Merge branch 'devel' (early part)
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68
69 /*
70  *      Virtual memory object module.
71  */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>           /* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97
98 #define EASY_SCAN_FACTOR        8
99
100 static void     vm_object_qcollapse(vm_object_t object);
101 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
102                                              int pagerflags);
103 static void     vm_object_lock_init(vm_object_t);
104 static void     vm_object_hold_wait(vm_object_t);
105
106
107 /*
108  *      Virtual memory objects maintain the actual data
109  *      associated with allocated virtual memory.  A given
110  *      page of memory exists within exactly one object.
111  *
112  *      An object is only deallocated when all "references"
113  *      are given up.  Only one "reference" to a given
114  *      region of an object should be writeable.
115  *
116  *      Associated with each object is a list of all resident
117  *      memory pages belonging to that object; this list is
118  *      maintained by the "vm_page" module, and locked by the object's
119  *      lock.
120  *
121  *      Each object also records a "pager" routine which is
122  *      used to retrieve (and store) pages to the proper backing
123  *      storage.  In addition, objects may be backed by other
124  *      objects from which they were virtual-copied.
125  *
126  *      The only items within the object structure which are
127  *      modified after time of creation are:
128  *              reference count         locked by object's lock
129  *              pager routine           locked by object's lock
130  *
131  */
132
133 struct object_q vm_object_list;         /* locked by vmobj_token */
134 struct vm_object kernel_object;
135
136 static long vm_object_count;            /* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154         int i;
155
156         obj->debug_hold_bitmap = 0;
157         obj->debug_hold_ovfl = 0;
158         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159                 obj->debug_hold_thrs[i] = NULL;
160         }
161 #endif
162 }
163
164 static void
165 vm_object_lock_swap(void)
166 {
167         lwkt_token_swap();
168 }
169
170 void
171 vm_object_lock(vm_object_t obj)
172 {
173         lwkt_getpooltoken(obj);
174 }
175
176 void
177 vm_object_unlock(vm_object_t obj)
178 {
179         lwkt_relpooltoken(obj);
180 }
181
182 static __inline void
183 vm_object_assert_held(vm_object_t obj)
184 {
185         ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup(obj));
186 }
187
188 void
189 vm_object_hold(vm_object_t obj)
190 {
191         if (obj == NULL)
192                 return;
193
194         /*
195          * Object must be held (object allocation is stable due to callers
196          * context, typically already holding the token on a parent object)
197          * prior to potentially blocking on the lock, otherwise the object
198          * can get ripped away from us.
199          */
200         refcount_acquire(&obj->hold_count);
201         vm_object_lock(obj);
202
203 #if defined(DEBUG_LOCKS)
204         int i;
205
206         i = ffs(~obj->debug_hold_bitmap) - 1;
207         if (i == -1) {
208                 kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE");
209                 obj->debug_hold_ovfl = 1;
210         }
211
212         obj->debug_hold_bitmap |= (1 << i);
213         obj->debug_hold_thrs[i] = curthread;
214 #endif
215 }
216
217 void
218 vm_object_drop(vm_object_t obj)
219 {
220         if (obj == NULL)
221                 return;
222
223 #if defined(DEBUG_LOCKS)
224         int found = 0;
225         int i;
226
227         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
228                 if ((obj->debug_hold_bitmap & (1 << i)) &&
229                     (obj->debug_hold_thrs[i] == curthread)) {
230                         obj->debug_hold_bitmap &= ~(1 << i);
231                         obj->debug_hold_thrs[i] = NULL;
232                         found = 1;
233                         break;
234                 }
235         }
236
237         if (found == 0 && obj->debug_hold_ovfl == 0)
238                 panic("vm_object: attempt to drop hold on non-self-held obj");
239 #endif
240
241         /*
242          * The lock is a pool token, keep holding it across potential
243          * wakeups to interlock the tsleep/wakeup.
244          */
245         if (refcount_release(&obj->hold_count))
246                 wakeup(obj);
247         vm_object_unlock(obj);
248 }
249
250 /*
251  * This can only be called while the caller holds the object
252  * with the OBJ_DEAD interlock.  Since there are no refs this
253  * is the only thing preventing an object destruction race.
254  */
255 static void
256 vm_object_hold_wait(vm_object_t obj)
257 {
258         vm_object_lock(obj);
259
260 #if defined(DEBUG_LOCKS)
261         int i;
262
263         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
264                 if ((obj->debug_hold_bitmap & (1 << i)) &&
265                     (obj->debug_hold_thrs[i] == curthread))  {
266                         panic("vm_object: self-hold in terminate or collapse");
267                 }
268         }
269 #endif
270
271         while (obj->hold_count)
272                 tsleep(obj, 0, "vmobjhld", 0);
273
274         vm_object_unlock(obj);
275 }
276
277
278 /*
279  * Initialize a freshly allocated object
280  *
281  * Used only by vm_object_allocate() and zinitna().
282  *
283  * No requirements.
284  */
285 void
286 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
287 {
288         int incr;
289
290         RB_INIT(&object->rb_memq);
291         LIST_INIT(&object->shadow_head);
292
293         object->type = type;
294         object->size = size;
295         object->ref_count = 1;
296         object->hold_count = 0;
297         object->flags = 0;
298         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
299                 vm_object_set_flag(object, OBJ_ONEMAPPING);
300         object->paging_in_progress = 0;
301         object->resident_page_count = 0;
302         object->agg_pv_list_count = 0;
303         object->shadow_count = 0;
304         object->pg_color = next_index;
305         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
306                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
307         else
308                 incr = size;
309         next_index = (next_index + incr) & PQ_L2_MASK;
310         object->handle = NULL;
311         object->backing_object = NULL;
312         object->backing_object_offset = (vm_ooffset_t) 0;
313
314         object->generation++;
315         object->swblock_count = 0;
316         RB_INIT(&object->swblock_root);
317         vm_object_lock_init(object);
318
319         lwkt_gettoken(&vmobj_token);
320         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
321         vm_object_count++;
322         lwkt_reltoken(&vmobj_token);
323 }
324
325 /*
326  * Initialize the VM objects module.
327  *
328  * Called from the low level boot code only.
329  */
330 void
331 vm_object_init(void)
332 {
333         TAILQ_INIT(&vm_object_list);
334         
335         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
336                             &kernel_object);
337
338         obj_zone = &obj_zone_store;
339         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
340                 vm_objects_init, VM_OBJECTS_INIT);
341 }
342
343 void
344 vm_object_init2(void)
345 {
346         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
347 }
348
349 /*
350  * Allocate and return a new object of the specified type and size.
351  *
352  * No requirements.
353  */
354 vm_object_t
355 vm_object_allocate(objtype_t type, vm_pindex_t size)
356 {
357         vm_object_t result;
358
359         result = (vm_object_t) zalloc(obj_zone);
360
361         _vm_object_allocate(type, size, result);
362
363         return (result);
364 }
365
366 /*
367  * Add an additional reference to a vm_object.
368  *
369  * Object passed by caller must be stable or caller must already
370  * hold vmobj_token to avoid races.
371  */
372 void
373 vm_object_reference(vm_object_t object)
374 {
375         lwkt_gettoken(&vmobj_token);
376         vm_object_hold(object);
377         vm_object_reference_locked(object);
378         vm_object_drop(object);
379         lwkt_reltoken(&vmobj_token);
380 }
381
382 void
383 vm_object_reference_locked(vm_object_t object)
384 {
385         if (object) {
386                 ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
387                 /*NOTYET*/
388                 /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
389                 object->ref_count++;
390                 if (object->type == OBJT_VNODE) {
391                         vref(object->handle);
392                         /* XXX what if the vnode is being destroyed? */
393                 }
394         }
395 }
396
397 /*
398  * Dereference an object and its underlying vnode.
399  *
400  * The caller must hold vmobj_token.
401  * The object must be locked but not held.  This function will eat the lock.
402  */
403 static void
404 vm_object_vndeallocate(vm_object_t object)
405 {
406         struct vnode *vp = (struct vnode *) object->handle;
407
408         KASSERT(object->type == OBJT_VNODE,
409             ("vm_object_vndeallocate: not a vnode object"));
410         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
411         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
412 #ifdef INVARIANTS
413         if (object->ref_count == 0) {
414                 vprint("vm_object_vndeallocate", vp);
415                 panic("vm_object_vndeallocate: bad object reference count");
416         }
417 #endif
418
419         object->ref_count--;
420         if (object->ref_count == 0)
421                 vclrflags(vp, VTEXT);
422         vm_object_unlock(object);
423         vrele(vp);
424 }
425
426 /*
427  * Release a reference to the specified object, gained either through a
428  * vm_object_allocate or a vm_object_reference call.  When all references
429  * are gone, storage associated with this object may be relinquished.
430  *
431  * The caller does not have to hold the object locked but must have control
432  * over the reference in question in order to guarantee that the object
433  * does not get ripped out from under us.
434  */
435 void
436 vm_object_deallocate(vm_object_t object)
437 {
438         lwkt_gettoken(&vmobj_token);
439         vm_object_deallocate_locked(object);
440         lwkt_reltoken(&vmobj_token);
441 }
442
443 void
444 vm_object_deallocate_locked(vm_object_t object)
445 {
446         vm_object_t temp;
447
448         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
449
450         if (object)
451                 vm_object_lock(object);
452
453         while (object != NULL) {
454                 if (object->type == OBJT_VNODE) {
455                         vm_object_vndeallocate(object);
456                         /* vndeallocate ate the lock */
457                         break;
458                 }
459
460                 if (object->ref_count == 0) {
461                         panic("vm_object_deallocate: object deallocated "
462                               "too many times: %d", object->type);
463                 }
464                 if (object->ref_count > 2) {
465                         object->ref_count--;
466                         vm_object_unlock(object);
467                         break;
468                 }
469
470                 /*
471                  * We currently need the vm_token from this point on, and
472                  * we must recheck ref_count after acquiring it.
473                  */
474                 lwkt_gettoken(&vm_token);
475
476                 if (object->ref_count > 2) {
477                         object->ref_count--;
478                         lwkt_reltoken(&vm_token);
479                         vm_object_unlock(object);
480                         break;
481                 }
482
483                 /*
484                  * Here on ref_count of one or two, which are special cases for
485                  * objects.
486                  *
487                  * Nominal ref_count > 1 case if the second ref is not from
488                  * a shadow.
489                  */
490                 if (object->ref_count == 2 && object->shadow_count == 0) {
491                         vm_object_set_flag(object, OBJ_ONEMAPPING);
492                         object->ref_count--;
493                         lwkt_reltoken(&vm_token);
494                         vm_object_unlock(object);
495                         break;
496                 }
497
498                 /*
499                  * If the second ref is from a shadow we chain along it
500                  * if object's handle is exhausted.
501                  */
502                 if (object->ref_count == 2 && object->shadow_count == 1) {
503                         if (object->handle == NULL &&
504                             (object->type == OBJT_DEFAULT ||
505                              object->type == OBJT_SWAP)) {
506                                 temp = LIST_FIRST(&object->shadow_head);
507                                 KASSERT(temp != NULL,
508                                         ("vm_object_deallocate: ref_count: "
509                                         "%d, shadow_count: %d",
510                                         object->ref_count,
511                                         object->shadow_count));
512                                 lwkt_reltoken(&vm_token);
513                                 vm_object_lock(temp);
514
515                                 if ((temp->handle == NULL) &&
516                                     (temp->type == OBJT_DEFAULT ||
517                                      temp->type == OBJT_SWAP)) {
518                                         /*
519                                          * Special case, must handle ref_count
520                                          * manually to avoid recursion.
521                                          */
522                                         temp->ref_count++;
523                                         vm_object_lock_swap();
524
525                                         while (
526                                                 temp->paging_in_progress ||
527                                                 object->paging_in_progress
528                                         ) {
529                                                 vm_object_pip_sleep(temp,
530                                                                     "objde1");
531                                                 vm_object_pip_sleep(object,
532                                                                     "objde2");
533                                         }
534
535                                         if (temp->ref_count == 1) {
536                                                 object->ref_count--;
537                                                 temp->ref_count--;
538                                                 vm_object_unlock(object);
539                                                 object = temp;
540                                                 goto doterm;
541                                         }
542
543                                         lwkt_gettoken(&vm_token);
544                                         vm_object_collapse(temp);
545                                         lwkt_reltoken(&vm_token);
546                                         object->ref_count--;
547                                         vm_object_unlock(object);
548                                         object = temp;
549                                         continue;
550                                 }
551                                 vm_object_unlock(temp);
552                         } else {
553                                 lwkt_reltoken(&vm_token);
554                         }
555                         object->ref_count--;
556                         vm_object_unlock(object);
557                         break;
558                 }
559
560                 /*
561                  * Normal dereferencing path
562                  */
563                 object->ref_count--;
564                 if (object->ref_count != 0) {
565                         lwkt_reltoken(&vm_token);
566                         vm_object_unlock(object);
567                         break;
568                 }
569
570                 /*
571                  * Termination path
572                  *
573                  * We may have to loop to resolve races if we block getting
574                  * temp's lock.  If temp is non NULL we have to swap the
575                  * lock order so the original object lock as at the top
576                  * of the lock heap.
577                  */
578                 lwkt_reltoken(&vm_token);
579 doterm:
580                 while ((temp = object->backing_object) != NULL) {
581                         vm_object_lock(temp);
582                         if (temp == object->backing_object)
583                                 break;
584                         vm_object_unlock(temp);
585                 }
586                 if (temp) {
587                         LIST_REMOVE(object, shadow_list);
588                         temp->shadow_count--;
589                         temp->generation++;
590                         object->backing_object = NULL;
591                         vm_object_lock_swap();
592                 }
593
594                 /*
595                  * Don't double-terminate, we could be in a termination
596                  * recursion due to the terminate having to sync data
597                  * to disk.
598                  */
599                 if ((object->flags & OBJ_DEAD) == 0) {
600                         vm_object_terminate(object);
601                         /* termination ate the object lock */
602                 } else {
603                         vm_object_unlock(object);
604                 }
605                 object = temp;
606         }
607 }
608
609 /*
610  * Destroy the specified object, freeing up related resources.
611  *
612  * The object must have zero references.
613  *
614  * The caller must be holding vmobj_token and properly interlock with
615  * OBJ_DEAD (at the moment).
616  *
617  * The caller must have locked the object only, and not be holding it.
618  * This function will eat the caller's lock on the object.
619  */
620 static int vm_object_terminate_callback(vm_page_t p, void *data);
621
622 void
623 vm_object_terminate(vm_object_t object)
624 {
625         /*
626          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
627          * able to safely block.
628          */
629         KKASSERT((object->flags & OBJ_DEAD) == 0);
630         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
631         vm_object_set_flag(object, OBJ_DEAD);
632
633         /*
634          * Wait for the pageout daemon to be done with the object
635          */
636         vm_object_pip_wait(object, "objtrm1");
637
638         KASSERT(!object->paging_in_progress,
639                 ("vm_object_terminate: pageout in progress"));
640
641         /*
642          * Clean and free the pages, as appropriate. All references to the
643          * object are gone, so we don't need to lock it.
644          */
645         if (object->type == OBJT_VNODE) {
646                 struct vnode *vp;
647
648                 /*
649                  * Clean pages and flush buffers.
650                  */
651                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
652
653                 vp = (struct vnode *) object->handle;
654                 vinvalbuf(vp, V_SAVE, 0, 0);
655         }
656
657         /*
658          * Wait for any I/O to complete, after which there had better not
659          * be any references left on the object.
660          */
661         vm_object_pip_wait(object, "objtrm2");
662
663         if (object->ref_count != 0) {
664                 panic("vm_object_terminate: object with references, "
665                       "ref_count=%d", object->ref_count);
666         }
667
668         /*
669          * Now free any remaining pages. For internal objects, this also
670          * removes them from paging queues. Don't free wired pages, just
671          * remove them from the object. 
672          */
673         lwkt_gettoken(&vm_token);
674         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
675                                 vm_object_terminate_callback, NULL);
676         lwkt_reltoken(&vm_token);
677
678         /*
679          * Let the pager know object is dead.
680          */
681         vm_pager_deallocate(object);
682
683         /*
684          * Wait for the object hold count to hit zero, clean out pages as
685          * we go.
686          */
687         lwkt_gettoken(&vm_token);
688         for (;;) {
689                 vm_object_hold_wait(object);
690                 if (RB_ROOT(&object->rb_memq) == NULL)
691                         break;
692                 kprintf("vm_object_terminate: Warning, object %p "
693                         "still has %d pages\n",
694                         object, object->resident_page_count);
695                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
696                                         vm_object_terminate_callback, NULL);
697         }
698         lwkt_reltoken(&vm_token);
699
700         /*
701          * There had better not be any pages left
702          */
703         KKASSERT(object->resident_page_count == 0);
704
705         /*
706          * Remove the object from the global object list.
707          *
708          * (we are holding vmobj_token)
709          */
710         TAILQ_REMOVE(&vm_object_list, object, object_list);
711         vm_object_count--;
712         vm_object_dead_wakeup(object);
713         vm_object_unlock(object);
714
715         if (object->ref_count != 0) {
716                 panic("vm_object_terminate2: object with references, "
717                       "ref_count=%d", object->ref_count);
718         }
719
720         /*
721          * Free the space for the object.
722          */
723         zfree(obj_zone, object);
724 }
725
726 /*
727  * The caller must hold vm_token.
728  */
729 static int
730 vm_object_terminate_callback(vm_page_t p, void *data __unused)
731 {
732         if (p->busy || (p->flags & PG_BUSY))
733                 panic("vm_object_terminate: freeing busy page %p", p);
734         if (p->wire_count == 0) {
735                 vm_page_busy(p);
736                 vm_page_free(p);
737                 mycpu->gd_cnt.v_pfree++;
738         } else {
739                 if (p->queue != PQ_NONE)
740                         kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
741                 vm_page_busy(p);
742                 vm_page_remove(p);
743                 vm_page_wakeup(p);
744         }
745         return(0);
746 }
747
748 /*
749  * The object is dead but still has an object<->pager association.  Sleep
750  * and return.  The caller typically retests the association in a loop.
751  *
752  * Must be called with the vmobj_token held.
753  */
754 void
755 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
756 {
757         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
758         if (object->handle) {
759                 vm_object_set_flag(object, OBJ_DEADWNT);
760                 tsleep(object, 0, wmesg, 0);
761                 /* object may be invalid after this point */
762         }
763 }
764
765 /*
766  * Wakeup anyone waiting for the object<->pager disassociation on
767  * a dead object.
768  *
769  * Must be called with the vmobj_token held.
770  */
771 void
772 vm_object_dead_wakeup(vm_object_t object)
773 {
774         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
775         if (object->flags & OBJ_DEADWNT) {
776                 vm_object_clear_flag(object, OBJ_DEADWNT);
777                 wakeup(object);
778         }
779 }
780
781 /*
782  * Clean all dirty pages in the specified range of object.  Leaves page
783  * on whatever queue it is currently on.   If NOSYNC is set then do not
784  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
785  * leaving the object dirty.
786  *
787  * When stuffing pages asynchronously, allow clustering.  XXX we need a
788  * synchronous clustering mode implementation.
789  *
790  * Odd semantics: if start == end, we clean everything.
791  *
792  * The object must be locked? XXX
793  */
794 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
795 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
796
797 void
798 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
799                      int flags)
800 {
801         struct rb_vm_page_scan_info info;
802         struct vnode *vp;
803         int wholescan;
804         int pagerflags;
805         int curgeneration;
806
807         vm_object_hold(object);
808         if (object->type != OBJT_VNODE ||
809             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
810                 vm_object_drop(object);
811                 return;
812         }
813
814         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
815                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
816         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
817
818         vp = object->handle;
819
820         /*
821          * Interlock other major object operations.  This allows us to 
822          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
823          */
824         crit_enter();
825         vm_object_set_flag(object, OBJ_CLEANING);
826
827         /*
828          * Handle 'entire object' case
829          */
830         info.start_pindex = start;
831         if (end == 0) {
832                 info.end_pindex = object->size - 1;
833         } else {
834                 info.end_pindex = end - 1;
835         }
836         wholescan = (start == 0 && info.end_pindex == object->size - 1);
837         info.limit = flags;
838         info.pagerflags = pagerflags;
839         info.object = object;
840
841         /*
842          * If cleaning the entire object do a pass to mark the pages read-only.
843          * If everything worked out ok, clear OBJ_WRITEABLE and
844          * OBJ_MIGHTBEDIRTY.
845          */
846         if (wholescan) {
847                 info.error = 0;
848                 lwkt_gettoken(&vm_token);
849                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
850                                         vm_object_page_clean_pass1, &info);
851                 lwkt_reltoken(&vm_token);
852                 if (info.error == 0) {
853                         vm_object_clear_flag(object,
854                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
855                         if (object->type == OBJT_VNODE &&
856                             (vp = (struct vnode *)object->handle) != NULL) {
857                                 if (vp->v_flag & VOBJDIRTY) 
858                                         vclrflags(vp, VOBJDIRTY);
859                         }
860                 }
861         }
862
863         /*
864          * Do a pass to clean all the dirty pages we find.
865          */
866         do {
867                 info.error = 0;
868                 curgeneration = object->generation;
869                 lwkt_gettoken(&vm_token);
870                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
871                                         vm_object_page_clean_pass2, &info);
872                 lwkt_reltoken(&vm_token);
873         } while (info.error || curgeneration != object->generation);
874
875         vm_object_clear_flag(object, OBJ_CLEANING);
876         crit_exit();
877         vm_object_drop(object);
878 }
879
880 /*
881  * The caller must hold vm_token.
882  */
883 static 
884 int
885 vm_object_page_clean_pass1(struct vm_page *p, void *data)
886 {
887         struct rb_vm_page_scan_info *info = data;
888
889         vm_page_flag_set(p, PG_CLEANCHK);
890         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
891                 info->error = 1;
892         else
893                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
894         return(0);
895 }
896
897 /*
898  * The caller must hold vm_token.
899  */
900 static 
901 int
902 vm_object_page_clean_pass2(struct vm_page *p, void *data)
903 {
904         struct rb_vm_page_scan_info *info = data;
905         int n;
906
907         /*
908          * Do not mess with pages that were inserted after we started
909          * the cleaning pass.
910          */
911         if ((p->flags & PG_CLEANCHK) == 0)
912                 return(0);
913
914         /*
915          * Before wasting time traversing the pmaps, check for trivial
916          * cases where the page cannot be dirty.
917          */
918         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
919                 KKASSERT((p->dirty & p->valid) == 0);
920                 return(0);
921         }
922
923         /*
924          * Check whether the page is dirty or not.  The page has been set
925          * to be read-only so the check will not race a user dirtying the
926          * page.
927          */
928         vm_page_test_dirty(p);
929         if ((p->dirty & p->valid) == 0) {
930                 vm_page_flag_clear(p, PG_CLEANCHK);
931                 return(0);
932         }
933
934         /*
935          * If we have been asked to skip nosync pages and this is a
936          * nosync page, skip it.  Note that the object flags were
937          * not cleared in this case (because pass1 will have returned an
938          * error), so we do not have to set them.
939          */
940         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
941                 vm_page_flag_clear(p, PG_CLEANCHK);
942                 return(0);
943         }
944
945         /*
946          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
947          * the pages that get successfully flushed.  Set info->error if
948          * we raced an object modification.
949          */
950         n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
951         if (n == 0)
952                 info->error = 1;
953         return(0);
954 }
955
956 /*
957  * Collect the specified page and nearby pages and flush them out.
958  * The number of pages flushed is returned.
959  *
960  * The caller must hold vm_token.
961  */
962 static int
963 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
964 {
965         int runlen;
966         int maxf;
967         int chkb;
968         int maxb;
969         int i;
970         int curgeneration;
971         vm_pindex_t pi;
972         vm_page_t maf[vm_pageout_page_count];
973         vm_page_t mab[vm_pageout_page_count];
974         vm_page_t ma[vm_pageout_page_count];
975
976         curgeneration = object->generation;
977
978         pi = p->pindex;
979         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
980                 if (object->generation != curgeneration) {
981                         return(0);
982                 }
983         }
984         KKASSERT(p->object == object && p->pindex == pi);
985
986         maxf = 0;
987         for(i = 1; i < vm_pageout_page_count; i++) {
988                 vm_page_t tp;
989
990                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
991                         if ((tp->flags & PG_BUSY) ||
992                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
993                                  (tp->flags & PG_CLEANCHK) == 0) ||
994                                 (tp->busy != 0))
995                                 break;
996                         if((tp->queue - tp->pc) == PQ_CACHE) {
997                                 vm_page_flag_clear(tp, PG_CLEANCHK);
998                                 break;
999                         }
1000                         vm_page_test_dirty(tp);
1001                         if ((tp->dirty & tp->valid) == 0) {
1002                                 vm_page_flag_clear(tp, PG_CLEANCHK);
1003                                 break;
1004                         }
1005                         maf[ i - 1 ] = tp;
1006                         maxf++;
1007                         continue;
1008                 }
1009                 break;
1010         }
1011
1012         maxb = 0;
1013         chkb = vm_pageout_page_count -  maxf;
1014         if (chkb) {
1015                 for(i = 1; i < chkb;i++) {
1016                         vm_page_t tp;
1017
1018                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
1019                                 if ((tp->flags & PG_BUSY) ||
1020                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
1021                                          (tp->flags & PG_CLEANCHK) == 0) ||
1022                                         (tp->busy != 0))
1023                                         break;
1024                                 if((tp->queue - tp->pc) == PQ_CACHE) {
1025                                         vm_page_flag_clear(tp, PG_CLEANCHK);
1026                                         break;
1027                                 }
1028                                 vm_page_test_dirty(tp);
1029                                 if ((tp->dirty & tp->valid) == 0) {
1030                                         vm_page_flag_clear(tp, PG_CLEANCHK);
1031                                         break;
1032                                 }
1033                                 mab[ i - 1 ] = tp;
1034                                 maxb++;
1035                                 continue;
1036                         }
1037                         break;
1038                 }
1039         }
1040
1041         for(i = 0; i < maxb; i++) {
1042                 int index = (maxb - i) - 1;
1043                 ma[index] = mab[i];
1044                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1045         }
1046         vm_page_flag_clear(p, PG_CLEANCHK);
1047         ma[maxb] = p;
1048         for(i = 0; i < maxf; i++) {
1049                 int index = (maxb + i) + 1;
1050                 ma[index] = maf[i];
1051                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1052         }
1053         runlen = maxb + maxf + 1;
1054
1055         vm_pageout_flush(ma, runlen, pagerflags);
1056         for (i = 0; i < runlen; i++) {
1057                 if (ma[i]->valid & ma[i]->dirty) {
1058                         vm_page_protect(ma[i], VM_PROT_READ);
1059                         vm_page_flag_set(ma[i], PG_CLEANCHK);
1060
1061                         /*
1062                          * maxf will end up being the actual number of pages
1063                          * we wrote out contiguously, non-inclusive of the
1064                          * first page.  We do not count look-behind pages.
1065                          */
1066                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
1067                                 maxf = i - maxb - 1;
1068                 }
1069         }
1070         return(maxf + 1);
1071 }
1072
1073 /*
1074  * Same as vm_object_pmap_copy, except range checking really
1075  * works, and is meant for small sections of an object.
1076  *
1077  * This code protects resident pages by making them read-only
1078  * and is typically called on a fork or split when a page
1079  * is converted to copy-on-write.  
1080  *
1081  * NOTE: If the page is already at VM_PROT_NONE, calling
1082  * vm_page_protect will have no effect.
1083  */
1084 void
1085 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1086 {
1087         vm_pindex_t idx;
1088         vm_page_t p;
1089
1090         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1091                 return;
1092
1093         /*
1094          * spl protection needed to prevent races between the lookup,
1095          * an interrupt unbusy/free, and our protect call.
1096          */
1097         crit_enter();
1098         lwkt_gettoken(&vm_token);
1099         for (idx = start; idx < end; idx++) {
1100                 p = vm_page_lookup(object, idx);
1101                 if (p == NULL)
1102                         continue;
1103                 vm_page_protect(p, VM_PROT_READ);
1104         }
1105         lwkt_reltoken(&vm_token);
1106         crit_exit();
1107 }
1108
1109 /*
1110  * Removes all physical pages in the specified object range from all
1111  * physical maps.
1112  *
1113  * The object must *not* be locked.
1114  */
1115
1116 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1117
1118 void
1119 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1120 {
1121         struct rb_vm_page_scan_info info;
1122
1123         if (object == NULL)
1124                 return;
1125         info.start_pindex = start;
1126         info.end_pindex = end - 1;
1127
1128         crit_enter();
1129         lwkt_gettoken(&vm_token);
1130         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1131                                 vm_object_pmap_remove_callback, &info);
1132         if (start == 0 && end == object->size)
1133                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1134         lwkt_reltoken(&vm_token);
1135         crit_exit();
1136 }
1137
1138 /*
1139  * The caller must hold vm_token.
1140  */
1141 static int
1142 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1143 {
1144         vm_page_protect(p, VM_PROT_NONE);
1145         return(0);
1146 }
1147
1148 /*
1149  * Implements the madvise function at the object/page level.
1150  *
1151  * MADV_WILLNEED        (any object)
1152  *
1153  *      Activate the specified pages if they are resident.
1154  *
1155  * MADV_DONTNEED        (any object)
1156  *
1157  *      Deactivate the specified pages if they are resident.
1158  *
1159  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1160  *
1161  *      Deactivate and clean the specified pages if they are
1162  *      resident.  This permits the process to reuse the pages
1163  *      without faulting or the kernel to reclaim the pages
1164  *      without I/O.
1165  *
1166  * No requirements.
1167  */
1168 void
1169 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1170 {
1171         vm_pindex_t end, tpindex;
1172         vm_object_t tobject;
1173         vm_page_t m;
1174
1175         if (object == NULL)
1176                 return;
1177
1178         end = pindex + count;
1179
1180         lwkt_gettoken(&vm_token);
1181
1182         /*
1183          * Locate and adjust resident pages
1184          */
1185         for (; pindex < end; pindex += 1) {
1186 relookup:
1187                 tobject = object;
1188                 tpindex = pindex;
1189 shadowlookup:
1190                 /*
1191                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1192                  * and those pages must be OBJ_ONEMAPPING.
1193                  */
1194                 if (advise == MADV_FREE) {
1195                         if ((tobject->type != OBJT_DEFAULT &&
1196                              tobject->type != OBJT_SWAP) ||
1197                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1198                                 continue;
1199                         }
1200                 }
1201
1202                 /*
1203                  * spl protection is required to avoid a race between the
1204                  * lookup, an interrupt unbusy/free, and our busy check.
1205                  */
1206
1207                 crit_enter();
1208                 m = vm_page_lookup(tobject, tpindex);
1209
1210                 if (m == NULL) {
1211                         /*
1212                          * There may be swap even if there is no backing page
1213                          */
1214                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1215                                 swap_pager_freespace(tobject, tpindex, 1);
1216
1217                         /*
1218                          * next object
1219                          */
1220                         crit_exit();
1221                         if (tobject->backing_object == NULL)
1222                                 continue;
1223                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1224                         tobject = tobject->backing_object;
1225                         goto shadowlookup;
1226                 }
1227
1228                 /*
1229                  * If the page is busy or not in a normal active state,
1230                  * we skip it.  If the page is not managed there are no
1231                  * page queues to mess with.  Things can break if we mess
1232                  * with pages in any of the below states.
1233                  */
1234                 if (
1235                     m->hold_count ||
1236                     m->wire_count ||
1237                     (m->flags & PG_UNMANAGED) ||
1238                     m->valid != VM_PAGE_BITS_ALL
1239                 ) {
1240                         crit_exit();
1241                         continue;
1242                 }
1243
1244                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1245                         crit_exit();
1246                         goto relookup;
1247                 }
1248                 vm_page_busy(m);
1249                 crit_exit();
1250
1251                 /*
1252                  * Theoretically once a page is known not to be busy, an
1253                  * interrupt cannot come along and rip it out from under us.
1254                  */
1255
1256                 if (advise == MADV_WILLNEED) {
1257                         vm_page_activate(m);
1258                 } else if (advise == MADV_DONTNEED) {
1259                         vm_page_dontneed(m);
1260                 } else if (advise == MADV_FREE) {
1261                         /*
1262                          * Mark the page clean.  This will allow the page
1263                          * to be freed up by the system.  However, such pages
1264                          * are often reused quickly by malloc()/free()
1265                          * so we do not do anything that would cause
1266                          * a page fault if we can help it.
1267                          *
1268                          * Specifically, we do not try to actually free
1269                          * the page now nor do we try to put it in the
1270                          * cache (which would cause a page fault on reuse).
1271                          *
1272                          * But we do make the page is freeable as we
1273                          * can without actually taking the step of unmapping
1274                          * it.
1275                          */
1276                         pmap_clear_modify(m);
1277                         m->dirty = 0;
1278                         m->act_count = 0;
1279                         vm_page_dontneed(m);
1280                         if (tobject->type == OBJT_SWAP)
1281                                 swap_pager_freespace(tobject, tpindex, 1);
1282                 }
1283                 vm_page_wakeup(m);
1284         }       
1285         lwkt_reltoken(&vm_token);
1286 }
1287
1288 /*
1289  * Create a new object which is backed by the specified existing object
1290  * range.  The source object reference is deallocated.
1291  *
1292  * The new object and offset into that object are returned in the source
1293  * parameters.
1294  *
1295  * No other requirements.
1296  */
1297 void
1298 vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length)
1299 {
1300         vm_object_t source;
1301         vm_object_t result;
1302
1303         source = *object;
1304
1305         /*
1306          * Don't create the new object if the old object isn't shared.
1307          */
1308         lwkt_gettoken(&vm_token);
1309
1310         if (source != NULL &&
1311             source->ref_count == 1 &&
1312             source->handle == NULL &&
1313             (source->type == OBJT_DEFAULT ||
1314              source->type == OBJT_SWAP)) {
1315                 lwkt_reltoken(&vm_token);
1316                 return;
1317         }
1318
1319         /*
1320          * Allocate a new object with the given length
1321          */
1322
1323         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1324                 panic("vm_object_shadow: no object for shadowing");
1325
1326         /*
1327          * The new object shadows the source object, adding a reference to it.
1328          * Our caller changes his reference to point to the new object,
1329          * removing a reference to the source object.  Net result: no change
1330          * of reference count.
1331          *
1332          * Try to optimize the result object's page color when shadowing
1333          * in order to maintain page coloring consistency in the combined 
1334          * shadowed object.
1335          */
1336         result->backing_object = source;
1337         if (source) {
1338                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1339                 source->shadow_count++;
1340                 source->generation++;
1341                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1342         }
1343
1344         /*
1345          * Store the offset into the source object, and fix up the offset into
1346          * the new object.
1347          */
1348         result->backing_object_offset = *offset;
1349         lwkt_reltoken(&vm_token);
1350
1351         /*
1352          * Return the new things
1353          */
1354         *offset = 0;
1355         *object = result;
1356 }
1357
1358 #define OBSC_TEST_ALL_SHADOWED  0x0001
1359 #define OBSC_COLLAPSE_NOWAIT    0x0002
1360 #define OBSC_COLLAPSE_WAIT      0x0004
1361
1362 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1363
1364 /*
1365  * The caller must hold vm_token.
1366  */
1367 static __inline int
1368 vm_object_backing_scan(vm_object_t object, int op)
1369 {
1370         struct rb_vm_page_scan_info info;
1371         vm_object_t backing_object;
1372
1373         crit_enter();
1374
1375         backing_object = object->backing_object;
1376         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1377
1378         /*
1379          * Initial conditions
1380          */
1381
1382         if (op & OBSC_TEST_ALL_SHADOWED) {
1383                 /*
1384                  * We do not want to have to test for the existence of
1385                  * swap pages in the backing object.  XXX but with the
1386                  * new swapper this would be pretty easy to do.
1387                  *
1388                  * XXX what about anonymous MAP_SHARED memory that hasn't
1389                  * been ZFOD faulted yet?  If we do not test for this, the
1390                  * shadow test may succeed! XXX
1391                  */
1392                 if (backing_object->type != OBJT_DEFAULT) {
1393                         crit_exit();
1394                         return(0);
1395                 }
1396         }
1397         if (op & OBSC_COLLAPSE_WAIT) {
1398                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1399                 vm_object_set_flag(backing_object, OBJ_DEAD);
1400         }
1401
1402         /*
1403          * Our scan.   We have to retry if a negative error code is returned,
1404          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1405          * the scan had to be stopped because the parent does not completely
1406          * shadow the child.
1407          */
1408         info.object = object;
1409         info.backing_object = backing_object;
1410         info.limit = op;
1411         do {
1412                 info.error = 1;
1413                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1414                                         vm_object_backing_scan_callback,
1415                                         &info);
1416         } while (info.error < 0);
1417         crit_exit();
1418         return(info.error);
1419 }
1420
1421 /*
1422  * The caller must hold vm_token.
1423  */
1424 static int
1425 vm_object_backing_scan_callback(vm_page_t p, void *data)
1426 {
1427         struct rb_vm_page_scan_info *info = data;
1428         vm_object_t backing_object;
1429         vm_object_t object;
1430         vm_pindex_t new_pindex;
1431         vm_pindex_t backing_offset_index;
1432         int op;
1433
1434         new_pindex = p->pindex - info->backing_offset_index;
1435         op = info->limit;
1436         object = info->object;
1437         backing_object = info->backing_object;
1438         backing_offset_index = info->backing_offset_index;
1439
1440         if (op & OBSC_TEST_ALL_SHADOWED) {
1441                 vm_page_t pp;
1442
1443                 /*
1444                  * Ignore pages outside the parent object's range
1445                  * and outside the parent object's mapping of the 
1446                  * backing object.
1447                  *
1448                  * note that we do not busy the backing object's
1449                  * page.
1450                  */
1451                 if (
1452                     p->pindex < backing_offset_index ||
1453                     new_pindex >= object->size
1454                 ) {
1455                         return(0);
1456                 }
1457
1458                 /*
1459                  * See if the parent has the page or if the parent's
1460                  * object pager has the page.  If the parent has the
1461                  * page but the page is not valid, the parent's
1462                  * object pager must have the page.
1463                  *
1464                  * If this fails, the parent does not completely shadow
1465                  * the object and we might as well give up now.
1466                  */
1467
1468                 pp = vm_page_lookup(object, new_pindex);
1469                 if ((pp == NULL || pp->valid == 0) &&
1470                     !vm_pager_has_page(object, new_pindex)
1471                 ) {
1472                         info->error = 0;        /* problemo */
1473                         return(-1);             /* stop the scan */
1474                 }
1475         }
1476
1477         /*
1478          * Check for busy page
1479          */
1480
1481         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1482                 vm_page_t pp;
1483
1484                 if (op & OBSC_COLLAPSE_NOWAIT) {
1485                         if (
1486                             (p->flags & PG_BUSY) ||
1487                             !p->valid || 
1488                             p->hold_count || 
1489                             p->wire_count ||
1490                             p->busy
1491                         ) {
1492                                 return(0);
1493                         }
1494                 } else if (op & OBSC_COLLAPSE_WAIT) {
1495                         if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1496                                 /*
1497                                  * If we slept, anything could have
1498                                  * happened.   Ask that the scan be restarted.
1499                                  *
1500                                  * Since the object is marked dead, the
1501                                  * backing offset should not have changed.  
1502                                  */
1503                                 info->error = -1;
1504                                 return(-1);
1505                         }
1506                 }
1507
1508                 /* 
1509                  * Busy the page
1510                  */
1511                 vm_page_busy(p);
1512
1513                 KASSERT(
1514                     p->object == backing_object,
1515                     ("vm_object_qcollapse(): object mismatch")
1516                 );
1517
1518                 /*
1519                  * Destroy any associated swap
1520                  */
1521                 if (backing_object->type == OBJT_SWAP)
1522                         swap_pager_freespace(backing_object, p->pindex, 1);
1523
1524                 if (
1525                     p->pindex < backing_offset_index ||
1526                     new_pindex >= object->size
1527                 ) {
1528                         /*
1529                          * Page is out of the parent object's range, we 
1530                          * can simply destroy it. 
1531                          */
1532                         vm_page_protect(p, VM_PROT_NONE);
1533                         vm_page_free(p);
1534                         return(0);
1535                 }
1536
1537                 pp = vm_page_lookup(object, new_pindex);
1538                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1539                         /*
1540                          * page already exists in parent OR swap exists
1541                          * for this location in the parent.  Destroy 
1542                          * the original page from the backing object.
1543                          *
1544                          * Leave the parent's page alone
1545                          */
1546                         vm_page_protect(p, VM_PROT_NONE);
1547                         vm_page_free(p);
1548                         return(0);
1549                 }
1550
1551                 /*
1552                  * Page does not exist in parent, rename the
1553                  * page from the backing object to the main object. 
1554                  *
1555                  * If the page was mapped to a process, it can remain 
1556                  * mapped through the rename.
1557                  */
1558                 if ((p->queue - p->pc) == PQ_CACHE)
1559                         vm_page_deactivate(p);
1560
1561                 vm_page_rename(p, object, new_pindex);
1562                 /* page automatically made dirty by rename */
1563         }
1564         return(0);
1565 }
1566
1567 /*
1568  * This version of collapse allows the operation to occur earlier and
1569  * when paging_in_progress is true for an object...  This is not a complete
1570  * operation, but should plug 99.9% of the rest of the leaks.
1571  *
1572  * The caller must hold vm_token and vmobj_token.
1573  * (only called from vm_object_collapse)
1574  */
1575 static void
1576 vm_object_qcollapse(vm_object_t object)
1577 {
1578         vm_object_t backing_object = object->backing_object;
1579
1580         if (backing_object->ref_count != 1)
1581                 return;
1582
1583         backing_object->ref_count += 2;
1584
1585         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1586
1587         backing_object->ref_count -= 2;
1588 }
1589
1590 /*
1591  * Collapse an object with the object backing it.  Pages in the backing
1592  * object are moved into the parent, and the backing object is deallocated.
1593  *
1594  * The caller must hold (object).
1595  */
1596 void
1597 vm_object_collapse(vm_object_t object)
1598 {
1599         ASSERT_LWKT_TOKEN_HELD(&vm_token);
1600         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1601         vm_object_assert_held(object);
1602
1603         while (TRUE) {
1604                 vm_object_t backing_object;
1605
1606                 /*
1607                  * Verify that the conditions are right for collapse:
1608                  *
1609                  * The object exists and the backing object exists.
1610                  */
1611                 if (object == NULL)
1612                         break;
1613
1614                 if ((backing_object = object->backing_object) == NULL)
1615                         break;
1616
1617                 vm_object_hold(backing_object);
1618                 if (backing_object != object->backing_object) {
1619                         vm_object_drop(backing_object);
1620                         continue;
1621                 }
1622
1623                 /*
1624                  * we check the backing object first, because it is most likely
1625                  * not collapsable.
1626                  */
1627                 if (backing_object->handle != NULL ||
1628                     (backing_object->type != OBJT_DEFAULT &&
1629                      backing_object->type != OBJT_SWAP) ||
1630                     (backing_object->flags & OBJ_DEAD) ||
1631                     object->handle != NULL ||
1632                     (object->type != OBJT_DEFAULT &&
1633                      object->type != OBJT_SWAP) ||
1634                     (object->flags & OBJ_DEAD)) {
1635                         vm_object_drop(backing_object);
1636                         break;
1637                 }
1638
1639                 if (
1640                     object->paging_in_progress != 0 ||
1641                     backing_object->paging_in_progress != 0
1642                 ) {
1643                         vm_object_drop(backing_object);
1644                         vm_object_qcollapse(object);
1645                         break;
1646                 }
1647
1648                 /*
1649                  * We know that we can either collapse the backing object (if
1650                  * the parent is the only reference to it) or (perhaps) have
1651                  * the parent bypass the object if the parent happens to shadow
1652                  * all the resident pages in the entire backing object.
1653                  *
1654                  * This is ignoring pager-backed pages such as swap pages.
1655                  * vm_object_backing_scan fails the shadowing test in this
1656                  * case.
1657                  */
1658
1659                 if (backing_object->ref_count == 1) {
1660                         /*
1661                          * If there is exactly one reference to the backing
1662                          * object, we can collapse it into the parent.  
1663                          */
1664                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1665
1666                         /*
1667                          * Move the pager from backing_object to object.
1668                          */
1669
1670                         if (backing_object->type == OBJT_SWAP) {
1671                                 vm_object_pip_add(backing_object, 1);
1672
1673                                 /*
1674                                  * scrap the paging_offset junk and do a 
1675                                  * discrete copy.  This also removes major 
1676                                  * assumptions about how the swap-pager 
1677                                  * works from where it doesn't belong.  The
1678                                  * new swapper is able to optimize the
1679                                  * destroy-source case.
1680                                  */
1681
1682                                 vm_object_pip_add(object, 1);
1683                                 swap_pager_copy(
1684                                     backing_object,
1685                                     object,
1686                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1687                                 vm_object_pip_wakeup(object);
1688
1689                                 vm_object_pip_wakeup(backing_object);
1690                         }
1691                         /*
1692                          * Object now shadows whatever backing_object did.
1693                          * Note that the reference to 
1694                          * backing_object->backing_object moves from within 
1695                          * backing_object to within object.
1696                          */
1697
1698                         LIST_REMOVE(object, shadow_list);
1699                         object->backing_object->shadow_count--;
1700                         object->backing_object->generation++;
1701                         if (backing_object->backing_object) {
1702                                 LIST_REMOVE(backing_object, shadow_list);
1703                                 backing_object->backing_object->shadow_count--;
1704                                 backing_object->backing_object->generation++;
1705                         }
1706                         object->backing_object = backing_object->backing_object;
1707                         if (object->backing_object) {
1708                                 LIST_INSERT_HEAD(
1709                                     &object->backing_object->shadow_head,
1710                                     object, 
1711                                     shadow_list
1712                                 );
1713                                 object->backing_object->shadow_count++;
1714                                 object->backing_object->generation++;
1715                         }
1716
1717                         object->backing_object_offset +=
1718                             backing_object->backing_object_offset;
1719
1720                         /*
1721                          * Discard backing_object.
1722                          *
1723                          * Since the backing object has no pages, no pager left,
1724                          * and no object references within it, all that is
1725                          * necessary is to dispose of it.
1726                          */
1727
1728                         KASSERT(backing_object->ref_count == 1,
1729                                 ("backing_object %p was somehow "
1730                                  "re-referenced during collapse!",
1731                                  backing_object));
1732                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
1733                                 ("backing_object %p somehow has left "
1734                                  "over pages during collapse!",
1735                                  backing_object));
1736
1737                         /*
1738                          * Wait for hold count to hit zero
1739                          */
1740                         vm_object_drop(backing_object);
1741                         vm_object_hold_wait(backing_object);
1742
1743                         /* (we are holding vmobj_token) */
1744                         TAILQ_REMOVE(&vm_object_list, backing_object,
1745                                      object_list);
1746                         vm_object_count--;
1747
1748                         zfree(obj_zone, backing_object);
1749
1750                         object_collapses++;
1751                 } else {
1752                         vm_object_t new_backing_object;
1753
1754                         /*
1755                          * If we do not entirely shadow the backing object,
1756                          * there is nothing we can do so we give up.
1757                          */
1758
1759                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1760                                 vm_object_drop(backing_object);
1761                                 break;
1762                         }
1763
1764                         /*
1765                          * Make the parent shadow the next object in the
1766                          * chain.  Deallocating backing_object will not remove
1767                          * it, since its reference count is at least 2.
1768                          */
1769
1770                         LIST_REMOVE(object, shadow_list);
1771                         backing_object->shadow_count--;
1772                         backing_object->generation++;
1773
1774                         new_backing_object = backing_object->backing_object;
1775                         if ((object->backing_object = new_backing_object) != NULL) {
1776                                 vm_object_reference(new_backing_object);
1777                                 LIST_INSERT_HEAD(
1778                                     &new_backing_object->shadow_head,
1779                                     object,
1780                                     shadow_list
1781                                 );
1782                                 new_backing_object->shadow_count++;
1783                                 new_backing_object->generation++;
1784                                 object->backing_object_offset +=
1785                                         backing_object->backing_object_offset;
1786                         }
1787
1788                         /*
1789                          * Drop the reference count on backing_object. Since
1790                          * its ref_count was at least 2, it will not vanish;
1791                          * so we don't need to call vm_object_deallocate, but
1792                          * we do anyway.
1793                          */
1794                         vm_object_drop(backing_object);
1795                         vm_object_deallocate_locked(backing_object);
1796                         object_bypasses++;
1797                 }
1798
1799                 /*
1800                  * Try again with this object's new backing object.
1801                  */
1802         }
1803 }
1804
1805 /*
1806  * Removes all physical pages in the specified object range from the
1807  * object's list of pages.
1808  *
1809  * No requirements.
1810  */
1811 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1812
1813 void
1814 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1815                       boolean_t clean_only)
1816 {
1817         struct rb_vm_page_scan_info info;
1818         int all;
1819
1820         /*
1821          * Degenerate cases and assertions
1822          */
1823         lwkt_gettoken(&vm_token);
1824         if (object == NULL ||
1825             (object->resident_page_count == 0 && object->swblock_count == 0)) {
1826                 lwkt_reltoken(&vm_token);
1827                 return;
1828         }
1829         KASSERT(object->type != OBJT_PHYS, 
1830                 ("attempt to remove pages from a physical object"));
1831
1832         /*
1833          * Indicate that paging is occuring on the object
1834          */
1835         crit_enter();
1836         vm_object_pip_add(object, 1);
1837
1838         /*
1839          * Figure out the actual removal range and whether we are removing
1840          * the entire contents of the object or not.  If removing the entire
1841          * contents, be sure to get all pages, even those that might be 
1842          * beyond the end of the object.
1843          */
1844         info.start_pindex = start;
1845         if (end == 0)
1846                 info.end_pindex = (vm_pindex_t)-1;
1847         else
1848                 info.end_pindex = end - 1;
1849         info.limit = clean_only;
1850         all = (start == 0 && info.end_pindex >= object->size - 1);
1851
1852         /*
1853          * Loop until we are sure we have gotten them all.
1854          */
1855         do {
1856                 info.error = 0;
1857                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1858                                         vm_object_page_remove_callback, &info);
1859         } while (info.error);
1860
1861         /*
1862          * Remove any related swap if throwing away pages, or for
1863          * non-swap objects (the swap is a clean copy in that case).
1864          */
1865         if (object->type != OBJT_SWAP || clean_only == FALSE) {
1866                 if (all)
1867                         swap_pager_freespace_all(object);
1868                 else
1869                         swap_pager_freespace(object, info.start_pindex,
1870                              info.end_pindex - info.start_pindex + 1);
1871         }
1872
1873         /*
1874          * Cleanup
1875          */
1876         vm_object_pip_wakeup(object);
1877         crit_exit();
1878         lwkt_reltoken(&vm_token);
1879 }
1880
1881 /*
1882  * The caller must hold vm_token.
1883  */
1884 static int
1885 vm_object_page_remove_callback(vm_page_t p, void *data)
1886 {
1887         struct rb_vm_page_scan_info *info = data;
1888
1889         /*
1890          * Wired pages cannot be destroyed, but they can be invalidated
1891          * and we do so if clean_only (limit) is not set.
1892          *
1893          * WARNING!  The page may be wired due to being part of a buffer
1894          *           cache buffer, and the buffer might be marked B_CACHE.
1895          *           This is fine as part of a truncation but VFSs must be
1896          *           sure to fix the buffer up when re-extending the file.
1897          */
1898         if (p->wire_count != 0) {
1899                 vm_page_protect(p, VM_PROT_NONE);
1900                 if (info->limit == 0)
1901                         p->valid = 0;
1902                 return(0);
1903         }
1904
1905         /*
1906          * The busy flags are only cleared at
1907          * interrupt -- minimize the spl transitions
1908          */
1909
1910         if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1911                 info->error = 1;
1912                 return(0);
1913         }
1914
1915         /*
1916          * limit is our clean_only flag.  If set and the page is dirty, do
1917          * not free it.  If set and the page is being held by someone, do
1918          * not free it.
1919          */
1920         if (info->limit && p->valid) {
1921                 vm_page_test_dirty(p);
1922                 if (p->valid & p->dirty)
1923                         return(0);
1924                 if (p->hold_count)
1925                         return(0);
1926         }
1927
1928         /*
1929          * Destroy the page
1930          */
1931         vm_page_busy(p);
1932         vm_page_protect(p, VM_PROT_NONE);
1933         vm_page_free(p);
1934         return(0);
1935 }
1936
1937 /*
1938  * Coalesces two objects backing up adjoining regions of memory into a
1939  * single object.
1940  *
1941  * returns TRUE if objects were combined.
1942  *
1943  * NOTE: Only works at the moment if the second object is NULL -
1944  *       if it's not, which object do we lock first?
1945  *
1946  * Parameters:
1947  *      prev_object     First object to coalesce
1948  *      prev_offset     Offset into prev_object
1949  *      next_object     Second object into coalesce
1950  *      next_offset     Offset into next_object
1951  *
1952  *      prev_size       Size of reference to prev_object
1953  *      next_size       Size of reference to next_object
1954  *
1955  * The caller must hold vm_token and vmobj_token.
1956  *
1957  * The caller does not need to hold (prev_object) but must have a stable
1958  * pointer to it (typically by holding the vm_map locked).
1959  */
1960 boolean_t
1961 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1962                    vm_size_t prev_size, vm_size_t next_size)
1963 {
1964         vm_pindex_t next_pindex;
1965
1966         ASSERT_LWKT_TOKEN_HELD(&vm_token);
1967         ASSERT_LWKT_TOKEN_HELD(&vmobj_token);
1968
1969         if (prev_object == NULL) {
1970                 return (TRUE);
1971         }
1972
1973         vm_object_hold(prev_object);
1974
1975         if (prev_object->type != OBJT_DEFAULT &&
1976             prev_object->type != OBJT_SWAP) {
1977                 vm_object_drop(prev_object);
1978                 return (FALSE);
1979         }
1980
1981         /*
1982          * Try to collapse the object first
1983          */
1984         vm_object_collapse(prev_object);
1985
1986         /*
1987          * Can't coalesce if: . more than one reference . paged out . shadows
1988          * another object . has a copy elsewhere (any of which mean that the
1989          * pages not mapped to prev_entry may be in use anyway)
1990          */
1991
1992         if (prev_object->backing_object != NULL) {
1993                 vm_object_drop(prev_object);
1994                 return (FALSE);
1995         }
1996
1997         prev_size >>= PAGE_SHIFT;
1998         next_size >>= PAGE_SHIFT;
1999         next_pindex = prev_pindex + prev_size;
2000
2001         if ((prev_object->ref_count > 1) &&
2002             (prev_object->size != next_pindex)) {
2003                 vm_object_drop(prev_object);
2004                 return (FALSE);
2005         }
2006
2007         /*
2008          * Remove any pages that may still be in the object from a previous
2009          * deallocation.
2010          */
2011         if (next_pindex < prev_object->size) {
2012                 vm_object_page_remove(prev_object,
2013                                       next_pindex,
2014                                       next_pindex + next_size, FALSE);
2015                 if (prev_object->type == OBJT_SWAP)
2016                         swap_pager_freespace(prev_object,
2017                                              next_pindex, next_size);
2018         }
2019
2020         /*
2021          * Extend the object if necessary.
2022          */
2023         if (next_pindex + next_size > prev_object->size)
2024                 prev_object->size = next_pindex + next_size;
2025
2026         vm_object_drop(prev_object);
2027         return (TRUE);
2028 }
2029
2030 /*
2031  * Make the object writable and flag is being possibly dirty.
2032  *
2033  * No requirements.
2034  */
2035 void
2036 vm_object_set_writeable_dirty(vm_object_t object)
2037 {
2038         struct vnode *vp;
2039
2040         lwkt_gettoken(&vm_token);
2041         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2042         if (object->type == OBJT_VNODE &&
2043             (vp = (struct vnode *)object->handle) != NULL) {
2044                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2045                         vsetflags(vp, VOBJDIRTY);
2046                 }
2047         }
2048         lwkt_reltoken(&vm_token);
2049 }
2050
2051 #include "opt_ddb.h"
2052 #ifdef DDB
2053 #include <sys/kernel.h>
2054
2055 #include <sys/cons.h>
2056
2057 #include <ddb/ddb.h>
2058
2059 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2060                                        vm_map_entry_t entry);
2061 static int      vm_object_in_map (vm_object_t object);
2062
2063 /*
2064  * The caller must hold vm_token.
2065  */
2066 static int
2067 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2068 {
2069         vm_map_t tmpm;
2070         vm_map_entry_t tmpe;
2071         vm_object_t obj;
2072         int entcount;
2073
2074         if (map == 0)
2075                 return 0;
2076         if (entry == 0) {
2077                 tmpe = map->header.next;
2078                 entcount = map->nentries;
2079                 while (entcount-- && (tmpe != &map->header)) {
2080                         if( _vm_object_in_map(map, object, tmpe)) {
2081                                 return 1;
2082                         }
2083                         tmpe = tmpe->next;
2084                 }
2085                 return (0);
2086         }
2087         switch(entry->maptype) {
2088         case VM_MAPTYPE_SUBMAP:
2089                 tmpm = entry->object.sub_map;
2090                 tmpe = tmpm->header.next;
2091                 entcount = tmpm->nentries;
2092                 while (entcount-- && tmpe != &tmpm->header) {
2093                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2094                                 return 1;
2095                         }
2096                         tmpe = tmpe->next;
2097                 }
2098                 break;
2099         case VM_MAPTYPE_NORMAL:
2100         case VM_MAPTYPE_VPAGETABLE:
2101                 obj = entry->object.vm_object;
2102                 while (obj) {
2103                         if (obj == object)
2104                                 return 1;
2105                         obj = obj->backing_object;
2106                 }
2107                 break;
2108         default:
2109                 break;
2110         }
2111         return 0;
2112 }
2113
2114 static int vm_object_in_map_callback(struct proc *p, void *data);
2115
2116 struct vm_object_in_map_info {
2117         vm_object_t object;
2118         int rv;
2119 };
2120
2121 /*
2122  * Debugging only
2123  */
2124 static int
2125 vm_object_in_map(vm_object_t object)
2126 {
2127         struct vm_object_in_map_info info;
2128
2129         info.rv = 0;
2130         info.object = object;
2131
2132         allproc_scan(vm_object_in_map_callback, &info);
2133         if (info.rv)
2134                 return 1;
2135         if( _vm_object_in_map(&kernel_map, object, 0))
2136                 return 1;
2137         if( _vm_object_in_map(&pager_map, object, 0))
2138                 return 1;
2139         if( _vm_object_in_map(&buffer_map, object, 0))
2140                 return 1;
2141         return 0;
2142 }
2143
2144 /*
2145  * Debugging only
2146  */
2147 static int
2148 vm_object_in_map_callback(struct proc *p, void *data)
2149 {
2150         struct vm_object_in_map_info *info = data;
2151
2152         if (p->p_vmspace) {
2153                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2154                         info->rv = 1;
2155                         return -1;
2156                 }
2157         }
2158         return (0);
2159 }
2160
2161 DB_SHOW_COMMAND(vmochk, vm_object_check)
2162 {
2163         vm_object_t object;
2164
2165         /*
2166          * make sure that internal objs are in a map somewhere
2167          * and none have zero ref counts.
2168          */
2169         for (object = TAILQ_FIRST(&vm_object_list);
2170                         object != NULL;
2171                         object = TAILQ_NEXT(object, object_list)) {
2172                 if (object->type == OBJT_MARKER)
2173                         continue;
2174                 if (object->handle == NULL &&
2175                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2176                         if (object->ref_count == 0) {
2177                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2178                                         (long)object->size);
2179                         }
2180                         if (!vm_object_in_map(object)) {
2181                                 db_printf(
2182                         "vmochk: internal obj is not in a map: "
2183                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2184                                     object->ref_count, (u_long)object->size, 
2185                                     (u_long)object->size,
2186                                     (void *)object->backing_object);
2187                         }
2188                 }
2189         }
2190 }
2191
2192 /*
2193  * Debugging only
2194  */
2195 DB_SHOW_COMMAND(object, vm_object_print_static)
2196 {
2197         /* XXX convert args. */
2198         vm_object_t object = (vm_object_t)addr;
2199         boolean_t full = have_addr;
2200
2201         vm_page_t p;
2202
2203         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2204 #define count   was_count
2205
2206         int count;
2207
2208         if (object == NULL)
2209                 return;
2210
2211         db_iprintf(
2212             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2213             object, (int)object->type, (u_long)object->size,
2214             object->resident_page_count, object->ref_count, object->flags);
2215         /*
2216          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2217          */
2218         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2219             object->shadow_count, 
2220             object->backing_object ? object->backing_object->ref_count : 0,
2221             object->backing_object, (long)object->backing_object_offset);
2222
2223         if (!full)
2224                 return;
2225
2226         db_indent += 2;
2227         count = 0;
2228         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2229                 if (count == 0)
2230                         db_iprintf("memory:=");
2231                 else if (count == 6) {
2232                         db_printf("\n");
2233                         db_iprintf(" ...");
2234                         count = 0;
2235                 } else
2236                         db_printf(",");
2237                 count++;
2238
2239                 db_printf("(off=0x%lx,page=0x%lx)",
2240                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2241         }
2242         if (count != 0)
2243                 db_printf("\n");
2244         db_indent -= 2;
2245 }
2246
2247 /* XXX. */
2248 #undef count
2249
2250 /*
2251  * XXX need this non-static entry for calling from vm_map_print.
2252  *
2253  * Debugging only
2254  */
2255 void
2256 vm_object_print(/* db_expr_t */ long addr,
2257                 boolean_t have_addr,
2258                 /* db_expr_t */ long count,
2259                 char *modif)
2260 {
2261         vm_object_print_static(addr, have_addr, count, modif);
2262 }
2263
2264 /*
2265  * Debugging only
2266  */
2267 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2268 {
2269         vm_object_t object;
2270         int nl = 0;
2271         int c;
2272         for (object = TAILQ_FIRST(&vm_object_list);
2273                         object != NULL;
2274                         object = TAILQ_NEXT(object, object_list)) {
2275                 vm_pindex_t idx, fidx;
2276                 vm_pindex_t osize;
2277                 vm_paddr_t pa = -1, padiff;
2278                 int rcount;
2279                 vm_page_t m;
2280
2281                 if (object->type == OBJT_MARKER)
2282                         continue;
2283                 db_printf("new object: %p\n", (void *)object);
2284                 if ( nl > 18) {
2285                         c = cngetc();
2286                         if (c != ' ')
2287                                 return;
2288                         nl = 0;
2289                 }
2290                 nl++;
2291                 rcount = 0;
2292                 fidx = 0;
2293                 osize = object->size;
2294                 if (osize > 128)
2295                         osize = 128;
2296                 for (idx = 0; idx < osize; idx++) {
2297                         m = vm_page_lookup(object, idx);
2298                         if (m == NULL) {
2299                                 if (rcount) {
2300                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2301                                                 (long)fidx, rcount, (long)pa);
2302                                         if ( nl > 18) {
2303                                                 c = cngetc();
2304                                                 if (c != ' ')
2305                                                         return;
2306                                                 nl = 0;
2307                                         }
2308                                         nl++;
2309                                         rcount = 0;
2310                                 }
2311                                 continue;
2312                         }
2313
2314                                 
2315                         if (rcount &&
2316                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2317                                 ++rcount;
2318                                 continue;
2319                         }
2320                         if (rcount) {
2321                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2322                                 padiff >>= PAGE_SHIFT;
2323                                 padiff &= PQ_L2_MASK;
2324                                 if (padiff == 0) {
2325                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2326                                         ++rcount;
2327                                         continue;
2328                                 }
2329                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2330                                         (long)fidx, rcount, (long)pa);
2331                                 db_printf("pd(%ld)\n", (long)padiff);
2332                                 if ( nl > 18) {
2333                                         c = cngetc();
2334                                         if (c != ' ')
2335                                                 return;
2336                                         nl = 0;
2337                                 }
2338                                 nl++;
2339                         }
2340                         fidx = idx;
2341                         pa = VM_PAGE_TO_PHYS(m);
2342                         rcount = 1;
2343                 }
2344                 if (rcount) {
2345                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2346                                 (long)fidx, rcount, (long)pa);
2347                         if ( nl > 18) {
2348                                 c = cngetc();
2349                                 if (c != ' ')
2350                                         return;
2351                                 nl = 0;
2352                         }
2353                         nl++;
2354                 }
2355         }
2356 }
2357 #endif /* DDB */