Rename:
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.13 2003/10/02 21:00:20 hmp Exp $
66  */
67
68 /*
69  *      Virtual memory mapping module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93
94 #include <sys/thread2.h>
95
96 /*
97  *      Virtual memory maps provide for the mapping, protection,
98  *      and sharing of virtual memory objects.  In addition,
99  *      this module provides for an efficient virtual copy of
100  *      memory from one map to another.
101  *
102  *      Synchronization is required prior to most operations.
103  *
104  *      Maps consist of an ordered doubly-linked list of simple
105  *      entries; a single hint is used to speed up lookups.
106  *
107  *      Since portions of maps are specified by start/end addresses,
108  *      which may not align with existing map entries, all
109  *      routines merely "clip" entries to these start/end values.
110  *      [That is, an entry is split into two, bordering at a
111  *      start or end value.]  Note that these clippings may not
112  *      always be necessary (as the two resulting entries are then
113  *      not changed); however, the clipping is done for convenience.
114  *
115  *      As mentioned above, virtual copy operations are performed
116  *      by copying VM object references from one map to
117  *      another, and then marking both regions as copy-on-write.
118  */
119
120 /*
121  *      vm_map_startup:
122  *
123  *      Initialize the vm_map module.  Must be called before
124  *      any other vm_map routines.
125  *
126  *      Map and entry structures are allocated from the general
127  *      purpose memory pool with some exceptions:
128  *
129  *      - The kernel map and kmem submap are allocated statically.
130  *      - Kernel map entries are allocated out of a static pool.
131  *
132  *      These restrictions are necessary since malloc() uses the
133  *      maps and requires map entries.
134  */
135
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150                 vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153
154 void
155 vm_map_startup()
156 {
157         mapzone = &mapzone_store;
158         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159                 map_init, MAX_KMAP);
160         mapentzone = &mapentzone_store;
161         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162                 map_entry_init, MAX_MAPENT);
163 }
164
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(min, max)
172         vm_offset_t min, max;
173 {
174         struct vmspace *vm;
175
176         vm = zalloc(vmspace_zone);
177         vm_map_init(&vm->vm_map, min, max);
178         pmap_pinit(vmspace_pmap(vm));
179         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
180         vm->vm_refcnt = 1;
181         vm->vm_shm = NULL;
182         vm->vm_exitingcnt = 0;
183         return (vm);
184 }
185
186 void
187 vm_init2(void) 
188 {
189         zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
190         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
191         vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
192         pmap_init2();
193         vm_object_init2();
194 }
195
196 static __inline void
197 vmspace_dofree(struct vmspace *vm)
198 {
199         int count;
200
201         /*
202          * Make sure any SysV shm is freed, it might not have in
203          * exit1()
204          */
205         shmexit(vm);
206
207         /*
208          * Lock the map, to wait out all other references to it.
209          * Delete all of the mappings and pages they hold, then call
210          * the pmap module to reclaim anything left.
211          */
212         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
213         vm_map_lock(&vm->vm_map);
214         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
215                 vm->vm_map.max_offset, &count);
216         vm_map_unlock(&vm->vm_map);
217         vm_map_entry_release(count);
218
219         pmap_release(vmspace_pmap(vm));
220         zfree(vmspace_zone, vm);
221 }
222
223 void
224 vmspace_free(struct vmspace *vm)
225 {
226         if (vm->vm_refcnt == 0)
227                 panic("vmspace_free: attempt to free already freed vmspace");
228
229         if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
230                 vmspace_dofree(vm);
231 }
232
233 void
234 vmspace_exitfree(struct proc *p)
235 {
236         struct vmspace *vm;
237
238         vm = p->p_vmspace;
239         p->p_vmspace = NULL;
240
241         /*
242          * cleanup by parent process wait()ing on exiting child.  vm_refcnt
243          * may not be 0 (e.g. fork() and child exits without exec()ing).
244          * exitingcnt may increment above 0 and drop back down to zero
245          * several times while vm_refcnt is held non-zero.  vm_refcnt
246          * may also increment above 0 and drop back down to zero several
247          * times while vm_exitingcnt is held non-zero.
248          *
249          * The last wait on the exiting child's vmspace will clean up
250          * the remainder of the vmspace.
251          */
252         if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
253                 vmspace_dofree(vm);
254 }
255
256 /*
257  * vmspace_swap_count() - count the approximate swap useage in pages for a
258  *                        vmspace.
259  *
260  *      Swap useage is determined by taking the proportional swap used by
261  *      VM objects backing the VM map.  To make up for fractional losses,
262  *      if the VM object has any swap use at all the associated map entries
263  *      count for at least 1 swap page.
264  */
265 int
266 vmspace_swap_count(struct vmspace *vmspace)
267 {
268         vm_map_t map = &vmspace->vm_map;
269         vm_map_entry_t cur;
270         int count = 0;
271
272         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
273                 vm_object_t object;
274
275                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
276                     (object = cur->object.vm_object) != NULL &&
277                     object->type == OBJT_SWAP
278                 ) {
279                         int n = (cur->end - cur->start) / PAGE_SIZE;
280
281                         if (object->un_pager.swp.swp_bcount) {
282                                 count += object->un_pager.swp.swp_bcount *
283                                     SWAP_META_PAGES * n / object->size + 1;
284                         }
285                 }
286         }
287         return(count);
288 }
289
290
291 /*
292  *      vm_map_create:
293  *
294  *      Creates and returns a new empty VM map with
295  *      the given physical map structure, and having
296  *      the given lower and upper address bounds.
297  */
298 vm_map_t
299 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
300 {
301         vm_map_t result;
302
303         result = zalloc(mapzone);
304         vm_map_init(result, min, max);
305         result->pmap = pmap;
306         return (result);
307 }
308
309 /*
310  * Initialize an existing vm_map structure
311  * such as that in the vmspace structure.
312  * The pmap is set elsewhere.
313  */
314 void
315 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
316 {
317         map->header.next = map->header.prev = &map->header;
318         map->nentries = 0;
319         map->size = 0;
320         map->system_map = 0;
321         map->infork = 0;
322         map->min_offset = min;
323         map->max_offset = max;
324         map->first_free = &map->header;
325         map->hint = &map->header;
326         map->timestamp = 0;
327         lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
328 }
329
330 /*
331  *      vm_map_entry_reserve:
332  *
333  *      Reserves vm_map_entry structures outside of the critical path
334  */
335 int
336 vm_map_entry_reserve(int count)
337 {
338         struct globaldata *gd = mycpu;
339         vm_map_entry_t entry;
340
341         crit_enter();
342         gd->gd_vme_avail -= count;
343
344         /*
345          * Make sure we have enough structures in gd_vme_base to handle
346          * the reservation request.
347          */
348         while (gd->gd_vme_avail < 0) {
349                 entry = zalloc(mapentzone);
350                 entry->next = gd->gd_vme_base;
351                 gd->gd_vme_base = entry;
352                 ++gd->gd_vme_avail;
353         }
354         crit_exit();
355         return(count);
356 }
357
358 /*
359  *      vm_map_entry_release:
360  *
361  *      Releases previously reserved vm_map_entry structures that were not
362  *      used.  If we have too much junk in our per-cpu cache clean some of
363  *      it out.
364  */
365 void
366 vm_map_entry_release(int count)
367 {
368         struct globaldata *gd = mycpu;
369         vm_map_entry_t entry;
370
371         crit_enter();
372         gd->gd_vme_avail += count;
373         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
374                 entry = gd->gd_vme_base;
375                 KKASSERT(entry != NULL);
376                 gd->gd_vme_base = entry->next;
377                 --gd->gd_vme_avail;
378                 crit_exit();
379                 zfree(mapentzone, entry);
380                 crit_enter();
381         }
382         crit_exit();
383 }
384
385 /*
386  *      vm_map_entry_kreserve:
387  *
388  *      Reserve map entry structures for use in kernel_map or (if it exists)
389  *      kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
390  *      basis.
391  *
392  *      XXX if multiple kernel map entries are used without any intervening
393  *      use by another map the KKASSERT() may assert.
394  */
395 int
396 vm_map_entry_kreserve(int count)
397 {
398         struct globaldata *gd = mycpu;
399
400         crit_enter();
401         gd->gd_vme_kdeficit += count;
402         crit_exit();
403         KKASSERT(gd->gd_vme_base != NULL);
404         return(count);
405 }
406
407 /*
408  *      vm_map_entry_krelease:
409  *
410  *      Release previously reserved map entries for kernel_map or kmem_map
411  *      use.  This routine determines how many entries were actually used and
412  *      replentishes the kernel reserve supply from vme_avail.
413  *
414  *      If there is insufficient supply vme_avail will go negative, which is
415  *      ok.  We cannot safely call zalloc in this function without getting
416  *      into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
417  *      to regenerate the lost entries.
418  */
419 void
420 vm_map_entry_krelease(int count)
421 {
422         struct globaldata *gd = mycpu;
423
424         crit_enter();
425         gd->gd_vme_kdeficit -= count;
426         gd->gd_vme_avail -= gd->gd_vme_kdeficit;        /* can go negative */
427         gd->gd_vme_kdeficit = 0;
428         crit_exit();
429 }
430
431 /*
432  *      vm_map_entry_create:    [ internal use only ]
433  *
434  *      Allocates a VM map entry for insertion.  No entry fields are filled 
435  *      in.
436  *
437  *      This routine may be called from an interrupt thread but not a FAST
438  *      interrupt.  This routine may recurse the map lock.
439  */
440 static vm_map_entry_t
441 vm_map_entry_create(vm_map_t map, int *countp)
442 {
443         struct globaldata *gd = mycpu;
444         vm_map_entry_t entry;
445
446         KKASSERT(*countp > 0);
447         --*countp;
448         crit_enter();
449         entry = gd->gd_vme_base;
450         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
451         gd->gd_vme_base = entry->next;
452         crit_exit();
453         return(entry);
454 }
455
456 /*
457  *      vm_map_entry_dispose:   [ internal use only ]
458  *
459  *      Dispose of a vm_map_entry that is no longer being referenced.  This
460  *      function may be called from an interrupt.
461  */
462 static void
463 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
464 {
465         struct globaldata *gd = mycpu;
466
467         ++*countp;
468         crit_enter();
469         entry->next = gd->gd_vme_base;
470         gd->gd_vme_base = entry;
471         crit_exit();
472 }
473
474
475 /*
476  *      vm_map_entry_{un,}link:
477  *
478  *      Insert/remove entries from maps.
479  */
480 static __inline void
481 vm_map_entry_link(vm_map_t map,
482                   vm_map_entry_t after_where,
483                   vm_map_entry_t entry)
484 {
485         map->nentries++;
486         entry->prev = after_where;
487         entry->next = after_where->next;
488         entry->next->prev = entry;
489         after_where->next = entry;
490 }
491
492 static __inline void
493 vm_map_entry_unlink(vm_map_t map,
494                     vm_map_entry_t entry)
495 {
496         vm_map_entry_t prev;
497         vm_map_entry_t next;
498
499         if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
500                 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
501         prev = entry->prev;
502         next = entry->next;
503         next->prev = prev;
504         prev->next = next;
505         map->nentries--;
506 }
507
508 /*
509  *      SAVE_HINT:
510  *
511  *      Saves the specified entry as the hint for
512  *      future lookups.
513  */
514 #define SAVE_HINT(map,value) \
515                 (map)->hint = (value);
516
517 /*
518  *      vm_map_lookup_entry:    [ internal use only ]
519  *
520  *      Finds the map entry containing (or
521  *      immediately preceding) the specified address
522  *      in the given map; the entry is returned
523  *      in the "entry" parameter.  The boolean
524  *      result indicates whether the address is
525  *      actually contained in the map.
526  */
527 boolean_t
528 vm_map_lookup_entry(map, address, entry)
529         vm_map_t map;
530         vm_offset_t address;
531         vm_map_entry_t *entry;  /* OUT */
532 {
533         vm_map_entry_t cur;
534         vm_map_entry_t last;
535
536         /*
537          * Start looking either from the head of the list, or from the hint.
538          */
539
540         cur = map->hint;
541
542         if (cur == &map->header)
543                 cur = cur->next;
544
545         if (address >= cur->start) {
546                 /*
547                  * Go from hint to end of list.
548                  *
549                  * But first, make a quick check to see if we are already looking
550                  * at the entry we want (which is usually the case). Note also
551                  * that we don't need to save the hint here... it is the same
552                  * hint (unless we are at the header, in which case the hint
553                  * didn't buy us anything anyway).
554                  */
555                 last = &map->header;
556                 if ((cur != last) && (cur->end > address)) {
557                         *entry = cur;
558                         return (TRUE);
559                 }
560         } else {
561                 /*
562                  * Go from start to hint, *inclusively*
563                  */
564                 last = cur->next;
565                 cur = map->header.next;
566         }
567
568         /*
569          * Search linearly
570          */
571
572         while (cur != last) {
573                 if (cur->end > address) {
574                         if (address >= cur->start) {
575                                 /*
576                                  * Save this lookup for future hints, and
577                                  * return
578                                  */
579
580                                 *entry = cur;
581                                 SAVE_HINT(map, cur);
582                                 return (TRUE);
583                         }
584                         break;
585                 }
586                 cur = cur->next;
587         }
588         *entry = cur->prev;
589         SAVE_HINT(map, *entry);
590         return (FALSE);
591 }
592
593 /*
594  *      vm_map_insert:
595  *
596  *      Inserts the given whole VM object into the target
597  *      map at the specified address range.  The object's
598  *      size should match that of the address range.
599  *
600  *      Requires that the map be locked, and leaves it so.  Requires that
601  *      sufficient vm_map_entry structures have been reserved and tracks
602  *      the use via countp.
603  *
604  *      If object is non-NULL, ref count must be bumped by caller
605  *      prior to making call to account for the new entry.
606  */
607 int
608 vm_map_insert(vm_map_t map, int *countp,
609               vm_object_t object, vm_ooffset_t offset,
610               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
611               int cow)
612 {
613         vm_map_entry_t new_entry;
614         vm_map_entry_t prev_entry;
615         vm_map_entry_t temp_entry;
616         vm_eflags_t protoeflags;
617
618         /*
619          * Check that the start and end points are not bogus.
620          */
621
622         if ((start < map->min_offset) || (end > map->max_offset) ||
623             (start >= end))
624                 return (KERN_INVALID_ADDRESS);
625
626         /*
627          * Find the entry prior to the proposed starting address; if it's part
628          * of an existing entry, this range is bogus.
629          */
630
631         if (vm_map_lookup_entry(map, start, &temp_entry))
632                 return (KERN_NO_SPACE);
633
634         prev_entry = temp_entry;
635
636         /*
637          * Assert that the next entry doesn't overlap the end point.
638          */
639
640         if ((prev_entry->next != &map->header) &&
641             (prev_entry->next->start < end))
642                 return (KERN_NO_SPACE);
643
644         protoeflags = 0;
645
646         if (cow & MAP_COPY_ON_WRITE)
647                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
648
649         if (cow & MAP_NOFAULT) {
650                 protoeflags |= MAP_ENTRY_NOFAULT;
651
652                 KASSERT(object == NULL,
653                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
654         }
655         if (cow & MAP_DISABLE_SYNCER)
656                 protoeflags |= MAP_ENTRY_NOSYNC;
657         if (cow & MAP_DISABLE_COREDUMP)
658                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
659
660         if (object) {
661                 /*
662                  * When object is non-NULL, it could be shared with another
663                  * process.  We have to set or clear OBJ_ONEMAPPING 
664                  * appropriately.
665                  */
666                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
667                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
668                 }
669         }
670         else if ((prev_entry != &map->header) &&
671                  (prev_entry->eflags == protoeflags) &&
672                  (prev_entry->end == start) &&
673                  (prev_entry->wired_count == 0) &&
674                  ((prev_entry->object.vm_object == NULL) ||
675                   vm_object_coalesce(prev_entry->object.vm_object,
676                                      OFF_TO_IDX(prev_entry->offset),
677                                      (vm_size_t)(prev_entry->end - prev_entry->start),
678                                      (vm_size_t)(end - prev_entry->end)))) {
679                 /*
680                  * We were able to extend the object.  Determine if we
681                  * can extend the previous map entry to include the 
682                  * new range as well.
683                  */
684                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
685                     (prev_entry->protection == prot) &&
686                     (prev_entry->max_protection == max)) {
687                         map->size += (end - prev_entry->end);
688                         prev_entry->end = end;
689                         vm_map_simplify_entry(map, prev_entry, countp);
690                         return (KERN_SUCCESS);
691                 }
692
693                 /*
694                  * If we can extend the object but cannot extend the
695                  * map entry, we have to create a new map entry.  We
696                  * must bump the ref count on the extended object to
697                  * account for it.  object may be NULL.
698                  */
699                 object = prev_entry->object.vm_object;
700                 offset = prev_entry->offset +
701                         (prev_entry->end - prev_entry->start);
702                 vm_object_reference(object);
703         }
704
705         /*
706          * NOTE: if conditionals fail, object can be NULL here.  This occurs
707          * in things like the buffer map where we manage kva but do not manage
708          * backing objects.
709          */
710
711         /*
712          * Create a new entry
713          */
714
715         new_entry = vm_map_entry_create(map, countp);
716         new_entry->start = start;
717         new_entry->end = end;
718
719         new_entry->eflags = protoeflags;
720         new_entry->object.vm_object = object;
721         new_entry->offset = offset;
722         new_entry->avail_ssize = 0;
723
724         new_entry->inheritance = VM_INHERIT_DEFAULT;
725         new_entry->protection = prot;
726         new_entry->max_protection = max;
727         new_entry->wired_count = 0;
728
729         /*
730          * Insert the new entry into the list
731          */
732
733         vm_map_entry_link(map, prev_entry, new_entry);
734         map->size += new_entry->end - new_entry->start;
735
736         /*
737          * Update the free space hint
738          */
739         if ((map->first_free == prev_entry) &&
740             (prev_entry->end >= new_entry->start)) {
741                 map->first_free = new_entry;
742         }
743
744 #if 0
745         /*
746          * Temporarily removed to avoid MAP_STACK panic, due to
747          * MAP_STACK being a huge hack.  Will be added back in
748          * when MAP_STACK (and the user stack mapping) is fixed.
749          */
750         /*
751          * It may be possible to simplify the entry
752          */
753         vm_map_simplify_entry(map, new_entry, countp);
754 #endif
755
756         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
757                 pmap_object_init_pt(map->pmap, start,
758                                     object, OFF_TO_IDX(offset), end - start,
759                                     cow & MAP_PREFAULT_PARTIAL);
760         }
761
762         return (KERN_SUCCESS);
763 }
764
765 /*
766  * Find sufficient space for `length' bytes in the given map, starting at
767  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
768  *
769  * This function will returned an arbitrarily aligned pointer.  If no
770  * particular alignment is required you should pass align as 1.  Note that
771  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
772  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
773  * argument.
774  *
775  * 'align' should be a power of 2 but is not required to be.
776  */
777 int
778 vm_map_findspace(
779         vm_map_t map,
780         vm_offset_t start,
781         vm_size_t length,
782         vm_offset_t align,
783         vm_offset_t *addr)
784 {
785         vm_map_entry_t entry, next;
786         vm_offset_t end;
787         vm_offset_t align_mask;
788
789         if (start < map->min_offset)
790                 start = map->min_offset;
791         if (start > map->max_offset)
792                 return (1);
793
794         /*
795          * If the alignment is not a power of 2 we will have to use
796          * a mod/division, set align_mask to a special value.
797          */
798         if ((align | (align - 1)) + 1 != (align << 1))
799                 align_mask = (vm_offset_t)-1;
800         else
801                 align_mask = align - 1;
802
803 retry:
804         /*
805          * Look for the first possible address; if there's already something
806          * at this address, we have to start after it.
807          */
808         if (start == map->min_offset) {
809                 if ((entry = map->first_free) != &map->header)
810                         start = entry->end;
811         } else {
812                 vm_map_entry_t tmp;
813
814                 if (vm_map_lookup_entry(map, start, &tmp))
815                         start = tmp->end;
816                 entry = tmp;
817         }
818
819         /*
820          * Look through the rest of the map, trying to fit a new region in the
821          * gap between existing regions, or after the very last region.
822          */
823         for (;; start = (entry = next)->end) {
824                 /*
825                  * Adjust the proposed start by the requested alignment,
826                  * be sure that we didn't wrap the address.
827                  */
828                 if (align_mask == (vm_offset_t)-1)
829                         end = ((start + align - 1) / align) * align;
830                 else
831                         end = (start + align_mask) & ~align_mask;
832                 if (end < start)
833                         return (1);
834                 start = end;
835                 /*
836                  * Find the end of the proposed new region.  Be sure we didn't
837                  * go beyond the end of the map, or wrap around the address.
838                  * Then check to see if this is the last entry or if the 
839                  * proposed end fits in the gap between this and the next
840                  * entry.
841                  */
842                 end = start + length;
843                 if (end > map->max_offset || end < start)
844                         return (1);
845                 next = entry->next;
846                 if (next == &map->header || next->start >= end)
847                         break;
848         }
849         SAVE_HINT(map, entry);
850         if (map == kernel_map) {
851                 vm_offset_t ksize;
852                 if ((ksize = round_page(start + length)) > kernel_vm_end) {
853                         pmap_growkernel(ksize);
854                         goto retry;
855                 }
856         }
857         *addr = start;
858         return (0);
859 }
860
861 /*
862  *      vm_map_find finds an unallocated region in the target address
863  *      map with the given length.  The search is defined to be
864  *      first-fit from the specified address; the region found is
865  *      returned in the same parameter.
866  *
867  *      If object is non-NULL, ref count must be bumped by caller
868  *      prior to making call to account for the new entry.
869  */
870 int
871 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
872             vm_offset_t *addr,  /* IN/OUT */
873             vm_size_t length, boolean_t find_space, vm_prot_t prot,
874             vm_prot_t max, int cow)
875 {
876         vm_offset_t start;
877         int result;
878         int count;
879 #if defined(USE_KMEM_MAP)
880         int s = 0;
881 #endif
882
883         start = *addr;
884
885 #if defined(USE_KMEM_MAP)
886         if (map == kmem_map || map == mb_map)
887                 s = splvm();
888 #endif
889
890         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
891         vm_map_lock(map);
892         if (find_space) {
893                 if (vm_map_findspace(map, start, length, 1, addr)) {
894                         vm_map_unlock(map);
895                         vm_map_entry_release(count);
896 #if defined(USE_KMEM_MAP)
897                         if (map == kmem_map || map == mb_map)
898                                 splx(s);
899 #endif
900                         return (KERN_NO_SPACE);
901                 }
902                 start = *addr;
903         }
904         result = vm_map_insert(map, &count, object, offset,
905                 start, start + length, prot, max, cow);
906         vm_map_unlock(map);
907         vm_map_entry_release(count);
908
909 #if defined(USE_KMEM_MAP)
910         if (map == kmem_map || map == mb_map)
911                 splx(s);
912 #endif
913
914         return (result);
915 }
916
917 /*
918  *      vm_map_simplify_entry:
919  *
920  *      Simplify the given map entry by merging with either neighbor.  This
921  *      routine also has the ability to merge with both neighbors.
922  *
923  *      The map must be locked.
924  *
925  *      This routine guarentees that the passed entry remains valid (though
926  *      possibly extended).  When merging, this routine may delete one or
927  *      both neighbors.  No action is taken on entries which have their
928  *      in-transition flag set.
929  */
930 void
931 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
932 {
933         vm_map_entry_t next, prev;
934         vm_size_t prevsize, esize;
935
936         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
937                 ++mycpu->gd_cnt.v_intrans_coll;
938                 return;
939         }
940
941         prev = entry->prev;
942         if (prev != &map->header) {
943                 prevsize = prev->end - prev->start;
944                 if ( (prev->end == entry->start) &&
945                      (prev->object.vm_object == entry->object.vm_object) &&
946                      (!prev->object.vm_object ||
947                         (prev->offset + prevsize == entry->offset)) &&
948                      (prev->eflags == entry->eflags) &&
949                      (prev->protection == entry->protection) &&
950                      (prev->max_protection == entry->max_protection) &&
951                      (prev->inheritance == entry->inheritance) &&
952                      (prev->wired_count == entry->wired_count)) {
953                         if (map->first_free == prev)
954                                 map->first_free = entry;
955                         if (map->hint == prev)
956                                 map->hint = entry;
957                         vm_map_entry_unlink(map, prev);
958                         entry->start = prev->start;
959                         entry->offset = prev->offset;
960                         if (prev->object.vm_object)
961                                 vm_object_deallocate(prev->object.vm_object);
962                         vm_map_entry_dispose(map, prev, countp);
963                 }
964         }
965
966         next = entry->next;
967         if (next != &map->header) {
968                 esize = entry->end - entry->start;
969                 if ((entry->end == next->start) &&
970                     (next->object.vm_object == entry->object.vm_object) &&
971                      (!entry->object.vm_object ||
972                         (entry->offset + esize == next->offset)) &&
973                     (next->eflags == entry->eflags) &&
974                     (next->protection == entry->protection) &&
975                     (next->max_protection == entry->max_protection) &&
976                     (next->inheritance == entry->inheritance) &&
977                     (next->wired_count == entry->wired_count)) {
978                         if (map->first_free == next)
979                                 map->first_free = entry;
980                         if (map->hint == next)
981                                 map->hint = entry;
982                         vm_map_entry_unlink(map, next);
983                         entry->end = next->end;
984                         if (next->object.vm_object)
985                                 vm_object_deallocate(next->object.vm_object);
986                         vm_map_entry_dispose(map, next, countp);
987                 }
988         }
989 }
990 /*
991  *      vm_map_clip_start:      [ internal use only ]
992  *
993  *      Asserts that the given entry begins at or after
994  *      the specified address; if necessary,
995  *      it splits the entry into two.
996  */
997 #define vm_map_clip_start(map, entry, startaddr, countp) \
998 { \
999         if (startaddr > entry->start) \
1000                 _vm_map_clip_start(map, entry, startaddr, countp); \
1001 }
1002
1003 /*
1004  *      This routine is called only when it is known that
1005  *      the entry must be split.
1006  */
1007 static void
1008 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1009 {
1010         vm_map_entry_t new_entry;
1011
1012         /*
1013          * Split off the front portion -- note that we must insert the new
1014          * entry BEFORE this one, so that this entry has the specified
1015          * starting address.
1016          */
1017
1018         vm_map_simplify_entry(map, entry, countp);
1019
1020         /*
1021          * If there is no object backing this entry, we might as well create
1022          * one now.  If we defer it, an object can get created after the map
1023          * is clipped, and individual objects will be created for the split-up
1024          * map.  This is a bit of a hack, but is also about the best place to
1025          * put this improvement.
1026          */
1027
1028         if (entry->object.vm_object == NULL && !map->system_map) {
1029                 vm_object_t object;
1030                 object = vm_object_allocate(OBJT_DEFAULT,
1031                                 atop(entry->end - entry->start));
1032                 entry->object.vm_object = object;
1033                 entry->offset = 0;
1034         }
1035
1036         new_entry = vm_map_entry_create(map, countp);
1037         *new_entry = *entry;
1038
1039         new_entry->end = start;
1040         entry->offset += (start - entry->start);
1041         entry->start = start;
1042
1043         vm_map_entry_link(map, entry->prev, new_entry);
1044
1045         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1046                 vm_object_reference(new_entry->object.vm_object);
1047         }
1048 }
1049
1050 /*
1051  *      vm_map_clip_end:        [ internal use only ]
1052  *
1053  *      Asserts that the given entry ends at or before
1054  *      the specified address; if necessary,
1055  *      it splits the entry into two.
1056  */
1057
1058 #define vm_map_clip_end(map, entry, endaddr, countp) \
1059 { \
1060         if (endaddr < entry->end) \
1061                 _vm_map_clip_end(map, entry, endaddr, countp); \
1062 }
1063
1064 /*
1065  *      This routine is called only when it is known that
1066  *      the entry must be split.
1067  */
1068 static void
1069 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1070 {
1071         vm_map_entry_t new_entry;
1072
1073         /*
1074          * If there is no object backing this entry, we might as well create
1075          * one now.  If we defer it, an object can get created after the map
1076          * is clipped, and individual objects will be created for the split-up
1077          * map.  This is a bit of a hack, but is also about the best place to
1078          * put this improvement.
1079          */
1080
1081         if (entry->object.vm_object == NULL && !map->system_map) {
1082                 vm_object_t object;
1083                 object = vm_object_allocate(OBJT_DEFAULT,
1084                                 atop(entry->end - entry->start));
1085                 entry->object.vm_object = object;
1086                 entry->offset = 0;
1087         }
1088
1089         /*
1090          * Create a new entry and insert it AFTER the specified entry
1091          */
1092
1093         new_entry = vm_map_entry_create(map, countp);
1094         *new_entry = *entry;
1095
1096         new_entry->start = entry->end = end;
1097         new_entry->offset += (end - entry->start);
1098
1099         vm_map_entry_link(map, entry, new_entry);
1100
1101         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1102                 vm_object_reference(new_entry->object.vm_object);
1103         }
1104 }
1105
1106 /*
1107  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
1108  *
1109  *      Asserts that the starting and ending region
1110  *      addresses fall within the valid range of the map.
1111  */
1112 #define VM_MAP_RANGE_CHECK(map, start, end)             \
1113                 {                                       \
1114                 if (start < vm_map_min(map))            \
1115                         start = vm_map_min(map);        \
1116                 if (end > vm_map_max(map))              \
1117                         end = vm_map_max(map);          \
1118                 if (start > end)                        \
1119                         start = end;                    \
1120                 }
1121
1122 /*
1123  *      vm_map_transition_wait: [ kernel use only ]
1124  *
1125  *      Used to block when an in-transition collison occurs.  The map
1126  *      is unlocked for the sleep and relocked before the return.
1127  */
1128 static
1129 void
1130 vm_map_transition_wait(vm_map_t map)
1131 {
1132         vm_map_unlock(map);
1133         tsleep(map, 0, "vment", 0);
1134         vm_map_lock(map);
1135 }
1136
1137 /*
1138  * CLIP_CHECK_BACK
1139  * CLIP_CHECK_FWD
1140  *
1141  *      When we do blocking operations with the map lock held it is
1142  *      possible that a clip might have occured on our in-transit entry,
1143  *      requiring an adjustment to the entry in our loop.  These macros
1144  *      help the pageable and clip_range code deal with the case.  The
1145  *      conditional costs virtually nothing if no clipping has occured.
1146  */
1147
1148 #define CLIP_CHECK_BACK(entry, save_start)              \
1149     do {                                                \
1150             while (entry->start != save_start) {        \
1151                     entry = entry->prev;                \
1152                     KASSERT(entry != &map->header, ("bad entry clip")); \
1153             }                                           \
1154     } while(0)
1155
1156 #define CLIP_CHECK_FWD(entry, save_end)                 \
1157     do {                                                \
1158             while (entry->end != save_end) {            \
1159                     entry = entry->next;                \
1160                     KASSERT(entry != &map->header, ("bad entry clip")); \
1161             }                                           \
1162     } while(0)
1163
1164
1165 /*
1166  *      vm_map_clip_range:      [ kernel use only ]
1167  *
1168  *      Clip the specified range and return the base entry.  The
1169  *      range may cover several entries starting at the returned base
1170  *      and the first and last entry in the covering sequence will be
1171  *      properly clipped to the requested start and end address.
1172  *
1173  *      If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1174  *      flag.  
1175  *
1176  *      The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1177  *      covered by the requested range.
1178  *
1179  *      The map must be exclusively locked on entry and will remain locked
1180  *      on return. If no range exists or the range contains holes and you
1181  *      specified that no holes were allowed, NULL will be returned.  This
1182  *      routine may temporarily unlock the map in order avoid a deadlock when
1183  *      sleeping.
1184  */
1185 static
1186 vm_map_entry_t
1187 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1188         int *countp, int flags)
1189 {
1190         vm_map_entry_t start_entry;
1191         vm_map_entry_t entry;
1192
1193         /*
1194          * Locate the entry and effect initial clipping.  The in-transition
1195          * case does not occur very often so do not try to optimize it.
1196          */
1197 again:
1198         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1199                 return (NULL);
1200         entry = start_entry;
1201         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1202                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1203                 ++mycpu->gd_cnt.v_intrans_coll;
1204                 ++mycpu->gd_cnt.v_intrans_wait;
1205                 vm_map_transition_wait(map);
1206                 /*
1207                  * entry and/or start_entry may have been clipped while
1208                  * we slept, or may have gone away entirely.  We have
1209                  * to restart from the lookup.
1210                  */
1211                 goto again;
1212         }
1213         /*
1214          * Since we hold an exclusive map lock we do not have to restart
1215          * after clipping, even though clipping may block in zalloc.
1216          */
1217         vm_map_clip_start(map, entry, start, countp);
1218         vm_map_clip_end(map, entry, end, countp);
1219         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1220
1221         /*
1222          * Scan entries covered by the range.  When working on the next
1223          * entry a restart need only re-loop on the current entry which
1224          * we have already locked, since 'next' may have changed.  Also,
1225          * even though entry is safe, it may have been clipped so we
1226          * have to iterate forwards through the clip after sleeping.
1227          */
1228         while (entry->next != &map->header && entry->next->start < end) {
1229                 vm_map_entry_t next = entry->next;
1230
1231                 if (flags & MAP_CLIP_NO_HOLES) {
1232                         if (next->start > entry->end) {
1233                                 vm_map_unclip_range(map, start_entry,
1234                                         start, entry->end, countp, flags);
1235                                 return(NULL);
1236                         }
1237                 }
1238
1239                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1240                         vm_offset_t save_end = entry->end;
1241                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1242                         ++mycpu->gd_cnt.v_intrans_coll;
1243                         ++mycpu->gd_cnt.v_intrans_wait;
1244                         vm_map_transition_wait(map);
1245
1246                         /*
1247                          * clips might have occured while we blocked.
1248                          */
1249                         CLIP_CHECK_FWD(entry, save_end);
1250                         CLIP_CHECK_BACK(start_entry, start);
1251                         continue;
1252                 }
1253                 /*
1254                  * No restart necessary even though clip_end may block, we
1255                  * are holding the map lock.
1256                  */
1257                 vm_map_clip_end(map, next, end, countp);
1258                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1259                 entry = next;
1260         }
1261         if (flags & MAP_CLIP_NO_HOLES) {
1262                 if (entry->end != end) {
1263                         vm_map_unclip_range(map, start_entry,
1264                                 start, entry->end, countp, flags);
1265                         return(NULL);
1266                 }
1267         }
1268         return(start_entry);
1269 }
1270
1271 /*
1272  *      vm_map_unclip_range:    [ kernel use only ]
1273  *
1274  *      Undo the effect of vm_map_clip_range().  You should pass the same
1275  *      flags and the same range that you passed to vm_map_clip_range().
1276  *      This code will clear the in-transition flag on the entries and
1277  *      wake up anyone waiting.  This code will also simplify the sequence 
1278  *      and attempt to merge it with entries before and after the sequence.
1279  *
1280  *      The map must be locked on entry and will remain locked on return.
1281  *
1282  *      Note that you should also pass the start_entry returned by 
1283  *      vm_map_clip_range().  However, if you block between the two calls
1284  *      with the map unlocked please be aware that the start_entry may
1285  *      have been clipped and you may need to scan it backwards to find
1286  *      the entry corresponding with the original start address.  You are
1287  *      responsible for this, vm_map_unclip_range() expects the correct
1288  *      start_entry to be passed to it and will KASSERT otherwise.
1289  */
1290 static
1291 void
1292 vm_map_unclip_range(
1293         vm_map_t map,
1294         vm_map_entry_t start_entry,
1295         vm_offset_t start,
1296         vm_offset_t end,
1297         int *countp,
1298         int flags)
1299 {
1300         vm_map_entry_t entry;
1301
1302         entry = start_entry;
1303
1304         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1305         while (entry != &map->header && entry->start < end) {
1306                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1307                 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1308                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1309                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1310                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1311                         wakeup(map);
1312                 }
1313                 entry = entry->next;
1314         }
1315
1316         /*
1317          * Simplification does not block so there is no restart case.
1318          */
1319         entry = start_entry;
1320         while (entry != &map->header && entry->start < end) {
1321                 vm_map_simplify_entry(map, entry, countp);
1322                 entry = entry->next;
1323         }
1324 }
1325
1326 /*
1327  *      vm_map_submap:          [ kernel use only ]
1328  *
1329  *      Mark the given range as handled by a subordinate map.
1330  *
1331  *      This range must have been created with vm_map_find,
1332  *      and no other operations may have been performed on this
1333  *      range prior to calling vm_map_submap.
1334  *
1335  *      Only a limited number of operations can be performed
1336  *      within this rage after calling vm_map_submap:
1337  *              vm_fault
1338  *      [Don't try vm_map_copy!]
1339  *
1340  *      To remove a submapping, one must first remove the
1341  *      range from the superior map, and then destroy the
1342  *      submap (if desired).  [Better yet, don't try it.]
1343  */
1344 int
1345 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1346 {
1347         vm_map_entry_t entry;
1348         int result = KERN_INVALID_ARGUMENT;
1349         int count;
1350
1351         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1352         vm_map_lock(map);
1353
1354         VM_MAP_RANGE_CHECK(map, start, end);
1355
1356         if (vm_map_lookup_entry(map, start, &entry)) {
1357                 vm_map_clip_start(map, entry, start, &count);
1358         } else {
1359                 entry = entry->next;
1360         }
1361
1362         vm_map_clip_end(map, entry, end, &count);
1363
1364         if ((entry->start == start) && (entry->end == end) &&
1365             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1366             (entry->object.vm_object == NULL)) {
1367                 entry->object.sub_map = submap;
1368                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1369                 result = KERN_SUCCESS;
1370         }
1371         vm_map_unlock(map);
1372         vm_map_entry_release(count);
1373
1374         return (result);
1375 }
1376
1377 /*
1378  *      vm_map_protect:
1379  *
1380  *      Sets the protection of the specified address
1381  *      region in the target map.  If "set_max" is
1382  *      specified, the maximum protection is to be set;
1383  *      otherwise, only the current protection is affected.
1384  */
1385 int
1386 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1387                vm_prot_t new_prot, boolean_t set_max)
1388 {
1389         vm_map_entry_t current;
1390         vm_map_entry_t entry;
1391         int count;
1392
1393         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1394         vm_map_lock(map);
1395
1396         VM_MAP_RANGE_CHECK(map, start, end);
1397
1398         if (vm_map_lookup_entry(map, start, &entry)) {
1399                 vm_map_clip_start(map, entry, start, &count);
1400         } else {
1401                 entry = entry->next;
1402         }
1403
1404         /*
1405          * Make a first pass to check for protection violations.
1406          */
1407
1408         current = entry;
1409         while ((current != &map->header) && (current->start < end)) {
1410                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1411                         vm_map_unlock(map);
1412                         vm_map_entry_release(count);
1413                         return (KERN_INVALID_ARGUMENT);
1414                 }
1415                 if ((new_prot & current->max_protection) != new_prot) {
1416                         vm_map_unlock(map);
1417                         vm_map_entry_release(count);
1418                         return (KERN_PROTECTION_FAILURE);
1419                 }
1420                 current = current->next;
1421         }
1422
1423         /*
1424          * Go back and fix up protections. [Note that clipping is not
1425          * necessary the second time.]
1426          */
1427         current = entry;
1428
1429         while ((current != &map->header) && (current->start < end)) {
1430                 vm_prot_t old_prot;
1431
1432                 vm_map_clip_end(map, current, end, &count);
1433
1434                 old_prot = current->protection;
1435                 if (set_max)
1436                         current->protection =
1437                             (current->max_protection = new_prot) &
1438                             old_prot;
1439                 else
1440                         current->protection = new_prot;
1441
1442                 /*
1443                  * Update physical map if necessary. Worry about copy-on-write
1444                  * here -- CHECK THIS XXX
1445                  */
1446
1447                 if (current->protection != old_prot) {
1448 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1449                                                         VM_PROT_ALL)
1450
1451                         pmap_protect(map->pmap, current->start,
1452                             current->end,
1453                             current->protection & MASK(current));
1454 #undef  MASK
1455                 }
1456
1457                 vm_map_simplify_entry(map, current, &count);
1458
1459                 current = current->next;
1460         }
1461
1462         vm_map_unlock(map);
1463         vm_map_entry_release(count);
1464         return (KERN_SUCCESS);
1465 }
1466
1467 /*
1468  *      vm_map_madvise:
1469  *
1470  *      This routine traverses a processes map handling the madvise
1471  *      system call.  Advisories are classified as either those effecting
1472  *      the vm_map_entry structure, or those effecting the underlying 
1473  *      objects.
1474  */
1475
1476 int
1477 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1478 {
1479         vm_map_entry_t current, entry;
1480         int modify_map = 0;
1481         int count;
1482
1483         /*
1484          * Some madvise calls directly modify the vm_map_entry, in which case
1485          * we need to use an exclusive lock on the map and we need to perform 
1486          * various clipping operations.  Otherwise we only need a read-lock
1487          * on the map.
1488          */
1489
1490         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1491
1492         switch(behav) {
1493         case MADV_NORMAL:
1494         case MADV_SEQUENTIAL:
1495         case MADV_RANDOM:
1496         case MADV_NOSYNC:
1497         case MADV_AUTOSYNC:
1498         case MADV_NOCORE:
1499         case MADV_CORE:
1500                 modify_map = 1;
1501                 vm_map_lock(map);
1502                 break;
1503         case MADV_WILLNEED:
1504         case MADV_DONTNEED:
1505         case MADV_FREE:
1506                 vm_map_lock_read(map);
1507                 break;
1508         default:
1509                 vm_map_entry_release(count);
1510                 return (KERN_INVALID_ARGUMENT);
1511         }
1512
1513         /*
1514          * Locate starting entry and clip if necessary.
1515          */
1516
1517         VM_MAP_RANGE_CHECK(map, start, end);
1518
1519         if (vm_map_lookup_entry(map, start, &entry)) {
1520                 if (modify_map)
1521                         vm_map_clip_start(map, entry, start, &count);
1522         } else {
1523                 entry = entry->next;
1524         }
1525
1526         if (modify_map) {
1527                 /*
1528                  * madvise behaviors that are implemented in the vm_map_entry.
1529                  *
1530                  * We clip the vm_map_entry so that behavioral changes are
1531                  * limited to the specified address range.
1532                  */
1533                 for (current = entry;
1534                      (current != &map->header) && (current->start < end);
1535                      current = current->next
1536                 ) {
1537                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1538                                 continue;
1539
1540                         vm_map_clip_end(map, current, end, &count);
1541
1542                         switch (behav) {
1543                         case MADV_NORMAL:
1544                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1545                                 break;
1546                         case MADV_SEQUENTIAL:
1547                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1548                                 break;
1549                         case MADV_RANDOM:
1550                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1551                                 break;
1552                         case MADV_NOSYNC:
1553                                 current->eflags |= MAP_ENTRY_NOSYNC;
1554                                 break;
1555                         case MADV_AUTOSYNC:
1556                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1557                                 break;
1558                         case MADV_NOCORE:
1559                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1560                                 break;
1561                         case MADV_CORE:
1562                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1563                                 break;
1564                         default:
1565                                 break;
1566                         }
1567                         vm_map_simplify_entry(map, current, &count);
1568                 }
1569                 vm_map_unlock(map);
1570         } else {
1571                 vm_pindex_t pindex;
1572                 int count;
1573
1574                 /*
1575                  * madvise behaviors that are implemented in the underlying
1576                  * vm_object.
1577                  *
1578                  * Since we don't clip the vm_map_entry, we have to clip
1579                  * the vm_object pindex and count.
1580                  */
1581                 for (current = entry;
1582                      (current != &map->header) && (current->start < end);
1583                      current = current->next
1584                 ) {
1585                         vm_offset_t useStart;
1586
1587                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1588                                 continue;
1589
1590                         pindex = OFF_TO_IDX(current->offset);
1591                         count = atop(current->end - current->start);
1592                         useStart = current->start;
1593
1594                         if (current->start < start) {
1595                                 pindex += atop(start - current->start);
1596                                 count -= atop(start - current->start);
1597                                 useStart = start;
1598                         }
1599                         if (current->end > end)
1600                                 count -= atop(current->end - end);
1601
1602                         if (count <= 0)
1603                                 continue;
1604
1605                         vm_object_madvise(current->object.vm_object,
1606                                           pindex, count, behav);
1607                         if (behav == MADV_WILLNEED) {
1608                                 pmap_object_init_pt(
1609                                     map->pmap, 
1610                                     useStart,
1611                                     current->object.vm_object,
1612                                     pindex, 
1613                                     (count << PAGE_SHIFT),
1614                                     MAP_PREFAULT_MADVISE
1615                                 );
1616                         }
1617                 }
1618                 vm_map_unlock_read(map);
1619         }
1620         vm_map_entry_release(count);
1621         return(0);
1622 }       
1623
1624
1625 /*
1626  *      vm_map_inherit:
1627  *
1628  *      Sets the inheritance of the specified address
1629  *      range in the target map.  Inheritance
1630  *      affects how the map will be shared with
1631  *      child maps at the time of vm_map_fork.
1632  */
1633 int
1634 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1635                vm_inherit_t new_inheritance)
1636 {
1637         vm_map_entry_t entry;
1638         vm_map_entry_t temp_entry;
1639         int count;
1640
1641         switch (new_inheritance) {
1642         case VM_INHERIT_NONE:
1643         case VM_INHERIT_COPY:
1644         case VM_INHERIT_SHARE:
1645                 break;
1646         default:
1647                 return (KERN_INVALID_ARGUMENT);
1648         }
1649
1650         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1651         vm_map_lock(map);
1652
1653         VM_MAP_RANGE_CHECK(map, start, end);
1654
1655         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1656                 entry = temp_entry;
1657                 vm_map_clip_start(map, entry, start, &count);
1658         } else
1659                 entry = temp_entry->next;
1660
1661         while ((entry != &map->header) && (entry->start < end)) {
1662                 vm_map_clip_end(map, entry, end, &count);
1663
1664                 entry->inheritance = new_inheritance;
1665
1666                 vm_map_simplify_entry(map, entry, &count);
1667
1668                 entry = entry->next;
1669         }
1670         vm_map_unlock(map);
1671         vm_map_entry_release(count);
1672         return (KERN_SUCCESS);
1673 }
1674
1675 /*
1676  * Implement the semantics of mlock
1677  */
1678 int
1679 vm_map_unwire(map, start, real_end, new_pageable)
1680         vm_map_t map;
1681         vm_offset_t start;
1682         vm_offset_t real_end;
1683         boolean_t new_pageable;
1684 {
1685         vm_map_entry_t entry;
1686         vm_map_entry_t start_entry;
1687         vm_offset_t end;
1688         int rv = KERN_SUCCESS;
1689         int count;
1690
1691         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1692         vm_map_lock(map);
1693         VM_MAP_RANGE_CHECK(map, start, real_end);
1694         end = real_end;
1695
1696         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1697         if (start_entry == NULL) {
1698                 vm_map_unlock(map);
1699                 vm_map_entry_release(count);
1700                 return (KERN_INVALID_ADDRESS);
1701         }
1702
1703         if (new_pageable == 0) {
1704                 entry = start_entry;
1705                 while ((entry != &map->header) && (entry->start < end)) {
1706                         vm_offset_t save_start;
1707                         vm_offset_t save_end;
1708
1709                         /*
1710                          * Already user wired or hard wired (trivial cases)
1711                          */
1712                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1713                                 entry = entry->next;
1714                                 continue;
1715                         }
1716                         if (entry->wired_count != 0) {
1717                                 entry->wired_count++;
1718                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
1719                                 entry = entry->next;
1720                                 continue;
1721                         }
1722
1723                         /*
1724                          * A new wiring requires instantiation of appropriate
1725                          * management structures and the faulting in of the
1726                          * page.
1727                          */
1728                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1729                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1730                                 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1731
1732                                         vm_object_shadow(&entry->object.vm_object,
1733                                             &entry->offset,
1734                                             atop(entry->end - entry->start));
1735                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1736
1737                                 } else if (entry->object.vm_object == NULL &&
1738                                            !map->system_map) {
1739
1740                                         entry->object.vm_object =
1741                                             vm_object_allocate(OBJT_DEFAULT,
1742                                                 atop(entry->end - entry->start));
1743                                         entry->offset = (vm_offset_t) 0;
1744
1745                                 }
1746                         }
1747                         entry->wired_count++;
1748                         entry->eflags |= MAP_ENTRY_USER_WIRED;
1749
1750                         /*
1751                          * Now fault in the area.  The map lock needs to be
1752                          * manipulated to avoid deadlocks.  The in-transition
1753                          * flag protects the entries. 
1754                          */
1755                         save_start = entry->start;
1756                         save_end = entry->end;
1757                         vm_map_unlock(map);
1758                         map->timestamp++;
1759                         rv = vm_fault_user_wire(map, save_start, save_end);
1760                         vm_map_lock(map);
1761                         if (rv) {
1762                                 CLIP_CHECK_BACK(entry, save_start);
1763                                 for (;;) {
1764                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1765                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1766                                         entry->wired_count = 0;
1767                                         if (entry->end == save_end)
1768                                                 break;
1769                                         entry = entry->next;
1770                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1771                                 }
1772                                 end = save_start;       /* unwire the rest */
1773                                 break;
1774                         }
1775                         /*
1776                          * note that even though the entry might have been
1777                          * clipped, the USER_WIRED flag we set prevents
1778                          * duplication so we do not have to do a 
1779                          * clip check.
1780                          */
1781                         entry = entry->next;
1782                 }
1783
1784                 /*
1785                  * If we failed fall through to the unwiring section to
1786                  * unwire what we had wired so far.  'end' has already
1787                  * been adjusted.
1788                  */
1789                 if (rv)
1790                         new_pageable = 1;
1791
1792                 /*
1793                  * start_entry might have been clipped if we unlocked the
1794                  * map and blocked.  No matter how clipped it has gotten
1795                  * there should be a fragment that is on our start boundary.
1796                  */
1797                 CLIP_CHECK_BACK(start_entry, start);
1798         }
1799
1800         /*
1801          * Deal with the unwiring case.
1802          */
1803         if (new_pageable) {
1804                 /*
1805                  * This is the unwiring case.  We must first ensure that the
1806                  * range to be unwired is really wired down.  We know there
1807                  * are no holes.
1808                  */
1809                 entry = start_entry;
1810                 while ((entry != &map->header) && (entry->start < end)) {
1811                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1812                                 rv = KERN_INVALID_ARGUMENT;
1813                                 goto done;
1814                         }
1815                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1816                         entry = entry->next;
1817                 }
1818
1819                 /*
1820                  * Now decrement the wiring count for each region. If a region
1821                  * becomes completely unwired, unwire its physical pages and
1822                  * mappings.
1823                  */
1824                 while ((entry != &map->header) && (entry->start < end)) {
1825                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1826                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1827                         entry->wired_count--;
1828                         if (entry->wired_count == 0)
1829                                 vm_fault_unwire(map, entry->start, entry->end);
1830                         entry = entry->next;
1831                 }
1832         }
1833 done:
1834         vm_map_unclip_range(map, start_entry, start, real_end, &count,
1835                 MAP_CLIP_NO_HOLES);
1836         map->timestamp++;
1837         vm_map_unlock(map);
1838         vm_map_entry_release(count);
1839         return (rv);
1840 }
1841
1842 /*
1843  *      vm_map_wire:
1844  *
1845  *      Sets the pageability of the specified address
1846  *      range in the target map.  Regions specified
1847  *      as not pageable require locked-down physical
1848  *      memory and physical page maps.
1849  *
1850  *      The map must not be locked, but a reference
1851  *      must remain to the map throughout the call.
1852  *
1853  *      This function may be called via the zalloc path and must properly
1854  *      reserve map entries for kernel_map.
1855  */
1856 int
1857 vm_map_wire(vm_map_t map, vm_offset_t start, 
1858         vm_offset_t real_end, boolean_t new_pageable)
1859 {
1860         vm_map_entry_t entry;
1861         vm_map_entry_t start_entry;
1862         vm_offset_t end;
1863         int rv = KERN_SUCCESS;
1864         int count;
1865         int s;
1866
1867         if (map == kernel_map)
1868                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1869 #if defined(USE_KMEM_MAP)
1870         else if (map == kmem_map)
1871                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1872 #endif
1873         else
1874                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1875         vm_map_lock(map);
1876         VM_MAP_RANGE_CHECK(map, start, real_end);
1877         end = real_end;
1878
1879         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1880         if (start_entry == NULL) {
1881                 vm_map_unlock(map);
1882                 rv = KERN_INVALID_ADDRESS;
1883                 goto failure;
1884         }
1885         if (new_pageable == 0) {
1886                 /*
1887                  * Wiring.  
1888                  *
1889                  * 1.  Holding the write lock, we create any shadow or zero-fill
1890                  * objects that need to be created. Then we clip each map
1891                  * entry to the region to be wired and increment its wiring
1892                  * count.  We create objects before clipping the map entries
1893                  * to avoid object proliferation.
1894                  *
1895                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
1896                  * fault in the pages for any newly wired area (wired_count is
1897                  * 1).
1898                  *
1899                  * Downgrading to a read lock for vm_fault_wire avoids a 
1900                  * possible deadlock with another process that may have faulted
1901                  * on one of the pages to be wired (it would mark the page busy,
1902                  * blocking us, then in turn block on the map lock that we
1903                  * hold).  Because of problems in the recursive lock package,
1904                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1905                  * any actions that require the write lock must be done
1906                  * beforehand.  Because we keep the read lock on the map, the
1907                  * copy-on-write status of the entries we modify here cannot
1908                  * change.
1909                  */
1910
1911                 entry = start_entry;
1912                 while ((entry != &map->header) && (entry->start < end)) {
1913                         /*
1914                          * Trivial case if the entry is already wired
1915                          */
1916                         if (entry->wired_count) {
1917                                 entry->wired_count++;
1918                                 entry = entry->next;
1919                                 continue;
1920                         }
1921
1922                         /*
1923                          * The entry is being newly wired, we have to setup
1924                          * appropriate management structures.  A shadow 
1925                          * object is required for a copy-on-write region,
1926                          * or a normal object for a zero-fill region.  We
1927                          * do not have to do this for entries that point to sub
1928                          * maps because we won't hold the lock on the sub map.
1929                          */
1930                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1931                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1932                                 if (copyflag &&
1933                                     ((entry->protection & VM_PROT_WRITE) != 0)) {
1934
1935                                         vm_object_shadow(&entry->object.vm_object,
1936                                             &entry->offset,
1937                                             atop(entry->end - entry->start));
1938                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1939                                 } else if (entry->object.vm_object == NULL &&
1940                                            !map->system_map) {
1941                                         entry->object.vm_object =
1942                                             vm_object_allocate(OBJT_DEFAULT,
1943                                                 atop(entry->end - entry->start));
1944                                         entry->offset = (vm_offset_t) 0;
1945                                 }
1946                         }
1947
1948                         entry->wired_count++;
1949                         entry = entry->next;
1950                 }
1951
1952                 /*
1953                  * Pass 2.
1954                  */
1955
1956                 /*
1957                  * HACK HACK HACK HACK
1958                  *
1959                  * Unlock the map to avoid deadlocks.  The in-transit flag
1960                  * protects us from most changes but note that
1961                  * clipping may still occur.  To prevent clipping from
1962                  * occuring after the unlock, except for when we are
1963                  * blocking in vm_fault_wire, we must run at splvm().
1964                  * Otherwise our accesses to entry->start and entry->end
1965                  * could be corrupted.  We have to set splvm() prior to
1966                  * unlocking so start_entry does not change out from
1967                  * under us at the very beginning of the loop.
1968                  *
1969                  * HACK HACK HACK HACK
1970                  */
1971
1972                 s = splvm();
1973                 vm_map_unlock(map);
1974
1975                 entry = start_entry;
1976                 while (entry != &map->header && entry->start < end) {
1977                         /*
1978                          * If vm_fault_wire fails for any page we need to undo
1979                          * what has been done.  We decrement the wiring count
1980                          * for those pages which have not yet been wired (now)
1981                          * and unwire those that have (later).
1982                          */
1983                         vm_offset_t save_start = entry->start;
1984                         vm_offset_t save_end = entry->end;
1985
1986                         if (entry->wired_count == 1)
1987                                 rv = vm_fault_wire(map, entry->start, entry->end);
1988                         if (rv) {
1989                                 CLIP_CHECK_BACK(entry, save_start);
1990                                 for (;;) {
1991                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1992                                         entry->wired_count = 0;
1993                                         if (entry->end == save_end)
1994                                                 break;
1995                                         entry = entry->next;
1996                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1997                                 }
1998                                 end = save_start;
1999                                 break;
2000                         }
2001                         CLIP_CHECK_FWD(entry, save_end);
2002                         entry = entry->next;
2003                 }
2004                 splx(s);
2005
2006                 /*
2007                  * relock.  start_entry is still IN_TRANSITION and must
2008                  * still exist, but may have been clipped (handled just
2009                  * below).
2010                  */
2011                 vm_map_lock(map);
2012
2013                 /*
2014                  * If a failure occured undo everything by falling through
2015                  * to the unwiring code.  'end' has already been adjusted
2016                  * appropriately.
2017                  */
2018                 if (rv)
2019                         new_pageable = 1;
2020
2021                 /*
2022                  * start_entry might have been clipped if we unlocked the
2023                  * map and blocked.  No matter how clipped it has gotten
2024                  * there should be a fragment that is on our start boundary.
2025                  */
2026                 CLIP_CHECK_BACK(start_entry, start);
2027         }
2028
2029         if (new_pageable) {
2030                 /*
2031                  * This is the unwiring case.  We must first ensure that the
2032                  * range to be unwired is really wired down.  We know there
2033                  * are no holes.
2034                  */
2035                 entry = start_entry;
2036                 while ((entry != &map->header) && (entry->start < end)) {
2037                         if (entry->wired_count == 0) {
2038                                 rv = KERN_INVALID_ARGUMENT;
2039                                 goto done;
2040                         }
2041                         entry = entry->next;
2042                 }
2043
2044                 /*
2045                  * Now decrement the wiring count for each region. If a region
2046                  * becomes completely unwired, unwire its physical pages and
2047                  * mappings.
2048                  */
2049                 entry = start_entry;
2050                 while ((entry != &map->header) && (entry->start < end)) {
2051                         entry->wired_count--;
2052                         if (entry->wired_count == 0)
2053                                 vm_fault_unwire(map, entry->start, entry->end);
2054                         entry = entry->next;
2055                 }
2056         }
2057 done:
2058         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2059                 MAP_CLIP_NO_HOLES);
2060         map->timestamp++;
2061         vm_map_unlock(map);
2062 failure:
2063         if (map == kernel_map)
2064                 vm_map_entry_krelease(count);
2065 #if defined(USE_KMEM_MAP)
2066         else if (map == kmem_map)
2067                 vm_map_entry_krelease(count);
2068 #endif
2069         else
2070                 vm_map_entry_release(count);
2071         return (rv);
2072 }
2073
2074 /*
2075  * vm_map_set_wired_quick()
2076  *
2077  *      Mark a newly allocated address range as wired but do not fault in
2078  *      the pages.  The caller is expected to load the pages into the object.
2079  *
2080  *      The map must be locked on entry and will remain locked on return.
2081  */
2082 void
2083 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2084 {
2085         vm_map_entry_t scan;
2086         vm_map_entry_t entry;
2087
2088         entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2089         for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2090             KKASSERT(entry->wired_count == 0);
2091             entry->wired_count = 1;                                              
2092         }
2093         vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2094 }
2095
2096 /*
2097  * vm_map_clean
2098  *
2099  * Push any dirty cached pages in the address range to their pager.
2100  * If syncio is TRUE, dirty pages are written synchronously.
2101  * If invalidate is TRUE, any cached pages are freed as well.
2102  *
2103  * Returns an error if any part of the specified range is not mapped.
2104  */
2105 int
2106 vm_map_clean(map, start, end, syncio, invalidate)
2107         vm_map_t map;
2108         vm_offset_t start;
2109         vm_offset_t end;
2110         boolean_t syncio;
2111         boolean_t invalidate;
2112 {
2113         vm_map_entry_t current;
2114         vm_map_entry_t entry;
2115         vm_size_t size;
2116         vm_object_t object;
2117         vm_ooffset_t offset;
2118
2119         vm_map_lock_read(map);
2120         VM_MAP_RANGE_CHECK(map, start, end);
2121         if (!vm_map_lookup_entry(map, start, &entry)) {
2122                 vm_map_unlock_read(map);
2123                 return (KERN_INVALID_ADDRESS);
2124         }
2125         /*
2126          * Make a first pass to check for holes.
2127          */
2128         for (current = entry; current->start < end; current = current->next) {
2129                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2130                         vm_map_unlock_read(map);
2131                         return (KERN_INVALID_ARGUMENT);
2132                 }
2133                 if (end > current->end &&
2134                     (current->next == &map->header ||
2135                         current->end != current->next->start)) {
2136                         vm_map_unlock_read(map);
2137                         return (KERN_INVALID_ADDRESS);
2138                 }
2139         }
2140
2141         if (invalidate)
2142                 pmap_remove(vm_map_pmap(map), start, end);
2143         /*
2144          * Make a second pass, cleaning/uncaching pages from the indicated
2145          * objects as we go.
2146          */
2147         for (current = entry; current->start < end; current = current->next) {
2148                 offset = current->offset + (start - current->start);
2149                 size = (end <= current->end ? end : current->end) - start;
2150                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2151                         vm_map_t smap;
2152                         vm_map_entry_t tentry;
2153                         vm_size_t tsize;
2154
2155                         smap = current->object.sub_map;
2156                         vm_map_lock_read(smap);
2157                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2158                         tsize = tentry->end - offset;
2159                         if (tsize < size)
2160                                 size = tsize;
2161                         object = tentry->object.vm_object;
2162                         offset = tentry->offset + (offset - tentry->start);
2163                         vm_map_unlock_read(smap);
2164                 } else {
2165                         object = current->object.vm_object;
2166                 }
2167                 /*
2168                  * Note that there is absolutely no sense in writing out
2169                  * anonymous objects, so we track down the vnode object
2170                  * to write out.
2171                  * We invalidate (remove) all pages from the address space
2172                  * anyway, for semantic correctness.
2173                  *
2174                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2175                  * may start out with a NULL object.
2176                  */
2177                 while (object && object->backing_object) {
2178                         object = object->backing_object;
2179                         offset += object->backing_object_offset;
2180                         if (object->size < OFF_TO_IDX( offset + size))
2181                                 size = IDX_TO_OFF(object->size) - offset;
2182                 }
2183                 if (object && (object->type == OBJT_VNODE) && 
2184                     (current->protection & VM_PROT_WRITE)) {
2185                         /*
2186                          * Flush pages if writing is allowed, invalidate them
2187                          * if invalidation requested.  Pages undergoing I/O
2188                          * will be ignored by vm_object_page_remove().
2189                          *
2190                          * We cannot lock the vnode and then wait for paging
2191                          * to complete without deadlocking against vm_fault.
2192                          * Instead we simply call vm_object_page_remove() and
2193                          * allow it to block internally on a page-by-page 
2194                          * basis when it encounters pages undergoing async 
2195                          * I/O.
2196                          */
2197                         int flags;
2198
2199                         vm_object_reference(object);
2200                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
2201                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2202                         flags |= invalidate ? OBJPC_INVAL : 0;
2203                         vm_object_page_clean(object,
2204                             OFF_TO_IDX(offset),
2205                             OFF_TO_IDX(offset + size + PAGE_MASK),
2206                             flags);
2207                         VOP_UNLOCK(object->handle, 0, curthread);
2208                         vm_object_deallocate(object);
2209                 }
2210                 if (object && invalidate &&
2211                    ((object->type == OBJT_VNODE) ||
2212                     (object->type == OBJT_DEVICE))) {
2213                         vm_object_reference(object);
2214                         vm_object_page_remove(object,
2215                             OFF_TO_IDX(offset),
2216                             OFF_TO_IDX(offset + size + PAGE_MASK),
2217                             FALSE);
2218                         vm_object_deallocate(object);
2219                 }
2220                 start += size;
2221         }
2222
2223         vm_map_unlock_read(map);
2224         return (KERN_SUCCESS);
2225 }
2226
2227 /*
2228  *      vm_map_entry_unwire:    [ internal use only ]
2229  *
2230  *      Make the region specified by this entry pageable.
2231  *
2232  *      The map in question should be locked.
2233  *      [This is the reason for this routine's existence.]
2234  */
2235 static void 
2236 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2237 {
2238         vm_fault_unwire(map, entry->start, entry->end);
2239         entry->wired_count = 0;
2240 }
2241
2242 /*
2243  *      vm_map_entry_delete:    [ internal use only ]
2244  *
2245  *      Deallocate the given entry from the target map.
2246  */
2247 static void
2248 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2249 {
2250         vm_map_entry_unlink(map, entry);
2251         map->size -= entry->end - entry->start;
2252
2253         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2254                 vm_object_deallocate(entry->object.vm_object);
2255         }
2256
2257         vm_map_entry_dispose(map, entry, countp);
2258 }
2259
2260 /*
2261  *      vm_map_delete:  [ internal use only ]
2262  *
2263  *      Deallocates the given address range from the target
2264  *      map.
2265  */
2266 int
2267 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2268 {
2269         vm_object_t object;
2270         vm_map_entry_t entry;
2271         vm_map_entry_t first_entry;
2272
2273         /*
2274          * Find the start of the region, and clip it
2275          */
2276
2277 again:
2278         if (!vm_map_lookup_entry(map, start, &first_entry))
2279                 entry = first_entry->next;
2280         else {
2281                 entry = first_entry;
2282                 vm_map_clip_start(map, entry, start, countp);
2283                 /*
2284                  * Fix the lookup hint now, rather than each time though the
2285                  * loop.
2286                  */
2287                 SAVE_HINT(map, entry->prev);
2288         }
2289
2290         /*
2291          * Save the free space hint
2292          */
2293
2294         if (entry == &map->header) {
2295                 map->first_free = &map->header;
2296         } else if (map->first_free->start >= start) {
2297                 map->first_free = entry->prev;
2298         }
2299
2300         /*
2301          * Step through all entries in this region
2302          */
2303
2304         while ((entry != &map->header) && (entry->start < end)) {
2305                 vm_map_entry_t next;
2306                 vm_offset_t s, e;
2307                 vm_pindex_t offidxstart, offidxend, count;
2308
2309                 /*
2310                  * If we hit an in-transition entry we have to sleep and
2311                  * retry.  It's easier (and not really slower) to just retry
2312                  * since this case occurs so rarely and the hint is already
2313                  * pointing at the right place.  We have to reset the
2314                  * start offset so as not to accidently delete an entry
2315                  * another process just created in vacated space.
2316                  */
2317                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2318                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2319                         start = entry->start;
2320                         ++mycpu->gd_cnt.v_intrans_coll;
2321                         ++mycpu->gd_cnt.v_intrans_wait;
2322                         vm_map_transition_wait(map);
2323                         goto again;
2324                 }
2325                 vm_map_clip_end(map, entry, end, countp);
2326
2327                 s = entry->start;
2328                 e = entry->end;
2329                 next = entry->next;
2330
2331                 offidxstart = OFF_TO_IDX(entry->offset);
2332                 count = OFF_TO_IDX(e - s);
2333                 object = entry->object.vm_object;
2334
2335                 /*
2336                  * Unwire before removing addresses from the pmap; otherwise,
2337                  * unwiring will put the entries back in the pmap.
2338                  */
2339                 if (entry->wired_count != 0) {
2340                         vm_map_entry_unwire(map, entry);
2341                 }
2342
2343                 offidxend = offidxstart + count;
2344
2345                 if ((object == kernel_object) || (object == kmem_object)) {
2346                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2347                 } else {
2348                         pmap_remove(map->pmap, s, e);
2349                         if (object != NULL &&
2350                             object->ref_count != 1 &&
2351                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2352                             (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2353                                 vm_object_collapse(object);
2354                                 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2355                                 if (object->type == OBJT_SWAP) {
2356                                         swap_pager_freespace(object, offidxstart, count);
2357                                 }
2358                                 if (offidxend >= object->size &&
2359                                     offidxstart < object->size) {
2360                                         object->size = offidxstart;
2361                                 }
2362                         }
2363                 }
2364
2365                 /*
2366                  * Delete the entry (which may delete the object) only after
2367                  * removing all pmap entries pointing to its pages.
2368                  * (Otherwise, its page frames may be reallocated, and any
2369                  * modify bits will be set in the wrong object!)
2370                  */
2371                 vm_map_entry_delete(map, entry, countp);
2372                 entry = next;
2373         }
2374         return (KERN_SUCCESS);
2375 }
2376
2377 /*
2378  *      vm_map_remove:
2379  *
2380  *      Remove the given address range from the target map.
2381  *      This is the exported form of vm_map_delete.
2382  */
2383 int
2384 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2385 {
2386         int result;
2387         int count;
2388 #if defined(USE_KMEM_MAP)
2389         int s = 0;
2390 #endif
2391
2392 #if defined(USE_KMEM_MAP)
2393         if (map == kmem_map || map == mb_map)
2394                 s = splvm();
2395 #endif
2396         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2397         vm_map_lock(map);
2398         VM_MAP_RANGE_CHECK(map, start, end);
2399         result = vm_map_delete(map, start, end, &count);
2400         vm_map_unlock(map);
2401         vm_map_entry_release(count);
2402
2403 #if defined(USE_KMEM_MAP)
2404         if (map == kmem_map || map == mb_map)
2405                 splx(s);
2406 #endif
2407
2408         return (result);
2409 }
2410
2411 /*
2412  *      vm_map_check_protection:
2413  *
2414  *      Assert that the target map allows the specified
2415  *      privilege on the entire address region given.
2416  *      The entire region must be allocated.
2417  */
2418 boolean_t
2419 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2420                         vm_prot_t protection)
2421 {
2422         vm_map_entry_t entry;
2423         vm_map_entry_t tmp_entry;
2424
2425         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2426                 return (FALSE);
2427         }
2428         entry = tmp_entry;
2429
2430         while (start < end) {
2431                 if (entry == &map->header) {
2432                         return (FALSE);
2433                 }
2434                 /*
2435                  * No holes allowed!
2436                  */
2437
2438                 if (start < entry->start) {
2439                         return (FALSE);
2440                 }
2441                 /*
2442                  * Check protection associated with entry.
2443                  */
2444
2445                 if ((entry->protection & protection) != protection) {
2446                         return (FALSE);
2447                 }
2448                 /* go to next entry */
2449
2450                 start = entry->end;
2451                 entry = entry->next;
2452         }
2453         return (TRUE);
2454 }
2455
2456 /*
2457  * Split the pages in a map entry into a new object.  This affords
2458  * easier removal of unused pages, and keeps object inheritance from
2459  * being a negative impact on memory usage.
2460  */
2461 static void
2462 vm_map_split(vm_map_entry_t entry)
2463 {
2464         vm_page_t m;
2465         vm_object_t orig_object, new_object, source;
2466         vm_offset_t s, e;
2467         vm_pindex_t offidxstart, offidxend, idx;
2468         vm_size_t size;
2469         vm_ooffset_t offset;
2470
2471         orig_object = entry->object.vm_object;
2472         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2473                 return;
2474         if (orig_object->ref_count <= 1)
2475                 return;
2476
2477         offset = entry->offset;
2478         s = entry->start;
2479         e = entry->end;
2480
2481         offidxstart = OFF_TO_IDX(offset);
2482         offidxend = offidxstart + OFF_TO_IDX(e - s);
2483         size = offidxend - offidxstart;
2484
2485         new_object = vm_pager_allocate(orig_object->type,
2486                 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2487         if (new_object == NULL)
2488                 return;
2489
2490         source = orig_object->backing_object;
2491         if (source != NULL) {
2492                 vm_object_reference(source);    /* Referenced by new_object */
2493                 LIST_INSERT_HEAD(&source->shadow_head,
2494                                   new_object, shadow_list);
2495                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2496                 new_object->backing_object_offset = 
2497                         orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2498                 new_object->backing_object = source;
2499                 source->shadow_count++;
2500                 source->generation++;
2501         }
2502
2503         for (idx = 0; idx < size; idx++) {
2504                 vm_page_t m;
2505
2506         retry:
2507                 m = vm_page_lookup(orig_object, offidxstart + idx);
2508                 if (m == NULL)
2509                         continue;
2510
2511                 /*
2512                  * We must wait for pending I/O to complete before we can
2513                  * rename the page.
2514                  *
2515                  * We do not have to VM_PROT_NONE the page as mappings should
2516                  * not be changed by this operation.
2517                  */
2518                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2519                         goto retry;
2520                         
2521                 vm_page_busy(m);
2522                 vm_page_rename(m, new_object, idx);
2523                 /* page automatically made dirty by rename and cache handled */
2524                 vm_page_busy(m);
2525         }
2526
2527         if (orig_object->type == OBJT_SWAP) {
2528                 vm_object_pip_add(orig_object, 1);
2529                 /*
2530                  * copy orig_object pages into new_object
2531                  * and destroy unneeded pages in
2532                  * shadow object.
2533                  */
2534                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2535                 vm_object_pip_wakeup(orig_object);
2536         }
2537
2538         for (idx = 0; idx < size; idx++) {
2539                 m = vm_page_lookup(new_object, idx);
2540                 if (m) {
2541                         vm_page_wakeup(m);
2542                 }
2543         }
2544
2545         entry->object.vm_object = new_object;
2546         entry->offset = 0LL;
2547         vm_object_deallocate(orig_object);
2548 }
2549
2550 /*
2551  *      vm_map_copy_entry:
2552  *
2553  *      Copies the contents of the source entry to the destination
2554  *      entry.  The entries *must* be aligned properly.
2555  */
2556 static void
2557 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2558         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2559 {
2560         vm_object_t src_object;
2561
2562         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2563                 return;
2564
2565         if (src_entry->wired_count == 0) {
2566
2567                 /*
2568                  * If the source entry is marked needs_copy, it is already
2569                  * write-protected.
2570                  */
2571                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2572                         pmap_protect(src_map->pmap,
2573                             src_entry->start,
2574                             src_entry->end,
2575                             src_entry->protection & ~VM_PROT_WRITE);
2576                 }
2577
2578                 /*
2579                  * Make a copy of the object.
2580                  */
2581                 if ((src_object = src_entry->object.vm_object) != NULL) {
2582
2583                         if ((src_object->handle == NULL) &&
2584                                 (src_object->type == OBJT_DEFAULT ||
2585                                  src_object->type == OBJT_SWAP)) {
2586                                 vm_object_collapse(src_object);
2587                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2588                                         vm_map_split(src_entry);
2589                                         src_object = src_entry->object.vm_object;
2590                                 }
2591                         }
2592
2593                         vm_object_reference(src_object);
2594                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2595                         dst_entry->object.vm_object = src_object;
2596                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2597                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2598                         dst_entry->offset = src_entry->offset;
2599                 } else {
2600                         dst_entry->object.vm_object = NULL;
2601                         dst_entry->offset = 0;
2602                 }
2603
2604                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2605                     dst_entry->end - dst_entry->start, src_entry->start);
2606         } else {
2607                 /*
2608                  * Of course, wired down pages can't be set copy-on-write.
2609                  * Cause wired pages to be copied into the new map by
2610                  * simulating faults (the new pages are pageable)
2611                  */
2612                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2613         }
2614 }
2615
2616 /*
2617  * vmspace_fork:
2618  * Create a new process vmspace structure and vm_map
2619  * based on those of an existing process.  The new map
2620  * is based on the old map, according to the inheritance
2621  * values on the regions in that map.
2622  *
2623  * The source map must not be locked.
2624  */
2625 struct vmspace *
2626 vmspace_fork(struct vmspace *vm1)
2627 {
2628         struct vmspace *vm2;
2629         vm_map_t old_map = &vm1->vm_map;
2630         vm_map_t new_map;
2631         vm_map_entry_t old_entry;
2632         vm_map_entry_t new_entry;
2633         vm_object_t object;
2634         int count;
2635
2636         vm_map_lock(old_map);
2637         old_map->infork = 1;
2638
2639         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2640         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2641             (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2642         new_map = &vm2->vm_map; /* XXX */
2643         new_map->timestamp = 1;
2644
2645         count = 0;
2646         old_entry = old_map->header.next;
2647         while (old_entry != &old_map->header) {
2648                 ++count;
2649                 old_entry = old_entry->next;
2650         }
2651
2652         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2653
2654         old_entry = old_map->header.next;
2655         while (old_entry != &old_map->header) {
2656                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2657                         panic("vm_map_fork: encountered a submap");
2658
2659                 switch (old_entry->inheritance) {
2660                 case VM_INHERIT_NONE:
2661                         break;
2662
2663                 case VM_INHERIT_SHARE:
2664                         /*
2665                          * Clone the entry, creating the shared object if necessary.
2666                          */
2667                         object = old_entry->object.vm_object;
2668                         if (object == NULL) {
2669                                 object = vm_object_allocate(OBJT_DEFAULT,
2670                                         atop(old_entry->end - old_entry->start));
2671                                 old_entry->object.vm_object = object;
2672                                 old_entry->offset = (vm_offset_t) 0;
2673                         }
2674
2675                         /*
2676                          * Add the reference before calling vm_object_shadow
2677                          * to insure that a shadow object is created.
2678                          */
2679                         vm_object_reference(object);
2680                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2681                                 vm_object_shadow(&old_entry->object.vm_object,
2682                                         &old_entry->offset,
2683                                         atop(old_entry->end - old_entry->start));
2684                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2685                                 /* Transfer the second reference too. */
2686                                 vm_object_reference(
2687                                     old_entry->object.vm_object);
2688                                 vm_object_deallocate(object);
2689                                 object = old_entry->object.vm_object;
2690                         }
2691                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2692
2693                         /*
2694                          * Clone the entry, referencing the shared object.
2695                          */
2696                         new_entry = vm_map_entry_create(new_map, &count);
2697                         *new_entry = *old_entry;
2698                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2699                         new_entry->wired_count = 0;
2700
2701                         /*
2702                          * Insert the entry into the new map -- we know we're
2703                          * inserting at the end of the new map.
2704                          */
2705
2706                         vm_map_entry_link(new_map, new_map->header.prev,
2707                             new_entry);
2708
2709                         /*
2710                          * Update the physical map
2711                          */
2712
2713                         pmap_copy(new_map->pmap, old_map->pmap,
2714                             new_entry->start,
2715                             (old_entry->end - old_entry->start),
2716                             old_entry->start);
2717                         break;
2718
2719                 case VM_INHERIT_COPY:
2720                         /*
2721                          * Clone the entry and link into the map.
2722                          */
2723                         new_entry = vm_map_entry_create(new_map, &count);
2724                         *new_entry = *old_entry;
2725                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2726                         new_entry->wired_count = 0;
2727                         new_entry->object.vm_object = NULL;
2728                         vm_map_entry_link(new_map, new_map->header.prev,
2729                             new_entry);
2730                         vm_map_copy_entry(old_map, new_map, old_entry,
2731                             new_entry);
2732                         break;
2733                 }
2734                 old_entry = old_entry->next;
2735         }
2736
2737         new_map->size = old_map->size;
2738         old_map->infork = 0;
2739         vm_map_unlock(old_map);
2740         vm_map_entry_release(count);
2741
2742         return (vm2);
2743 }
2744
2745 int
2746 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2747               vm_prot_t prot, vm_prot_t max, int cow)
2748 {
2749         vm_map_entry_t prev_entry;
2750         vm_map_entry_t new_stack_entry;
2751         vm_size_t      init_ssize;
2752         int            rv;
2753         int             count;
2754
2755         if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2756                 return (KERN_NO_SPACE);
2757
2758         if (max_ssize < sgrowsiz)
2759                 init_ssize = max_ssize;
2760         else
2761                 init_ssize = sgrowsiz;
2762
2763         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2764         vm_map_lock(map);
2765
2766         /* If addr is already mapped, no go */
2767         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2768                 vm_map_unlock(map);
2769                 vm_map_entry_release(count);
2770                 return (KERN_NO_SPACE);
2771         }
2772
2773         /* If we would blow our VMEM resource limit, no go */
2774         if (map->size + init_ssize >
2775             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2776                 vm_map_unlock(map);
2777                 vm_map_entry_release(count);
2778                 return (KERN_NO_SPACE);
2779         }
2780
2781         /* If we can't accomodate max_ssize in the current mapping,
2782          * no go.  However, we need to be aware that subsequent user
2783          * mappings might map into the space we have reserved for
2784          * stack, and currently this space is not protected.  
2785          * 
2786          * Hopefully we will at least detect this condition 
2787          * when we try to grow the stack.
2788          */
2789         if ((prev_entry->next != &map->header) &&
2790             (prev_entry->next->start < addrbos + max_ssize)) {
2791                 vm_map_unlock(map);
2792                 vm_map_entry_release(count);
2793                 return (KERN_NO_SPACE);
2794         }
2795
2796         /* We initially map a stack of only init_ssize.  We will
2797          * grow as needed later.  Since this is to be a grow 
2798          * down stack, we map at the top of the range.
2799          *
2800          * Note: we would normally expect prot and max to be
2801          * VM_PROT_ALL, and cow to be 0.  Possibly we should
2802          * eliminate these as input parameters, and just
2803          * pass these values here in the insert call.
2804          */
2805         rv = vm_map_insert(map, &count,
2806                            NULL, 0, addrbos + max_ssize - init_ssize,
2807                            addrbos + max_ssize, prot, max, cow);
2808
2809         /* Now set the avail_ssize amount */
2810         if (rv == KERN_SUCCESS){
2811                 if (prev_entry != &map->header)
2812                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2813                 new_stack_entry = prev_entry->next;
2814                 if (new_stack_entry->end   != addrbos + max_ssize ||
2815                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
2816                         panic ("Bad entry start/end for new stack entry");
2817                 else 
2818                         new_stack_entry->avail_ssize = max_ssize - init_ssize;
2819         }
2820
2821         vm_map_unlock(map);
2822         vm_map_entry_release(count);
2823         return (rv);
2824 }
2825
2826 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2827  * desired address is already mapped, or if we successfully grow
2828  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2829  * stack range (this is strange, but preserves compatibility with
2830  * the grow function in vm_machdep.c).
2831  */
2832 int
2833 vm_map_growstack (struct proc *p, vm_offset_t addr)
2834 {
2835         vm_map_entry_t prev_entry;
2836         vm_map_entry_t stack_entry;
2837         vm_map_entry_t new_stack_entry;
2838         struct vmspace *vm = p->p_vmspace;
2839         vm_map_t map = &vm->vm_map;
2840         vm_offset_t    end;
2841         int grow_amount;
2842         int rv = KERN_SUCCESS;
2843         int is_procstack;
2844         int use_read_lock = 1;
2845         int count;
2846
2847         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2848 Retry:
2849         if (use_read_lock)
2850                 vm_map_lock_read(map);
2851         else
2852                 vm_map_lock(map);
2853
2854         /* If addr is already in the entry range, no need to grow.*/
2855         if (vm_map_lookup_entry(map, addr, &prev_entry))
2856                 goto done;
2857
2858         if ((stack_entry = prev_entry->next) == &map->header)
2859                 goto done;
2860         if (prev_entry == &map->header) 
2861                 end = stack_entry->start - stack_entry->avail_ssize;
2862         else
2863                 end = prev_entry->end;
2864
2865         /* This next test mimics the old grow function in vm_machdep.c.
2866          * It really doesn't quite make sense, but we do it anyway
2867          * for compatibility.
2868          *
2869          * If not growable stack, return success.  This signals the
2870          * caller to proceed as he would normally with normal vm.
2871          */
2872         if (stack_entry->avail_ssize < 1 ||
2873             addr >= stack_entry->start ||
2874             addr <  stack_entry->start - stack_entry->avail_ssize) {
2875                 goto done;
2876         } 
2877         
2878         /* Find the minimum grow amount */
2879         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2880         if (grow_amount > stack_entry->avail_ssize) {
2881                 rv = KERN_NO_SPACE;
2882                 goto done;
2883         }
2884
2885         /* If there is no longer enough space between the entries
2886          * nogo, and adjust the available space.  Note: this 
2887          * should only happen if the user has mapped into the
2888          * stack area after the stack was created, and is
2889          * probably an error.
2890          *
2891          * This also effectively destroys any guard page the user
2892          * might have intended by limiting the stack size.
2893          */
2894         if (grow_amount > stack_entry->start - end) {
2895                 if (use_read_lock && vm_map_lock_upgrade(map)) {
2896                         use_read_lock = 0;
2897                         goto Retry;
2898                 }
2899                 use_read_lock = 0;
2900                 stack_entry->avail_ssize = stack_entry->start - end;
2901                 rv = KERN_NO_SPACE;
2902                 goto done;
2903         }
2904
2905         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2906
2907         /* If this is the main process stack, see if we're over the 
2908          * stack limit.
2909          */
2910         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2911                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2912                 rv = KERN_NO_SPACE;
2913                 goto done;
2914         }
2915
2916         /* Round up the grow amount modulo SGROWSIZ */
2917         grow_amount = roundup (grow_amount, sgrowsiz);
2918         if (grow_amount > stack_entry->avail_ssize) {
2919                 grow_amount = stack_entry->avail_ssize;
2920         }
2921         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2922                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2923                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2924                               ctob(vm->vm_ssize);
2925         }
2926
2927         /* If we would blow our VMEM resource limit, no go */
2928         if (map->size + grow_amount >
2929             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2930                 rv = KERN_NO_SPACE;
2931                 goto done;
2932         }
2933
2934         if (use_read_lock && vm_map_lock_upgrade(map)) {
2935                 use_read_lock = 0;
2936                 goto Retry;
2937         }
2938         use_read_lock = 0;
2939
2940         /* Get the preliminary new entry start value */
2941         addr = stack_entry->start - grow_amount;
2942
2943         /* If this puts us into the previous entry, cut back our growth
2944          * to the available space.  Also, see the note above.
2945          */
2946         if (addr < end) {
2947                 stack_entry->avail_ssize = stack_entry->start - end;
2948                 addr = end;
2949         }
2950
2951         rv = vm_map_insert(map, &count,
2952                            NULL, 0, addr, stack_entry->start,
2953                            VM_PROT_ALL,
2954                            VM_PROT_ALL,
2955                            0);
2956
2957         /* Adjust the available stack space by the amount we grew. */
2958         if (rv == KERN_SUCCESS) {
2959                 if (prev_entry != &map->header)
2960                         vm_map_clip_end(map, prev_entry, addr, &count);
2961                 new_stack_entry = prev_entry->next;
2962                 if (new_stack_entry->end   != stack_entry->start  ||
2963                     new_stack_entry->start != addr)
2964                         panic ("Bad stack grow start/end in new stack entry");
2965                 else {
2966                         new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2967                                                         (new_stack_entry->end -
2968                                                          new_stack_entry->start);
2969                         if (is_procstack)
2970                                 vm->vm_ssize += btoc(new_stack_entry->end -
2971                                                      new_stack_entry->start);
2972                 }
2973         }
2974
2975 done:
2976         if (use_read_lock)
2977                 vm_map_unlock_read(map);
2978         else
2979                 vm_map_unlock(map);
2980         vm_map_entry_release(count);
2981         return (rv);
2982 }
2983
2984 /*
2985  * Unshare the specified VM space for exec.  If other processes are
2986  * mapped to it, then create a new one.  The new vmspace is null.
2987  */
2988
2989 void
2990 vmspace_exec(struct proc *p) 
2991 {
2992         struct vmspace *oldvmspace = p->p_vmspace;
2993         struct vmspace *newvmspace;
2994         vm_map_t map = &p->p_vmspace->vm_map;
2995
2996         newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2997         bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2998             (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2999         /*
3000          * This code is written like this for prototype purposes.  The
3001          * goal is to avoid running down the vmspace here, but let the
3002          * other process's that are still using the vmspace to finally
3003          * run it down.  Even though there is little or no chance of blocking
3004          * here, it is a good idea to keep this form for future mods.
3005          */
3006         vmspace_free(oldvmspace);
3007         p->p_vmspace = newvmspace;
3008         pmap_pinit2(vmspace_pmap(newvmspace));
3009         if (p == curproc)
3010                 pmap_activate(p);
3011 }
3012
3013 /*
3014  * Unshare the specified VM space for forcing COW.  This
3015  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3016  */
3017
3018 void
3019 vmspace_unshare(struct proc *p) 
3020 {
3021         struct vmspace *oldvmspace = p->p_vmspace;
3022         struct vmspace *newvmspace;
3023
3024         if (oldvmspace->vm_refcnt == 1)
3025                 return;
3026         newvmspace = vmspace_fork(oldvmspace);
3027         vmspace_free(oldvmspace);
3028         p->p_vmspace = newvmspace;
3029         pmap_pinit2(vmspace_pmap(newvmspace));
3030         if (p == curproc)
3031                 pmap_activate(p);
3032 }
3033
3034 /*
3035  *      vm_map_lookup:
3036  *
3037  *      Finds the VM object, offset, and
3038  *      protection for a given virtual address in the
3039  *      specified map, assuming a page fault of the
3040  *      type specified.
3041  *
3042  *      Leaves the map in question locked for read; return
3043  *      values are guaranteed until a vm_map_lookup_done
3044  *      call is performed.  Note that the map argument
3045  *      is in/out; the returned map must be used in
3046  *      the call to vm_map_lookup_done.
3047  *
3048  *      A handle (out_entry) is returned for use in
3049  *      vm_map_lookup_done, to make that fast.
3050  *
3051  *      If a lookup is requested with "write protection"
3052  *      specified, the map may be changed to perform virtual
3053  *      copying operations, although the data referenced will
3054  *      remain the same.
3055  */
3056 int
3057 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3058               vm_offset_t vaddr,
3059               vm_prot_t fault_typea,
3060               vm_map_entry_t *out_entry,        /* OUT */
3061               vm_object_t *object,              /* OUT */
3062               vm_pindex_t *pindex,              /* OUT */
3063               vm_prot_t *out_prot,              /* OUT */
3064               boolean_t *wired)                 /* OUT */
3065 {
3066         vm_map_entry_t entry;
3067         vm_map_t map = *var_map;
3068         vm_prot_t prot;
3069         vm_prot_t fault_type = fault_typea;
3070         int use_read_lock = 1;
3071         int rv = KERN_SUCCESS;
3072
3073 RetryLookup:
3074         if (use_read_lock)
3075                 vm_map_lock_read(map);
3076         else
3077                 vm_map_lock(map);
3078
3079         /*
3080          * If the map has an interesting hint, try it before calling full
3081          * blown lookup routine.
3082          */
3083         entry = map->hint;
3084         *out_entry = entry;
3085
3086         if ((entry == &map->header) ||
3087             (vaddr < entry->start) || (vaddr >= entry->end)) {
3088                 vm_map_entry_t tmp_entry;
3089
3090                 /*
3091                  * Entry was either not a valid hint, or the vaddr was not
3092                  * contained in the entry, so do a full lookup.
3093                  */
3094                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3095                         rv = KERN_INVALID_ADDRESS;
3096                         goto done;
3097                 }
3098
3099                 entry = tmp_entry;
3100                 *out_entry = entry;
3101         }
3102         
3103         /*
3104          * Handle submaps.
3105          */
3106
3107         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3108                 vm_map_t old_map = map;
3109
3110                 *var_map = map = entry->object.sub_map;
3111                 if (use_read_lock)
3112                         vm_map_unlock_read(old_map);
3113                 else
3114                         vm_map_unlock(old_map);
3115                 use_read_lock = 1;
3116                 goto RetryLookup;
3117         }
3118
3119         /*
3120          * Check whether this task is allowed to have this page.
3121          * Note the special case for MAP_ENTRY_COW
3122          * pages with an override.  This is to implement a forced
3123          * COW for debuggers.
3124          */
3125
3126         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3127                 prot = entry->max_protection;
3128         else
3129                 prot = entry->protection;
3130
3131         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3132         if ((fault_type & prot) != fault_type) {
3133                 rv = KERN_PROTECTION_FAILURE;
3134                 goto done;
3135         }
3136
3137         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3138             (entry->eflags & MAP_ENTRY_COW) &&
3139             (fault_type & VM_PROT_WRITE) &&
3140             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3141                 rv = KERN_PROTECTION_FAILURE;
3142                 goto done;
3143         }
3144
3145         /*
3146          * If this page is not pageable, we have to get it for all possible
3147          * accesses.
3148          */
3149
3150         *wired = (entry->wired_count != 0);
3151         if (*wired)
3152                 prot = fault_type = entry->protection;
3153
3154         /*
3155          * If the entry was copy-on-write, we either ...
3156          */
3157
3158         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3159                 /*
3160                  * If we want to write the page, we may as well handle that
3161                  * now since we've got the map locked.
3162                  *
3163                  * If we don't need to write the page, we just demote the
3164                  * permissions allowed.
3165                  */
3166
3167                 if (fault_type & VM_PROT_WRITE) {
3168                         /*
3169                          * Make a new object, and place it in the object
3170                          * chain.  Note that no new references have appeared
3171                          * -- one just moved from the map to the new
3172                          * object.
3173                          */
3174
3175                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3176                                 use_read_lock = 0;
3177                                 goto RetryLookup;
3178                         }
3179                         use_read_lock = 0;
3180
3181                         vm_object_shadow(
3182                             &entry->object.vm_object,
3183                             &entry->offset,
3184                             atop(entry->end - entry->start));
3185
3186                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3187                 } else {
3188                         /*
3189                          * We're attempting to read a copy-on-write page --
3190                          * don't allow writes.
3191                          */
3192
3193                         prot &= ~VM_PROT_WRITE;
3194                 }
3195         }
3196
3197         /*
3198          * Create an object if necessary.
3199          */
3200         if (entry->object.vm_object == NULL &&
3201             !map->system_map) {
3202                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3203                         use_read_lock = 0;
3204                         goto RetryLookup;
3205                 }
3206                 use_read_lock = 0;
3207                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3208                     atop(entry->end - entry->start));
3209                 entry->offset = 0;
3210         }
3211
3212         /*
3213          * Return the object/offset from this entry.  If the entry was
3214          * copy-on-write or empty, it has been fixed up.
3215          */
3216
3217         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3218         *object = entry->object.vm_object;
3219
3220         /*
3221          * Return whether this is the only map sharing this data.  On
3222          * success we return with a read lock held on the map.  On failure
3223          * we return with the map unlocked.
3224          */
3225         *out_prot = prot;
3226 done:
3227         if (rv == KERN_SUCCESS) {
3228                 if (use_read_lock == 0)
3229                         vm_map_lock_downgrade(map);
3230         } else if (use_read_lock) {
3231                 vm_map_unlock_read(map);
3232         } else {
3233                 vm_map_unlock(map);
3234         }
3235         return (rv);
3236 }
3237
3238 /*
3239  *      vm_map_lookup_done:
3240  *
3241  *      Releases locks acquired by a vm_map_lookup
3242  *      (according to the handle returned by that lookup).
3243  */
3244
3245 void
3246 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3247 {
3248         /*
3249          * Unlock the main-level map
3250          */
3251         vm_map_unlock_read(map);
3252         if (count)
3253                 vm_map_entry_release(count);
3254 }
3255
3256 /*
3257  * Implement uiomove with VM operations.  This handles (and collateral changes)
3258  * support every combination of source object modification, and COW type
3259  * operations.
3260  */
3261 int
3262 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
3263         vm_map_t mapa;
3264         vm_object_t srcobject;
3265         off_t cp;
3266         int cnta;
3267         vm_offset_t uaddra;
3268         int *npages;
3269 {
3270         vm_map_t map;
3271         vm_object_t first_object, oldobject, object;
3272         vm_map_entry_t entry;
3273         vm_prot_t prot;
3274         boolean_t wired;
3275         int tcnt, rv;
3276         vm_offset_t uaddr, start, end, tend;
3277         vm_pindex_t first_pindex, osize, oindex;
3278         off_t ooffset;
3279         int cnt;
3280         int count;
3281
3282         if (npages)
3283                 *npages = 0;
3284
3285         cnt = cnta;
3286         uaddr = uaddra;
3287
3288         while (cnt > 0) {
3289                 map = mapa;
3290
3291                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3292
3293                 if ((vm_map_lookup(&map, uaddr,
3294                         VM_PROT_READ, &entry, &first_object,
3295                         &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3296                         return EFAULT;
3297                 }
3298
3299                 vm_map_clip_start(map, entry, uaddr, &count);
3300
3301                 tcnt = cnt;
3302                 tend = uaddr + tcnt;
3303                 if (tend > entry->end) {
3304                         tcnt = entry->end - uaddr;
3305                         tend = entry->end;
3306                 }
3307
3308                 vm_map_clip_end(map, entry, tend, &count);
3309
3310                 start = entry->start;
3311                 end = entry->end;
3312
3313                 osize = atop(tcnt);
3314
3315                 oindex = OFF_TO_IDX(cp);
3316                 if (npages) {
3317                         vm_pindex_t idx;
3318                         for (idx = 0; idx < osize; idx++) {
3319                                 vm_page_t m;
3320                                 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3321                                         vm_map_lookup_done(map, entry, count);
3322                                         return 0;
3323                                 }
3324                                 /*
3325                                  * disallow busy or invalid pages, but allow
3326                                  * m->busy pages if they are entirely valid.
3327                                  */
3328                                 if ((m->flags & PG_BUSY) ||
3329                                         ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3330                                         vm_map_lookup_done(map, entry, count);
3331                                         return 0;
3332                                 }
3333                         }
3334                 }
3335
3336 /*
3337  * If we are changing an existing map entry, just redirect
3338  * the object, and change mappings.
3339  */
3340                 if ((first_object->type == OBJT_VNODE) &&
3341                         ((oldobject = entry->object.vm_object) == first_object)) {
3342
3343                         if ((entry->offset != cp) || (oldobject != srcobject)) {
3344                                 /*
3345                                 * Remove old window into the file
3346                                 */
3347                                 pmap_remove (map->pmap, uaddr, tend);
3348
3349                                 /*
3350                                 * Force copy on write for mmaped regions
3351                                 */
3352                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3353
3354                                 /*
3355                                 * Point the object appropriately
3356                                 */
3357                                 if (oldobject != srcobject) {
3358
3359                                 /*
3360                                 * Set the object optimization hint flag
3361                                 */
3362                                         vm_object_set_flag(srcobject, OBJ_OPT);
3363                                         vm_object_reference(srcobject);
3364                                         entry->object.vm_object = srcobject;
3365
3366                                         if (oldobject) {
3367                                                 vm_object_deallocate(oldobject);
3368                                         }
3369                                 }
3370
3371                                 entry->offset = cp;
3372                                 map->timestamp++;
3373                         } else {
3374                                 pmap_remove (map->pmap, uaddr, tend);
3375                         }
3376
3377                 } else if ((first_object->ref_count == 1) &&
3378                         (first_object->size == osize) &&
3379                         ((first_object->type == OBJT_DEFAULT) ||
3380                                 (first_object->type == OBJT_SWAP)) ) {
3381
3382                         oldobject = first_object->backing_object;
3383
3384                         if ((first_object->backing_object_offset != cp) ||
3385                                 (oldobject != srcobject)) {
3386                                 /*
3387                                 * Remove old window into the file
3388                                 */
3389                                 pmap_remove (map->pmap, uaddr, tend);
3390
3391                                 /*
3392                                  * Remove unneeded old pages
3393                                  */
3394                                 vm_object_page_remove(first_object, 0, 0, 0);
3395
3396                                 /*
3397                                  * Invalidate swap space
3398                                  */
3399                                 if (first_object->type == OBJT_SWAP) {
3400                                         swap_pager_freespace(first_object,
3401                                                 0,
3402                                                 first_object->size);
3403                                 }
3404
3405                                 /*
3406                                 * Force copy on write for mmaped regions
3407                                 */
3408                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3409
3410                                 /*
3411                                 * Point the object appropriately
3412                                 */
3413                                 if (oldobject != srcobject) {
3414
3415                                 /*
3416                                 * Set the object optimization hint flag
3417                                 */
3418                                         vm_object_set_flag(srcobject, OBJ_OPT);
3419                                         vm_object_reference(srcobject);
3420
3421                                         if (oldobject) {
3422                                                 LIST_REMOVE(
3423                                                         first_object, shadow_list);
3424                                                 oldobject->shadow_count--;
3425                                                 /* XXX bump generation? */
3426                                                 vm_object_deallocate(oldobject);
3427                                         }
3428
3429                                         LIST_INSERT_HEAD(&srcobject->shadow_head,
3430                                                 first_object, shadow_list);
3431                                         srcobject->shadow_count++;
3432                                         /* XXX bump generation? */
3433
3434                                         first_object->backing_object = srcobject;
3435                                 }
3436                                 first_object->backing_object_offset = cp;
3437                                 map->timestamp++;
3438                         } else {
3439                                 pmap_remove (map->pmap, uaddr, tend);
3440                         }
3441 /*
3442  * Otherwise, we have to do a logical mmap.
3443  */
3444                 } else {
3445
3446                         vm_object_set_flag(srcobject, OBJ_OPT);
3447                         vm_object_reference(srcobject);
3448
3449                         pmap_remove (map->pmap, uaddr, tend);
3450
3451                         vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3452                         vm_map_lock_upgrade(map);
3453
3454                         if (entry == &map->header) {
3455                                 map->first_free = &map->header;
3456                         } else if (map->first_free->start >= start) {
3457                                 map->first_free = entry->prev;
3458                         }
3459
3460                         SAVE_HINT(map, entry->prev);
3461                         vm_map_entry_delete(map, entry, &count);
3462
3463                         object = srcobject;
3464                         ooffset = cp;
3465
3466                         rv = vm_map_insert(map, &count,
3467                                 object, ooffset, start, tend,
3468                                 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3469
3470                         if (rv != KERN_SUCCESS)
3471                                 panic("vm_uiomove: could not insert new entry: %d", rv);
3472                 }
3473
3474 /*
3475  * Map the window directly, if it is already in memory
3476  */
3477                 pmap_object_init_pt(map->pmap, uaddr,
3478                         srcobject, oindex, tcnt, 0);
3479
3480                 map->timestamp++;
3481                 vm_map_unlock(map);
3482                 vm_map_entry_release(count);
3483
3484                 cnt -= tcnt;
3485                 uaddr += tcnt;
3486                 cp += tcnt;
3487                 if (npages)
3488                         *npages += osize;
3489         }
3490         return 0;
3491 }
3492
3493 /*
3494  * Performs the copy_on_write operations necessary to allow the virtual copies
3495  * into user space to work.  This has to be called for write(2) system calls
3496  * from other processes, file unlinking, and file size shrinkage.
3497  */
3498 void
3499 vm_freeze_copyopts(object, froma, toa)
3500         vm_object_t object;
3501         vm_pindex_t froma, toa;
3502 {
3503         int rv;
3504         vm_object_t robject;
3505         vm_pindex_t idx;
3506
3507         if ((object == NULL) ||
3508                 ((object->flags & OBJ_OPT) == 0))
3509                 return;
3510
3511         if (object->shadow_count > object->ref_count)
3512                 panic("vm_freeze_copyopts: sc > rc");
3513
3514         while((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3515                 vm_pindex_t bo_pindex;
3516                 vm_page_t m_in, m_out;
3517
3518                 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3519
3520                 vm_object_reference(robject);
3521
3522                 vm_object_pip_wait(robject, "objfrz");
3523
3524                 if (robject->ref_count == 1) {
3525                         vm_object_deallocate(robject);
3526                         continue;
3527                 }
3528
3529                 vm_object_pip_add(robject, 1);
3530
3531                 for (idx = 0; idx < robject->size; idx++) {
3532
3533                         m_out = vm_page_grab(robject, idx,
3534                                                 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3535
3536                         if (m_out->valid == 0) {
3537                                 m_in = vm_page_grab(object, bo_pindex + idx,
3538                                                 VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3539                                 if (m_in->valid == 0) {
3540                                         rv = vm_pager_get_pages(object, &m_in, 1, 0);
3541                                         if (rv != VM_PAGER_OK) {
3542                                                 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3543                                                 continue;
3544                                         }
3545                                         vm_page_deactivate(m_in);
3546                                 }
3547
3548                                 vm_page_protect(m_in, VM_PROT_NONE);
3549                                 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3550                                 m_out->valid = m_in->valid;
3551                                 vm_page_dirty(m_out);
3552                                 vm_page_activate(m_out);
3553                                 vm_page_wakeup(m_in);
3554                         }
3555                         vm_page_wakeup(m_out);
3556                 }
3557
3558                 object->shadow_count--;
3559                 object->ref_count--;
3560                 LIST_REMOVE(robject, shadow_list);
3561                 robject->backing_object = NULL;
3562                 robject->backing_object_offset = 0;
3563
3564                 vm_object_pip_wakeup(robject);
3565                 vm_object_deallocate(robject);
3566         }
3567
3568         vm_object_clear_flag(object, OBJ_OPT);
3569 }
3570
3571 #include "opt_ddb.h"
3572 #ifdef DDB
3573 #include <sys/kernel.h>
3574
3575 #include <ddb/ddb.h>
3576
3577 /*
3578  *      vm_map_print:   [ debug ]
3579  */
3580 DB_SHOW_COMMAND(map, vm_map_print)
3581 {
3582         static int nlines;
3583         /* XXX convert args. */
3584         vm_map_t map = (vm_map_t)addr;
3585         boolean_t full = have_addr;
3586
3587         vm_map_entry_t entry;
3588
3589         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3590             (void *)map,
3591             (void *)map->pmap, map->nentries, map->timestamp);
3592         nlines++;
3593
3594         if (!full && db_indent)
3595                 return;
3596
3597         db_indent += 2;
3598         for (entry = map->header.next; entry != &map->header;
3599             entry = entry->next) {
3600                 db_iprintf("map entry %p: start=%p, end=%p\n",
3601                     (void *)entry, (void *)entry->start, (void *)entry->end);
3602                 nlines++;
3603                 {
3604                         static char *inheritance_name[4] =
3605                         {"share", "copy", "none", "donate_copy"};
3606
3607                         db_iprintf(" prot=%x/%x/%s",
3608                             entry->protection,
3609                             entry->max_protection,
3610                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3611                         if (entry->wired_count != 0)
3612                                 db_printf(", wired");
3613                 }
3614                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3615                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3616                         db_printf(", share=%p, offset=0x%lx\n",
3617                             (void *)entry->object.sub_map,
3618                             (long)entry->offset);
3619                         nlines++;
3620                         if ((entry->prev == &map->header) ||
3621                             (entry->prev->object.sub_map !=
3622                                 entry->object.sub_map)) {
3623                                 db_indent += 2;
3624                                 vm_map_print((db_expr_t)(intptr_t)
3625                                              entry->object.sub_map,
3626                                              full, 0, (char *)0);
3627                                 db_indent -= 2;
3628                         }
3629                 } else {
3630                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3631                         db_printf(", object=%p, offset=0x%lx",
3632                             (void *)entry->object.vm_object,
3633                             (long)entry->offset);
3634                         if (entry->eflags & MAP_ENTRY_COW)
3635                                 db_printf(", copy (%s)",
3636                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3637                         db_printf("\n");
3638                         nlines++;
3639
3640                         if ((entry->prev == &map->header) ||
3641                             (entry->prev->object.vm_object !=
3642                                 entry->object.vm_object)) {
3643                                 db_indent += 2;
3644                                 vm_object_print((db_expr_t)(intptr_t)
3645                                                 entry->object.vm_object,
3646                                                 full, 0, (char *)0);
3647                                 nlines += 4;
3648                                 db_indent -= 2;
3649                         }
3650                 }
3651         }
3652         db_indent -= 2;
3653         if (db_indent == 0)
3654                 nlines = 0;
3655 }
3656
3657
3658 DB_SHOW_COMMAND(procvm, procvm)
3659 {
3660         struct proc *p;
3661
3662         if (have_addr) {
3663                 p = (struct proc *) addr;
3664         } else {
3665                 p = curproc;
3666         }
3667
3668         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3669             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3670             (void *)vmspace_pmap(p->p_vmspace));
3671
3672         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3673 }
3674
3675 #endif /* DDB */