HAMMER 56A/Many: Performance tuning - MEDIA STRUCTURES CHANGED!
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.35 2008/05/09 07:24:48 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389         vm_object_t object;
390         int pageout_status[count];
391         int numpagedout = 0;
392         int i;
393
394         /*
395          * Initiate I/O.  Bump the vm_page_t->busy counter.
396          */
397         for (i = 0; i < count; i++) {
398                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
399                 vm_page_io_start(mc[i]);
400         }
401
402         /*
403          * We must make the pages read-only.  This will also force the
404          * modified bit in the related pmaps to be cleared.  The pager
405          * cannot clear the bit for us since the I/O completion code
406          * typically runs from an interrupt.  The act of making the page
407          * read-only handles the case for us.
408          */
409         for (i = 0; i < count; i++) {
410                 vm_page_protect(mc[i], VM_PROT_READ);
411         }
412
413         object = mc[0]->object;
414         vm_object_pip_add(object, count);
415
416         vm_pager_put_pages(object, mc, count,
417             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
418             pageout_status);
419
420         for (i = 0; i < count; i++) {
421                 vm_page_t mt = mc[i];
422
423                 switch (pageout_status[i]) {
424                 case VM_PAGER_OK:
425                         numpagedout++;
426                         break;
427                 case VM_PAGER_PEND:
428                         numpagedout++;
429                         break;
430                 case VM_PAGER_BAD:
431                         /*
432                          * Page outside of range of object. Right now we
433                          * essentially lose the changes by pretending it
434                          * worked.
435                          */
436                         pmap_clear_modify(mt);
437                         vm_page_undirty(mt);
438                         break;
439                 case VM_PAGER_ERROR:
440                 case VM_PAGER_FAIL:
441                         /*
442                          * If page couldn't be paged out, then reactivate the
443                          * page so it doesn't clog the inactive list.  (We
444                          * will try paging out it again later).
445                          */
446                         vm_page_activate(mt);
447                         break;
448                 case VM_PAGER_AGAIN:
449                         break;
450                 }
451
452                 /*
453                  * If the operation is still going, leave the page busy to
454                  * block all other accesses. Also, leave the paging in
455                  * progress indicator set so that we don't attempt an object
456                  * collapse.
457                  *
458                  * For any pages which have completed synchronously, 
459                  * deactivate the page if we are under a severe deficit.
460                  * Do not try to enter them into the cache, though, they
461                  * might still be read-heavy.
462                  */
463                 if (pageout_status[i] != VM_PAGER_PEND) {
464                         vm_object_pip_wakeup(object);
465                         vm_page_io_finish(mt);
466                         if (vm_page_count_severe())
467                                 vm_page_deactivate(mt);
468 #if 0
469                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
470                                 vm_page_protect(mt, VM_PROT_READ);
471 #endif
472                 }
473         }
474         return numpagedout;
475 }
476
477 #if !defined(NO_SWAPPING)
478 /*
479  *      vm_pageout_object_deactivate_pages
480  *
481  *      deactivate enough pages to satisfy the inactive target
482  *      requirements or if vm_page_proc_limit is set, then
483  *      deactivate all of the pages in the object and its
484  *      backing_objects.
485  *
486  *      The object and map must be locked.
487  */
488 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
489
490 static void
491 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
492         vm_pindex_t desired, int map_remove_only)
493 {
494         struct rb_vm_page_scan_info info;
495         int remove_mode;
496
497         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
498                 return;
499
500         while (object) {
501                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
502                         return;
503                 if (object->paging_in_progress)
504                         return;
505
506                 remove_mode = map_remove_only;
507                 if (object->shadow_count > 1)
508                         remove_mode = 1;
509
510                 /*
511                  * scan the objects entire memory queue.  spl protection is
512                  * required to avoid an interrupt unbusy/free race against
513                  * our busy check.
514                  */
515                 crit_enter();
516                 info.limit = remove_mode;
517                 info.map = map;
518                 info.desired = desired;
519                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
520                                 vm_pageout_object_deactivate_pages_callback,
521                                 &info
522                 );
523                 crit_exit();
524                 object = object->backing_object;
525         }
526 }
527                                         
528 static int
529 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
530 {
531         struct rb_vm_page_scan_info *info = data;
532         int actcount;
533
534         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
535                 return(-1);
536         }
537         mycpu->gd_cnt.v_pdpages++;
538         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
539             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
540             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
541                 return(0);
542         }
543
544         actcount = pmap_ts_referenced(p);
545         if (actcount) {
546                 vm_page_flag_set(p, PG_REFERENCED);
547         } else if (p->flags & PG_REFERENCED) {
548                 actcount = 1;
549         }
550
551         if ((p->queue != PQ_ACTIVE) &&
552                 (p->flags & PG_REFERENCED)) {
553                 vm_page_activate(p);
554                 p->act_count += actcount;
555                 vm_page_flag_clear(p, PG_REFERENCED);
556         } else if (p->queue == PQ_ACTIVE) {
557                 if ((p->flags & PG_REFERENCED) == 0) {
558                         p->act_count -= min(p->act_count, ACT_DECLINE);
559                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
560                                 vm_page_busy(p);
561                                 vm_page_protect(p, VM_PROT_NONE);
562                                 vm_page_wakeup(p);
563                                 vm_page_deactivate(p);
564                         } else {
565                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
566                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
567                         }
568                 } else {
569                         vm_page_activate(p);
570                         vm_page_flag_clear(p, PG_REFERENCED);
571                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
572                                 p->act_count += ACT_ADVANCE;
573                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
574                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
575                 }
576         } else if (p->queue == PQ_INACTIVE) {
577                 vm_page_busy(p);
578                 vm_page_protect(p, VM_PROT_NONE);
579                 vm_page_wakeup(p);
580         }
581         return(0);
582 }
583
584 /*
585  * deactivate some number of pages in a map, try to do it fairly, but
586  * that is really hard to do.
587  */
588 static void
589 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
590 {
591         vm_map_entry_t tmpe;
592         vm_object_t obj, bigobj;
593         int nothingwired;
594
595         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
596                 return;
597         }
598
599         bigobj = NULL;
600         nothingwired = TRUE;
601
602         /*
603          * first, search out the biggest object, and try to free pages from
604          * that.
605          */
606         tmpe = map->header.next;
607         while (tmpe != &map->header) {
608                 switch(tmpe->maptype) {
609                 case VM_MAPTYPE_NORMAL:
610                 case VM_MAPTYPE_VPAGETABLE:
611                         obj = tmpe->object.vm_object;
612                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
613                                 ((bigobj == NULL) ||
614                                  (bigobj->resident_page_count < obj->resident_page_count))) {
615                                 bigobj = obj;
616                         }
617                         break;
618                 default:
619                         break;
620                 }
621                 if (tmpe->wired_count > 0)
622                         nothingwired = FALSE;
623                 tmpe = tmpe->next;
624         }
625
626         if (bigobj)
627                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
628
629         /*
630          * Next, hunt around for other pages to deactivate.  We actually
631          * do this search sort of wrong -- .text first is not the best idea.
632          */
633         tmpe = map->header.next;
634         while (tmpe != &map->header) {
635                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
636                         break;
637                 switch(tmpe->maptype) {
638                 case VM_MAPTYPE_NORMAL:
639                 case VM_MAPTYPE_VPAGETABLE:
640                         obj = tmpe->object.vm_object;
641                         if (obj)
642                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
643                         break;
644                 default:
645                         break;
646                 }
647                 tmpe = tmpe->next;
648         };
649
650         /*
651          * Remove all mappings if a process is swapped out, this will free page
652          * table pages.
653          */
654         if (desired == 0 && nothingwired)
655                 pmap_remove(vm_map_pmap(map),
656                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
657         vm_map_unlock(map);
658 }
659 #endif
660
661 /*
662  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
663  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
664  * be trivially freed.
665  */
666 void
667 vm_pageout_page_free(vm_page_t m) 
668 {
669         vm_object_t object = m->object;
670         int type = object->type;
671
672         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
673                 vm_object_reference(object);
674         vm_page_busy(m);
675         vm_page_protect(m, VM_PROT_NONE);
676         vm_page_free(m);
677         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
678                 vm_object_deallocate(object);
679 }
680
681 /*
682  *      vm_pageout_scan does the dirty work for the pageout daemon.
683  */
684
685 struct vm_pageout_scan_info {
686         struct proc *bigproc;
687         vm_offset_t bigsize;
688 };
689
690 static int vm_pageout_scan_callback(struct proc *p, void *data);
691
692 static void
693 vm_pageout_scan(int pass)
694 {
695         struct vm_pageout_scan_info info;
696         vm_page_t m, next;
697         struct vm_page marker;
698         int page_shortage, maxscan, pcount;
699         int addl_page_shortage, addl_page_shortage_init;
700         vm_object_t object;
701         int actcount;
702         int vnodes_skipped = 0;
703         int maxlaunder;
704
705         /*
706          * Do whatever cleanup that the pmap code can.
707          */
708         pmap_collect();
709
710         addl_page_shortage_init = vm_pageout_deficit;
711         vm_pageout_deficit = 0;
712
713         /*
714          * Calculate the number of pages we want to either free or move
715          * to the cache.
716          */
717         page_shortage = vm_paging_target() + addl_page_shortage_init;
718
719         /*
720          * Initialize our marker
721          */
722         bzero(&marker, sizeof(marker));
723         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
724         marker.queue = PQ_INACTIVE;
725         marker.wire_count = 1;
726
727         /*
728          * Start scanning the inactive queue for pages we can move to the
729          * cache or free.  The scan will stop when the target is reached or
730          * we have scanned the entire inactive queue.  Note that m->act_count
731          * is not used to form decisions for the inactive queue, only for the
732          * active queue.
733          *
734          * maxlaunder limits the number of dirty pages we flush per scan.
735          * For most systems a smaller value (16 or 32) is more robust under
736          * extreme memory and disk pressure because any unnecessary writes
737          * to disk can result in extreme performance degredation.  However,
738          * systems with excessive dirty pages (especially when MAP_NOSYNC is
739          * used) will die horribly with limited laundering.  If the pageout
740          * daemon cannot clean enough pages in the first pass, we let it go
741          * all out in succeeding passes.
742          */
743         if ((maxlaunder = vm_max_launder) <= 1)
744                 maxlaunder = 1;
745         if (pass)
746                 maxlaunder = 10000;
747
748         /*
749          * We will generally be in a critical section throughout the 
750          * scan, but we can release it temporarily when we are sitting on a
751          * non-busy page without fear.  this is required to prevent an
752          * interrupt from unbusying or freeing a page prior to our busy
753          * check, leaving us on the wrong queue or checking the wrong
754          * page.
755          */
756         crit_enter();
757 rescan0:
758         addl_page_shortage = addl_page_shortage_init;
759         maxscan = vmstats.v_inactive_count;
760         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
761              m != NULL && maxscan-- > 0 && page_shortage > 0;
762              m = next
763          ) {
764                 mycpu->gd_cnt.v_pdpages++;
765
766                 /*
767                  * Give interrupts a chance
768                  */
769                 crit_exit();
770                 crit_enter();
771
772                 /*
773                  * It's easier for some of the conditions below to just loop
774                  * and catch queue changes here rather then check everywhere
775                  * else.
776                  */
777                 if (m->queue != PQ_INACTIVE)
778                         goto rescan0;
779                 next = TAILQ_NEXT(m, pageq);
780
781                 /*
782                  * skip marker pages
783                  */
784                 if (m->flags & PG_MARKER)
785                         continue;
786
787                 /*
788                  * A held page may be undergoing I/O, so skip it.
789                  */
790                 if (m->hold_count) {
791                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
792                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
793                         addl_page_shortage++;
794                         continue;
795                 }
796
797                 /*
798                  * Dont mess with busy pages, keep in the front of the
799                  * queue, most likely are being paged out.
800                  */
801                 if (m->busy || (m->flags & PG_BUSY)) {
802                         addl_page_shortage++;
803                         continue;
804                 }
805
806                 if (m->object->ref_count == 0) {
807                         /*
808                          * If the object is not being used, we ignore previous 
809                          * references.
810                          */
811                         vm_page_flag_clear(m, PG_REFERENCED);
812                         pmap_clear_reference(m);
813
814                 } else if (((m->flags & PG_REFERENCED) == 0) &&
815                             (actcount = pmap_ts_referenced(m))) {
816                         /*
817                          * Otherwise, if the page has been referenced while 
818                          * in the inactive queue, we bump the "activation
819                          * count" upwards, making it less likely that the
820                          * page will be added back to the inactive queue
821                          * prematurely again.  Here we check the page tables
822                          * (or emulated bits, if any), given the upper level
823                          * VM system not knowing anything about existing 
824                          * references.
825                          */
826                         vm_page_activate(m);
827                         m->act_count += (actcount + ACT_ADVANCE);
828                         continue;
829                 }
830
831                 /*
832                  * If the upper level VM system knows about any page 
833                  * references, we activate the page.  We also set the 
834                  * "activation count" higher than normal so that we will less 
835                  * likely place pages back onto the inactive queue again.
836                  */
837                 if ((m->flags & PG_REFERENCED) != 0) {
838                         vm_page_flag_clear(m, PG_REFERENCED);
839                         actcount = pmap_ts_referenced(m);
840                         vm_page_activate(m);
841                         m->act_count += (actcount + ACT_ADVANCE + 1);
842                         continue;
843                 }
844
845                 /*
846                  * If the upper level VM system doesn't know anything about 
847                  * the page being dirty, we have to check for it again.  As 
848                  * far as the VM code knows, any partially dirty pages are 
849                  * fully dirty.
850                  *
851                  * Pages marked PG_WRITEABLE may be mapped into the user
852                  * address space of a process running on another cpu.  A
853                  * user process (without holding the MP lock) running on
854                  * another cpu may be able to touch the page while we are
855                  * trying to remove it.  vm_page_cache() will handle this
856                  * case for us.
857                  */
858                 if (m->dirty == 0) {
859                         vm_page_test_dirty(m);
860 #if 0
861                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
862                                 pmap_remove_all(m);
863 #endif
864                 } else {
865                         vm_page_dirty(m);
866                 }
867
868                 if (m->valid == 0) {
869                         /*
870                          * Invalid pages can be easily freed
871                          */
872                         vm_pageout_page_free(m);
873                         mycpu->gd_cnt.v_dfree++;
874                         --page_shortage;
875                 } else if (m->dirty == 0) {
876                         /*
877                          * Clean pages can be placed onto the cache queue.
878                          * This effectively frees them.
879                          */
880                         vm_page_cache(m);
881                         --page_shortage;
882                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
883                         /*
884                          * Dirty pages need to be paged out, but flushing
885                          * a page is extremely expensive verses freeing
886                          * a clean page.  Rather then artificially limiting
887                          * the number of pages we can flush, we instead give
888                          * dirty pages extra priority on the inactive queue
889                          * by forcing them to be cycled through the queue
890                          * twice before being flushed, after which the 
891                          * (now clean) page will cycle through once more
892                          * before being freed.  This significantly extends
893                          * the thrash point for a heavily loaded machine.
894                          */
895                         vm_page_flag_set(m, PG_WINATCFLS);
896                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
897                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
898                 } else if (maxlaunder > 0) {
899                         /*
900                          * We always want to try to flush some dirty pages if
901                          * we encounter them, to keep the system stable.
902                          * Normally this number is small, but under extreme
903                          * pressure where there are insufficient clean pages
904                          * on the inactive queue, we may have to go all out.
905                          */
906                         int swap_pageouts_ok;
907                         struct vnode *vp = NULL;
908
909                         object = m->object;
910
911                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
912                                 swap_pageouts_ok = 1;
913                         } else {
914                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
915                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
916                                 vm_page_count_min());
917                                                                                 
918                         }
919
920                         /*
921                          * We don't bother paging objects that are "dead".  
922                          * Those objects are in a "rundown" state.
923                          */
924                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
925                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
926                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
927                                 continue;
928                         }
929
930                         /*
931                          * The object is already known NOT to be dead.   It
932                          * is possible for the vget() to block the whole
933                          * pageout daemon, but the new low-memory handling
934                          * code should prevent it.
935                          *
936                          * The previous code skipped locked vnodes and, worse,
937                          * reordered pages in the queue.  This results in
938                          * completely non-deterministic operation because,
939                          * quite often, a vm_fault has initiated an I/O and
940                          * is holding a locked vnode at just the point where
941                          * the pageout daemon is woken up.
942                          *
943                          * We can't wait forever for the vnode lock, we might
944                          * deadlock due to a vn_read() getting stuck in
945                          * vm_wait while holding this vnode.  We skip the 
946                          * vnode if we can't get it in a reasonable amount
947                          * of time.
948                          */
949
950                         if (object->type == OBJT_VNODE) {
951                                 vp = object->handle;
952
953                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
954                                         ++pageout_lock_miss;
955                                         if (object->flags & OBJ_MIGHTBEDIRTY)
956                                                     vnodes_skipped++;
957                                         continue;
958                                 }
959
960                                 /*
961                                  * The page might have been moved to another
962                                  * queue during potential blocking in vget()
963                                  * above.  The page might have been freed and
964                                  * reused for another vnode.  The object might
965                                  * have been reused for another vnode.
966                                  */
967                                 if (m->queue != PQ_INACTIVE ||
968                                     m->object != object ||
969                                     object->handle != vp) {
970                                         if (object->flags & OBJ_MIGHTBEDIRTY)
971                                                 vnodes_skipped++;
972                                         vput(vp);
973                                         continue;
974                                 }
975         
976                                 /*
977                                  * The page may have been busied during the
978                                  * blocking in vput();  We don't move the
979                                  * page back onto the end of the queue so that
980                                  * statistics are more correct if we don't.
981                                  */
982                                 if (m->busy || (m->flags & PG_BUSY)) {
983                                         vput(vp);
984                                         continue;
985                                 }
986
987                                 /*
988                                  * If the page has become held it might
989                                  * be undergoing I/O, so skip it
990                                  */
991                                 if (m->hold_count) {
992                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
993                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
994                                         if (object->flags & OBJ_MIGHTBEDIRTY)
995                                                 vnodes_skipped++;
996                                         vput(vp);
997                                         continue;
998                                 }
999                         }
1000
1001                         /*
1002                          * If a page is dirty, then it is either being washed
1003                          * (but not yet cleaned) or it is still in the
1004                          * laundry.  If it is still in the laundry, then we
1005                          * start the cleaning operation. 
1006                          *
1007                          * This operation may cluster, invalidating the 'next'
1008                          * pointer.  To prevent an inordinate number of
1009                          * restarts we use our marker to remember our place.
1010                          *
1011                          * decrement page_shortage on success to account for
1012                          * the (future) cleaned page.  Otherwise we could wind
1013                          * up laundering or cleaning too many pages.
1014                          */
1015                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1016                         if (vm_pageout_clean(m) != 0) {
1017                                 --page_shortage;
1018                                 --maxlaunder;
1019                         } 
1020                         next = TAILQ_NEXT(&marker, pageq);
1021                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1022                         if (vp != NULL)
1023                                 vput(vp);
1024                 }
1025         }
1026
1027         /*
1028          * Compute the number of pages we want to try to move from the
1029          * active queue to the inactive queue.
1030          */
1031         page_shortage = vm_paging_target() +
1032             vmstats.v_inactive_target - vmstats.v_inactive_count;
1033         page_shortage += addl_page_shortage;
1034
1035         /*
1036          * Scan the active queue for things we can deactivate. We nominally
1037          * track the per-page activity counter and use it to locate 
1038          * deactivation candidates.
1039          *
1040          * NOTE: we are still in a critical section.
1041          */
1042         pcount = vmstats.v_active_count;
1043         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1044
1045         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1046                 /*
1047                  * Give interrupts a chance.
1048                  */
1049                 crit_exit();
1050                 crit_enter();
1051
1052                 /*
1053                  * If the page was ripped out from under us, just stop.
1054                  */
1055                 if (m->queue != PQ_ACTIVE)
1056                         break;
1057                 next = TAILQ_NEXT(m, pageq);
1058
1059                 /*
1060                  * Don't deactivate pages that are busy.
1061                  */
1062                 if ((m->busy != 0) ||
1063                     (m->flags & PG_BUSY) ||
1064                     (m->hold_count != 0)) {
1065                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1066                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1067                         m = next;
1068                         continue;
1069                 }
1070
1071                 /*
1072                  * The count for pagedaemon pages is done after checking the
1073                  * page for eligibility...
1074                  */
1075                 mycpu->gd_cnt.v_pdpages++;
1076
1077                 /*
1078                  * Check to see "how much" the page has been used.
1079                  */
1080                 actcount = 0;
1081                 if (m->object->ref_count != 0) {
1082                         if (m->flags & PG_REFERENCED) {
1083                                 actcount += 1;
1084                         }
1085                         actcount += pmap_ts_referenced(m);
1086                         if (actcount) {
1087                                 m->act_count += ACT_ADVANCE + actcount;
1088                                 if (m->act_count > ACT_MAX)
1089                                         m->act_count = ACT_MAX;
1090                         }
1091                 }
1092
1093                 /*
1094                  * Since we have "tested" this bit, we need to clear it now.
1095                  */
1096                 vm_page_flag_clear(m, PG_REFERENCED);
1097
1098                 /*
1099                  * Only if an object is currently being used, do we use the
1100                  * page activation count stats.
1101                  */
1102                 if (actcount && (m->object->ref_count != 0)) {
1103                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1104                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1105                 } else {
1106                         m->act_count -= min(m->act_count, ACT_DECLINE);
1107                         if (vm_pageout_algorithm ||
1108                             m->object->ref_count == 0 ||
1109                             m->act_count < pass) {
1110                                 page_shortage--;
1111                                 if (m->object->ref_count == 0) {
1112                                         vm_page_busy(m);
1113                                         vm_page_protect(m, VM_PROT_NONE);
1114                                         vm_page_wakeup(m);
1115                                         if (m->dirty == 0)
1116                                                 vm_page_cache(m);
1117                                         else
1118                                                 vm_page_deactivate(m);
1119                                 } else {
1120                                         vm_page_deactivate(m);
1121                                 }
1122                         } else {
1123                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1124                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1125                         }
1126                 }
1127                 m = next;
1128         }
1129
1130         /*
1131          * We try to maintain some *really* free pages, this allows interrupt
1132          * code to be guaranteed space.  Since both cache and free queues 
1133          * are considered basically 'free', moving pages from cache to free
1134          * does not effect other calculations.
1135          *
1136          * NOTE: we are still in a critical section.
1137          */
1138
1139         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1140                 static int cache_rover = 0;
1141                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1142                 if (!m)
1143                         break;
1144                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1145                     m->busy || 
1146                     m->hold_count || 
1147                     m->wire_count) {
1148 #ifdef INVARIANTS
1149                         kprintf("Warning: busy page %p found in cache\n", m);
1150 #endif
1151                         vm_page_deactivate(m);
1152                         continue;
1153                 }
1154                 KKASSERT((m->flags & PG_MAPPED) == 0);
1155                 KKASSERT(m->dirty == 0);
1156                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1157                 vm_pageout_page_free(m);
1158                 mycpu->gd_cnt.v_dfree++;
1159         }
1160
1161         crit_exit();
1162
1163 #if !defined(NO_SWAPPING)
1164         /*
1165          * Idle process swapout -- run once per second.
1166          */
1167         if (vm_swap_idle_enabled) {
1168                 static long lsec;
1169                 if (time_second != lsec) {
1170                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1171                         vm_req_vmdaemon();
1172                         lsec = time_second;
1173                 }
1174         }
1175 #endif
1176                 
1177         /*
1178          * If we didn't get enough free pages, and we have skipped a vnode
1179          * in a writeable object, wakeup the sync daemon.  And kick swapout
1180          * if we did not get enough free pages.
1181          */
1182         if (vm_paging_target() > 0) {
1183                 if (vnodes_skipped && vm_page_count_min())
1184                         speedup_syncer();
1185 #if !defined(NO_SWAPPING)
1186                 if (vm_swap_enabled && vm_page_count_target()) {
1187                         vm_req_vmdaemon();
1188                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1189                 }
1190 #endif
1191         }
1192
1193         /*
1194          * If we are out of swap and were not able to reach our paging
1195          * target, kill the largest process.
1196          */
1197         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1198             (swap_pager_full && vm_paging_target() > 0)) {
1199 #if 0
1200         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1201 #endif
1202                 info.bigproc = NULL;
1203                 info.bigsize = 0;
1204                 allproc_scan(vm_pageout_scan_callback, &info);
1205                 if (info.bigproc != NULL) {
1206                         killproc(info.bigproc, "out of swap space");
1207                         info.bigproc->p_nice = PRIO_MIN;
1208                         info.bigproc->p_usched->resetpriority(
1209                                 FIRST_LWP_IN_PROC(info.bigproc));
1210                         wakeup(&vmstats.v_free_count);
1211                         PRELE(info.bigproc);
1212                 }
1213         }
1214 }
1215
1216 static int
1217 vm_pageout_scan_callback(struct proc *p, void *data)
1218 {
1219         struct vm_pageout_scan_info *info = data;
1220         vm_offset_t size;
1221
1222         /*
1223          * if this is a system process, skip it
1224          */
1225         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1226             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1227                 return (0);
1228         }
1229
1230         /*
1231          * if the process is in a non-running type state,
1232          * don't touch it.
1233          */
1234         if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1235                 return (0);
1236         }
1237
1238         /*
1239          * get the process size
1240          */
1241         size = vmspace_resident_count(p->p_vmspace) +
1242                 vmspace_swap_count(p->p_vmspace);
1243
1244         /*
1245          * If the this process is bigger than the biggest one
1246          * remember it.
1247          */
1248         if (size > info->bigsize) {
1249                 if (info->bigproc)
1250                         PRELE(info->bigproc);
1251                 PHOLD(p);
1252                 info->bigproc = p;
1253                 info->bigsize = size;
1254         }
1255         return(0);
1256 }
1257
1258 /*
1259  * This routine tries to maintain the pseudo LRU active queue,
1260  * so that during long periods of time where there is no paging,
1261  * that some statistic accumulation still occurs.  This code
1262  * helps the situation where paging just starts to occur.
1263  */
1264 static void
1265 vm_pageout_page_stats(void)
1266 {
1267         vm_page_t m,next;
1268         int pcount,tpcount;             /* Number of pages to check */
1269         static int fullintervalcount = 0;
1270         int page_shortage;
1271
1272         page_shortage = 
1273             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1274             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1275
1276         if (page_shortage <= 0)
1277                 return;
1278
1279         crit_enter();
1280
1281         pcount = vmstats.v_active_count;
1282         fullintervalcount += vm_pageout_stats_interval;
1283         if (fullintervalcount < vm_pageout_full_stats_interval) {
1284                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1285                 if (pcount > tpcount)
1286                         pcount = tpcount;
1287         } else {
1288                 fullintervalcount = 0;
1289         }
1290
1291         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1292         while ((m != NULL) && (pcount-- > 0)) {
1293                 int actcount;
1294
1295                 if (m->queue != PQ_ACTIVE) {
1296                         break;
1297                 }
1298
1299                 next = TAILQ_NEXT(m, pageq);
1300                 /*
1301                  * Don't deactivate pages that are busy.
1302                  */
1303                 if ((m->busy != 0) ||
1304                     (m->flags & PG_BUSY) ||
1305                     (m->hold_count != 0)) {
1306                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1307                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1308                         m = next;
1309                         continue;
1310                 }
1311
1312                 actcount = 0;
1313                 if (m->flags & PG_REFERENCED) {
1314                         vm_page_flag_clear(m, PG_REFERENCED);
1315                         actcount += 1;
1316                 }
1317
1318                 actcount += pmap_ts_referenced(m);
1319                 if (actcount) {
1320                         m->act_count += ACT_ADVANCE + actcount;
1321                         if (m->act_count > ACT_MAX)
1322                                 m->act_count = ACT_MAX;
1323                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1324                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1325                 } else {
1326                         if (m->act_count == 0) {
1327                                 /*
1328                                  * We turn off page access, so that we have
1329                                  * more accurate RSS stats.  We don't do this
1330                                  * in the normal page deactivation when the
1331                                  * system is loaded VM wise, because the
1332                                  * cost of the large number of page protect
1333                                  * operations would be higher than the value
1334                                  * of doing the operation.
1335                                  */
1336                                 vm_page_busy(m);
1337                                 vm_page_protect(m, VM_PROT_NONE);
1338                                 vm_page_wakeup(m);
1339                                 vm_page_deactivate(m);
1340                         } else {
1341                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1342                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1343                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1344                         }
1345                 }
1346
1347                 m = next;
1348         }
1349         crit_exit();
1350 }
1351
1352 static int
1353 vm_pageout_free_page_calc(vm_size_t count)
1354 {
1355         if (count < vmstats.v_page_count)
1356                  return 0;
1357         /*
1358          * free_reserved needs to include enough for the largest swap pager
1359          * structures plus enough for any pv_entry structs when paging.
1360          */
1361         if (vmstats.v_page_count > 1024)
1362                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1363         else
1364                 vmstats.v_free_min = 4;
1365         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1366                 vmstats.v_interrupt_free_min;
1367         vmstats.v_free_reserved = vm_pageout_page_count +
1368                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1369         vmstats.v_free_severe = vmstats.v_free_min / 2;
1370         vmstats.v_free_min += vmstats.v_free_reserved;
1371         vmstats.v_free_severe += vmstats.v_free_reserved;
1372         return 1;
1373 }
1374
1375
1376 /*
1377  *      vm_pageout is the high level pageout daemon.
1378  */
1379 static void
1380 vm_pageout(void)
1381 {
1382         int pass;
1383
1384         /*
1385          * Initialize some paging parameters.
1386          */
1387
1388         vmstats.v_interrupt_free_min = 2;
1389         if (vmstats.v_page_count < 2000)
1390                 vm_pageout_page_count = 8;
1391
1392         vm_pageout_free_page_calc(vmstats.v_page_count);
1393         /*
1394          * v_free_target and v_cache_min control pageout hysteresis.  Note
1395          * that these are more a measure of the VM cache queue hysteresis
1396          * then the VM free queue.  Specifically, v_free_target is the
1397          * high water mark (free+cache pages).
1398          *
1399          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1400          * low water mark, while v_free_min is the stop.  v_cache_min must
1401          * be big enough to handle memory needs while the pageout daemon
1402          * is signalled and run to free more pages.
1403          */
1404         if (vmstats.v_free_count > 6144)
1405                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1406         else
1407                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1408
1409         if (vmstats.v_free_count > 2048) {
1410                 vmstats.v_cache_min = vmstats.v_free_target;
1411                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1412                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1413         } else {
1414                 vmstats.v_cache_min = 0;
1415                 vmstats.v_cache_max = 0;
1416                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1417         }
1418         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1419                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1420
1421         /* XXX does not really belong here */
1422         if (vm_page_max_wired == 0)
1423                 vm_page_max_wired = vmstats.v_free_count / 3;
1424
1425         if (vm_pageout_stats_max == 0)
1426                 vm_pageout_stats_max = vmstats.v_free_target;
1427
1428         /*
1429          * Set interval in seconds for stats scan.
1430          */
1431         if (vm_pageout_stats_interval == 0)
1432                 vm_pageout_stats_interval = 5;
1433         if (vm_pageout_full_stats_interval == 0)
1434                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1435         
1436
1437         /*
1438          * Set maximum free per pass
1439          */
1440         if (vm_pageout_stats_free_max == 0)
1441                 vm_pageout_stats_free_max = 5;
1442
1443         swap_pager_swap_init();
1444         pass = 0;
1445         /*
1446          * The pageout daemon is never done, so loop forever.
1447          */
1448         while (TRUE) {
1449                 int error;
1450
1451                 /*
1452                  * If we have enough free memory, wakeup waiters.  Do
1453                  * not clear vm_pages_needed until we reach our target,
1454                  * otherwise we may be woken up over and over again and
1455                  * waste a lot of cpu.
1456                  */
1457                 crit_enter();
1458                 if (vm_pages_needed && !vm_page_count_min()) {
1459                         if (vm_paging_needed() <= 0)
1460                                 vm_pages_needed = 0;
1461                         wakeup(&vmstats.v_free_count);
1462                 }
1463                 if (vm_pages_needed) {
1464                         /*
1465                          * Still not done, take a second pass without waiting
1466                          * (unlimited dirty cleaning), otherwise sleep a bit
1467                          * and try again.
1468                          */
1469                         ++pass;
1470                         if (pass > 1)
1471                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1472                 } else {
1473                         /*
1474                          * Good enough, sleep & handle stats.  Prime the pass
1475                          * for the next run.
1476                          */
1477                         if (pass > 1)
1478                                 pass = 1;
1479                         else
1480                                 pass = 0;
1481                         error = tsleep(&vm_pages_needed,
1482                                 0, "psleep", vm_pageout_stats_interval * hz);
1483                         if (error && !vm_pages_needed) {
1484                                 crit_exit();
1485                                 pass = 0;
1486                                 vm_pageout_page_stats();
1487                                 continue;
1488                         }
1489                 }
1490
1491                 if (vm_pages_needed)
1492                         mycpu->gd_cnt.v_pdwakeups++;
1493                 crit_exit();
1494                 vm_pageout_scan(pass);
1495                 vm_pageout_deficit = 0;
1496         }
1497 }
1498
1499 void
1500 pagedaemon_wakeup(void)
1501 {
1502         if (!vm_pages_needed && curthread != pagethread) {
1503                 vm_pages_needed++;
1504                 wakeup(&vm_pages_needed);
1505         }
1506 }
1507
1508 #if !defined(NO_SWAPPING)
1509 static void
1510 vm_req_vmdaemon(void)
1511 {
1512         static int lastrun = 0;
1513
1514         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1515                 wakeup(&vm_daemon_needed);
1516                 lastrun = ticks;
1517         }
1518 }
1519
1520 static int vm_daemon_callback(struct proc *p, void *data __unused);
1521
1522 static void
1523 vm_daemon(void)
1524 {
1525         while (TRUE) {
1526                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1527                 if (vm_pageout_req_swapout) {
1528                         swapout_procs(vm_pageout_req_swapout);
1529                         vm_pageout_req_swapout = 0;
1530                 }
1531                 /*
1532                  * scan the processes for exceeding their rlimits or if
1533                  * process is swapped out -- deactivate pages
1534                  */
1535                 allproc_scan(vm_daemon_callback, NULL);
1536         }
1537 }
1538
1539 static int
1540 vm_daemon_callback(struct proc *p, void *data __unused)
1541 {
1542         vm_pindex_t limit, size;
1543
1544         /*
1545          * if this is a system process or if we have already
1546          * looked at this process, skip it.
1547          */
1548         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1549                 return (0);
1550
1551         /*
1552          * if the process is in a non-running type state,
1553          * don't touch it.
1554          */
1555         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1556                 return (0);
1557
1558         /*
1559          * get a limit
1560          */
1561         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1562                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1563
1564         /*
1565          * let processes that are swapped out really be
1566          * swapped out.  Set the limit to nothing to get as
1567          * many pages out to swap as possible.
1568          */
1569         if (p->p_flag & P_SWAPPEDOUT)
1570                 limit = 0;
1571
1572         size = vmspace_resident_count(p->p_vmspace);
1573         if (limit >= 0 && size >= limit) {
1574                 vm_pageout_map_deactivate_pages(
1575                     &p->p_vmspace->vm_map, limit);
1576         }
1577         return (0);
1578 }
1579
1580 #endif