REFLUSH;
1571                 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1572                         ip->flags &= ~HAMMER_INODE_RESIGNAL;
1573                         hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1574                 } else {
1575                         hammer_flush_inode(ip, 0);
1576                 }
1577         }
1578
1579         /*
1580          * If the inode is now clean drop the space reservation.
1581          */
1582         if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1583             (ip->flags & HAMMER_INODE_RSV_INODES)) {
1584                 ip->flags &= ~HAMMER_INODE_RSV_INODES;
1585                 --hmp->rsv_inodes;
1586         }
1587
1588         /*
1589          * Finally, if the frontend is waiting for a flush to complete,
1590          * wake it up.
1591          */
1592         if (ip->flush_state != HAMMER_FST_FLUSH) {
1593                 if (ip->flags & HAMMER_INODE_FLUSHW) {
1594                         ip->flags &= ~HAMMER_INODE_FLUSHW;
1595                         wakeup(&ip->flags);
1596                 }
1597         }
1598         if (dorel)
1599                 hammer_rel_inode(ip, 0);
1600 }
1601
1602 /*
1603  * Called from hammer_sync_inode() to synchronize in-memory records
1604  * to the media.
1605  */
1606 static int
1607 hammer_sync_record_callback(hammer_record_t record, void *data)
1608 {
1609         hammer_cursor_t cursor = data;
1610         hammer_transaction_t trans = cursor->trans;
1611         int error;
1612
1613         /*
1614          * Skip records that do not belong to the current flush.
1615          */
1616         ++hammer_stats_record_iterations;
1617         if (record->flush_state != HAMMER_FST_FLUSH)
1618                 return(0);
1619
1620 #if 1
1621         if (record->flush_group != record->ip->flush_group) {
1622                 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1623                 Debugger("blah2");
1624                 return(0);
1625         }
1626 #endif
1627         KKASSERT(record->flush_group == record->ip->flush_group);
1628
1629         /*
1630          * Interlock the record using the BE flag.  Once BE is set the
1631          * frontend cannot change the state of FE.
1632          *
1633          * NOTE: If FE is set prior to us setting BE we still sync the
1634          * record out, but the flush completion code converts it to 
1635          * a delete-on-disk record instead of destroying it.
1636          */
1637         KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1638         record->flags |= HAMMER_RECF_INTERLOCK_BE;
1639
1640         /*
1641          * The backend may have already disposed of the record.
1642          */
1643         if (record->flags & HAMMER_RECF_DELETED_BE) {
1644                 error = 0;
1645                 goto done;
1646         }
1647
1648         /*
1649          * If the whole inode is being deleting all on-disk records will
1650          * be deleted very soon, we can't sync any new records to disk
1651          * because they will be deleted in the same transaction they were
1652          * created in (delete_tid == create_tid), which will assert.
1653          *
1654          * XXX There may be a case with RECORD_ADD with DELETED_FE set
1655          * that we currently panic on.
1656          */
1657         if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
1658                 switch(record->type) {
1659                 case HAMMER_MEM_RECORD_DATA:
1660                         /*
1661                          * We don't have to do anything, if the record was
1662                          * committed the space will have been accounted for
1663                          * in the blockmap.
1664                          */
1665                         /* fall through */
1666                 case HAMMER_MEM_RECORD_GENERAL:
1667                         record->flags |= HAMMER_RECF_DELETED_FE;
1668                         record->flags |= HAMMER_RECF_DELETED_BE;
1669                         error = 0;
1670                         goto done;
1671                 case HAMMER_MEM_RECORD_ADD:
1672                         panic("hammer_sync_record_callback: illegal add "
1673                               "during inode deletion record %p", record);
1674                         break; /* NOT REACHED */
1675                 case HAMMER_MEM_RECORD_INODE:
1676                         panic("hammer_sync_record_callback: attempt to "
1677                               "sync inode record %p?", record);
1678                         break; /* NOT REACHED */
1679                 case HAMMER_MEM_RECORD_DEL:
1680                         /* 
1681                          * Follow through and issue the on-disk deletion
1682                          */
1683                         break;
1684                 }
1685         }
1686
1687         /*
1688          * If DELETED_FE is set special handling is needed for directory
1689          * entries.  Dependant pieces related to the directory entry may
1690          * have already been synced to disk.  If this occurs we have to
1691          * sync the directory entry and then change the in-memory record
1692          * from an ADD to a DELETE to cover the fact that it's been
1693          * deleted by the frontend.
1694          *
1695          * A directory delete covering record (MEM_RECORD_DEL) can never
1696          * be deleted by the frontend.
1697          *
1698          * Any other record type (aka DATA) can be deleted by the frontend.
1699          * XXX At the moment the flusher must skip it because there may
1700          * be another data record in the flush group for the same block,
1701          * meaning that some frontend data changes can leak into the backend's
1702          * synchronization point.
1703          */
1704         if (record->flags & HAMMER_RECF_DELETED_FE) {
1705                 if (record->type == HAMMER_MEM_RECORD_ADD) {
1706                         record->flags |= HAMMER_RECF_CONVERT_DELETE;
1707                 } else {
1708                         KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
1709                         record->flags |= HAMMER_RECF_DELETED_BE;
1710                         error = 0;
1711                         goto done;
1712                 }
1713         }
1714
1715         /*
1716          * Assign the create_tid for new records.  Deletions already
1717          * have the record's entire key properly set up.
1718          */
1719         if (record->type != HAMMER_MEM_RECORD_DEL)
1720                 record->leaf.base.create_tid = trans->tid;
1721                 record->leaf.create_ts = trans->time32;
1722         for (;;) {
1723                 error = hammer_ip_sync_record_cursor(cursor, record);
1724                 if (error != EDEADLK)
1725                         break;
1726                 hammer_done_cursor(cursor);
1727                 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
1728                                            record->ip);
1729                 if (error)
1730                         break;
1731         }
1732         record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1733
1734         if (error) {
1735                 error = -error;
1736                 if (error != -ENOSPC) {
1737                         kprintf("hammer_sync_record_callback: sync failed rec "
1738                                 "%p, error %d\n", record, error);
1739                         Debugger("sync failed rec");
1740                 }
1741         }
1742 done:
1743         hammer_flush_record_done(record, error);
1744         return(error);
1745 }
1746
1747 /*
1748  * XXX error handling
1749  */
1750 int
1751 hammer_sync_inode(hammer_inode_t ip)
1752 {
1753         struct hammer_transaction trans;
1754         struct hammer_cursor cursor;
1755         hammer_node_t tmp_node;
1756         hammer_record_t depend;
1757         hammer_record_t next;
1758         int error, tmp_error;
1759         u_int64_t nlinks;
1760
1761         if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
1762                 return(0);
1763
1764         hammer_start_transaction_fls(&trans, ip->hmp);
1765         error = hammer_init_cursor(&trans, &cursor, &ip->cache[1], ip);
1766         if (error)
1767                 goto done;
1768
1769         /*
1770          * Any directory records referencing this inode which are not in
1771          * our current flush group must adjust our nlink count for the
1772          * purposes of synchronization to disk.
1773          *
1774          * Records which are in our flush group can be unlinked from our
1775          * inode now, potentially allowing the inode to be physically
1776          * deleted.
1777          *
1778          * This cannot block.
1779          */
1780         nlinks = ip->ino_data.nlinks;
1781         next = TAILQ_FIRST(&ip->target_list);
1782         while ((depend = next) != NULL) {
1783                 next = TAILQ_NEXT(depend, target_entry);
1784                 if (depend->flush_state == HAMMER_FST_FLUSH &&
1785                     depend->flush_group == ip->hmp->flusher.act) {
1786                         /*
1787                          * If this is an ADD that was deleted by the frontend
1788                          * the frontend nlinks count will have already been
1789                          * decremented, but the backend is going to sync its
1790                          * directory entry and must account for it.  The
1791                          * record will be converted to a delete-on-disk when
1792                          * it gets synced.
1793                          *
1794                          * If the ADD was not deleted by the frontend we
1795                          * can remove the dependancy from our target_list.
1796                          */
1797                         if (depend->flags & HAMMER_RECF_DELETED_FE) {
1798                                 ++nlinks;
1799                         } else {
1800                                 TAILQ_REMOVE(&ip->target_list, depend,
1801                                              target_entry);
1802                                 depend->target_ip = NULL;
1803                         }
1804                 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
1805                         /*
1806                          * Not part of our flush group
1807                          */
1808                         KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
1809                         switch(depend->type) {
1810                         case HAMMER_MEM_RECORD_ADD:
1811                                 --nlinks;
1812                                 break;
1813                         case HAMMER_MEM_RECORD_DEL:
1814                                 ++nlinks;
1815                                 break;
1816                         default:
1817                                 break;
1818                         }
1819                 }
1820         }
1821
1822         /*
1823          * Set dirty if we had to modify the link count.
1824          */
1825         if (ip->sync_ino_data.nlinks != nlinks) {
1826                 KKASSERT((int64_t)nlinks >= 0);
1827                 ip->sync_ino_data.nlinks = nlinks;
1828                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1829         }
1830
1831         /*
1832          * If there is a trunction queued destroy any data past the (aligned)
1833          * truncation point.  Userland will have dealt with the buffer
1834          * containing the truncation point for us.
1835          *
1836          * We don't flush pending frontend data buffers until after we've
1837          * dealt with the truncation.
1838          */
1839         if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
1840                 /*
1841                  * Interlock trunc_off.  The VOP front-end may continue to
1842                  * make adjustments to it while we are blocked.
1843                  */
1844                 off_t trunc_off;
1845                 off_t aligned_trunc_off;
1846                 int blkmask;
1847
1848                 trunc_off = ip->sync_trunc_off;
1849                 blkmask = hammer_blocksize(trunc_off) - 1;
1850                 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
1851
1852                 /*
1853                  * Delete any whole blocks on-media.  The front-end has
1854                  * already cleaned out any partial block and made it
1855                  * pending.  The front-end may have updated trunc_off
1856                  * while we were blocked so we only use sync_trunc_off.
1857                  */
1858                 error = hammer_ip_delete_range(&cursor, ip,
1859                                                 aligned_trunc_off,
1860                                                 0x7FFFFFFFFFFFFFFFLL, 1);
1861                 if (error)
1862                         Debugger("hammer_ip_delete_range errored");
1863
1864                 /*
1865                  * Clear the truncation flag on the backend after we have
1866                  * complete the deletions.  Backend data is now good again
1867                  * (including new records we are about to sync, below).
1868                  *
1869                  * Leave sync_trunc_off intact.  As we write additional
1870                  * records the backend will update sync_trunc_off.  This
1871                  * tells the backend whether it can skip the overwrite
1872                  * test.  This should work properly even when the backend
1873                  * writes full blocks where the truncation point straddles
1874                  * the block because the comparison is against the base
1875                  * offset of the record.
1876                  */
1877                 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1878                 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
1879         } else {
1880                 error = 0;
1881         }
1882
1883         /*
1884          * Now sync related records.  These will typically be directory
1885          * entries or delete-on-disk records.
1886          *
1887          * Not all records will be flushed, but clear XDIRTY anyway.  We
1888          * will set it again in the frontend hammer_flush_inode_done() 
1889          * if records remain.
1890          */
1891         if (error == 0) {
1892                 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1893                                     hammer_sync_record_callback, &cursor);
1894                 if (tmp_error < 0)
1895                         tmp_error = -error;
1896                 if (tmp_error)
1897                         error = tmp_error;
1898         }
1899         hammer_cache_node(&ip->cache[1], cursor.node);
1900
1901         /*
1902          * Re-seek for inode update, assuming our cache hasn't been ripped
1903          * out from under us.
1904          */
1905         if (error == 0) {
1906                 tmp_node = hammer_ref_node_safe(ip->hmp, &ip->cache[0], &error);
1907                 if (tmp_node) {
1908                         if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
1909                                 hammer_cursor_seek(&cursor, tmp_node, 0);
1910                         hammer_rel_node(tmp_node);
1911                 }
1912                 error = 0;
1913         }
1914
1915         /*
1916          * If we are deleting the inode the frontend had better not have
1917          * any active references on elements making up the inode.
1918          */
1919         if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
1920                 RB_EMPTY(&ip->rec_tree)  &&
1921             (ip->sync_flags & HAMMER_INODE_DELETING) &&
1922             (ip->flags & HAMMER_INODE_DELETED) == 0) {
1923                 int count1 = 0;
1924
1925                 ip->flags |= HAMMER_INODE_DELETED;
1926                 error = hammer_ip_delete_range_all(&cursor, ip, &count1);
1927                 if (error == 0) {
1928                         ip->sync_flags &= ~HAMMER_INODE_DELETING;
1929                         ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1930                         KKASSERT(RB_EMPTY(&ip->rec_tree));
1931
1932                         /*
1933                          * Set delete_tid in both the frontend and backend
1934                          * copy of the inode record.  The DELETED flag handles
1935                          * this, do not set RDIRTY.
1936                          */
1937                         ip->ino_leaf.base.delete_tid = trans.tid;
1938                         ip->sync_ino_leaf.base.delete_tid = trans.tid;
1939                         ip->ino_leaf.delete_ts = trans.time32;
1940                         ip->sync_ino_leaf.delete_ts = trans.time32;
1941
1942
1943                         /*
1944                          * Adjust the inode count in the volume header
1945                          */
1946                         if (ip->flags & HAMMER_INODE_ONDISK) {
1947                                 hammer_modify_volume_field(&trans,
1948                                                            trans.rootvol,
1949                                                            vol0_stat_inodes);
1950                                 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1951                                 hammer_modify_volume_done(trans.rootvol);
1952                         }
1953                 } else {
1954                         ip->flags &= ~HAMMER_INODE_DELETED;
1955                         Debugger("hammer_ip_delete_range_all errored");
1956                 }
1957         }
1958
1959         ip->sync_flags &= ~HAMMER_INODE_BUFS;
1960
1961         if (error)
1962                 Debugger("RB_SCAN errored");
1963
1964         /*
1965          * Now update the inode's on-disk inode-data and/or on-disk record.
1966          * DELETED and ONDISK are managed only in ip->flags.
1967          */
1968         switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
1969         case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
1970                 /*
1971                  * If deleted and on-disk, don't set any additional flags.
1972                  * the delete flag takes care of things.
1973                  *
1974                  * Clear flags which may have been set by the frontend.
1975                  */
1976                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1977                                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
1978                                     HAMMER_INODE_DELETING);
1979                 break;
1980         case HAMMER_INODE_DELETED:
1981                 /*
1982                  * Take care of the case where a deleted inode was never
1983                  * flushed to the disk in the first place.
1984                  *
1985                  * Clear flags which may have been set by the frontend.
1986                  */
1987                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1988                                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
1989                                     HAMMER_INODE_DELETING);
1990                 while (RB_ROOT(&ip->rec_tree)) {
1991                         hammer_record_t record = RB_ROOT(&ip->rec_tree);
1992                         hammer_ref(&record->lock);
1993                         KKASSERT(record->lock.refs == 1);
1994                         record->flags |= HAMMER_RECF_DELETED_FE;
1995                         record->flags |= HAMMER_RECF_DELETED_BE;
1996                         hammer_rel_mem_record(record);
1997                 }
1998                 break;
1999         case HAMMER_INODE_ONDISK:
2000                 /*
2001                  * If already on-disk, do not set any additional flags.
2002                  */
2003                 break;
2004         default:
2005                 /*
2006                  * If not on-disk and not deleted, set DDIRTY to force
2007                  * an initial record to be written.
2008                  *
2009                  * Also set the create_tid in both the frontend and backend
2010                  * copy of the inode record.
2011                  */
2012                 ip->ino_leaf.base.create_tid = trans.tid;
2013                 ip->ino_leaf.create_ts = trans.time32;
2014                 ip->sync_ino_leaf.base.create_tid = trans.tid;
2015                 ip->sync_ino_leaf.create_ts = trans.time32;
2016                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2017                 break;
2018         }
2019
2020         /*
2021          * If RDIRTY or DDIRTY is set, write out a new record.  If the inode
2022          * is already on-disk the old record is marked as deleted.
2023          *
2024          * If DELETED is set hammer_update_inode() will delete the existing
2025          * record without writing out a new one.
2026          *
2027          * If *ONLY* the ITIMES flag is set we can update the record in-place.
2028          */
2029         if (ip->flags & HAMMER_INODE_DELETED) {
2030                 error = hammer_update_inode(&cursor, ip);
2031         } else 
2032         if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2033             (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2034                 error = hammer_update_itimes(&cursor, ip);
2035         } else
2036         if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2037                 error = hammer_update_inode(&cursor, ip);
2038         }
2039         if (error)
2040                 Debugger("hammer_update_itimes/inode errored");
2041 done:
2042         /*
2043          * Save the TID we used to sync the inode with to make sure we
2044          * do not improperly reuse it.
2045          */
2046         hammer_done_cursor(&cursor);
2047         hammer_done_transaction(&trans);
2048         return(error);
2049 }
2050
2051 /*
2052  * This routine is called when the OS is no longer actively referencing
2053  * the inode (but might still be keeping it cached), or when releasing
2054  * the last reference to an inode.
2055  *
2056  * At this point if the inode's nlinks count is zero we want to destroy
2057  * it, which may mean destroying it on-media too.
2058  */
2059 void
2060 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2061 {
2062         struct vnode *vp;
2063
2064         /*
2065          * Set the DELETING flag when the link count drops to 0 and the
2066          * OS no longer has any opens on the inode.
2067          *
2068          * The backend will clear DELETING (a mod flag) and set DELETED
2069          * (a state flag) when it is actually able to perform the
2070          * operation.
2071          */
2072         if (ip->ino_data.nlinks == 0 &&
2073             (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2074                 ip->flags |= HAMMER_INODE_DELETING;
2075                 ip->flags |= HAMMER_INODE_TRUNCATED;
2076                 ip->trunc_off = 0;
2077                 vp = NULL;
2078                 if (getvp) {
2079                         if (hammer_get_vnode(ip, &vp) != 0)
2080                                 return;
2081                 }
2082
2083                 /*
2084                  * Final cleanup
2085                  */
2086                 if (ip->vp) {
2087                         vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2088                         vnode_pager_setsize(ip->vp, 0);
2089                 }
2090                 if (getvp) {
2091                         vput(vp);
2092                 }
2093         }
2094 }
2095
2096 /*
2097  * Re-test an inode when a dependancy had gone away to see if we
2098  * can chain flush it.
2099  */
2100 void
2101 hammer_test_inode(hammer_inode_t ip)
2102 {
2103         if (ip->flags & HAMMER_INODE_REFLUSH) {
2104                 ip->flags &= ~HAMMER_INODE_REFLUSH;
2105                 hammer_ref(&ip->lock);
2106                 if (ip->flags & HAMMER_INODE_RESIGNAL) {
2107                         ip->flags &= ~HAMMER_INODE_RESIGNAL;
2108                         hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2109                 } else {
2110                         hammer_flush_inode(ip, 0);
2111                 }
2112                 hammer_rel_inode(ip, 0);
2113         }
2114 }
2115
2116 /*
2117  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
2118  * reassociated with a vp or just before it gets freed.
2119  *
2120  * Wakeup one thread blocked waiting on reclaims to complete.  Note that
2121  * the inode the thread is waiting on behalf of is a different inode then
2122  * the inode we are called with.  This is to create a pipeline.
2123  */
2124 static void
2125 hammer_inode_wakereclaims(hammer_inode_t ip)
2126 {
2127         struct hammer_reclaim *reclaim;
2128         hammer_mount_t hmp = ip->hmp;
2129
2130         if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2131                 return;
2132
2133         --hammer_count_reclaiming;
2134         --hmp->inode_reclaims;
2135         ip->flags &= ~HAMMER_INODE_RECLAIM;
2136
2137         if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
2138                 TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
2139                 reclaim->okydoky = 1;
2140                 wakeup(reclaim);
2141         }
2142 }
2143
2144 /*
2145  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
2146  * inodes build up before we start blocking.
2147  *
2148  * When we block we don't care *which* inode has finished reclaiming,
2149  * as lone as one does.  This is somewhat heuristical... we also put a
2150  * cap on how long we are willing to wait.
2151  */
2152 void
2153 hammer_inode_waitreclaims(hammer_mount_t hmp)
2154 {
2155         struct hammer_reclaim reclaim;
2156         int delay;
2157
2158         if (hmp->inode_reclaims > HAMMER_RECLAIM_WAIT) {
2159                 reclaim.okydoky = 0;
2160                 TAILQ_INSERT_TAIL(&hmp->reclaim_list,
2161                                   &reclaim, entry);
2162         } else {
2163                 reclaim.okydoky = 1;
2164         }
2165
2166         if (reclaim.okydoky == 0) {
2167                 delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
2168                         HAMMER_RECLAIM_WAIT;
2169                 if (delay >= 0)
2170                         tsleep(&reclaim, 0, "hmrrcm", delay + 1);
2171                 if (reclaim.okydoky == 0)
2172                         TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
2173         }
2174 }
2175